Conditional Empirical Processes Defined by Nonstationary Absolutely Regular Sequences

Størrelse: px
Begynne med side:

Download "Conditional Empirical Processes Defined by Nonstationary Absolutely Regular Sequences"

Transkript

1 Joural of Multivariate Aalysis 70, (1999) Article ID jmva , available olie at httpwww.idealibrary.com o Coditioal Empirical Processes Defied by Nostatioary Absolutely Regular Sequeces Michel Harel ad Mada L. Puri* IUFM du Limousi, U.M.R.L C.N.R.S., Toulouse, Frace, ad Idiaa Uiversity, U.S.A. hareluilim.fr Received May 1, 1997 K. I. Yoshihara (1990, Comput. Math. Appl. 19, No. 1, ) proved the weak ivariace of the coditioal earest eighbor regressio fuctio estimator called the coditioal empirical process based o.-mixig observatios. I this paper, we exted the result for ostatioary ad absolutely regular radom variables which have applicatios for Markov processes, for which the iitial measure is ot ecessary, the ivariat measure Academic Press AMS 1991 subject classificatio 62G05. Key words ad phrases empirical distributio fuctio; coditioal empirical process; Skorohod topology; Gaussia process; absolute regularity. 1. INTRODUCTION Let [Z i =(X i, Y i ); i1] be a sequece of radom variables with cotiuous d.f.'s (distributio fuctios) H i (z), i1, z # R 2, ad we assume that H i (z) admits a strictly positive desity h i (z), i1, ad H i has the two margials F i ad G i where the respective desities are oted by f i ad g i. Suppose that there exists a radom vector (X, Y) ir 2 with fiite expectatio E Y ad which admits H as distributio fuctio, the regressio fuctio m(x)=e(y X=x), x # R of Y o X is a.s. i x uiquely defied i view of the equatio m(x)=e(y X). (1.1) Suppose also that H i coverges to the distributio fuctio H which admits a desity h ad H has the two margials F ad G where the respective desities are oted by f ad g. Cosider the earest eighborhood estimate m~ (x 0 )=(a ) X Copyright 1999 by Academic Press All rights of reproductio i ay form reserved. (x 0 )&F (X i ) Y i K \F (1.2) a * Research supported by the Office of Naval Research Cotract N J

2 CONDITIONAL EMPIRICAL PROCESSES 251 of m(x 0 ) where K is a appropriate kerel fuctio, a is a sequece of badwidths such that a 0 as, (1.3) where F is the empirical distributio fuctio of X 1,..., X. Yoshihara (1988) uder some coditios showed whe the r.v.s. are. mixig ad statioary that for some _ 2 0 (a ) 12 [m~ (x 0 )&m(x 0 )] coverges to the ormal law with mea 0 ad variace _ 2 0 x 0 # R such that f(x 0 )>0. Let for almost all m( y x)=p(y y X=x), (x, y)#r 2 (1.4) be the coditioal distributio fuctio ad as a estimator of m( } x) we cosider the coditioal empirical process m ( y x 0 )=(a ) (x 0 )&F (X i ) I [Yi y]k \F, y # R, (1.5) a where F is the empirical distributio fuctio of X 1, X 2,..., X. The mai result of this paper is to show that uder some coditios (a ) 12 [m (G (}) x 0 )&m(g (}) x 0 )] coverges weakly i Skorohod topology to B 0 where B 0 is a certai Gaussia process (depedig o x 0 ). Stute (1986) showed this result whe the r.v.'s (radom variables) are idepedet ad idetically distributed, the Yoshihara (1990) geeralized it for.-mixig ad idetically distributed r.v.'s. The geeralizatio for absolutely regular ad ostatioary r.v.'s give applicatios for the importat case of Markov processes, for which the iitial measure is ot ecessary, the ivariat measure. Examples of models are give i Sectio 2. For the particular case where Y i #X i1, the coditioal empirical process m ( ) has the expressio m ( y x 0 )=(a ) (x 0 )&F (X i ) I [Xi1 y]k \F a. (1.6) Recall that the process satisfies the absolute regularity coditio if max j1 E[ sup P(A _(Z i,1ij))&p(a) ] A # _(Z i, i jm) =;(m) a 0 as m. (1.7)

3 252 HAREL AND PURI Here _(Z i,1i j) ad _(Z i, i jm) are the _-fields geerated by (Z 1,..., Z j ) ad (Z jm, Z jm1,...), respectively. Also recall that [Z i ] satisfies the strog mixig coditio if max[sup [ P(A & B)&P(A) P(B) ; A # _(Z i,1ij), ] j1 B # _(Z i, i jm)]=(m) a 0 as m ad [Z i ] satisfies the.-mixig coditio if max[sup [ P(A B)&P(A) ; B # _(Z i,1ij), A # _(Z i, i jm)]] j1 =.(m) a 0 as m. Sice (m);(m).(m), it follows that if [Z i ] is absolutely regular, the it is also strog mixig ad if [Z i ] is.-mixig, it is also absolutely regular. 2. CONVERGENCE OF THE CONDITIONAL EMPIRICAL PROCESS Deote F ad G by For ay i # N, put Let us deote F = F i, G = V i (u, v)=h i (F (u), G (v)). H (x, y)= I [Xi x, Y i y] the empirical distributio fuctio of (X 1, Y 1 ), (X 2, Y 2 ),..., (X, Y ) ad V (u, v)= G i. I [F (X i )u, G (Y i )v] the empirical distributio of (F (X 1 ), G (Y 1 )),..., (F (X ), G (Y )). We have E(V (u, v))=v (u, v)= V i (u, v).

4 CONDITIONAL EMPIRICAL PROCESSES 253 Deote also M (u)= I [F (X i )<u] ad M (u)=e(m (u)), the we may write m ( y x 0 )=a I (x 0 )&F (x) (&, y](z) K \F a H (dx, dz) =a I [0, G (v) K (F (x 0 ))&M (u) ( y)] \M a V (du, dv) =m~ (G ( y) F (x 0 )). (2.1) Let us deote m~ (v u 0 )=m(g (v) F (u 0 )). (2.2) I the followig, we suppose that the sequece [Z i =(X i, Y i ), i1] satisfies ad further we suppose also that sup E( Y i 5$ )< for some $>0 (2.3) i1 sup m~ (v u)&m~ (w u) =o((log $ ) ) as $ 0 (2.4) v&w $ uiformly i a eighborhood of u 0. For each v, m~ (v } ) (defied i (2.2)) is twice cotiuously differetiable i a eighborhood V of u 0 such that sup sup m~ "(v u) <. (2.5) u # V v K is a twice cotiuously differetiable kerel fuctio o R such that K(u)=0 for u 1, K(u) du=1 ad uk(u) du=0 (2.6) ad a 4, a5 0. (2.7) As usual, let D(0, 1) be the space of all right-cotiuous fuctios o [0, 1] with left had limits. Cosider a sequece [Z i ] i1 of real radom vectors which is a Markov process with trasitio probability P(z; A) where z=(x, y)#r 2 ad A # B, B is the Borel _-field of R 2.

5 254 HAREL AND PURI Recall that the Markov process is geometrically ergodic if it is ergodic ad if there exists 0<\<1 such that &P (z; })&(})&=O(\ ) for all a.s. z # R 2, (2.8) where is the ivariat measure ad P the -step trasitio probability. We say that the process [Z i ] i1 has & for the iitial measure if the law of probability of Z 1 is defied by & ad for ay i>1, the law of probability P i of Z i is defied by &P i. For ay probability measure & ad ay trasitio probability Q we deote by Q& the probability measure defied o R 4 by Q&(A_B)= B Q(z; A) &(dz) for ay A_B # B_B. The Markov process is called strogly aperiodic if for ay z # R, the trasitio probability P(z; } ) is equivalet to the Lebesgue measure. The Markov process is called Harris recurret if there exists a _-fiite measure & o R 2 with &(R 2 )>0 such that &(A)>0 implies P(z; Z i # Ai.o.)=1 for all z # R 2. Theorem 2.1. Let [Z i ] i1 be a Markov process which is strogly aperiodic, Harris recurret ad geometrically ergodic. Suppose that the ivariat measure has a cotiuous desity h ad the trasitio probability P has a cotiuous desity p(}; }) ad furthermore suppose that the coditios (2.3)(2.5) are satisfied. The for ay iitial measure, ad for almost all 0<u 0 <1, (a ) 12 [m (G (v) F (u 0 ))&m~ (v u 0 )] coverges i law to a Gaussia process B 0 (u 0 ) as with respect to the Skorohod topology o D(0, 1) where B 0 is cetered, has cotiuous sample paths vaishig at the lower boudary of [0, 1] ad covariace [m~ (v 1 7 v 2 u 0 )&m~ (v 1 u 0 ) m(v 2 u 0 )] K 2 (u) du. (2.9) Example 2.1. We cosider a ARMA process X i =ax i b= i = i, i # N*, (2.10) where X 0 admits a strictly positive desity, [= i ] is a sequece of i.i.d. real valued radom variables with strictly desity such that E(= i )=0, ad a ad b are real umbers such that a <1. The the coditios of Theorem 2.1 are satisfied for the process defied i (2.10), because we have the particular case where Y i #X i1. The law of the process o which observatios are take is defied by the iitial measure (i.e. the measure which defies

6 CONDITIONAL EMPIRICAL PROCESSES 255 the lax of X 0 ) ad the trasitio probability. We ca estimate the coditioal distributio fuctio by the coditioal distributio process m ( ) for ay iitial measure of X 0 which admits a strictly positive desity. Theorem 2.2. Let [Z i ] i1 be a Markov process which is aperiodic ad Doebli recurret. Suppose that the ivariat measure has a cotiuous desity fuctio h ad the trasitio probability P has a coditio desity p( ;) ad furthermore the coditios (2.3)(2.5) are satisfied. The for ay iitial measure, the coditios of Theorem 2.1 also hold for the coditioal distributio process m. Example 2.2. We cosider the process X i = f(x i )= i, i # N*, (2.11) where X 0 admits a strictly positive desity ad [= i ] i1 is a sequece of i.i.d. real radom variables with strictly positive desity such that E(= i )=0 ad f is a bouded fuctio. That is a particular case of Markov process satisfyig the coditios of Theorem 2.2 where Y i #X i1. Now more geerally, cosider the model Y i =(X i )e i, i1, where X i deotes a radom variable of observed values, is a cotiuous kow fuctio such that (2.3) is satisfied, e i is a white oise of idetically absolutely regular radom variables with a geometrical rate ad strictly positive desity ad Y i is a predictor variable. For ay iitial measure of [(X i, Y i )] i1, the coclusio of Theorem 2.1 holds for the coditioal empirical process defied i (2.1) whe the process [X i ] is a process of the Example 2.1 or the Example 2.2; defied i (2.10) or (2.11). I fact, the Theorems 2.1 ad 2.2 will be deduced from the followig theorem proved uder a broader framework. We suppose that the sequece [Z i =(X i, Y i ), i1] is absolutely regular with rates ;(m)=o(\ m ), 0<\<1. (2.12) We say that a sequece of d.f.'s [H l *] o R 4 admits F l *, G l * ad H as margials o R 2 ad F ad G o R if we have lim H l *(x, y, u, v)=f l *(x, u) y v lim x u H l *(x, y, u, v)=g l *( y, v)

7 256 HAREL AND PURI lim H l *(x, y, u, v)=h(x, y) u v lim x y H l *(x, y, u, v)=h(u, v) ad the margials of H are F ad G. PutH i, j, the distributio fuctio of (Z i, Z j ). Theorem 2.3. Suppose that the sequece [Z i ] is absolutely regular with rates (2.12) ad satisfyig (2.3). Furthermore, assume that for ay l>1, there exists a cotiuous d.f. H l * o R 4 admittig a desity h l * with margials F l *, G l * ad H o R 2 ad F ad G o R such that the desity of H is bouded i a eighborhood of F (u 0 )_R ad &H i, j &H* j&i &=O(\ i 0 ), 1i< j, 1, 0<\ 0<1 (2.13) for which there exists a sequece [Z i=(x i, Y i)] of statioary radom variables such that [Z i] is absolutely regular with rates (2.12) ad (Z i, Z j) has H* j&i as d.f. (i< j1). Suppose also that the coditios (2.3)(2.5) are satisfied. The for almost all 0<u 0 <1, the coclusios of Theorem 2.1 hold for the coditioal distributio process m. Remark 2.1. I Yoshihara (1988), the coditio (2.7) was replaced by the weaker coditio a 3 ad a 5 0, but we have to stregthe his coditio to obtai the geeralizatio to the absolutely regular ad ostatioary case (see the Proof of Lemma 4.3). We deote _ 2 0 =Var(Y X=x 0) K 2 (u) du, (2.14) where (X, Y) is a radom vector which admits H as a distributio fuctio. The Proof of Theorem 2.1 eeds the followig propositios. Propositio 2.1. Uder the coditios of Theorem 2.1, the (a ) 12 [m~ (x 0 )&m(x 0 )] coverges to the ormal law with mea 0 ad variace _ 2 0 for almost all x 0 # R such that f(x 0 )>0. Propositio <u 0 <1, Uder the coditios of Theorem 2.1, for almost all (a ) 12 [m~ (v u 0 )&m~ (v u 0 )] coverges i law to the Gaussia process B 0 (u 0 ) as with respect to the Skorohod topology where m~ is defied i (2.1).

8 CONDITIONAL EMPIRICAL PROCESSES PROOFS OF THEOREMS 2.1, 2.2, AND Proof of Theorem 2.1 From Theorem 2.3, we have oly to prove (2.12) ad (2.13). First, we prove (2.12). From Davydov (1973), ad the coditio of strog aperiodicity, we have ;(m)=sup P (dz) &P m (z; })&P m (})& sup P (dz) &P m (z; })&(})&&P m (})&(})&. As the process is geometrically ergodic, we ca fid 0<\<1 such that &P m (z; })&(})&=O(\ m ) for all a.s. z # R 2. (3.1) From Theorem 2.1 of Nummeli ad Tuomie (1982), we deduce which is (2.12). Now, we prove (2.13). We have from (3.1) that is, &P m P &P m & ;(m)=o(\ m ) (3.2) =2 sup P A_B # B_B} m (z; A) P B (dz)& P m (z; A) (dz) } B 2 sup P m (z; A) } P (dz)&(dz) } A_B # B_B B 2 &P &&=O(\ ), Thus the coclusios of Theorem 2.1 holds. &P m P &P m &=O(\ ). (3.3) 3.2. Proof of Theorem 2.2 From Theorem (4.1) of Davydov (1973) the process [X i ] is geometrically. mixig which implies geometrically absolute regularity. The proof is ow similar to Theorem 2.1.

9 258 HAREL AND PURI 3.3. Proof of Theorem 2.3 By defiitio, we have m (G (v) F (u 0 ))&m~ (v u 0 ) =m~ (G b G (v) F b F (u 0 ))&m~ (v u 0 ) =m~ (G b G (v) F b F (u 0 ))&m~ (G b G (v) u 0 ) m~ (G b G (v) u 0 )&m~ (v u 0 ). By Propositio 2.2, we kow that (a ) 12 [m~ (v u 0 )&m~ (v u 0 )] coverges i law to B 0 (u 0 ). We deduce from Theorem 5.5 of Billigsley (1968) that coverges also i law to B 0 (u 0 ). We ca write (a ) 12 [m~ (G b G (v) u 0 )&m~ (v u 0 )] m~ (G b G (v) F b F (u 0 ))&m~ (G b G (v) u 0 ) =a I [O, G (v)](w) b G _ {K \ M (F b F (u 0 ))&M (F b F (u)) a (u 0 )&M (u) &K \M a = G (du, dw)=i. From (2.13) ad usig the fact that K is twice cotiuously differetiable, we deduce that I =o p (1). 4. PROOF OF PROPOSITION 2.1 From ow o, the letter C, with or without subscript, will deote some positive quatity. Writig K(F (x 0 )&F (X i )a )as K[(F (x 0 )&F (X i )F (x 0 )&F (X i )&F (x 0 )F (X i ))a ]

10 CONDITIONAL EMPIRICAL PROCESSES 259 ad usig Taylor's expasio, we get m~ (x 0 )=(a ) Y i K \F (x 0 )&F (X i ) a a &2 Y i [F (x 0 )&F (X i )&F (x 0 )F (X i )] _K$((F (x 0 )&F (X i ))a ) a &3 Y i [F (x 0 )&F (X i )&F (x 0 )F (X i )]K"(2 i ) =I 1 I 2 I 3, (4.1) where 2 i is some radom umber betwee a [F (x 0 )&F (X i )] ad a [F (x 0 )&F (X i )]. We eed the followig lemmas. Lemma 4.1. Uder the coditios of Theorem 2.3, (a ) 12 I 3 w p 0 as. (4.2) Proof. Sice K vaishes outside (, 1), the above expasio of m (x 0 ) holds true with itegratio restricted to those x for which F (x 0 )&F (x) <a.letb =(a 3 ) 13. The, by Lemmas 6.7 ad 6.8 P[ sup (a ) 12 F (x 0 )&F (x) x F (x 0 )&F (x) C 1 a &F (x 0 )F (x) b ] =P[ sup x F (x 0 )&F (x) C 1 a M *(F (x 0 ))&M *(F (x)) b a 12 ] Cb &4 =C(a 3 )&23, (4.3) where C is some costat >0. O the other had, as [Y i ] is strog mixig with rates (2.12) ad coditio (2.3) is satisfied, we obtai E { \ Y i &E(Y i ) = 2 C 2, (4.4) where C 2 is some costat >0. From the Markov iequality, we deduce that for ay =>0 P _} Y i &E \ Y i} >= & =2 C 2 (4.5)

11 260 HAREL AND PURI which implies that Y i&e( Y i) w p 0 ad we have E( Y i) E(Y)<. Thus Y i w p E(Y)<. (4.6) Thus, for a arbitrary umber =>0, ad ay positive umber ', we ca fid sufficietly large such that where P(B ('))1&=, B (')= {, E(Y)&' Y i E(Y)' =. From (4.3) ad the fact that K" is bouded, upo observig that a 3 we ca fid a iteger sufficietly large such that o the set B (') for ay $>0 As $ is arbitrary, (4.2) follows. (a ) 12 I 3 <$. (4.7) Deote m i (x)=e(y i X i =x) ad m (x)= m i (x), x # R. Lemma 4.2. Uder the coditios of Theorem 2.3, (a ) 12 I 2 is asymptotically equivalet to &(a 2 m (x 0 ) 2 ) {\ (x 0 )&F (X i ) K \F a & \ E \ F (x 0 )&F (X i ) \K a =. (4.8) Proof. Defie [Z, 1] by Z = a &32 (Y i &m i (X i ))(W (x 0 ) &W (X i )) K$ (x 0 )&F (X i ) \F a,

12 CONDITIONAL EMPIRICAL PROCESSES 261 where W (x)= 2 (I [Xi x]&f i (x)), x # R. (4.9) Proceedig as i Lemma 4.2 of Yoshihara (1988), we prove that Now cosider the fuctio Z w p 0 as. (x 0 )&F (x) k (x, y)=m (x) K$ \F a (I [ yx 0 ]&I [ yx] ) ad the radom variable T = k (x, y) W (dx) W (dy). The, usig the method of the Proof of Lemma 2.2 i Harel ad Puri (1989) ad usig (2.12), we obtai which implies E(T 2 )=O(1) as a &32 k (x, y) W (dy)[f (dx)&f (dx)] w p 0 sice a 3. Thus, we obtai that (a ) 12 I 2 is asymptotically equivalet to a &32 Now we prove that m (x 0 )&F (x) (x)(w (x 0 )&W (x)) K$ \F a F (dx). for a.s. x 0 # R. I 4 =a &32 m (x)&m (x 0 ) W (x 0 )&W (x) _ } K$ \ F (x 0 )&F (x) a } F (dx) w p 0 (4.10)

13 262 HAREL AND PURI From F (F (x 0 ))=x 0 for a.s. x 0 # R ad ay # N*, we obtai lim 1 m (F for a.s. s # R. Put e (x 0 )= \a 1 m (F 0 (s)&ua )&m (F (s)) K$(u) du=0 (u))&m (x 0 ) } K$ \ F (x 0 )&u a } The, by Lemma 6.8, we have that for ay =>0, P(I 4 >=)P \a&32 sup W (F (x 0 ))&W (u) F (x 0 )&u a 6 du. _ 1 m (F (u))&m (x 0 ) } K$ 0 \ F (x 0 )&u a } du>= P( sup W (F(x 0 ))&W (u) e (x 0 ) a 12 ) F (x 0 )&u a Ce &4 (x 0 )=o(1). Hece (4.10) is proved ad it follows that (a ) 12 I 2 is asymptotically equivalet to a &32 m(x 0 ) [W (x 0 )&W (x)] K$ \F (x 0 )&F (x) a =&a &32 =&a 2 which leads to (4.8). m(x 0 ) [W (x)] K$ \F (x 0 )&F (x) a m(x 0 ) K \ F (x 0 )&F (x) a W (dx) Lemma 4.3. Uder the coditios of Theorem 2.3 I 4 =(a ) 2 &(a ) 2 (Y i &m i (x 0 )) K \F (x 0 )&F (X i ) a F (dx) F (dx) (x 0 )&F (X i ) E {(Y i&m i (x 0 )) K \F (4.11) a = has asymptotically (as ) the ormal distributio with mea 0 ad variace _ 2 0 (deoted as N(0, _2 0 )).

14 CONDITIONAL EMPIRICAL PROCESSES 263 Proof. ad Let B i =a 2 (Y i&m(x 0 )) K \F(x 0)&F(X i) a &a 2 a = E {(Y i&m(x 0 )) K \F(x 0)&F(X i) B* i =a 2 (Y i &m i (x 0 )) K \F (x 0 )&F (X i ) a &a 2 a = E {(Y i&m i (x 0 )) K \F (x 0 )&F (X i ) B i =a 2 (Y i &m(x 0 )) K \F(x 0)&F(X i ) a &a 2 The, we have a = E {(Y i&m(x 0 )) K \F(x 0)&F(X i ) I 4 = 2 From (2.13), it follows that B* i = 2 which alog with (2.3) implies that or We deduce that E } 2 B i 2,,...,, sup F(x)&F (x) =O( ) x # R E B* i &B i =O(a &32 ) 2 (B i &B* i ) }=O(a&32 2 ). (B i &B* i ) w p 0.,,...,,,,...,. (B* i &B i ).

15 264 HAREL AND PURI Now, we have to show that 2 Let us ow deote B i coverges i law to N(0, _ 2 0 )..(x, y)=(y&m(x 0 )) K \F(x 0)&F(x) a For ay M>0, deote also by & (z&m(x 0)&F(u) 0)) K \F(x H(du, dz). a B M i =a2 (Y i I [ Yi M]&m(x 0 )) K \F(x 0)&F(X i ) a B &a 2 E {(Y ii [ Yi M]&m(x 0 )) K \F(x 0)&F(X i ) a = M i =B i&b M i. M (x, y)=(i [ y M] y&m(x 0 )) K \F(x 0)&F(x) a & (I 0)&F(u) [ z M]z&m(x 0 )) K \F(x H(du, dz) a. M (x, y)=.(x, y)&. M (x, y) (i)=2a. l(x, y). p (u, z) H*(dx, i dy, du, dz), M, l, p D 0l, p1, i1 M, l, p D (0)=. l(x, y). p (x, y) H(dx, dy), 0l, p1, where. 0 (x, y)=. M (x, y),. 1 (x, y)=. M (x, y) D (i)= 0l, p1 M, l, p D (i), i0.

16 CONDITIONAL EMPIRICAL PROCESSES 265 We the have } E(B i B i )& (&i) D (i) } 1i, j = } [E(B M )E(B M i i )][E(BM)E(M M )] j j 1i, j & 0l, p1 From coditio (2.3), we have M, l, p (&i) D (i) }. sup 1 M max E(B i )2 =O(M &2$ ) 1i ad We ca write } 1i< j (. M (x, y)) 2 H(dx, dy)=o(m &2$ ). (4.12) E(B M i BM j )& (&i) M,0,0 (i) } k E(B } M i BM)& j (&i) D M,0,0 (i) } 1 j&ik E(B } M i BM)& j (&i) D M,0,0 (i) } k< j&i i=k1 =I (1) (1) J. From coditio (2.13) ad the fact that K$ is bouded, if we take M=a, ad from coditio (2.12) If we take k=a,the I (1) I (1) =ko(a&3 ) J (1) =O(\k 1 ), where \ 1=\ $(2$). (1) J =O(a&4 We deduce similarly that } )O(a \ a 1 )=O(a &4 ). (4.13) E(B M i )2 &D M,0,0 (0) }=O( a &4 ). (4.14)

17 266 HAREL AND PURI We ow write } M E(B i BM j )& (&i) D M,1,0 (i) } 1i< j } k M E(B i BM)& j (&i) D M,1,0 (i) } 1 j&ik } M E(B i B M j )& (&i) D M,1,0 (i) } k< j&i i=k1 =I (2) J (2). (4.15) From (4.12), we have ad from coditio (2.12) I (2) =O(ka$&2 ), J (2) =O(\k 1 ). If we take k=a ad otig that M=a, we have ad I (2) J (2) =O(a 2$&4 Similarly, we ca show that } E(B M B M i 1i, j } )O(a \ a 1 )=O(a $&3 ). (4.16) M E(B i B M i )&D M,1,0 (0) }=O(a$&3 ), (4.17) j )& } M E(B B M i j )& 1i, j We deduce from (4.13), (4.14), (4.16)(4.19) that Hece } 1i, j lim } () 1i, j E(B i B j )& (&i) D M,0,1 (i) }=O(a$&3 ), (4.18) (&i) D M,1,1 (i) }=O(a2$&2 ). (4.19) E(B i B j )&() (&i) D (i) }=O(a$&3 ). (&i) D (i) }=0 (4.20)

18 CONDITIONAL EMPIRICAL PROCESSES 267 which implies that lim } E \ 2 Now, we prove that 2 B i lim where _ 2 0 is defied by (2.14). We have E(B i) 2 =a y&m(x 0) 2 K 2 &a =a 2 &E B i } =0. \2 2 E B =_ i 2, (4.21) \2 0 \ F(x 0)&F(x) H(dx, dy) a { ( y&m(x 0)) K \F(x 0)&F(x) a a (x) K 2\ F(x 0)&F(x) &a { 1 = 1 0.(x) K \F(x 0)&F(x) a F(dx) (F (F(x 0 )&a u) K 2 (u) du) 2 F(dx) = 2 H(dx, dy) = &a {.(F (F(x 0 )&a u) K(u) du) = 2, (4.22) where (x)=e[ X 2 &m(x 0 ) 2 X 1 =x] ad.(x)=e[x 2 &m(x 0 ) X 1 =x]. From (4.22), we easily deduce that Now, we ca write lim E(B i) 2 =_ 2 0. (4.23) 2 E B = i \2 = 2 E(B i) 2 1i{ j E(B i) 2 2 1i< j j&i>k 1i< j j&ik E(B ib j) E(B ib j) E(B ib j). (4.24)

19 268 HAREL AND PURI The, we have E(B ib j)=a.(x, y) g(u, z) H* j&i(dx, dy, du, dz) Ca {.* i, j(x, u) K \F(x 0)&F(x) a 0)&F(u) _K \F(x a F* j&i(dx, du) = =Ca {.* i, j(f (F(x 0 )&a v), F (F(x 0 )&a w)) _ f * j&i(f (F(x 0 )&a v), F (F(x 0 ))&a w) K(v) f b F (F(x 0 )&a v) f b F (F(x 0 )&a w) _K(w) dv dw = Ca. (4.25) This follows from (2.3) ad the fact that f is cotiuous i a eighborhood of x 0 with f(x 0 )>0, where.* i, j (x, u)=e[(y j&m(x 0 ))(Y i&m(x 0 )) X i=x, X j=u] ad f * j&i is the desity of F* j&i. For ay $0, E B i 2$ Ca &(2$)2 y&m(x 0) } 2$ K \ F(x 2$ 0)&F(x) a } _H(dx, dy) =Ca &(2$)2 h*(x) } K \ F(x 2$ 0)&F(x) F(dx) a } Ca &$2 1 h*(f (F(x 0 )&a u)) K(u) 2$ du Ca &$2, (4.26) where h*(x)=e[ Y 1&m(x 0 ) 2$ X 1=x].

20 CONDITIONAL EMPIRICAL PROCESSES 269 From (4.25) ad (4.26), it follows that E \ 1i{ j B ib j 2Cka 2(Ca &$2 ) 2(2$) [;(i)] $(2$). (4.27) i=k1 If we take k=[a 2 ], we get (4.21) from (2.12) ad (4.23). By usig (4.26) ad Lemma 6.9 which geeralizes Lemma 3.4 of Yoshihara (1988) from the. mixig case to the strog mixig case, we obtai the followig iequality which geeralizes Lemma 5.1 of Yoshihara (1988) to the strog mixig case. E } m 2$ B i} Cm (2$)2 sup E B i 2$, m. (4.28) 1im Now we ca proceed as i Yoshihara (1988) (Proof of Theorem 2). Let p=[ 23 ], q=[ 13 ]adk=[( pq)]. Put The, we have ( j)(pq)p ' j = i=( j)(p1)1 ( j)(pq)p % j = % k1 = 2 i=( j)(pq)p1 i=k( pq)1 From (4.28), we deduce that B i. k B i = 2 k1 2 j=1 B i, j=1,..., k. j=1 B i, j=1,..., k. k1 ' j 2 % j w p 0. To prove Lemma 4.3, it remais ow to show that 2 k ' j=1 j coverges i law to N(0, _ 2 0 ) radom variable. From Lemma 6.1 we obtai E {exp \ it2 k j=1 ' j= & `k j=1 j=1 % j. [E[exp(it 2 ' j )]]Ck;(q),

21 270 HAREL AND PURI where C is some costat >0. Hece it is eough to prove that k ` j=1 Usig (4.28), we obtai [E[exp(it 2 ' j )]] coverges to e &(t2 2) _ 2 0. (4.29) E[exp(it 2 ' j )]=1& t2 2$ 2 E(' t j) 2 O \ 2$ E ' (2$)2 j From the fact that a 4 ad lim we get (4.29). The proof follows. =1& t2 2 E(' j) 2 o( t 2$ 6(2$) a &$2 ). ke(' j ) 2 =_ 2 0 (from (4.21)) Lemma 4.4. Uder the coditios of Theorem 2.3. (a ) _{ 12 yk \ F (x 0 )&F (x) a F i, i1(dx, dy) =&m(x 0) & 0 as 0. (4.30) Proof. We have D =(a ) _ 12 & (a ) 12 & (a ) 12 =H (1) yk \ F (x 0 )&F (x) a H i(dx, dy) yk \ F(x 0)&F(x) a _ H i(dx, dy) & yk \ F(x 0)&F(x) a yk \ F(x 0)&F(x) a _ yk \ F(x 0)&F(x) H i(dx, dy) H(dx, dy) & a H(dx, dy)&m(x 0) & (2) (3) H H. (4.31)

22 CONDITIONAL EMPIRICAL PROCESSES 271 From (2.3) ad (2.13), it follows that Deote ad We the have H (2) H (1) =O(a&32 2 ) (4.32) l(x, y)=yk 0)&F(x) \F(x a, 0)&F(x) l (M) (x, y)=i [ y M] yk \F(x a, l (M) (x, y)=l(x, y)&l (M) (x, y) for ay M>0. 12_ =(a ) l(m) (x, y)(h i (dx, dy)&h(dx, dy)) \ l (M) (x, y) H i (dx, dy)& l (M) (x, y) H(dx, dy) &. From (2.3) ad (2.13), if we take M= 14, we get H (2) =O( 4 a 2 )O( &(18)&($4) a 2 ). (4.33) From Stute (1984, Corollary, p. 919), it follows that H (3) 0 as. (4.34) Equatios (4.32)(4.34) yield (4.30). The Proof of the Propositio 2.1 ow follows from Lemmas 4.1 to PROOF OF PROPOSITION 2.2 Put ; (v)=; (v u 0 )=(a ) 12 [m~ (v u 0 )&m~ (v u 0 )]. (5.1) We shall prove Propositio 2.2 by showig the followig facts (i) the fiite-dimesioal distributios of ; coverge to those of B 0

23 272 HAREL AND PURI (ii) [; 1] is uiformly C-tight, i.e., for each =>0 ad every \>0, there exists some $>0 ad 0 such that for all 0 P( sup ; (v 1 )&; (v 2 ) \)=. (5.2) v 1 &v 2 $ The assertio (i) easily follows from Propositio 2.1 ad the Crame r-wold device. It remais to show (ii). Put (u 0 )&M (u) K (u)=k \M a V(u, v)=h(f (u), G (v)) ad Write m~ *(w u 0 )=a I [0, w](v) K (u) G(du, dv). ; (v u 0 )=(a ) 12 [m~ (v u 0 )&m~ *(v u 0 )] (a ) 12 [m~ *(v u 0 )&m~ (v u 0 )] =; 1 (v u 0 ); 2 (v u 0 ). (5.3) We show that both [; 1 ] ad [; 2 ] are uiformly C-tight. First, we ote that upo itegratig by parts, we have (u m~ (v u 0 )&m~ *(v u 0 )=a 0 ) [V (1, v)&v(1, v)] K \M a &a [V (u, v)&v(u, v)] K (du). (5.4) Sice by Lemma 6.6 i the Appedix M (u 0 ) u 0 (0<u 0 <1) with probability oe, a 0 ad K has fiite support, the first summad is zero with probability oe for all 0, say, ot depedig o v. Similarly, for 1 [V (u, v)&v(u, v)] K (du) = [V (u, v)&v (u, v)&v (u 0, v)v (u 0, v)] K (du) [V (u, v)&v(u, v)&v (u 0, v)v(u 0, v)] K (du). (5.5)

24 CONDITIONAL EMPIRICAL PROCESSES 273 Sice by assumptio K=0 outside (, 1), the last itegral remais uchaged whe restrictig the domai of itegratio to those u's for which M (u)&m (u 0 ) a. Let 0<=<1 be give arbitrarily. The by Lemma 6.7, we have, up to a evet of probability less tha or equal to =, that u 0 &u c 1 a, wheever M (u 0 )&M (u) a. Hece from (2.13) ad the boudaries of the desity of H, eglectig a evet of probability =, we obtai for all large that sup ; 1 (v 1 u 0 )&; 1 (v 2 u 0 ) a 2 &K& w *($)o p (1), (5.6) v 1 &v 2 $ where &K& deotes the total variatio of K ad w * is defied i Lemma 6.5. Cosequetly, the uiform C-tightess of [; 1, 1] follows from (6.11)(b) of Lemma 6.5 ad (5.6). As to ; 2, usig Taylor's expasio, we write m~ *(w u 0 )=a a &2 I 0&u [0, w](v) K \u V(du, dv) a I [0, w](v)[m (u 0 )&M (u)&u 0 u] 0&u _K$ \u V(du, dv) a 1 2 a&3 I [0, w](v)[m (u 0 )&M (u)&u 0 u] _K"(2) V(du, dv) =a m~ (w u 0 )I 2 (w, )I 3 (w, ), (5.7) where 2 is some costat betwee a [M (u 0 )&M (u)] ad a [u 0 &u]. By Lemma 4.1, we get (a ) 12 I 3 (w, ) w p 0. (5.8)

25 274 HAREL AND PURI Hece, to prove the assertio (ii) it remais to show that [(a ) 12 I 2 (, ) 1] is uiformly C-tight. We have (a ) 12 I 2 (w, ) =a &32 =a &32 a &32 m~ (w u)[u 0&u (u 0 )&U (u)] K$ \u a du [m~ (w u)&m~ (w u 0)][U (u 0 )&U (u)] K$ 0&u \u a du m~ (w u 0 ) [U 0&u (u 0 )&U (u)] K$ \u du, (5.9) a where U (u)= 12 M (u). It follows from (4.10) that the first summad coverges to zero i probability uiformly i y wheever m~ (} u) is equicotiuous i a eighborhood of u 0. Fially for large a &32 m~ (w u 0 ) [U 0&u (u 0 )&U (u)] K$ \u a du =&a 2 m~ (w u 0 ) K$ \ u 0&u a du (u) =&m~ (w u 0 )(a ) 2 _ { K \u 0&F (x i ) a From Propositio 2.1 we deduce that (a ) 2 { &E \ K \ u 0&F (X i ) a = 0&F (X i ) K \u a &E \ K \ u 0&F (X i ) a =. (5.10) coverges i law to the ormal distributio with mea 0 ad covariace u 0 K 2 (u) du ad so is stochastically bouded. Now C-tightess of ; 2 follows from this fact ad uiform cotiuity of m~ (} u 0 ). Propositio 2.2 is proved.

26 CONDITIONAL EMPIRICAL PROCESSES APPENDIX Let [X i,1i, 1] be a ostatioary sequece of r.v.'s. Let p1 ad 1i 1 <i 2 <}}}<i p be arbitrary itegers. For ay j(1 jp), i1,..., ip Pj, is the probability measure defied by P i 1,..., i p j, (A ( j) _B ( p& j) ) =P[(X i1,..., X ij )#A ( j) ]_P[(X ij1,..., X ip )#B ( p& j) ] ad P i 1,..., i p o, is the probability measure defied by P i 1,..., i p o, (A ( p) )=P[X i1,..., x ip # A ( p) ] for ay A ( j) # _(X i1,..., X ij )(1jp) ad ay B ( p& j) # _(X ij1,..., X ip ) (1 jp). We state the followig two lemmas, the proof of the first oe follows essetially by proceedig as i Lemma 1 of Yoshihara (1976) ad the secod lemma is from Doukha ad Portal (1987, Propositio 2.8). Lemma 6.1. For every p1 ad (i 1,..., i p ) such that i 1 <i 2 <}}}<i p ad ay j (0 jp), let h(x 1,..., x p ) be a Borel fuctio such that R p h(x 1,..., x p ) 1$ dp (i 1,..., i p ) j, M for some $>0. The } R p h(x 1,..., x p ) dp (i 1,..., i p ) o, & h(x 1,..., x p ) dp (i 1,..., i p ) R p j, } 4M 1(2$) ; $(1$) (i j1 &i j ). (6.1) As a special case, if h(x 1,..., x p ) is bouded, say, h(x 1,..., x p ) M, the we ca replace the right side of (6.1) by 2M;(i j1 &i j ). Lemma 6.2. Let [X i ] be strog mixig. Let Z 1 be _(X i,1i j)- measurable (1 j) ad Z 2 be _(X i, i jm)-measurable. If E( Z 1 p ) <, E( Z 2 q )< ad r p q =1(r, p, q>0) the E(Z 1 Z 2 )&E(Z 1 ) E(Z 2 ) 12((m)) 1r [E Z 1 p ] 1p [E Z 2 q ] 1q. (6.2) Let W = 12 (V &V ). For a rectagle I, put W (I)= 12 (~ (I)& (I)), where ~ ad are the probability measures pertaiig to V ad V.

27 276 HAREL AND PURI Uder the coditios of Theorem 2.3, we have Lemma 6.3. Uder the coditios of Theorem 2.3, let B=[a 1, b 1 ]_ [a 2, b 2 ] ad B$=[c 1, d 1 ]_[c 2, d 2 ] be two rectagles icluded i [0, 1] 2 such that B$/B, the W (B$) W (B) 12 (B). (6.3) Proof. We have W (B$)= 2 &(H i (F H i (F 2 &(H i (F H i (F 2 &H i (F &(H i (F H i (F O the other had { I [c1 F (X i )d 1 ]I [c2 G (Y )d 2 ] (d 1), G (c 1 ), G (d 2 ))H i (F (d 2 ))&H i (F { I [a1 F (X i )b 1 ]I [a2 G (Y )b 2 ] (b 1 ), F (a 1 ), F { H i (F (a 1 ), F (d 1), G (c 1 ), G (b 2 ))H i (F (a 2 ))&H i (F (b 1 ), F (a 2 ))H i (F (d 2 ))H i (F (d 2 ))&H i (F (d 1 ), G (c 2 )) (c 1), G ( 2 ))) = (b 1 ), F (a 2 )) (a 1 ), F (a 2 ))) = (b 2 ))&H i (F (a 1), F (a 2 )) (d 1 ), G (c 2 )) (b 1 ), F (a 2 )) (c 1), G (c 2 ))) = W (B) 12 (B). (6.4) &W (B$)=& 2 &(H i (F H i (F { I [c1 F (X i )d 1 ]I [c2 G (Y i )d 2 ] (d 1 ), G (c 1 ), G (d 2 ))H i (F (d 2 ))&H i (F (d 1 ), G (c 2 )) (c 1 ), G (c 2 ))) = 2 (B$) (B) 12 (B) W (B). (6.5) From (6.4) ad (6.5), we deduce (6.3).

28 CONDITIONAL EMPIRICAL PROCESSES 277 Lemma 6.4. Uder the coditios of Theorem 2.3 we have E(W (I)) 2q C \ 2l(2$) q &q&l ( (I)) (6.6) l=1 for ay rectagle I of [0, 1] 2 ad $>0. Proof. We will prove it for oly q=2, the proof for q>2 is similar ad is therefore omitted. Deote A i =I [u1 F (X i )u 2 ] } I [v1 G (Y i )v 2 ] &(H i (F &H i (F =B i &C i, (u 2 ), G (u 1 ), G where I=[u 1, u 2 ]_[v 1 v 2 ]. We have E(W (I)) 4 &2 (v 2 ))&H i (F (v 2 ))H i (F E(A \, i A, j A, k A, l ) 1i, j, k, l &2 4! \ &2 &2 =4!(K (1) &i j=1 &i ki li j=1 ki li &i K (2) j=1 ki li The from Lemma 6.2, it follows that &2 K (1) &2 &2 (u 2 ), G (v 1 )) (u 1 ), G (v 1))) E(A, j A, ji A, jik A, jikm ) E(A, j&i&k&l A, j&i&k A, j&i A, j ) E(A, j&l A, j A, ji A, jik ) (3) K ). (6.7) &i i 2 (;(i)) $(2$) i 2 (;(i)) $(2$) i 2 (;(i)) $(2$) j=1 (C j ) 1(2$) (C, ji ) 1(2$) &i \ C j=1 j \ C j=1 j &i \ 1(2$) 1(2$) C, j=1 ji 1(2$) 1(2$)\ C j=1 j

29 278 HAREL AND PURI Similarly &2 = &2 \ (;(i)) $(2$) i 2 (;(i)) $(2$)\ \ 2(2$) \ C j=1 j 2(2$) C j=1 j i 2 (;(i)) $(2$) ( ([u 1, u 2 ]_[v 1, v 2 ])) 2(2$) C ( (I)) 2(2$). (6.8) From Lemma 6.2, we also obtai K (3) &2 \ &i &2\ \ K (2) C( (I)) 2(2$). (6.9) j=1 ki li &i j=1 C ( (I)) 2(2$) &2 \ &i i 2 (;(i)) $(2$) E(C, j&l C j ) E(C, ji C, jik ) j=1 E(C j C, ji ) &i (;(i)) $(2$) C ( (I)) 2(2$) j=1 (C j ) 1(2$) (C, ji ) 1(2$) &k k=0 l=1 C l C, lk 1(2$) 2 (C j ) 1(2$) (C, ji ) C(( (I)) 4(2$) ( (I)) 2(2$) ). (6.10) From (6.7) through (6.10), we obtai (6.6) ad Lemma 6.4 is proved. ad For ay '>0, ad ay # N, let c 0 >0 be give, put (')=sup [ W (u, v)&w (u$, v$), v&v$ <&, u&f(x 0 ) <c 0 a, u$&f(x 0 ) <c 0 a ]. w *(')=sup [ W (u, v)&w (u, v$)&w (u$, v)w (u$, v$), v&v$ <', u&f(x 0 ) <c 0 a, u$&f(x 0 ) <c 0 a ].

30 CONDITIONAL EMPIRICAL PROCESSES 279 Lemma 6.5. Uder the coditios of Theorem 2.3, we have lim lim sup P( (')=)=0, \=>0. (6.11a) ' 0 \!>0, \=>0, _'>0,! 0 # N, such that \ 0 P(w *(')=)!(a ) (2&$)(2$). (6.11b) Proof. Let be fixed. We cosider a subdivisio of [0, 1] 2,(u i, v j )# [0, 1] 2,1i, 1j such that u 0 =0<u 1 <}}}<u =1 v 0 =0<v 1 <}}}<v =1 u i &u i =, v j &v j =,,..., j=1,..., ad we cosider also a subdivisio of [0, 1], v$ 0 =0<v$ 1 <}}}<v$ k =1 such that v$ l &v$ l <'2 v$ l &v$ l '2, 1lk v$ l # [v 0, v 1,..., v ]. We defie (a, b)#[0,1] 2 by F(x 0 )&a<c 0 a, (a, b)#[u 0, u 1,..., u ] F(x 0 )&a& c 0 a b&f(x 0 )<c 0 a, b &F(x 0 )c 0 a. For ay l # [1,..., k] ad ay i # [0,..., ] we defie a sequece of r.v.'s Z (l) (i, j)=w (u i, v$ l j )&W (u i, v$ l ), 0i, 1jp, where v$ l p =v$ l. For ay j # [0,..., ] we defie aother sequece of r.v.'s Z (0) (i, j)=w (a(i), v j )&W (a&, v j ), 0im, 1j, where a(m) =.

31 280 HAREL AND PURI From Lemma 6.4 for q=4, we deduce ad E(Z (l) (i, j)&z (l) (i$, j$)) 8 ( [i$, i ]_[0, j]) 8(2$) ((i&i$) ) 4(2$), where 0i$i, 1lk (6.12) E(Z (0) (i, j)&z (0) (i, j$)) 8 ([0, i]_[ j$, j ]) 8(2$) (( j& j$) ) 4(2$). The by Theorem 12.2 of Billigsley (1968), we have \=>0, \l # [1,..., k], \i # [0,..., m] 4(2$) P[ sup Z (l) (i, j) >=]C \' 0 jp 2 (6.13) ad \=>0, \j # [0,..., ] P[ sup Z (0) (i, j) >=]C(2c 0 a ) 4(2$). (6.14) 0im Defie ow for ay l # [1,..., k] Z * (l) (i, j)=w (a(i), v$ l j )&W (a&, v$ l j ) &W (a(i), v$ l )W (a&, v$ l ). From Lemma 6.4 for q=4, we deduce E(Z * (l) (i, j)&z * (l) (i$, j)&z * (l) (i, j$)z * (l) (i$, j$)) ( ([i$, i ]_[ j$, j ])) 8(2$) ((i&i$) ( j& j$)) 4(2$), where 0i$<im, 0j $< jp. (6.15) The by Lemma 1 of Balacheff ad Dupot (1980) we have \=>0, P[ sup Z (l) (i, j) >=]C(c 0im * 0 a ') 4(2$). (6.16) 0 jp For ay (u i, v j ) ad ay (u i$, v j$ ) such that v j &v j$ <' ad u i, u i$ # [a, a,..., b&, b]; Suppose u i <u i$ ad v$ l v j$ <v j v$ l

32 CONDITIONAL EMPIRICAL PROCESSES 281 W (u i, v j )&W (u$ i, v$ j ) =W (u i, v j )&W (a, v j ) &W (u i, v$ l )W (a, v$ l )&W (u i$, v j$ )W (a, v j$ ) W (u i$, v$ l )&W (a, v$ l )W (a, v j )W (u i, v$ l ) &W (a, v j$ )&W (u i$, v$ l ). (6.17) If v$ l <v j$ <v$ l v j, we write W (u i, v j )&W (u i$, v j$ ) From (6.17) ad (6.18), we deduce sup v j &v j $ <' F(x 0 )&u i <c 0 a F(x 0 )&u i $ <c 0 a sup 1lk =W (u i, v$ l )W (u i, v j )W (u i, v$ l ) sup 1lk &W (u i, v$ l )W (u i, v j )&W (u i$, v j$ ). (6.18) W (u i, v j )&W (u i$, v j$) sup Z (l) (i, j) 3 sup 0im * 1lk 0 jp sup 0im sup Z (l) (i a, j) 0 jp Z (0) (i, j l ), (6.19) where i a =a ad v jl =v$ l. By usig (6.13), (6.14), ad (6.16), we obtai \=>0 P[ sup W (u i, v j )&W (u i$, v j$) >=] v j &v j $ <'2 F(x 0 )&u i <c 0 a F(x 0)&u i $ <c 0a C {k(c 0a ') 4(2$) 3k 2 4(2$)= 4(2$) \' k(2c 0 a ) \ k' 2\ ' (2&$)(2$) 2 3 \k' 2 \ ' (2&$)(2$) 2 \ ' (2&$)(2$) 2 C {(2c 0a ) 4(2$) C {(2c 0a ) 4(2$) k(2c 0 a ) 4(2$)= 3 2 4(2$)= (2&$)(2$) \' k(2c 0 a ) (6.20)

33 282 HAREL AND PURI which implies \=>0, \*>0, _'>0, _ 0 # N, \ 0, P[ sup W (u i, v j )&W (u i$, v j$) =]<*. (6.21) v j &v j $ <'2 F(x 0 )&u i <c 0 a F(x 0 )&u i $ <c 0 a Let (u, v) ad (u$, v$) # [0, 1] be such that v&v$ <' ad F(x 0 )&u < c 0 a, F(x 0 )&u$ <c 0 a. There exist (i, i$) # [1, 2,..., ] 2 ad ( j, j$) # [1, 2,..., ] 2 such that We have u i uu i, u i$ u$u i$, v j vv j, v j$ v$v j$. W (u, v)&w (u$, v$) W (u i, v j )&W (u i$, v j$ ) W (u i, v j )&W (u i, v) W (u i, v)&w (u, v) W (u i$, v j$ &W (u i$, v$)) W (u i$, v)&w (u$, v$). By usig Lemma 6.3, we get W (u, v)&w (u$, v$) W (u i, v j )&W (u i$, v j$ ) W (u i, v j )&W (u i, v j ) W (u i, v j )&W (u i, v j ) W (u i$, v j$ )&W (u i$, v j$ ) W (u i$, v j$ )&W (u i$, v j$ ) 4 2 (6.22) From (6.21), we deduce \=>0, \*>0, _'>0, _ 0 # N, \ 0, P[ sup ad (6.11a) is proved. W (u, v)&w (u$, v$) =]<* (6.23) v j &v j $ <'2 F(x 0 )&u i <c 0 a F(x 0 )&u i $ <c 0 a The proof of (6.11b) is similar. Lemma 6.6. We have P[ lim M (x 0 )=x 0 ]=1, 0<x 0 <1. (6.24)

34 CONDITIONAL EMPIRICAL PROCESSES 283 Proof. From Lemma 6.4 we easily deduce that E(M (x 0 )&x 0 ) 4 C( &3 (x 0 ) 2(2$) &2 (x 0 ) 4(2$) ) C( &3 &2 ). (6.25) By the Markov iequality P[ M (x 0 )&x 0 >=]C &2 = &4 (6.26) ad so by the BorelCatelli lemma P[ M (x 0 )&x 0 = i.o.]=0 (6.27) for each positive =, which implies (6.24). So we have the lemma. Lemma 6.7. Let =>0 be arbitrarily. The there is a costat C, such that, up to a eve of probability less tha or equal to =, we have wheever t&s Ca (6.28) M (t)&m (s) a. (6.29) Proof. From Theorems 6.1 ad 14.3 of Billigsley (1968) ad the fact that the sequece of probability measures P defied by W is tight, we deduce that there exists some fiite umber M such for all sufficietly large, P(A (M))1&=, where A (M)=[sup 0t1 M (t) M 2 ]. From (6.29), o the set A (M) we have t&s t&m (t) M (t)&m (s) M (s)&s = M (t) M (t)&m (s) M (s) ad the proof is completed. a 2M 2 Ca

35 284 HAREL AND PURI Lemma 6.8. If the sequece [X i ] is strog mixig with rates (2.12), the for ay *>0, P[ sup stsc 1 a M *(t)&m *(s) *a 12 ]C*&4, (6.30) where M *= 12 (M &M ). Proof. From Lemma 6.4, if t&s=, the E M *(t)&m *(s) 4 C= (t&s) 4(2$) for all. Hece followig the method of the proof of (22.20) i Billigsley (1968), we get P[ sup M *(t)&m *(s) *a 12 ]C= * &4 (mp) 4(2$). (6.31) stsmp Now puttig mp=c 1 a, we have (6.30) from (6.31). The followig lemma is Theorem 1 of Yokoyama (1980). Lemma 6.9. Let [Y j ] be a strog mixig sequece with E(Y j )=0, j1, ad sup j1 E Y j r$ < for some r>2 ad $>0. If (i1) (r2) [(i)] $(r$) < (6.32) the E } r Y i} C r2, 1. (6.33) REFERENCES 1. S. Balacheff ad G. Dupot, Normalite asymptotique des processus empiriques troque s et des processus et rag, i ``Lecture Notes i Mathematics,'' Vol. 821, pp. 1945, Spriger-Verlag, New YorkBerli, G. Beett, Probability iequalities for the sum of idepedet radom variables, J. Amer. Statist. Assoc. 57 (1962), P. Billigsley, ``Covergece of Probability Measures,'' Wiley, New York, Yu. A. Davydov, Mixig coditios for Markov chais, Theory Probab. Appl. 18 (1973), L. P. Devroye ad T. J. Wager, O the L 1 covergece of kerel estimators of regressio fuctios with applicatios i discrimiatio, Z. Wahrsch. Verw. Gebiete 51 (1980), P. Doukha ad F. Portal, Pricipe d'ivariace faible pour la foctio de re partitio empirique das u cadre multidimesioel et me lageat, Probab. Math. Statist. 8, Fa. 2, (1987),

36 285 HAREL AND PURI 7. M. Harel ad M. L. Puri, Weak covergece of weighted multivariate empirical processes uder mixig coditios, i ``Mathematical Statistics ad Probability Theory, Vol. A. Theoretical Aspects'' (M. L. Puri, P. Re ve sz, ad W. Wertz, Eds.), pp , Reidel, Dordrecht, M. Harel ad M. L. Puri, Limitig behavior of U-statistics, V-statistics ad oe sample rak order statistics for ostatioary absolutely regular processes, J. Multivariate Aal. 30 (1989), M. Harel ad M. L. Puri, The ore me cetral limite de l'estimateur de desite et de l'erreur quadratique ite gre e pour des variables ale atoires o statioaires, C. R. Acad. Sci. Paris. Se r. I Math. 312 (1991), G. Neuhaus, O weak covergece of stochastic processes with multidimesioal time parameter, A. Math. Stat. 42, No. 4 (1971), E. Nummeli ad P. Tuomie, Geometric ergodicity of Harris recurret Markov chais with applicatios to reewal theory, Stochastic Processes Appl. 12 (1982), E. M. Stei, ``Sigular Itegrals ad Differetiability Properties of Fuctios,'' Priceto Uiv. Press, Priceto, NJ, W. Stute, Asymptotic ormality o earest eighbor regressio fuctio estimates, A. Statist. 12 (1984), W. Stute, O almost sure covergece of coditioal empirical distributio fuctios, A. Probab. 14 (1986), C. S. Withers, Covergece of empirical processes of mixig rv's o [0, 1], A. Statist. 3 (1975), R. Yokoyama, Momet bouds for statioary mixig sequeces, Z. Wahrsch. Verw. Gebiete 52 (1980), K. Yoshihara, Limitig behavior of U-statistics for statioary absolutely regular processes, Z. Wahrsch. Verw. Gebiete 35 (1976), K. Yoshihara, Asymptotic ormality of earest eighbor regressio fuctio estimates based o some depedet observatios, Yokohama Math. J. 36 (1988), K. Yoshihara, Coditioal empirical processes defied by.-mixig sequeces, Comput. Math. Appl. 19, No. 1 (1990),

Continuity. Subtopics

Continuity. Subtopics 0 Cotiuity Chapter 0: Cotiuity Subtopics.0 Itroductio (Revisio). Cotiuity of a Fuctio at a Poit. Discotiuity of a Fuctio. Types of Discotiuity.4 Algebra of Cotiuous Fuctios.5 Cotiuity i a Iterval.6 Cotiuity

Detaljer

Second Order Hadamard Differentiability in Statistical Applications

Second Order Hadamard Differentiability in Statistical Applications Joural of Multivariate Aalysis 77, 187228 (21) doi:1.16jmva.2.1926, available olie at http:www.idealibrary.com o Secod Order Hadamard Differetiability i Statistical Applicatios Jia-Jia Re 1 Tulae Uiversity

Detaljer

ASYMPTOTIC NORMALITY OF THE MAXIMUM LIKELIHOOD ESTIMATOR IN. Abstract. State space models is a very general class of time series models capable of

ASYMPTOTIC NORMALITY OF THE MAXIMUM LIKELIHOOD ESTIMATOR IN. Abstract. State space models is a very general class of time series models capable of ASYMPTOTIC NORMALITY OF THE MAIMUM LIKELIHOOD ESTIMATOR IN STATE SPACE MODELS Jes Ledet Jese 1 Niels Vver Peterse 2 Uiversity of Aarhus 1;2 ad MaPhySto 1 Abstract State space models is a very geeral class

Detaljer

MU-Estimation and Smoothing

MU-Estimation and Smoothing Joural of Multivariate Aalysis 76, 277293 (2001) doi:10.1006jmva.2000.1916, available olie at http:www.idealibrary.com o MU-Estimatio Smoothig Z. J. Liu Mississippi State Uiversity C. R. Rao Pe State Uiversity

Detaljer

Asymptotics for Homogeneity Tests Based on a Multivariate Random Effects Proportional Hazards Model

Asymptotics for Homogeneity Tests Based on a Multivariate Random Effects Proportional Hazards Model Joural of Multivariate Aalysis 78, 8310 (001) doi10.1006jmva.000.1940, available olie at httpwww.idealibrary.com o Asymptotics for Homogeeity Tests Based o a Multivariate Radom Effects Proportioal Hazards

Detaljer

The Accuracy and the Computational Complexity of a Multivariate Binned Kernel Density Estimator 1

The Accuracy and the Computational Complexity of a Multivariate Binned Kernel Density Estimator 1 Joural of Multivariate Aalysis 72, 264309 (2000) Article ID jmva.1999.1863, available olie at httpwww.idealibrary.com o The Accuracy ad the Computatioal Complexity of a Multivariate Bied Kerel Desity Estimator

Detaljer

Z. D. Bai. and. Y. Wu. Department of Mathematics and Statistics, York University, 4700 Keele Street, North York, Ontario, Canada M3J 1P3

Z. D. Bai. and. Y. Wu. Department of Mathematics and Statistics, York University, 4700 Keele Street, North York, Ontario, Canada M3J 1P3 joural of multivariate aalysis 63, 119135 (1997) article o. MV971694 Geeral M-Estimatio Z. D. Bai Departmet of Applied Mathematics, Natioal Su Yat-se Uiversity, Kaohsiug, Taiwa ad Y. Wu Departmet of Mathematics

Detaljer

Gir vi de resterende 2 oppgavene til én prosess vil alle sitte å vente på de to potensielt tidskrevende prosessene.

Gir vi de resterende 2 oppgavene til én prosess vil alle sitte å vente på de to potensielt tidskrevende prosessene. Figure over viser 5 arbeidsoppgaver som hver tar 0 miutter å utføre av e arbeider. (E oppgave ka ku utføres av é arbeider.) Hver pil i figure betyr at oppgave som blir pekt på ikke ka starte før oppgave

Detaljer

Prediction from Randomly Right Censored Data 1

Prediction from Randomly Right Censored Data 1 Joural of Multivariate Aalysis 80, 7300 (2002) doi:0.006jmva.2000.973, available olie at http:www.idealibrary.com o Predictio from Radomly Right Cesored Data Michael Kohler ad Kiga Ma the Uiversita t Stuttgart,

Detaljer

On Parameters of Increasing Dimensions

On Parameters of Increasing Dimensions Joural of Multivariate Aalysis 73, 0135 (2000) doi:10.1006jmva.1999.1873, available olie at http:www.idealibrary.com o O Parameters of Icreasig Dimesios Xumig He 1 Departmet of Statistics, Uiversity of

Detaljer

TMA4245 Statistikk. Øving nummer 12, blokk II Løsningsskisse. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

TMA4245 Statistikk. Øving nummer 12, blokk II Løsningsskisse. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Vår 205 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 2, blokk II Løsigsskisse Oppgave a - β agir biles besiforbruk i liter/mil - Rimelig med α 0 fordi med x 0 ige

Detaljer

Empirical Likelihood Ratio in Terms of Cumulative Hazard Function for Censored Data

Empirical Likelihood Ratio in Terms of Cumulative Hazard Function for Censored Data Joural of Multivariate Aalysis 80, 6688 (2002) doi0.006jmva.2000.977, available olie at httpwww.idealibrary.com o Empirical Likelihood Ratio i Terms of Cumulative Hazard Fuctio for Cesored Data Xiao-Rog

Detaljer

Permutation Tests for Reflected Symmetry

Permutation Tests for Reflected Symmetry joural of multivariate aalysis 67, 129153 (1998) article o. MV971697 Permutatio Tests for Reflected Symmetry Georg Neuhaus ad Li-Xig Zhu* Uiversity of Hamburg, Hamburg, Germay ad Chiese Academy of Scieces,

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Høst 205 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 2, blokk II Løsigsskisse Oppgave a - β agir biles besiforbruk i liter/mil - Rimelig med α 0 fordi med x 0 ige

Detaljer

Normal Approximation Rate and Bias Reduction for Data-Driven Kernel Smoothing Estimator in a Semiparametric Regression Model

Normal Approximation Rate and Bias Reduction for Data-Driven Kernel Smoothing Estimator in a Semiparametric Regression Model Joural of Multivariate Aalysis 80, 120 (2002) doi:10.1006mva.2000.1925, available olie at http:www.idealibrary.com o Normal Approximatio Rate ad Bias Reductio for Data-Drive Kerel Smoothig Estimator i

Detaljer

Average Regression Surface for Dependent Data

Average Regression Surface for Dependent Data Joural of Multivariate Aalysis 75, 242 (2000) doi:0.006jmva.999.896, available olie at http:www.idealibrary.com o Average Regressio Surface for Depedet Data Zogwu Cai Uiversity of North Carolia E-mail:

Detaljer

Spectral method for deconvolving a density Marine Carrasco Department of Economics University of Rochester Jean-Pierre Flor

Spectral method for deconvolving a density Marine Carrasco Department of Economics University of Rochester Jean-Pierre Flor Spectral method for decovolvig a desity Marie Carrasco Departmet of coomics Uiversity of Rochester csco@troi.cc.rochester.edu Jea-Pierre Flores GRMAQ ad IDI, Uiversite Toulouse I ores@cict.fr Prelimiary

Detaljer

SVM and Complementary Slackness

SVM and Complementary Slackness SVM and Complementary Slackness David Rosenberg New York University February 21, 2017 David Rosenberg (New York University) DS-GA 1003 February 21, 2017 1 / 20 SVM Review: Primal and Dual Formulations

Detaljer

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2 Mathematics 4Q Name: SOLUTIONS. (x + 5)(x +5x) 7 8 (x +5x) 8 + C [u x +5x]. (3 x) (3 x) + C [u 3 x] 3. 7x +9 (7x + 9)3/ [u 7x + 9] 4. x 3 ( + x 4 ) /3 3 8 ( + x4 ) /3 + C [u + x 4 ] 5. e 5x+ 5 e5x+ + C

Detaljer

A New Approach to the BHEP Tests for Multivariate Normality

A New Approach to the BHEP Tests for Multivariate Normality joural of multivariate aalysis 6, 13 (1997) article o. MV971684 A New Approach to the BHEP Tests for Multivariate Normality Norbert Heze ad Thorste Wager Uiversita t Karlsruhe, D-7618 Karlsruhe, Germay

Detaljer

Strassen's LIL for the Lorenz Curve

Strassen's LIL for the Lorenz Curve joural of multivariate aalysis 59, 112 (1996) article o. 5 Strasse's LIL for the Lorez Curve Miklo s Cso rgo * ad Ric$ ardas Zitikis - Carleto Uiversity, Ottawa, Otario, Caada We prove Strasse's law of

Detaljer

Slope-Intercept Formula

Slope-Intercept Formula LESSON 7 Slope Intercept Formula LESSON 7 Slope-Intercept Formula Here are two new words that describe lines slope and intercept. The slope is given by m (a mountain has slope and starts with m), and intercept

Detaljer

TMA4245 Statistikk Eksamen 20. desember 2012

TMA4245 Statistikk Eksamen 20. desember 2012 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA4245 Statistikk Eksame 20. desember 202 Løsigsskisse Oppgave a Sasylighete for å få 5 kro er P 5 kro = = /32 = 0.03. 25 Sasylighete

Detaljer

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with. Solutions #1 1. a Show that the path γ : [, π] R 3 defined by γt : cost ı sint j sint k lies on the surface z xy. b valuate y 3 cosx dx siny z dy xdz where is the closed curve parametrized by γ. Solution.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT2400 Analyse 1. Eksamensdag: Onsdag 15. juni 2011. Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

Varieties of two-dimensional cylindric algebras II

Varieties of two-dimensional cylindric algebras II Algebra uivers. 51 (004) 177 06 000-540/04/030177 30 DOI 10.1007/s0001-004-1856- c Birkhäuser Verlag, Basel, 004 Algebra Uiversalis Varieties of two-dimesioal cylidric algebras II Nick Bezhaishvili Abstract.

Detaljer

Comparison of LR, Score, and Wald Tests in a Non-IID Setting

Comparison of LR, Score, and Wald Tests in a Non-IID Setting oural of multivariate aalysis 60, 99110 (1997) article o. MV961645 Compariso of LR, Score, ad Wald Tests i a No-IID Settig C. Radhakrisha Rao The Pesylvaia State Uiversity ad Rahul Mukeree Idia Istitute

Detaljer

General position subsets and independent hyperplanes in d-space

General position subsets and independent hyperplanes in d-space J. Geom. c 016 Spriger Iteratioal Publishig DOI 10.1007/s000-016-033-5 Joural of Geometry Geeral positio subsets ad idepedet hyperplaes i d-space Jea Cardial, Csaba D. Tóth, ad David R. Wood Abstract.

Detaljer

Trigonometric Substitution

Trigonometric Substitution Trigonometric Substitution Alvin Lin Calculus II: August 06 - December 06 Trigonometric Substitution sin 4 (x) cos (x) dx When you have a product of sin and cos of different powers, you have three different

Detaljer

Nonparametric analysis of covariance Holger Dette Ruhr-Universitat Bochum Fakultat fur Mathematik Bochum Germany

Nonparametric analysis of covariance Holger Dette Ruhr-Universitat Bochum Fakultat fur Mathematik Bochum Germany oparametric aalysis of covariace Holger Dette Rur-Uiversitat Bocum Faultat fur Matemati 4478 Bocum Germay email: olger.dette@rur-ui-bocum.de FAX: +49 34 7 94 559 atalie eumeyer Rur-Uiversitat Bocum Faultat

Detaljer

Analysis of Algorithms

Analysis of Algorithms Aalysis of Algorithms Aalysis Fram Most algorithms trasform iput objects ito output objects. The ruig time of a algorithm typically grows with the iput size. Average case time is ofte difficult to determie.

Detaljer

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3 Relational Algebra 1 Unit 3.3 Unit 3.3 - Relational Algebra 1 1 Relational Algebra Relational Algebra is : the formal description of how a relational database operates the mathematics which underpin SQL

Detaljer

Graphs similar to strongly regular graphs

Graphs similar to strongly regular graphs Joint work with Martin Ma aj 5th June 2014 Degree/diameter problem Denition The degree/diameter problem is the problem of nding the largest possible graph with given diameter d and given maximum degree

Detaljer

0.5 (6x 6x2 ) dx = [3x 2 2x 3 ] 0.9. n n. = n. ln x i + (β 1) i=1. n i=1

0.5 (6x 6x2 ) dx = [3x 2 2x 3 ] 0.9. n n. = n. ln x i + (β 1) i=1. n i=1 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 9, blokk II Løsigsskisse Oppgave a The probability is.9.5 6x( x dx.9.5 (6x 6x dx [3x x 3 ].9.5.47. b The likelihood fuctio

Detaljer

INF5820 Natural Language Processing - NLP. H2009 Jan Tore Lønning

INF5820 Natural Language Processing - NLP. H2009 Jan Tore Lønning INF5820 Natural Language Processing - NLP H2009 jtl@ifi.uio.no HMM Tagging INF5830 Lecture 3 Sep. 7 2009 Today More simple statistics, J&M sec 4.2: Product rule, Chain rule Notation, Stochastic variable

Detaljer

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 1 MAT131 Bokmål Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 09-14 Oppgavesettet er 4 oppgaver fordelt på

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksame i: ECON30 Statistikk Exam: ECON30 Statistics UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamesdag: Tirsdag. jui 00 Sesur kugjøres: Tirsdag 5. jui, ca. 6.00 Date of exam: Tuesday, Jue, 00 Grades will

Detaljer

Characteristic Functions of L 1 -Spherical and L 1 -Norm Symmetric Distributions and Their Applications

Characteristic Functions of L 1 -Spherical and L 1 -Norm Symmetric Distributions and Their Applications Joural of Multivariate Aalysis 76, 192213 (2001) doi10.1006jmva.2001.1910, available olie at httpwww.idealibrary.com o Characteristic Fuctios of L 1 -Spherical ad L 1 -Norm Symmetric Distributios ad Their

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Date of exam: Friday, May

Detaljer

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postponed exam: ECON420 Mathematics 2: Calculus and linear algebra Date of exam: Tuesday, June 8, 203 Time for exam: 09:00 a.m. 2:00 noon The problem set covers

Detaljer

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes Kneser hypergraphs Frédéric Meunier May 21th, 2015 CERMICS, Optimisation et Systèmes Kneser hypergraphs m, l, r three integers s.t. m rl. Kneser hypergraph KG r (m, l): V (KG r (m, l)) = ( [m]) l { E(KG

Detaljer

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

5 E Lesson: Solving Monohybrid Punnett Squares with Coding 5 E Lesson: Solving Monohybrid Punnett Squares with Coding Genetics Fill in the Brown colour Blank Options Hair texture A field of biology that studies heredity, or the passing of traits from parents to

Detaljer

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001) by Simin Feng, Herbert G. Winful Opt. Lett. 26, 485-487 (2001) http://smos.sogang.ac.r April 18, 2014 Introduction What is the Gouy phase shift? For Gaussian beam or TEM 00 mode, ( w 0 r 2 E(r, z) = E

Detaljer

Second Order ODE's (2P) Young Won Lim 7/1/14

Second Order ODE's (2P) Young Won Lim 7/1/14 Second Order ODE's (2P) Copyright (c) 2011-2014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON360/460 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Exam: ECON360/460 - Resource allocation and economic policy Eksamensdag: Fredag 2. november

Detaljer

Rank-Score Tests in Factorial Designs with Repeated Measures

Rank-Score Tests in Factorial Designs with Repeated Measures Joural of Multivariate Aalysis 70, 86317 (1999) Article ID jmva.1999.181, available olie at httpwww.iealibrary.com o Rak-Score Tests i Factorial Desigs with Repeate Measures Egar Bruer* a Ulrich Muzel*

Detaljer

Call function of two parameters

Call function of two parameters Call function of two parameters APPLYUSER USER x fµ 1 x 2 eµ x 1 x 2 distinct e 1 0 0 v 1 1 1 e 2 1 1 v 2 2 2 2 e x 1 v 1 x 2 v 2 v APPLY f e 1 e 2 0 v 2 0 µ Evaluating function application The math demands

Detaljer

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ.

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ. Oppgave 1 Beviskalklen i læreboka inneholder sluttningsregelen QR: {ψ φ}, ψ ( xφ). En betingelse for å anvende regelen er at det ikke finnes frie forekomste av x i ψ. Videre så inneholder beviskalklen

Detaljer

Emneevaluering GEOV272 V17

Emneevaluering GEOV272 V17 Emneevaluering GEOV272 V17 Studentenes evaluering av kurset Svarprosent: 36 % (5 av 14 studenter) Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet PhD Candidate Samsvaret mellom

Detaljer

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5) Gradient Masahiro Yamamoto last update on February 9, 0 definition of grad The gradient of the scalar function φr) is defined by gradφ = φr) = i φ x + j φ y + k φ ) φ= φ=0 ) ) 3) 4) 5) uphill contour downhill

Detaljer

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Istitutt for matematiske fag Eksamesoppgave i TMA432 Itroduksjo til viteskapelige beregiger Faglig kotakt uder eksame: Ato Evgrafov Tlf: 453 163 Eksamesdato: 6. jui 216 Eksamestid (fra til): 9: 13: Hjelpemiddelkode/Tillatte

Detaljer

Dynamic Programming Longest Common Subsequence. Class 27

Dynamic Programming Longest Common Subsequence. Class 27 Dynamic Programming Longest Common Subsequence Class 27 Protein a protein is a complex molecule composed of long single-strand chains of amino acid molecules there are 20 amino acids that make up proteins

Detaljer

Databases 1. Extended Relational Algebra

Databases 1. Extended Relational Algebra Databases 1 Extended Relational Algebra Relational Algebra What is an Algebra? Mathematical system consisting of: Operands --- variables or values from which new values can be constructed. Operators ---

Detaljer

Den som gjør godt, er av Gud (Multilingual Edition)

Den som gjør godt, er av Gud (Multilingual Edition) Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Click here if your download doesn"t start automatically Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Den som gjør godt,

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt ksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON3120/4120 Mathematics 2: Calculus and linear algebra Eksamensdag:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag 7. juni

Detaljer

Stationary Phase Monte Carlo Methods

Stationary Phase Monte Carlo Methods Stationary Phase Monte Carlo Methods Daniel Doro Ferrante G. S. Guralnik, J. D. Doll and D. Sabo HET Physics Dept, Brown University, USA. danieldf@het.brown.edu www.het.brown.edu Introduction: Motivations

Detaljer

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Institutt for matematiske fag Eksamensoppgave i TMA432 Introduksjon til vitenskapelige beregninger Faglig kontakt under eksamen: Anton Evgrafov Tlf: 453 163 Eksamensdato: 8. august 217 Eksamenstid (fra

Detaljer

Moving Objects. We need to move our objects in 3D space.

Moving Objects. We need to move our objects in 3D space. Transformations Moving Objects We need to move our objects in 3D space. Moving Objects We need to move our objects in 3D space. An object/model (box, car, building, character,... ) is defined in one position

Detaljer

1 Aksiomatisk definisjon av vanlige tallsystemer

1 Aksiomatisk definisjon av vanlige tallsystemer Notat XX for MAT1140 1 Aksiomatisk definisjon av vanlige tallsystemer 1.1 Aksiomer Vi betrakter en mengde R, utstyrt med to avbild- Algebraiske aksiomer. ninger: addisjon { R R R, (x, y) x + y. { R R R,

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON20/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON20/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Fredag 2. mai

Detaljer

Maple Basics. K. Cooper

Maple Basics. K. Cooper Basics K. Cooper 2012 History History 1982 Macsyma/MIT 1988 Mathematica/Wolfram 1988 /Waterloo Others later History Why? Prevent silly mistakes Time Complexity Plots Generate LATEX This is the 21st century;

Detaljer

Unbiased Estimation in the Non-central Chi-Square Distribution 1

Unbiased Estimation in the Non-central Chi-Square Distribution 1 Journal of Multivariate Analysis 75, 112 (2000) doi10.1006mva.2000.1898, available online at httpwww.idealibrary.com on Unbiased Estimation in the Non-central Chi-Square Distribution 1 F. Lo pez-bla zquez

Detaljer

Approximation of the Power of Kurtosis Test for Multinormality

Approximation of the Power of Kurtosis Test for Multinormality Journal of Multivariate Analysis 65, 166180 (1998) Article No. MV97178 Approximation of the Power of Kurtosis Test for Multinormality Kanta Naito Hiroshima University, Higashi-Hiroshima, 739, Japan Received

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag 8. desember

Detaljer

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23 UTKAST ENGLISH VERSION EKSAMEN I: MOT100A STOKASTISKE PROSESSER VARIGHET: 4 TIMER DATO: 16. februar 2006 TILLATTE HJELPEMIDLER: Kalkulator; Tabeller og formler i statistikk (Tapir forlag): Rottman: Matematisk

Detaljer

Inference for the Mean Difference in the Two-Sample Random Censorship Model

Inference for the Mean Difference in the Two-Sample Random Censorship Model Joural of Multivariate Aalysis 79, 9535 () doi:.6jva..974, available olie at http:www.idealibrary.co o Iferece for the Mea Differece i the Two-Saple Ro Cesorship Model Qihua Wag Chiese Acadey of Sciece,

Detaljer

Exercise 1: Phase Splitter DC Operation

Exercise 1: Phase Splitter DC Operation Exercise 1: DC Operation When you have completed this exercise, you will be able to measure dc operating voltages and currents by using a typical transistor phase splitter circuit. You will verify your

Detaljer

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD 1 Bakgrunnen for dette initiativet fra SEF, er ønsket om å gjøre arbeid i høyden tryggere / sikrere. Både for stillasmontører og brukere av stillaser. 2 Reviderte

Detaljer

Neural Network. Sensors Sorter

Neural Network. Sensors Sorter CSC 302 1.5 Neural Networks Simple Neural Nets for Pattern Recognition 1 Apple-Banana Sorter Neural Network Sensors Sorter Apples Bananas 2 Prototype Vectors Measurement vector p = [shape, texture, weight]

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Mathematics 2: Calculus an linear algebra Exam: ECON3120/4120 Mathematics 2: Calculus an linear algebra Eksamensag: Tirsag 3. juni 2008

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. april 2008 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON3120/4120 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON30/40 Matematikk : Matematisk analyse og lineær algebra Exam: ECON30/40 Mathematics : Calculus and Linear Algebra Eksamensdag: Tirsdag 0. desember

Detaljer

Existence of resistance forms in some (non self-similar) fractal spaces

Existence of resistance forms in some (non self-similar) fractal spaces Existence of resistance forms in some (non self-similar) fractal spaces Patricia Alonso Ruiz D. Kelleher, A. Teplyaev University of Ulm Cornell, 12 June 2014 Motivation X Fractal Motivation X Fractal Laplacian

Detaljer

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Emneevaluering GEOV325 Vår 2016 Kommentarer til GEOV325 VÅR 2016 (emneansvarlig) Forelesingsrommet inneholdt ikke gode nok muligheter for å kunne skrive på tavle og samtidig ha mulighet for bruk av power

Detaljer

Splitting the differential Riccati equation

Splitting the differential Riccati equation Splitting the differential Riccati equation Tony Stillfjord Numerical Analysis, Lund University Joint work with Eskil Hansen Innsbruck Okt 15, 2014 Outline Splitting methods for evolution equations The

Detaljer

HONSEL process monitoring

HONSEL process monitoring 6 DMSD has stood for process monitoring in fastening technology for more than 25 years. HONSEL re- rivet processing back in 990. DMSD 2G has been continuously improved and optimised since this time. All

Detaljer

Appendix B, not for publication, with screenshots for Fairness and family background

Appendix B, not for publication, with screenshots for Fairness and family background Appendix B, not for publication, with screenshots for Fairness and family background Ingvild Almås Alexander W. Cappelen Kjell G. Salvanes Erik Ø. Sørensen Bertil Tungodden This document shows screenshots

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. juni 2010 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

TEKSTER PH.D.-KANDIDATER FREMDRIFTSRAPPORTERING

TEKSTER PH.D.-KANDIDATER FREMDRIFTSRAPPORTERING TEKSTER PH.D.-KANDIDATER FREMDRIFTSRAPPORTERING DISTRIBUSJONS-E-POST TIL ALLE KANDIDATER: (Fornavn, etternavn) Den årlige fremdriftsrapporteringen er et viktig tiltak som gjør instituttene og fakultetene

Detaljer

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems Department of Economics May 004 Arne Strøm ECON0/40 Mathematics, spring 004 Problem solutions for the seminar on 5 May 004 (For practical reasons (read laziness, most of the solutions this time are in

Detaljer

TMA4329 Intro til vitensk. beregn. V2017

TMA4329 Intro til vitensk. beregn. V2017 Norges teknisk naturvitenskapelige universitet Institutt for Matematiske Fag TMA439 Intro til vitensk. beregn. V17 ving 4 [S]T. Sauer, Numerical Analysis, Second International Edition, Pearson, 14 Teorioppgaver

Detaljer

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX)

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX) Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX) Peter J. Rosendahl Click here if your download doesn"t start automatically Han Ola of Han Per:

Detaljer

STØTTEMATERIALE TIL FORELESNINGENE OM SKATT

STØTTEMATERIALE TIL FORELESNINGENE OM SKATT STØTTEMATERIALE TIL FORELESNINGENE OM SKATT ECON3610, H2017 Kristoffer Midttømme Eksempler på skattevridninger: Den britiske vindusskatten Fordeling av antall vinduer (1) Oates, Wallace E., and Robert

Detaljer

SERVICE BULLETINE 2008-4

SERVICE BULLETINE 2008-4 S e r v i c e b u l l e t i n e M a t e r i e l l Materiellsjef F/NLF kommuniserer påminnelse omkring forhold som ansees som vesentlige for å orientere om viktige materiellforhold. Målgruppen for Servicbulletinen

Detaljer

Eksamensoppgave i TMA4265 Stokastiske Prosesser

Eksamensoppgave i TMA4265 Stokastiske Prosesser Institutt for matematiske fag Eksamensoppgave i TMA4265 Stokastiske Prosesser Faglig kontakt under eksamen: Jo Eidsvik Tlf: 901 27 472 Eksamensdato: Desember 1, 2016 Eksamenstid (fra til): 09:00 13:00

Detaljer

Geometriske begrepers doble natur. Frode RønningR Voss 24.09.07

Geometriske begrepers doble natur. Frode RønningR Voss 24.09.07 Geometriske begrepers doble natur Frode RønningR Voss 24.09.07 Geometriske begreper Hva kjennetegner geometriske begreper? Geometri er en logisk oppbygd struktur læren om det tredimensjonale rommet rundt

Detaljer

Expected return time to the initial state for biochemical systems with linear cyclic chains: unidirectional and bidirectional reactions

Expected return time to the initial state for biochemical systems with linear cyclic chains: unidirectional and bidirectional reactions Sådhaå (209) 44:3 Ó Idia Academy of Scieces https://doiorg/0007/s2046-08-0989-5sadhaa(023456789(),-volv)ft3 ](023456789(),-volV) Epected retur time to the iitial state for biochemical systems with liear

Detaljer

MA2501 Numerical methods

MA2501 Numerical methods MA250 Numerical methods Solutions to problem set Problem a) The function f (x) = x 3 3x + satisfies the following relations f (0) = > 0, f () = < 0 and there must consequently be at least one zero for

Detaljer

FINAL EXAM IN STA-2001

FINAL EXAM IN STA-2001 Page 1 of 3 pages FINAL EXAM IN STA-2001 Exam in: STA-2001 Stochastic processes. Date: Tuesday the 21. of February, 2012. Time: 09:00 13:00. Place: Aud.max. Approved aids: 4 pages of your own notes. Approved

Detaljer

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) INF247 Er du? Er du? - Annet Ph.D. Student Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen,

Detaljer

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen TABELLPARSING 1. mars 2011 2 I dag Oppsummering fra sist: Recursive-descent og Shift-reduce parser Svakheter med disse Tabellparsing: Dynamisk

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON2915 Vekst og næringsstruktur Exam: ECON2915 - Growth and business structure Eksamensdag: Fredag 2. desember 2005 Sensur kunngjøres: 20. desember

Detaljer

Case 1:11-cr RNS Document 781 Entered on FLSD Docket 03/27/2013 Page 1 of M a u u - g u 'a M M M u..a u i < < < < < < < < <.Q? <.t!

Case 1:11-cr RNS Document 781 Entered on FLSD Docket 03/27/2013 Page 1 of M a u u - g u 'a M M M u..a u i < < < < < < < < <.Q? <.t! Cas :2033RNS Dun 78 End n FLSD Dk 03/27/203 Pag f 6 i I jj @ :j j j C I i!, I I! l I : I l!! I ;, ;!, ; 4 k! @ j j ; ;, I I, jji l i I! I j I; l i! l ; : i I I! v z l! l g U U J B g g 6 q; J Y I : 0 ;

Detaljer

TMA4240 Statistikk Høst 2013

TMA4240 Statistikk Høst 2013 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 6, blokk I Løsningsskisse Oppgave 1 Vi antar X er normalfordelt, X N(3315, 575 2 ). Ved bruk av tabell A.3 finner

Detaljer

Analysis of Bidirectional Ballot Sequences and Random Walks Ending in Their Maximum

Analysis of Bidirectional Ballot Sequences and Random Walks Ending in Their Maximum A Cob 0 06 775{797 DOI 0007/s0006-06-0330-0 Published olie Noveber, 06 06 The Authors This article is published with ope access at Sprigerlikco Aals of Cobiatorics Aalysis of Bidirectioal Ballot Sequeces

Detaljer

"#$%&' BC78 "#$% -. /0BC78! 2D E BC78 F /0GH BC78 F BC78IJKL 3 * # *H ( G $ 6 F DE3 b # cxn= DE b c "78 %&9 # *H X )* c# N<. G # X& PU a# / Q #K KB A

#$%&' BC78 #$% -. /0BC78! 2D E BC78 F /0GH BC78 F BC78IJKL 3 * # *H ( G $ 6 F DE3 b # cxn= DE b c 78 %&9 # *H X )* c# N<. G # X& PU a# / Q #K KB A "#$%&' BC78 "#$% -. /0BC78! 2D E BC78 F /0GH BC78 F BC78IJKL 3 * # *H( G $ 6 F DE3 b # cxn= DE b c "78 %&9 # *HX )* c# N

Detaljer

Kollektivtrafikken. under Norway Cup

Kollektivtrafikken. under Norway Cup 5 NORSK Kjelsås 11 Tosehage 31 Kollektivtrafikke uder Norway Cup 5 25. juli 1. august 7 B Elligsrudåse Grorud 2 31 Brugata Tøye Muchmuséet Helsfyr Bryseg Bry Jerbaetorget/ Oslo S 7 OPERA Sportsplasse Ekeberg

Detaljer

Identification of Refined ARMA Echelon Form Models for Multivariate Time Series*

Identification of Refined ARMA Echelon Form Models for Multivariate Time Series* journal of multivariate analysis 56, 27231 (1996) article no. 11 Identification of Refined ARMA Echelon Form Models for Multivariate Time Series* Sai d siri Institut national de statistique et d'e conomie

Detaljer