Rank-Score Tests in Factorial Designs with Repeated Measures

Størrelse: px
Begynne med side:

Download "Rank-Score Tests in Factorial Designs with Repeated Measures"

Transkript

1 Joural of Multivariate Aalysis 70, (1999) Article ID jmva , available olie at httpwww.iealibrary.com o Rak-Score Tests i Factorial Desigs with Repeate Measures Egar Bruer* a Ulrich Muzel* Uiversita t Go ttige, Go ttige, Germay a Maa L. Puri - Iiaa Uiversity Receive December 19, 1996 Noparametric factorial esigs for multivariate observatios are cosiere uer the framework of geeral rak-score statistics. Ulike most of the literature, we o ot assume the cotiuity of the uerlyig istributio fuctios. The moels stuie iclue geeral repeate measures esigs, compou symmetry esigs, a esigs for logituial ata. I particular, esigs for orere categorical ata are iclue. The vectors of the multivariate observatios may have ifferet legths. Moreover, our geeral framework iclues missig values a sigular covariace matrices which occur quite frequetly i practical ata aalysis problems. The asymptotic properties of the propose statistics are stuie uer geeral oparametric hypotheses as well as uer a sequece of oparametric cotiguous alteratives. L -cosistet estimators for the ukow covariace matrices are give a two types of quaratic forms are cosiere for testig the oparametric hypotheses. The results are applie to a two-way mixe moel assumig compou symmetry a to a factorial esig for logituial ata. The maiea of the proofs is base o some momet iequalities for empirical istributio fuctios i mixe moels. The etails are provie i the Appeix Acaemic Press AMS 1991 subject classificatios 6G10, 6G0, 6H10, 6H1, 6H15. Key wors a phrases rak tests; score fuctios; ties; orere categorical ata; oparametric hypotheses; mixe moel; logituial ata. * Supporte i part by DFG, Br , Partly supporte by the Office of Naval Research Cotract N J X Copyright 1999 by Acaemic Press All rights of reprouctio ay form reserve. 86

2 RANK TESTS FOR REPEATED MEASURES INTRODUCTION I may biological experimets a ecological, psychological, or meical stuies, the subjects are observe repeately uer ifferet or uer the same coitios. Such esigs ca be escribe by several more or less complicate moels which come uer the framework of mixe moels. They iclue growth curves, logituial ata, or repeate measures esigs where a special structure for the epeecies of the multivariate observatios, e.g., the compou symmetry, may or may ot be assume. The theory for parametric as well as for semi-parametric mixe moels is well evelope a is excelletly escribe i some recet textbooks (see, e.g., Daviia a Giltia, 1995; Diggle, Liag, a Zeger, 1994; Kshirsagar a Smith, 1995; or Lisey, 1993). For oparametric moels, however, where oly the istributio fuctios of the observatios are use to efie treatmet effects or to express hypotheses, the theory is less evelope, particularly whe several factors are preset i the trial. The first ieas to use he so-calle margial moel to efie treatmet effects i a oparametric mixe moel ate back to Hollaer, Pleger, a Li (1974) a Goviarajulu (1975) a were extee later o a stuie i more etail by Bruer a Neuma (198), Thompso (1990, 1991), a Bruer a Deker (1994). I this margial moel, a treatmet effect is efie through the margial istributios F j,,..., of X k =(X k1,..., X k )$ where X k is the vector of observatios for subject k. The observatios X kj a X k$j$ comig from ifferet subjects k a k$ are assume to be iepeet while the observatios X kj a X kj$ from the same subject may be epeet. The, a treatmet effect ca be efie i the same way as for the WilcoxoMaWhitey statistic or for the KruskalWallis statistic with iepeet observatios. Both statistics are base o cosistet estimates of the quatities p j =HF j, where H= &1 F j eotes the mea of the margial istributios. The quatities p j are calle relative treatmet effects, because they measure the effect of the treatmet j with respect to the mea H of all istributios i the experimet, a are estimate i a atural way by replacig the istributios by their empirical couterparts F j a H respectively. It is well kow that the estimator p^ j= H F j ca be compute from the raks R kj over all (epeet a iepeet) observatios X kj,,...,,,...,. Thus, the cocept of the margial moel leas to the problem of cosierig the istributio of rak statistics which use a rakig over epeet a iepeet observatios. For historical review of rak methos for mixe moels, we refer to Bruer a Puri (1996) or Akritas a Bruer (1997). A geeral formulatio of hypotheses i oparametric moels was suggeste by Akritas a Arol (1994) who itrouce the iea to formulate

3 88 BRUNNER, MUNZEL, AND PURI the hypotheses for the margial moel i terms of the istributio fuctios a erive the relevat asymptotic istributio theory uer the ull hypothesis as well as uer a sequece of oparametric cotiguous alteratives. The above results, however, were obtaie uer the assumptio of the cotiuity of the istributio fuctios which meas that ties were ot allowe. This is rather a urealistic assumptio for applicatios. Base o the ieas of Muzel (1994, 1998), Bruer, Puri a Su (1995) use the ormalize versio of the istributio fuctio F(x)= 1 [F + (x)+f & (x)] a of the empirical istributio fuctio to, erive the asymptotic results for two-sample rak statistics i mixe moels icluig the case of arbitrary ties. Here, F + (x) eotes the right cotiuous versio a F & (x) eotes the left cotiuous versio of the istributio fuctio of a raom variable. Akritas a Bruer (1997) geeralize these results to factorial esigs usig the cocept of Akritas a Arol (1994) to formulate oparametric hypotheses. The avatage of this cocept to formulate the hypotheses i terms of the istributio fuctios is that it iclues moels with cotiuous istributio fuctios as well as moels with iscrete observatios (e.g. orere categorical ata). Sice the proceures use rakigs over all observatios, they are robust to outliers as well as ivariat uer strictly mootoe trasformatios of the ata. I orer to make these proceures broaly applicable for the aalysis of real ata sets, several improvemets have to be worke out. First, the case of missig values has to be stuie a also the situatios where sigular covariace matrices appear i a atural way have to be aresse. For example, i moels with orere categorical ata, sigular covariace matrices appear quite ofte. If a treatmet is very effective, the (at a certai time poit) all subjects may be rate i the same category of the graig scale for this treatmet while the graig scores for the subjects i the cotrol group may be ifferet. Cosier the ice ata set of the shouler tip pai trial (see, e.g., Lumley, 1996) a assume that the observatios of patiet o. 113 at time poit 4 a of patiet o. 119 at time poit 5 woul be missig. The the estimate variace for the male patiets uer the active treatmet at time poit 4 a the estimate variace for the female patiets uer the active treatmet at time poit 5 becomes 0 a hece, the estimate covariace matrix becomes sigular. It caot be regare as reasoable to elete the two time poits from the aalysis of the trial i orer to be able to perform the computatios. Hece, also sigular covariace matrices have to be iclue i the cocept. I aitio, the special moel of compou symmetry where the covariace matrix has a simple structure, has to be aresse. Moreover, some alterative versio of the Wal-type statistic (WTS) has to be stuie sice it is well kow that the performace of the WTS is rather poor for small samples sizes (see

4 RANK TESTS FOR REPEATED MEASURES 89 Akritas a Bruer, 1997). It is the aim of the preset paper to aress these problems from both the applie as well as the theoretical viewpoit uer the framework of liear rak statistics with geeral scores. Orgaizatio of the Paper. The paper is orgaize as follows I Sectio, the otatios are itrouce a the relative treatmet effects a the estimators are efie. These estimators are liear cotrasts of rak statistics. The asymptotic properties of the estimators uer the hypothesis as well as uer a sequece of oparametric alteratives is cosiere i Sectio 3. Cosistet estimators for the ukow covariace matrices i the multivariate moel as well as i the compou symmetry moel are also erive i Sectio 3. Fially, the asymptotic properties of the WTS a of a propose simple moificatio, which is calle ANOVA-type statistic (ATS), are cosiere i this sectio. Both statistics are applie i Sectio 4 to ifferet esigs. Some techical Lemmas which are eee to prove the theorems i the boy of the paper are provie i the Appeix.. THE GENERAL MIXED MODEL AND NONPARAMETRIC HYPOTHESES I the geeral mixe moel, r treatmet groups (the so-calle whole-plot factor) are cosiere where every treatmet group i cotais,..., iepeet (raomly chose) subjects. These = r +1 i subjects are observe repeately uer,..., ifferet (fixe) situatios (``treatmets,'' the so-calle sub-plot factor) with s=1,..., replicatios for subject k uer the treatmet combiatio (i, j). Thus, there are M ik = m ijk repeate measures for each subject where the subjects are repeately observe uer the same treatmet as well as uer ifferet treatmets. This geeral mixe moel ca be writte by iepeet raom vectors X ik =(X$ i1k,..., X$ ik )$, i=1,..., r,,...,, where X ijk =(X ijk1,..., X ijkmijk )$,,...,, (.1) a where X ijks tf ij (x)= 1 [F + ij (x)+f & ij (x)], i=1,..., r,,...,, k= 1,...,, s=1,..., (the sig t meas ``is istribute as''). Here, F + ij (x)= P(X ijks x) is the right cotiuous versio a F & ij (x)=p(x ijks <x) is the left cotiuous versio of the istributio fuctio. The ormalize versio F ij (x) (see Lag, 1993, p. 89) iclues cotiuous as well as iscotiuous istributio fuctios a is eee for halig ties. To erive the geeral results, we o ot assume ay particular structure for the epeecies of the compoets of the vectors X ik except that the X ik are iepeet,

5 90 BRUNNER, MUNZEL, AND PURI i=1,..., r,,..., a that the bivariate margial istributio fuctios of (X ijks, X ij$ks$ ) o ot epe o k, s a s$, i.e., (X ijks, X ij$ks$ )tf ijj$ (x, y). This assumptios reasoable sice the observatios with k{k$ are iepeet replicatios a the observatios with s{s$ for the same j a k are epeet replicatios of the experimet. We ote that this assumptio o the bivariate margial istributio fuctios is eee to erive the asymptotic results uer cotiguous alteratives (see Theorem 3.4). The rather geeral otatiotrouce above, covers a lot of esigs which are commoly use i practice. For example, if r=1 group of,..., subjects is observe uer,..., treatmets, the F ij #F j, j+1,...,. This esigs calle ``oe-group repeate measures esig.'' If there are r groups of subjects the this is the so-calle split-plot esig. I the two-fol este classificatio with i=1,..., r treatmets,,..., iepeet subjects are observe uer treatmet i where every subject receives oly oe treatmet but is observe repeately s=1,..., m ik times i orer to get a more accurate measuremet for the variable of iterest. I total, there are N= r i=1 m ik observatios of = r i=1 iepeet subjects. Higher-way layouts are easily escribe i this setup by splittig the iices i or j ito sub-iices i$, i",... or j$, j",..., respectively. Thus, higherway layouts with repeate measures or logituial ata are covere by the geeral moel efie i (.1). Note that i most cases with logituial ata, =1 or =0 (if the observatios missig). The case of 1 typically occurs whe some material, tissue or a set of iiviuals is split ito several homogeeous parts a the compou symmetry moel ca be use as a appropriate moel for this esig. Sice o parameters are ivolve i this setup, we use the istributio fuctios F ij (x) to escribe a effect (e.g. time effect or treatmet effect). To this e, we cosier the so-calle relative treatmet effects p ij =H(x) F ij (x) where H(x)=N &1 r i=1 m ijkf ij (x) is the average of all N= r i=1 m ijk istributio fuctios i the experimet. The relative effects p ij may be weighte iepeetly of i a j by a score fuctio J(u) u #(0,1)R with boue seco erivative, i.e., &J"& =sup 0u1 J"(u) < a we efie the relative score effect p ij (J)=J[H(x)] F ij (x). We eote by p(j)=(p 11 (J),..., p r (J))$ the vector of these relative effects which are estimate by replacig H(x) a F ij (x) by their empirical couterparts. To iclue also the case of missig values, let * ijk = {0, 1, if =0, if 1, (.),...,, i=1,..., r,,...,

6 RANK TESTS FOR REPEATED MEASURES 91 a let * ijk =0 if =0. Moreover, a sum is uerstoo to be 0, if the upper summatio limit equals 0. Further, let c(x&x ijks )=0, if the observatio X ijks is missig. The the empirical fuctios are efie by F ij(x)= 1 * ijk F ijk(x) * ij } * ijk = 1 * ij } m ijk H (x)= 1 N r i=1 s=1 s=1 c(x&x ijk, ), * ij } = c(x&x ijks ). * ijk, (.3) Here, c(u)= 1 [c+ (u)+c & (u)] is the ormalize versio of the coutig fuctios c + (u) a c & (u) where c + (u)=0 or 1 accorig as u< or0 a c & (u)=0 or 1 accorig as u or >0. Note that F ij(x) is the uweighte mea of F ijk(x)=m &1 ijk c(x&x s=1 ijks),,..., where F ijk (x)=0 if =0. The relative treatmet effects p ij (J) are estimate by p^ ij(j)= J(H ) F ij= 1 * ijk J[H (X ijks )] * ij } m ijk s=1 * ijk = 1, ijks, (.4) * ij } m ijk s=1 where, ijks =J[H (X ijks )]=J[1N(R ijks & 1 )] is the rak-score of X ijks a R ijks is the mi-rak of X ijks amog all epeet a iepeet observatios. The quatities J[H(X ijks )] shall be calle asymptotic rak-score trasform of X ijks sice E[J(H )&J(H)] 0 uer suitable coitios (see Lemma A. i the Appeix) a H (X ijks )=1N(R ijks & 1 ). The ormalize versio H (x) of the combie empirical istributio fuctio leas automatically to a symmetric efiitio of H (x), sice H (x)#[1n, 1&(1N)] a thus, ulike i the literature so far, we shall cosier J[H (x)] istea of J[(NN+1) H (x)]. I the sequel, we will rop the expressio ``ormalize versio'' for brevity a whe usig the above quote fuctios, the ``ormalize versio'' is uerstoo if ot state otherwise. I the oparametric setup itrouce above, hypotheses are formulate by the istributio fuctios F ij.letf=(f 11,..., F r )$ eote the vector of the istributio fuctios a let C eote a cotrast matrix, i.e., C1=0 where 1=(1,..., 1)$ a 0=(0,..., 0)$. The a oparametric hypothesis i its most geeral form is writte as H F 0 CF=0. For mixe moels, such hypotheses have beetrouce by Akritas a Arol (1994) a have

7 9 BRUNNER, MUNZEL, AND PURI bee further evelope a iscusse by Akritas a Bruer (1997) a by Bruer a Puri (1996). For etails, we refer to these papers. Some examples for oparametric hypotheses are give Sectio ASYMPTOTIC RESULTS I this sectio, we erive the asymptotic istributio of - Cp^ (J)= - C( p^ 11(J),..., p^ r(j))$ uer the hypothesis H F 0 CF=0 as well as uer a sequece of cotiguous alteratives. Our results exte those of Akritas a Bruer (1997) to mixe moels with missig values. We also cosier the cases with sigular covariace matrices as well as compou symmetry moels. All these problems are stuie uer oe geeral framework usig the liear rak statistics with geeral scores. Moreover, for testig the oparametric hypothesis H F 0 CF=0, we ivestigate the properties of the ANOVA-type statistic ATS a compare it with the Wal-type statistic WTS Cosistecy a Basic Asymptotic Equivalece Note that * ij }, is the umber of subjects withi treatmet i with o missig observatios i the jth level of the sub-plot factor. Let 0 = mi 1ir, 1j * ij }. (3.1) The asymptotic results are erive uer the followig assumptios Assumptios. (A1) 0 m 0 <, i.e., the umber of replicatios of a fixe treatmet combiatio (i, j) withi oe subject is uiformly boue for all subjects a treatmets, (A) * ij } N 0 <, i=1,..., r,,...,, i.e., the ratio of the total umber of subjects a the umber of subjects with o missig values for treatmet combiatio (i, j) is uiformly boue, (A3) &J"& <, i.e., the score fuctio J( } ) has a boue seco erivative. First, we show that p^ ij(j) give (.4), is cosistet for p ij (J)= J(H) F ij i the sese of the followig propositio. Propositio 3.1. Let X ik be as efie i (.1) a let J(u) eote a score fuctio with boue first erivative, i.e., &J$& <. Further let * ijk a 0 be as efie i (.) a (3.1), respectively. If 0, the uer the assumptio (A1), E( p^ ij(j)&p ij (J)) 0, i=1,..., r,,...,.

8 RANK TESTS FOR REPEATED MEASURES 93 Proof. Let.(X ijks )=J[H(X ijks )]&J(H) F ij a ote that E[.(X ijks ).(X i$j$k$s$ )]=0 if (i, k){(i$, k$). The by the c r -iequality, Jese's iequality, Lemma A.() (i the Appeix) a by iepeece, E( p^ ij(j)&p ij (J)) =E _ J(H ) F ij& ij& J(H) F =E \ [J(H )&J(H)] F ij+ J(H) (F ij&f ij ) + m * ijk ijk E(J[H (X * ij } m ijks )]&J[H(X ijks )]) ijk s=1 + m i * ijk * ijk $ ijk$ E[.(X * iks ).(X ijk$s$ )] ij } $ k$=1 s=1 s=1 m 0 &J$& + &J& =O \ 1 0 r Next, the basic asymptotic equivalece is state. Theorem 3.. Let X ik be as i Propositio 3.1, let F=(F 11,..., F r )$ a F =(F 11,..., F r)$ where F ij is give (.3). Further, let = r =1 i eote the total umber of subjects a let 0 be as efie i (3.1). If 0, the, uer the assumptios (A1)(A3), - J(H ) (F &F)=.. - K J(H) (F &F) =- \Y }}(J)& J(H) F +, where Y }}(J)=(Y $ 1} } (J),..., Y $ r }} (J))$, Y i }}(J)=(Y i1} }(J),..., Y i }}(J))$, Y ij }}(J)= 1 m i * ijk ijk Y ijks (J), * ij } m ijk s=1 Y ijks (J)=J[H(X ijks )]. (3.) (Here a i the sequel, the sig =.. meas ``asymptotically equivalet.'')

9 94 BRUNNER, MUNZEL, AND PURI It suffices to cosier the (i, j) th compoet, which is ecom- Proof. pose as - J(H ) (F ij&f ij ) =- J(H) (F ij&f ij )+- [J(H )&J(H)] (F ij&f ij ). To prove the theorem, it suffices to show that E(- [J(H )&J(H)] (F ij&f ij )) 0as 0. Usig Taylor's expasio, we obtai J(H )&J(H)=J$(H)(H &H)+ 1 J"(% N)(H &H), where % N is betwee H a H. Thus, [J(H )&J(H)] (F ij&f ij )=B 1 +B where a B 1 = J$(H)(H &H) (F ij&f ij ) B = 1 J"(% N)(H &H) (F ij&f ij ). It follows from the Appeix, Lemma A.3 that E(- B k ) =O( &1 0 ),, which completes the proof. K 3.. Asymptotic Distributios Asymptotic Distributio uer H F 0. To erive the asymptotic istributio of - Cp^ (J) uer the hypothesis H F 0 CF=0 as well as uer the sequece of alteratives cotiguous to H F 0, we ee some regularity assumptio for the covariace matrix of - Y }}(J) give (3.). Let Y ik } (J)=(Y i1k } (J),..., Y ik } (J))$, where Y ijk } (J)=m &1 ijk Y s=1 ijks(j) asi (3.) a Y ijk } (J)=0 if =0. Further let V ij =Cov(Y ik } (J)) a i1k 4 ik = } iag {*,..., * ik * i1} * i }= a V i, =Cov(- Y i }}(J)). (3.3) The, Y i }}(J)= 4 iky ik } (J) a, by iepeece, r V =Cov(- Y }}(J))= i=1 r V i, i = i=1 i 4 ik V ik 4 ik. (3.4) Assumptio. (A4) V V{0 as, where V is a matrix of costats. (This assumptioclues the case of sigular covariace matrices as well.)

10 RANK TESTS FOR REPEATED MEASURES 95 Theorem 3.3. Let X ik be as i Propositio 3.1 a let V be as give (3.4). If 0, the uer the assumptios (A1)(A4) a uer H F 0 CF=0, the statistic - Cp^ (J)=- C J(H ) F has asymptotically ( 0 ) as multivariate ormal istributio with mea 0 a covariace matrix CV C$. Proof. First, we ote that uer H F 0, - C J(H ) (F &F)=- C J(H ) F =- Cp^ (J)=.. - CY }}(J), by Theorem 3. where Y }}(J)=(Y $ 1} } (J),..., Y $ r }} (J))$. Note that the vectors Y i }}(J) are iepeet a that Y i }}(J)= &1 i 4 iky ik } (J) is the mea of iepeet raom vectors Z ik (J)= (* i1k Y i1k } (J)* i1,..., * ik Y ik } (J)* i } )$. From the multivariate Cetral Limit Theorem, it follows that - Y i }}(J) has asymptotically a multivariate ormal istributio with mea 0 a covariace matrix V i sice Z ik (J) is uiformly boue by the assumptios of the theorem, i.e., &Z ik (J)&N 0 &J& -. IfV i =0 the the asymptotic istributios a multivariate oe-poit istributio which ca be regare as a egeerate ormal istributio. K 3... Cotiguous Alteratives. To ivestigate the set of alteratives for which the test statistics base o - Cp^ (J) are cosistet, efie a sequece of alteratives for the istributios of the bivariate margials, viz. which implies that (X ijks, X ij$ks$ )tf, ijj$ (x, y) =F ijj$ (x, y)+ 1 - (K ijj$(x, y)&f ijj$ (x, y)) (3.5) X ijks tf, ij (x)=f ij (x)+ 1 - (K ij(x)&f ij (x)), i=1,..., r,,...,,,...,, s=1,...,. (3.6) Let F =(F,11,..., F, rc )$ = F+ &1 (K& F) eote the vector of the margial istributio fuctios of this sequece where F=(F 11,..., F rc )$ such that CF=0 a K=(K 11,..., K rc )$ is some vector of (alterativeoe-imesioal istributio fuctios CK{0. Further, let &(J)= - C HF =J(H)&(CK). Theorem 3.4. Let X ik be as i Propositio 3.1 where X ijks tf, ij (x) as efie i (3.6),,...,, s=1,...,, i=1,..., r,,...,. Further-

11 96 BRUNNER, MUNZEL, AND PURI more, let F ij(x) a H (x) eote the empirical istributio fuctios as efie i (.3) a let C be a suitable cotrast matrix such that CF=0. Let H(x)=N &1 r i=1 ijk F ij (x) eote the weighte average istributio fuctio of F 11,..., F r a let H (x)= 1 N r i=1 F, ij (x) =H(x)+ 1 r - i=1 N [K ij(x)&f ij (x)] eote the weighte average istributio fuctio of F,11,..., F, r. If 0, the uer the sequece of alteratives (3.5) a uer the assumptios (A1)(A4), (1) the statistics &^ (J)=- Cp^ (J)=- C J(H ) F a - CY }}(J) =- C J(H) F are asymptotically equivalet, () &^ (J) has asymptotically a multivariate ormal istributio with mea &(J)=J(H) (CK) a covariace matrix CV C$. The proof is give the Appeix Estimatio of Covariace Matrices I most practical examples, the covariace matrices V i, i = &1 i 4 ikv ik 4 ik efie i (3.4) are ukow a must be estimate from the ata. To erive a cosistet estimator for V i, i, i=1,..., r, we istiguish two moels. The multivariate moel oes ot assume ay special patter for the bivariate margial istributio fuctios while the compou symmetry moel assumes the equality of certai margial istributio fuctios uer the hypothesis which is state i etails i the last part of this subsectio. I what follows, we provie the estimators for V i, i i both moels a we prove the cosistecy of these estimators Multivariate Moel. I the multivariate moel, let v i ( j) eote the iagoal elemets of V i, i a let v i ( j, j$) eote the off-iagoal elemets. Note that by (.), v i ( j)= * ij } * ijk v il ( j), where v ik ( j)=var(y ijk } (J)), (3.7)

12 RANK TESTS FOR REPEATED MEASURES 97 v i ( j, j$)= * ijk * ij$k v ik ( j, j$), * ij } * ij$} where v ik ( j, j$)=cov(y ijk } (J), Y ij$k } (J)). (3.8) Let, ijks =J[1N(R ijks & 1 )] eote the rak scores efie i (.4) a let, ijk=m &1 ijk, s=1 ijks a, ij }}=* &1 ij } * ijk, ijk } eote the uweighte meas of the, ijk } where, ijk } =0 if =0. The we efie the estimator V i, with iagoal elemets v^ i( j) a off-iagoal elemets v^ i( j, j$) give by v^ i( j)= * ij } (* ij } &1) v^ i( j, j$)= (* ij } &1)(* ij$} &1)+4 i, jj$ &1 _ * ijk (, ijk } &, ij }}), (3.9) * ijk * ij$k (, ijk } &, ij }})(, ij$k } &, ij$} }), (3.10) where 4 i, jj$ = * ijk* ij$k. We ote that V i, may ot be positive semiefiite (p.s..) if the umber of missig values is large. I this case, a p.s.. estimator for V i, i ca be obtaie by the geeral metho give by Staish, Gilligs, a Koch (1978). Theorem 3.5. Let v^ i( j) a v^ i( j, j $) be as give (3.9) a (3.10), respectively. If 0, the uer the assumptios (A1)(A4), E[v^ i( j)& v i ( j)] 0 a E[v^ i( j, j$)&v i ( j, j$)] 0. The proof is give the Appeix Compou Symmetry Moel. To state the results for the compou symmetry moel, we ee some further otatios a we assume that 1, for simplicity. We ote however, that balace icomplete esigs ca also be treate withi this framework; but for brevity, we o ot cosier this case here. I the compou symmetry moel, it is assume that uer H F 0 F i1 =}}}=F i, (1) the bivariate margial istributio fuctios of (X ijks, X ij$ks$ )o ot epe o j, j$, k, s or s$, i.e., (X ijks, X ij$ks$ )tf ijj$ (x, y)=f *(x, i y), j{ j$=1,...,, () the bivariate margial istributio fuctios of (X ijks, X ijks$ ), s{s$=1,..., o ot epe o j, i.e. (X ijks, X ijks$ )tf ij **(x, y)= F i *(x, y),,...,.

13 98 BRUNNER, MUNZEL, AND PURI Thus, uer H F 0, the variaces a the covariaces are give by _ i #_ ij =Var(Y ijks(j)),,...,, c i *=Cov(Y ijks (J), Y ij$ks$ (J)), j{ j$=1,...,,,...,, s=1,...,, s$=1,..., m ij$k, c i **=Cov(Y ijks (J), Y ijks$ (J)),,...,,,...,, s{s$=1,...,. We ote that _ i <, sice Y ijks(j) = J[H(X ijks )] &J&, which follows immeiately from the Assumptio (A3) i Subsectio 3.1. Thus, the fatess of the tails of F ij (x) oes ot have ay impact o the existece of these variaces. Let Y ik (J)=(Y i1k1 (J),..., Y i1kmi 1k (J),..., Y ik1 (J),..., Y ikmik (J))$. Thet follows that where Cov(Y ik (J))=7 ik = V ik =Cov(Y ik } (J))= \ [(_ i &c i**) I mijk +(c i **&c i *) J mijk ]+c i *J Mik, 1 1$ mijk+ 7 ik\ 1 = _ (_ i &c i **) +(c m i **&c i *) &+c i*j ijk V i, i = 1 { ij = mijk+ V ik =iag[{ i1,..., { i ]+c i *J =D i, i +c i *J, { ijk a { ijk = 1 (_ i +(&1) c i **)&c i *. (3.11) Compou symmetry is oly assume for hypotheses regarig the subplot factor, i.e. for hypotheses which ca be writte as H F 0 [I r C ) F=0 where C is a suitable cotrast matrix for the sub-plot factor. Thus we ee oly to estimate D i, i sice (I r C ) V (I r C$ )= r i=1 C D i, i C$. Theorem 3.6. Let D i, i =iag[{ i1,..., { i ] where { ij is give (3.11). Let D i eote the matrix correspoig to D i, i where { ij is replace by {^ ij= &1 i {^ ijk a {^ ijk is efie below. Furthermore, let, ijks eote the rak-scores as efie i (.4) a let, i } k } = &1, ijk }. The the compou symmetry moel, uer the assumptios (A1)(A3) a uer H F F 0 i1= }}}=F i, &D i&d i, i & 0 as mi i.

14 RANK TESTS FOR REPEATED MEASURES 99 If is ot equivalet to a costat, the {^ ijk= 1 M ik &_ 1 & 1 t=1 1 m itk& S + 1 ik1 &1 S, (3.1) ik where S ik1 = s=1 (, ijks&, ijk } ), S ik = (, ijk } &, i } k } ), a M ik =. If #m, the D i={^ ii where {^ i= 1 (&1) (, ijk } &, } k } ). (3.13) The proof is give the Appeix. Remark. Note that the results of the Theorems 3.5 a 3.6 may ot be sufficiet to erive the asymptotic istributios of the statistics (to be efie i the ext subsectio) whe V i, i or D i, i are replace by V i, or D i, respectively. Further assumptios o the covariace matrices will be iscusse for the ifferet statistics separately Statistics To test the oparametric hypothesis H F 0 CF=0, we cosier two statistics, amely the rak versios of the WTS a of the ATS. Other statistics which are commoly use i multivariate aalysis are ot iscusse here sice they require the equality of the covariace matrices. I a oparametric setup, however, this assumptios oly justifie i a few special cases. Note that i geeral ay assume homosceasticity of the paret istributio fuctios is ot trasferre to the asymptotic rakscore trasform Y ijks (J)=J[H(X ijks )] because H( } ) is a o-liear trasformatio Wal-Type Statistics (WTS). Let V i, eote the L -cosistet estimator of the covariace matrices V i, i, i=1,..., r as give Theorem 3.5. The r V = i=1 V i, (3.14) is a L -cosistet estimator of the covariace matrix V give (3.4) i the sese of Theorem 3.5. Let [ } ] + eote a symmetric reflexive g-iverse of a matrix. The we efie the rak versio of the WTS for testig H F 0 CF=0 by Q W (C)=p^ $(J) C$[CV C$] + Cp^ (J). (3.15) The asymptotic istributio of Q W (C) is give the ext theorem.

15 300 BRUNNER, MUNZEL, AND PURI Theorem 3.7. Let V a V be as efie i (3.14) a (3.4), respectively. Assume that V V{0 as 0 such that rak(cv )=rak(cv). The, uer the assumptios (A1)(A4) a (1) uer the sequece of alteratives (3.5) cotiguous to H F 0 CF=0, Q W (C) wl Zt/ f (*), where / f(*) is the chi-square istributio with egrees of freeom f =rak(cv) a ocetrality parameter *=&$(J)[CVC$] + &(J) where &(J)=C J(H) K, () uer H F CF=0, 0 QW(C) wl Z 0 t/ f (0), with f =rak(cv). Proof. First ote that - Cp^ (J) has asymptotically a multivariate ormal istributio with mea &(J)=J(H) (CK) a covariace W matrix CVC$ by Theorem 3.4 a the assumptio (A.4). Let Q (C)= p^ $(J) C$[CVC] + Cp^ (J). Thet follows from Theorem 9..3 i Rao a W Mitra (1971) that Q (C) has asymptotically a ocetral /(*)-istribu- tio with f =rak(cv) egrees of freeom a ocetrality parameter f *=&$(J)[CVC$] + &(J). Next, ote that &CV C$&CV C$& 0 by Theorem 3.5 a that CV C$&CVC$ 0 by assumptio. Thus, it follows that (CV C$) + & (CVC$) + 0 because rak(cv )=rak(cv) by assumptio. Hece, Q W(C)&Q W (C) 0iL a the result state i (1) follows. Statemet () follows immeiately from (1) because &(J)=0 uer H F CF=0. K ANOVA-Type Statistic (ATS). Let M=C$[CC$] & C where [}] & eotes some geeralize iverse of A matrix. The, we efie the rak versio of the ATS by Q A (C)=p^ $(J) Mp^ (J). (3.16) Note that M is a projectio matrix a that MF=0 CF=0 because C$[CC$] & is a geeralize iverse of C. Thus, it is also reasoable to use Q A(C) as a test statistic for testig the hypothesis H F 0 CF=0. The asymptotic istributio of Q A (C) is give the ext theorem. Theorem 3.8. Let M=C$[CC$] & C a let V a V be as i (3.4) a (3.14) respectively. Let &(J)= J(H) K be as efie i Theorem 3.4. Uer the assumptios (A1)(A4), if 0, the (1) uer the sequece of alteratives (3.5) cotiguous to H F 0 CF=0 the statistic Q A (C) give (3.16) has asymptotically the same istributio as r i=1 *, ijz, ij where the *, ij are the characteristic roots of MV

16 RANK TESTS FOR REPEATED MEASURES 301 a the Z, ij are iepeet ocetral / 1 (+, ij )-istribute raom variables where r i=1 *, ij+ =&$(J)M&(J),, ij () uer H F CF=0, the statistic 0 QA (C) give (3.16) has asymptotically the same istributio as r i=1 *, ijz 0, ij where the *, ij are the characteristic roots of MV a the Z 0, ij are iepeet cetral / 1-istribute raom variables. Proof. The proof follows from Theorem 3.4 a well kow theorems o the istributio of quaratic forms (see, e.g., Mathai a Provost, 199, Chap. 4). The istributio of r i=1 *, ijz 0, ij ca be approximate by a scale / -istributio. Approximatio Proceure by a Cetral F( f, )-Distributio. (1) Assume that tr(mv )t 0 >0. The, uer H F 0, the first two momets of the asymptotic istributio of Q A (C)tr(MV ) a of the F( f, )-istributio coicie for f =[tr(mv )] tr(mv MV ). () The ukow traces tr(mv ) a tr(mv MV ) ca be estimate cosistetly by replacig V with V give Theorems 3.5 a 3.6, respectively. This fially leas to the statistic where F (C)= 1 tr(mv ) QA (C)t * * F( f, ), f = [tr(mv )] tr(mv MV ). (3.17) (Here a i the sequel, the sig t* * meas ``approximately istribute as.'') Derivatio. From Theorem 3.8, Q A (C) has asymptotically the same istributio as r i=1 *, ijz 0, ij. We wat to approximate the istributio of Q A(C) byg } Z where Z is a raom variable with a cetral /-istribu- tio a g is a costat such that the first two momets coicie. Uer f H F 0, we obtai E(Q A (C))= r Var(Q A (C))= } r i=1 i=1 =Var(g } Z)=g f. *, ij =tr(mv )=E(g } Z)=gf, *, ij = } tr(mv MV )

17 30 BRUNNER, MUNZEL, AND PURI Fially, ote that tr(mv )t 0 >0 implies that tr(mv MV )t 1 >0. Thus, Q A (C)(gf )t * * F( f, ) a the result follows from Theorem 3.5 a Theorem 3.6, respectively. Remark. The approximatio proceure goes back to Box (1954) a turs out to be fairly goo for iepeet observatios (see Bruer, Dette, a Muk, 1997). For repeate measures, f may be biase for small samples Compariso of the Two Statistics a Cosistecy of the Test. The mai avatage of the WTS Q W (C) is that its asymptotic istributio uer H F is a kow istributio fuctio, amely a 0 / -istributio. The geeral rawback of Q W (C) is that it coverges extremely slowly to its asymptotic istributio resultig i rather liberal ecisios for small or moerate sample sizes. Moreover, the restrictive assumptio that V V such that rak(cv )=rak(cv) caot be checke. I the case of a sigular covariace matrix, the set of alteratives which ca be etecte by Q W (C) epes o the structure of the covariace matrix a o the hypothesis uer cosieratio. Thus, there exists a set of fixe alteratives which may ot be etecte by Q W (C). This set is give by where z is a arbitrary vector such that p=[i&vc$(cvc$) + C] z, (3.18) Cp=[I&CVC$(CVC$) + ] Cz{0. (3.19) To see this, ote that *=p$c[cvc$] + Cp=0 C$[CVC$] + Cp=0 sice [CVC$] + is positive semiefiite a symmetric. Furthermore observe that V is a g iverse if C$[CVC$] + C. Thus, the solutio space of the homogeeous system of liear equatios C$[CVC$] + Cp=0 is give by (3.18) a the restrictio (3.19) follows if the test is require to be cosistet for alteratives of the form Cp{0. From this, it is easy to see that a test base o Q W (C) is cosistet for all alteratives Cp{0 if, e.g., either V is o-sigular a C is of full row rak or if rak(cv)=rak(c). Note, however, that these simple coitios are oly sufficiet. The ATS F (C) has the mai isavatage that its asymptotic istributio uer H F 0 cotais ukow quatities, amely the characteristic roots of MV which are ukow geeral a must be estimate. We suggest to use the Box-approximatio which is kow to be fairly accurate. However, ote that eve the asymptotic case, the / f f-istributios a approximatio of the true istributio of the statistic uer H F. Oe 0 avatage is that it is either ecessary to assume the covergece of the covariace matrix V to a costat matrix V or that the rak of CV s

18 RANK TESTS FOR REPEATED MEASURES 303 preserve i the limit CV. The oly aitioal assumptio to (A1)(A4) which is eee for the ATS is that tr(mv ){0 which meas thatregarig the hypothesis of iterestthere is at least some variatio amog the observatios of the experimet. This is close to a trivial assumptio. The set of alteratives etecte by a test base o F (C) is give by &(J)=Cp K (J)=C J(H) K{0 sice E(Q A (C))= r i=1 *, ij (1++, ij )=tr(mv )+&$(J) M&(J) uer the sequece of alteratives (3.5) cotiguous to H F 0 CF=0. This set oes ot epe o the rak of the covariace matrixulike as for the WTS. The mai avatage of F (C) is that the approximatio by the / f f-istributio works also fairly well for rather small sample sizes (for etails, see, e.g., Bruer a Lager, 1999). We recomme the use of the ATS for small a moerate sample sizes a for the case where the estimate covariace matrix is sigular or close to beig sigular which may happe frequetly with orere categorical ata. I the ext sectio, the geeral results give here will be applie to ifferet two- a three-way layouts. 4. APPLICATIONS Numerous examples for the applicatio of the WTS i the oparametric multivariate moel (Wilcoxo-scores, o missig values, osigular covariace matrices) have bee give by Akritas a Bruer (1997). Sice they i ot cosier the compou symmetry moel, either the ATS or missig values, we ow give two examples which are cocere with these situatios. The applicatio of the WTS is cosiere for a two-way layout with raom iteractio where compou symmetry is assume. The ATS is applie i a three-way layout with two fixe factors with missig values i a multivariate moel Two-way Layout with Raom Iteractio, Compou Symmetry First, we apply the results of the previous sectio to a cross-classifie esig with oe raom factor (,..., levels) a with oe fixe factor (,..., levels). For every subject k a treatmet j, the umber of replicatios m kj is assume to be uiformly boue, i.e. m ij m 0 <. Let X k =(X k11,..., X kmk )$=(X$ k1,..., X$ k )$,,..., be iepeet raom vectors where X kj =(X kj1,..., X kjmkj )$ eotes the vector of observatios for subject k a where X kjs tf j (x),,...,,,...,,

19 304 BRUNNER, MUNZEL, AND PURI s=1,..., m kj. It is reasoable to assume compou symmetry if subjects are split ito homogeeous parts a if there is o treatmet effect. This meas that the parts of each subject are ``iterchageable'' uer the hypothesis. However uer a treatmet effect, the compou symmetry structure may ot be preserve. The property of iterchageable parts of the subjects is reflecte by the iterchageability of the raom variables X kjs a X kj$s$ for j{ j$=1,..., a \s, s$ uer the hypothesis of o treatmet effect. The raom variables X kjs a X kjs$, s, s$=1,..., m kj are always iterchageable sice they escribe replicatios of the same experimet uer the same treatmet for the same subject. Treatmet effects are escribe by the relative treatmet effects p j (JJ)=J(H) F j,,..., where H=N &1 N jf j a N= N j, N j = m kj. Let p(j)=j(h) F where F=(F 1,..., F )$. We erive the results from Theorem 3.3 a Theorem 3.6 for r=1, = a =m kj. Note that the subjects are umbere by k which is the first iex i this otatio. Let p^ (J)=(p^ 1(J),..., p^ (J))$=J(H ) F where p^ j(j)= J(H ) F j= 1 m kj 1, kjs =, } j } m kj s=1 a where, kjs =J[H (X kjs )]=J[1N(R kjs & 1 )] a R kjs is the rak of X kjs amog all the N raom variables. Accorig to the otatio Theorem 3.6, let D=iag[{ 1,..., { ], { j = &1 { kj, a let D = iag[{^ 1,..., {^ ], {^ j= &1 {^ kj where {^ kj= 1 M k &_ 1 m kj & 1 t=1 1 m kt& S + 1 k1 &1 S, k S k1 = m kj (, s=1 kjs&, kj }), S k = (, kj } &, k }}) a M k = m kj. The the WTS for testig H F P 0 F=0 is erive from (3.15) for C=P &1 &1 a V =D. Thus, CV C$=P D P. Note that W =D [I &J D &1 tr(d )] is a g-iverse of P&D P a ote that P W P =W. Let, kj } =m &1 kj m kj, s=1 kjs eote the meas of the rak-scores for subject k,,..., a let, }}}= 1 (1{^ j), } j } {^ j eote the weighte mea of the estimate relative treatmet effects p^ j(j)=, } j }. The, from (3.15) a Theorem 3.7, Q W(P )= } p^ $(J) P [P D P] & P p^(j)= 1 (, } j } &, }}}) {^ j

20 RANK TESTS FOR REPEATED MEASURES 305 has asymptotically a cetral / &1 -istributio uer the hypotheses H F 0 if D is of full rak a if D D such that rak(d )=rak(d)=. Note that i this case, the quaratic form Q W (P ) has a cetral / f -istributio with f =rak(p )=&1 for ay choice of the g-iverse [P D P ] &. I the case of equal cell frequecies, m kj #m, {^ j #{^ = 1 (&1) t=1 (, kt } &, k }}),, }}}= 1 N m s=1, kjs a the statistic simplifies to (&1) Q W (P )= (, (, kj } &, k }}) } j } &, }}}), which has bee give by Bruer a Neuma (198) for the case of cotiuous istributio fuctios a for Wilcoxo-scores, kjs =1N(R kjs & 1 ). 4.. Three-way Layout, Multivariate Moel I a seco example, we apply the geeral theory evelope i Sectio 3 to a three-way layout with two fixe factors. Let X ik =(X i1k,..., X ibk )$, i=1,..., a,,..., be = a =1 i iepeet raom vectors where X ijk tf ij (x), i=1,..., a,,..., b,,...,. This moel is appropriate for a trial where i=1,..., a groups (whole-plot factor A) of (iepeet) subjects are observe repeately uer,..., ifferet situatios (subplot factor B). The subjects are este uer the levels of factor A a are crosse with factor B. I esigs with logituial ata, typically the time is the sub-plot factor B. For simplicity, we apply the geeral results erive i Sectio 3 oly to the case of #m=1 replicatio for each subject k a combiatio (i, j) of the factor levels of A a B. We amit however that some observatios are missig (at raom) where the otatiotrouce i (.) is use. We shall give statistics for testig the oparametric hypotheses H F (A) 0 of o group effect, H F(B) of o sub-plot factor effect, a H F 0 0 (AB) ofo iteractio betwee the groups a the sub-plot factor. Let P = I &(1) J where is the imesio of the ietity matrix I a of the matrix J =1 1$ of 1's. Let F=(F 11,..., F ab )$ eote the vector of the margial istributio fuctios F ij of the vectors X ik. The the oparametric hypotheses are expresse as H F (A) C 0 AF=0, H F (B) C 0 bf=0 a H F 0(AB) C AB F=0, respectively, where C A =P a (1b) 1$ b, C B = (1a) 1$ a P b a C AB =P a P b. Let R ijk eote the (mi)-rak of X ijk amog all the N= a i=1 b * ijk raom variables a let, ijk =J[1N(R ijk & 1 )] eote the rak-score

21 306 BRUNNER, MUNZEL, AND PURI of X ijk. Furthermore let, ik =(, i1k,...,, ibk )$ eote the vector of the rakscores for subject k i group i a let, i } =(, i1},...,, ib } )$, where, ij } = 1 * ijk, ijk * ij } eote the mea vector of the scores i group i, i=1,..., a. Fially, let, } =(, $ 1},...,, $ a } )$ eote the vector of all a } b meas of the rak-scores. A estimator of the covariace matrix is erive from Theorem 3.5, a V = i=1 V i,, (4.1) where the elemets of V i, are give (3.9) a (3.10), respectively. Below, the statistics for testig H F(A), H F(B) a H F (AB) are give. They are erive from Theorem 3.8 a from the approximatio proceure. To erive the statistic for H F(A) C 0 AF=0, let, i }}=b &1 b, ij },, }}}=a &1 a, i=1 i }} a _^ =1$ i bv i, 1 b = b v^ j{ j$ i( j, j$)+ b v^ i( j). Further let a 7 a= i=1 _^, a T i A=C$ A [C A C$ A ] & C A =P a 1 i b J b. Note that T A is a projectio matrix with rak(t A )=a&1 a with ietical iagoal elemets (a&1)(ab). Sice 7 a is a iagoal matrix, a improve approximatio as give Bruer, Dette, a Muk (1997) ca be use. This approximatios rather accurate for 7, i=1,..., a. Uer H F 0 (A), the istributio of F (T A )= } a } b (a&1) tr(7 a),$ a } b a } T A, } = (, (a&1) a i }}&, }}}) i=1 _^ i is approximately the cetral F( f A, f 0)-istributio with estimate egrees of freeom i=1 f A= [(a&1) a i=1 _^ i ] a tr(p a 7 ap a 7 a) a f 0= [a _^ =1 i i] a i=1 (_^ i ) ( &1), where tr( } ) eotes the trace of a square matrix. It is easy to see that f A=1 if a=. To test H F 0(B) C B F=0, let, }}=((1a) 1$ a I b ), } =(, }1,...,, } b } )$ eote the vector of the average scores, } j } =a &1 a, i=1 ij } for the b

22 RANK TESTS FOR REPEATED MEASURES 307 time poits. Let V B= a i=1 &1 i V i, a let T B =C$ B (C B C$ B ) + C B = (1a) J a P b. The, uer H F 0 (B), the statistic F (T B )= a tr(p b V B),$ }}P b, }}= a tr(p b V B) b (, } j } &, }}}) has asymptotically a cetral F( f B, )-istributio with f B=[tr(P b V B)] tr(p b V BP b V B). To test H F(AB), let T 0 AB=P a P b. Uer H F 0 (AB), the statistic F (T AB )= tr(t AB V ) a i=1 b (, ij } &, i }}&, } j } +, }}}) has approximately a cetral F( f AB, )-istributio with f AB= [tr(t AB V )] tr(t AB V T AB V ). APPENDIX Lemma A.1. Let X ijks tf ij, i=1,..., r,,...,,,...,, s= 1,..., a let X ijks a X i$j$k$s$ be iepeet for (i, k){(i$, k$). The (1) E[c(x&X ijks )&F ij (x)]=0, i=1,..., r,,...,,,...,, s=1,...,, () E[c(X ijks &X i$j$k$s$ )&F i$j$ (X ijks )]=0, if (i, k){(i$, k$), (3) F ij F ij = 1. Proof. (1) By efiitio, E[c(x&X ijks )&F ij (X)]=P(X ijks <x)+ 1 P(X ijks=x)&f ij (x) = 1 [F + ij (x)+f & ij (x)]&f ij (x)=0. () This follows by otig that E([c(X ijks &X i$j$k$s$ )&F i$j$ (X ijks )] X ijks =x)=0 a applyig Fubii's theorem for (i, k){(i$, k$). (3) The result follows usig by parts. K To prove the asymptotic results, we first give some momet iequalities for empirical processes i the mixe moel which are eee i the boy of the paper. Lemma A.. Let X ik be as efie i (.1) a let J(u) eote a score fuctio with boue first erivative, i.e., &J"& <. Further let * ijk a 0

23 308 BRUNNER, MUNZEL, AND PURI be as efie i (.) a (3.1), respectively. If 0, the uer the assumptio (A1), (1) E[J[H (x)]&j[h(x)]] m 0 r 0 &J$&, () E[J[H (X ijks )]&J[H(X ijks )]] m 0 r 0 &J$&, (3) E[F ij(x)&f ij (x)] 1 0, (4) E[F ij(x ijks )&F ij (X ijks )] 1 0, (5) E[H (x)&h(x)] 4 0 \m r 0+, (6) E[H (X ijks )&H(X ijks )] 4 0 \m r 0+. Proof. To prove (1), ote that by the mea value theorem, [J[H (x)]&j[h(x)]] &J$& [H (x)&h(x)]. Next, ote that by iepeece, E[H (x)&h(x)] = 1 r N r $ m i $j $k$ i=1 i$=1 j$=1 k$=1 s=1 s$=1 _E([c(x&X ijks )&F ij (x)][c(x&x i$j$k$s$ )&F i$j$ (X)]) 1 r N m ij $k 1 i=1 j$=1 s=1 s$=1 m 0 N m 0 r 0. Statemet () follows i the same way by otig that E([(X ijks &X stuv )&F st (X ijks )][c(x ijks &X s$t$u$v$ )&F s$t$ (X ijks )])=0 if (s, t){(s$, t$) sice either (i, k){(s, t) or(i, k){(s$, t$) i this case.

24 RANK TESTS FOR REPEATED MEASURES 309 Statemet (3) follows i the same way as statemet (1), sice E[F ij(x)&f ij (x)] = k$=1 * ijk * ijk$ * m ij } ijk$ s=1 $ s$=1 _E([c(x&X ijks )&F ij (x)][c(x&x ijk$s$ )&F ij (x)]) * ijk * ij } m ijk 1 * ij } 1 0. s=1 s$=1 E[c(x&X ijks )&F ij (x)] Statemet (4) follows by the same argumet as use to prove (). To prove (5) a (6), the iices i a k are collapse to oe iex l, say, where l=1,..., = r i=1. Thus, the umber of replicatios for each subject l uer treatmet j is relabele from to m lj,,...,. Similarly, the iices j a s are collapse to oe iex t, say, where t=1,..., M l = m lj. Thus, the raom variables X ijks are relabele to X lt, l=1,...,, t=1,..., M l. Note that N= l=1 M l a that X lt a X l$t$ are iepeet if l{l$. Further let.(x lt )=c(x&x lt )&F lt (x). The, E[H (x)&h(x)] 4 = 1 N 4 l=1 l$=1 l"=1 l$$$= 1 M l t=1 M l$ t$=1 M l$$ t"=1 _E[.(X lt ).(X l$t$ ).(X l"t" ).(X l$$$t$$$ )]. M l$$$ t$$$=1 If oe of the iices l, l$, l", l$$$ is ifferet from the three other iices, thet follows that the expectatio o the right ha sie is 0 sice the raom variables are iepeet if the first iices are ifferet. It suffices to cout the umber of cases where ot oe of the iices l, l$, l", l$$$ is ifferet from the three others. This happes if the iices are either all equal or if they are pairwise equal, e.g., l=l${l"=l$$$. Thus, E[H (x)&h(x)] 4 << 1 N 4 l=1 l$=1 M l t=1 M l t$=1 M l$ t"=1 M l$ t$$$=1 _E[.(X lt ).(X lt$ ).(X l$t" ).(X l$t$$$ )] << 1 N 4\ M l+ l=1 1 max N 4\ 1l M l M l=1 l+ = 1 N max M. l 1l

25 310 BRUNNER, MUNZEL, AND PURI returig to the origial otatio where the raom variables X ijks, i=1,..., r,,...,,,...,, s=1,..., are cosiere, it follows that M l m 0, l=1,..., a that Nr 0.Thus, E[H (x)&h(x)] 4 << 1 N max 1l M l m 0 r 0 which proves (5). The proof for (6) follows by coitioig o X ijks a proceeig as i (5). K To prove Theorem 3., we ee the followig lemma. Lemma A.3. Let B 1 =J$(H)(H &H) (F ij&f ij ) a B = 1 J"(% N) (H &H) (F ij&f ij ) a cosier the otatios of Theorem 3.. The, uer the assumptios (A1)(A3), E(- B k ) =O( &1 0 ),,. Proof. First cosier B 1 =(1N* ij } ) s=1 r a=1 a t=1 u=1 m aut (* v=1 ijk )[. 1 (X ijks, X autv )&. (X autv )], where. 1 (X ijks, X autv )=J$[H(X ijks )][c(x ijks &X autv )&F au (X ijks )],. (X autv )= J$[H(x)][c(x&X autv)&f au (x)] F ij (x). The, E(- B 1 ) = N * ij } k$=1 s=1 $ s$=1 r a=1 r a$=1 a t=1 a $ t$=1 u=1 u$=1 m aut _ v=1 m a $u $t $ v$=1 * ijk * ijk$ $ E([. 1 (X ijks, X autv )&. (X autv )] _[. 1 (X ijk$s$, X a$u$t$v$ )&. (X a$u$t$v$ )]) << &J$& N * ij } s=1 s$=1 << &J$& m 0N 0 r 0 =O \ 1 0+ r a=1 a t=1 u=1 m aut m au $t v=1u$=1 v$=1 * ijk m ijk by argumets similar to those use i the proof of lemma A., (6) where the Viograov symbol ``<<'' is use istea of the O( } )-otatio. Next cosier B =B 1 +B where B 1 = 1 J"(% N)(H &H) F ij

26 RANK TESTS FOR REPEATED MEASURES 311 a B =& 1 J"(% N)(H &H) F ij. The two terms are estimate separately. * ijk E(- B 1 ) &J"& E[H (X 4* ij } m ijks )&H(X ijks )] 4 ijk s=1 N 0m 0 &J"& 4r 0 =O \ 1 Usig Jese's iequality a Lemma A. (6). I the same way it follows that 0+ which completes the proof. e(- B ) &J"& 4 E[H (x)&h(x)]4 F ij N 0m 0 &J"& 4r 0 =O \ 1 0+ K To prove the results for cotiguous alteratives, we ee the followig lemma. Lemma A.4. Uer the assumptios (A1)(A4), (1) (J[H(x)]&J[H (x)]) (1) &J$&, () E(J[H (x)]&j[h(x)]) (4m 0 r 0 ) &J$&, (3) E(J[H(X ijks )]&J[H (X ijks )]) (1) &J$&. Proof. To prove (1), we ote that H(x)&H (x) 1 - r i=1 N F ij(x)&k ij (x) 1 - a that J[H(x)]&J[H (x)]= H(x) J(s)=J$(% 1 )[H(x)&H (x)], H (x) where % 1 ; is betwee H (x) a H(x) a the result follows.

27 31 BRUNNER, MUNZEL, AND PURI Statemet () follows from J[H (x)]&j[h(x)]=j$(% )[H (x)&h(x)] where % is betwee h(x) a H (x). Thus, =J$(% )[H (x)&h (x)+h (x)&h(x)], (J[H (x)]&j[h(x)]) &J$& ([H (x)&h (x)] +[H (x)&h(x)] ). Sice E(H (x))=h (x), Lemma A.(1) is still vali if H is replace by H. Hece, it follows from Lemma A. (1) that E(H (x)&h (x)) m 0 (r 0 ). Together with statemet (1), it follows that E(J[H (x)]&j[h(x)]) 4m 0 r 0 &J$&. Statemet (3) follows aalogously usig (1). Proof of Theorem 3.4. ecompose where K Proceeig as i the proof of Theorem 3., we &^ (J)=- C J(H ) F =- C J(H) F +a 1+a &a 3, a 1 =C [J(H )&J(H)] K, a =- C [J(H )&J(H )] (F &F ), a 3 =- C [J(H)&J(H )] (F &F ). To prove the statemet i (1), it suffices to cosier the (i, j) th compoets of a j,,, 3 a it will be show that (i) " ij" [J(H )&J(H)] K =O \ 1 0+, (ii) " - [J(H )&J(H )] (F ij&f, ij ) " =O \ 1 0+, (iii) " - [J(H)&J(H )] (F ij&f, ij ) " =O \ 1 0+.

28 RANK TESTS FOR REPEATED MEASURES 313 Statemet (i) follows easily by Jese's iequality, E \ ij+ [J(H )&J(H)] K E[J(H )&J(H)] 4m 0 &J$& r 0 a usig lemma A.4 (). To prove (ii), we ote that uer the sequece of alteratives (3.6), E(F ij(x))=f, ij (x) a E(H (x))=h (x) (1.1) a thus, Lemma A.3 still hols if F ij is replace by F, ij a H is replace by H. Hece, the result follows i the same way as i the proof of theorem 3. usig Lemma A.3. To prove (iii), let.(u)=j[h(u)]&j[h (u)] a cosier E \-.(x) [F ij(x)&f, ij (x)] + = * ij } k$=1 s=1 $ s$=1 * ijk * ijk$ $ _E \_.(X ijks)&.(x) F, ij(x) &_.(X ijk$s$)&.(x) F, ij(x) &+ * ij } * ijk &J$& 1 &J$& 0 which follows by iepeet, (1.1), a Lemma A.4. This completes the proof of statemet (1). To prove statemet (), first ote that E(- CJ(H) F )=J(H) (CK)=&(J) a V*=Cov(- J(H) F )is the covariace matrix of - J(H) F uer the sequece of alteratives efie i (3.5). It is easily see that V* a V efie i (3.4) are asymptotically equivalet a the result follows from Theorem 3.3. K Proof of Theorem 3.5. First, we cosier the iagoal elemets v i ( j) a we efie a ``estimator'' v~ i ( j) with the uobservable raom varibales Y ijk } (J), v~ i ( j)= 1 * ij } &1 i * ij } * ijk (Y ijk } (J)&Y ij }}(J)). Recall that * ijk=* ijk by efiitio a ote that E[v~ i ( j)]=v i ( j). To show the cosistecy of v~ i ( j), cosier the ifferece

29 314 BRUNNER, MUNZEL, AND PURI v~ i ( j)&v i ( j) = 1 * ij } * ij } * ijk [(Y ijk } (J)&p ij (J)) &v ik (J)] + 1 * ijk [(Y ijk } (J)&Y ij }}(J)) &(Y ijk } (J)&p ij (J)) ] * ij } * ij } + 1 * ij } v~ i ( j). Thus, by iepeece, Jese's iequality, a by the assumptios (A) a (A3), E[v~ i ( j)&v i ( j)] 3 * ij } + 3 * ij } 0 =O &J&4 \N 0 +. N 0 * ijke[(y ijk } (J)&p ij (J)) &v ik (J)] N 0 * ijk(4 &J& ) E[Y ij }}(J)&p ij (J)] +O \ 1 0+ ext, the uobservable raom variables Y ijks (J)=J[H(X ijks )] are replace by the observable rak-scores, ijks =J[H (X ijks )]=J[1N(R ijks & 1 )] a we cosier the ifferece v^ i( j)&v~ i ( j). It follows that [v^ i( j)&v~ i ( j)] = \ 1 & i * ijk * ij } (* ij } &1) [, ijk } &Y ijk } (J)] i * ij } &1 [, &Y (J)] ij }} ij }} + 8 &J& i (* ij } &1) _ * ij } + [J(H )&J[H]] F ij& * ijk [J(H )&J[H]] F ijk 3N 0 (N 0+1) &J& [J(H )&J[H]] F ij

30 RANK TESTS FOR REPEATED MEASURES 315 by the c r -iequality, Jese's iequality a the assumptio (A) a (A3). Fially, by Lemma A.(), it follows that E[v^ i( j)&v~ i ( j)] 3N 0(N 0 +1) &J& &J$& } m 0 r 0 =O \ 1 0+ which completes the proof for the iagoal elemets of V i, i. For the off-iagoal elemets set i v~ i ( j, j$)= (* ij } &1)(* ij$} &1)+4 i, jj$ &1 _* ijk * ij$k (Y ijk } (J)&Y ij }}(J))(Y ij$k } (J)&Y ij$} }(J)) a ote that E[v~ i ( j, j$)]=v i ( j, j$). The, the cosistecy for the offiagoal elemets follows i a similar way as for the iagoal elemets. K Proof of Theorem 3.6. As i the proof of Theorem 3.5, we efie a ``estimator'' {~ ij for { ij efie i (3.11) where the uobservable raom variables Y ijks (J)) are use. Let Y i } k } (J)= &1 Y ijk } (J) a let S = ik1 (Y s=1 ijks(j)&y ijk } (J)) a S ik = (Y ijk } (J)&Y i } k } (J)). Thet follows by Lacaster's Theorem that E(S )=(M ik1 ik&) i a E(S ik)=(&1) ; i +(1& &1 ) i m &1 ijk where i =_ i &c i ** a ; i =c i **&c i *. Now let c ijk = 1 M ik &_ 1 & 1 t=1 1 m itk& a let {~ ij = &1 i {~ ijk where {~ ijk =c ijk S + 1 ik1 &1 S ik are iepeet, uiformly boue raom variables,,...,, sice c ijk 1, S ik1m 0 &J& a S ik &J&. Moreover, E({~ ijk )={ ijk a hece, by iepeece, E({~ ij &{ ij ) = 1 i E({~ ijk &{ ijk ) =O \ 1 +. Fially, it is show that E({^ ij&{~ ij ) 0as. By Jese's iequality a by the c r -iequality,

Continuity. Subtopics

Continuity. Subtopics 0 Cotiuity Chapter 0: Cotiuity Subtopics.0 Itroductio (Revisio). Cotiuity of a Fuctio at a Poit. Discotiuity of a Fuctio. Types of Discotiuity.4 Algebra of Cotiuous Fuctios.5 Cotiuity i a Iterval.6 Cotiuity

Detaljer

TMA4245 Statistikk. Øving nummer 12, blokk II Løsningsskisse. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

TMA4245 Statistikk. Øving nummer 12, blokk II Løsningsskisse. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Vår 205 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 2, blokk II Løsigsskisse Oppgave a - β agir biles besiforbruk i liter/mil - Rimelig med α 0 fordi med x 0 ige

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Høst 205 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 2, blokk II Løsigsskisse Oppgave a - β agir biles besiforbruk i liter/mil - Rimelig med α 0 fordi med x 0 ige

Detaljer

Gir vi de resterende 2 oppgavene til én prosess vil alle sitte å vente på de to potensielt tidskrevende prosessene.

Gir vi de resterende 2 oppgavene til én prosess vil alle sitte å vente på de to potensielt tidskrevende prosessene. Figure over viser 5 arbeidsoppgaver som hver tar 0 miutter å utføre av e arbeider. (E oppgave ka ku utføres av é arbeider.) Hver pil i figure betyr at oppgave som blir pekt på ikke ka starte før oppgave

Detaljer

Slope-Intercept Formula

Slope-Intercept Formula LESSON 7 Slope Intercept Formula LESSON 7 Slope-Intercept Formula Here are two new words that describe lines slope and intercept. The slope is given by m (a mountain has slope and starts with m), and intercept

Detaljer

Second Order Hadamard Differentiability in Statistical Applications

Second Order Hadamard Differentiability in Statistical Applications Joural of Multivariate Aalysis 77, 187228 (21) doi:1.16jmva.2.1926, available olie at http:www.idealibrary.com o Secod Order Hadamard Differetiability i Statistical Applicatios Jia-Jia Re 1 Tulae Uiversity

Detaljer

SVM and Complementary Slackness

SVM and Complementary Slackness SVM and Complementary Slackness David Rosenberg New York University February 21, 2017 David Rosenberg (New York University) DS-GA 1003 February 21, 2017 1 / 20 SVM Review: Primal and Dual Formulations

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT2400 Analyse 1. Eksamensdag: Onsdag 15. juni 2011. Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

Asymptotics for Homogeneity Tests Based on a Multivariate Random Effects Proportional Hazards Model

Asymptotics for Homogeneity Tests Based on a Multivariate Random Effects Proportional Hazards Model Joural of Multivariate Aalysis 78, 8310 (001) doi10.1006jmva.000.1940, available olie at httpwww.idealibrary.com o Asymptotics for Homogeeity Tests Based o a Multivariate Radom Effects Proportioal Hazards

Detaljer

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3 Relational Algebra 1 Unit 3.3 Unit 3.3 - Relational Algebra 1 1 Relational Algebra Relational Algebra is : the formal description of how a relational database operates the mathematics which underpin SQL

Detaljer

Z. D. Bai. and. Y. Wu. Department of Mathematics and Statistics, York University, 4700 Keele Street, North York, Ontario, Canada M3J 1P3

Z. D. Bai. and. Y. Wu. Department of Mathematics and Statistics, York University, 4700 Keele Street, North York, Ontario, Canada M3J 1P3 joural of multivariate aalysis 63, 119135 (1997) article o. MV971694 Geeral M-Estimatio Z. D. Bai Departmet of Applied Mathematics, Natioal Su Yat-se Uiversity, Kaohsiug, Taiwa ad Y. Wu Departmet of Mathematics

Detaljer

Graphs similar to strongly regular graphs

Graphs similar to strongly regular graphs Joint work with Martin Ma aj 5th June 2014 Degree/diameter problem Denition The degree/diameter problem is the problem of nding the largest possible graph with given diameter d and given maximum degree

Detaljer

Databases 1. Extended Relational Algebra

Databases 1. Extended Relational Algebra Databases 1 Extended Relational Algebra Relational Algebra What is an Algebra? Mathematical system consisting of: Operands --- variables or values from which new values can be constructed. Operators ---

Detaljer

MU-Estimation and Smoothing

MU-Estimation and Smoothing Joural of Multivariate Aalysis 76, 277293 (2001) doi:10.1006jmva.2000.1916, available olie at http:www.idealibrary.com o MU-Estimatio Smoothig Z. J. Liu Mississippi State Uiversity C. R. Rao Pe State Uiversity

Detaljer

ASYMPTOTIC NORMALITY OF THE MAXIMUM LIKELIHOOD ESTIMATOR IN. Abstract. State space models is a very general class of time series models capable of

ASYMPTOTIC NORMALITY OF THE MAXIMUM LIKELIHOOD ESTIMATOR IN. Abstract. State space models is a very general class of time series models capable of ASYMPTOTIC NORMALITY OF THE MAIMUM LIKELIHOOD ESTIMATOR IN STATE SPACE MODELS Jes Ledet Jese 1 Niels Vver Peterse 2 Uiversity of Aarhus 1;2 ad MaPhySto 1 Abstract State space models is a very geeral class

Detaljer

TMA4245 Statistikk Eksamen 20. desember 2012

TMA4245 Statistikk Eksamen 20. desember 2012 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA4245 Statistikk Eksame 20. desember 202 Løsigsskisse Oppgave a Sasylighete for å få 5 kro er P 5 kro = = /32 = 0.03. 25 Sasylighete

Detaljer

Neural Network. Sensors Sorter

Neural Network. Sensors Sorter CSC 302 1.5 Neural Networks Simple Neural Nets for Pattern Recognition 1 Apple-Banana Sorter Neural Network Sensors Sorter Apples Bananas 2 Prototype Vectors Measurement vector p = [shape, texture, weight]

Detaljer

Dynamic Programming Longest Common Subsequence. Class 27

Dynamic Programming Longest Common Subsequence. Class 27 Dynamic Programming Longest Common Subsequence Class 27 Protein a protein is a complex molecule composed of long single-strand chains of amino acid molecules there are 20 amino acids that make up proteins

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON360/460 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Exam: ECON360/460 - Resource allocation and economic policy Eksamensdag: Fredag 2. november

Detaljer

Call function of two parameters

Call function of two parameters Call function of two parameters APPLYUSER USER x fµ 1 x 2 eµ x 1 x 2 distinct e 1 0 0 v 1 1 1 e 2 1 1 v 2 2 2 2 e x 1 v 1 x 2 v 2 v APPLY f e 1 e 2 0 v 2 0 µ Evaluating function application The math demands

Detaljer

On Parameters of Increasing Dimensions

On Parameters of Increasing Dimensions Joural of Multivariate Aalysis 73, 0135 (2000) doi:10.1006jmva.1999.1873, available olie at http:www.idealibrary.com o O Parameters of Icreasig Dimesios Xumig He 1 Departmet of Statistics, Uiversity of

Detaljer

Trigonometric Substitution

Trigonometric Substitution Trigonometric Substitution Alvin Lin Calculus II: August 06 - December 06 Trigonometric Substitution sin 4 (x) cos (x) dx When you have a product of sin and cos of different powers, you have three different

Detaljer

Moving Objects. We need to move our objects in 3D space.

Moving Objects. We need to move our objects in 3D space. Transformations Moving Objects We need to move our objects in 3D space. Moving Objects We need to move our objects in 3D space. An object/model (box, car, building, character,... ) is defined in one position

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON2915 Vekst og næringsstruktur Exam: ECON2915 - Growth and business structure Eksamensdag: Fredag 2. desember 2005 Sensur kunngjøres: 20. desember

Detaljer

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001) by Simin Feng, Herbert G. Winful Opt. Lett. 26, 485-487 (2001) http://smos.sogang.ac.r April 18, 2014 Introduction What is the Gouy phase shift? For Gaussian beam or TEM 00 mode, ( w 0 r 2 E(r, z) = E

Detaljer

The Accuracy and the Computational Complexity of a Multivariate Binned Kernel Density Estimator 1

The Accuracy and the Computational Complexity of a Multivariate Binned Kernel Density Estimator 1 Joural of Multivariate Aalysis 72, 264309 (2000) Article ID jmva.1999.1863, available olie at httpwww.idealibrary.com o The Accuracy ad the Computatioal Complexity of a Multivariate Bied Kerel Desity Estimator

Detaljer

Analysis of Algorithms

Analysis of Algorithms Aalysis of Algorithms Aalysis Fram Most algorithms trasform iput objects ito output objects. The ruig time of a algorithm typically grows with the iput size. Average case time is ofte difficult to determie.

Detaljer

Stationary Phase Monte Carlo Methods

Stationary Phase Monte Carlo Methods Stationary Phase Monte Carlo Methods Daniel Doro Ferrante G. S. Guralnik, J. D. Doll and D. Sabo HET Physics Dept, Brown University, USA. danieldf@het.brown.edu www.het.brown.edu Introduction: Motivations

Detaljer

Nonparametric analysis of covariance Holger Dette Ruhr-Universitat Bochum Fakultat fur Mathematik Bochum Germany

Nonparametric analysis of covariance Holger Dette Ruhr-Universitat Bochum Fakultat fur Mathematik Bochum Germany oparametric aalysis of covariace Holger Dette Rur-Uiversitat Bocum Faultat fur Matemati 4478 Bocum Germay email: olger.dette@rur-ui-bocum.de FAX: +49 34 7 94 559 atalie eumeyer Rur-Uiversitat Bocum Faultat

Detaljer

Permutation Tests for Reflected Symmetry

Permutation Tests for Reflected Symmetry joural of multivariate aalysis 67, 129153 (1998) article o. MV971697 Permutatio Tests for Reflected Symmetry Georg Neuhaus ad Li-Xig Zhu* Uiversity of Hamburg, Hamburg, Germay ad Chiese Academy of Scieces,

Detaljer

Emneevaluering GEOV272 V17

Emneevaluering GEOV272 V17 Emneevaluering GEOV272 V17 Studentenes evaluering av kurset Svarprosent: 36 % (5 av 14 studenter) Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet PhD Candidate Samsvaret mellom

Detaljer

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

5 E Lesson: Solving Monohybrid Punnett Squares with Coding 5 E Lesson: Solving Monohybrid Punnett Squares with Coding Genetics Fill in the Brown colour Blank Options Hair texture A field of biology that studies heredity, or the passing of traits from parents to

Detaljer

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes Kneser hypergraphs Frédéric Meunier May 21th, 2015 CERMICS, Optimisation et Systèmes Kneser hypergraphs m, l, r three integers s.t. m rl. Kneser hypergraph KG r (m, l): V (KG r (m, l)) = ( [m]) l { E(KG

Detaljer

Endelig ikke-røyker for Kvinner! (Norwegian Edition)

Endelig ikke-røyker for Kvinner! (Norwegian Edition) Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Click here if your download doesn"t start automatically Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Endelig ikke-røyker

Detaljer

Empirical Likelihood Ratio in Terms of Cumulative Hazard Function for Censored Data

Empirical Likelihood Ratio in Terms of Cumulative Hazard Function for Censored Data Joural of Multivariate Aalysis 80, 6688 (2002) doi0.006jmva.2000.977, available olie at httpwww.idealibrary.com o Empirical Likelihood Ratio i Terms of Cumulative Hazard Fuctio for Cesored Data Xiao-Rog

Detaljer

Conditional Empirical Processes Defined by Nonstationary Absolutely Regular Sequences

Conditional Empirical Processes Defined by Nonstationary Absolutely Regular Sequences Joural of Multivariate Aalysis 70, 250285 (1999) Article ID jmva.1999.1822, available olie at httpwww.idealibrary.com o Coditioal Empirical Processes Defied by Nostatioary Absolutely Regular Sequeces Michel

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON1410 - Internasjonal økonomi Exam: ECON1410 - International economics Eksamensdag: 18.06.2013 Date of exam: 18.06.2013 Tid for eksamen: kl.

Detaljer

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postponed exam: ECON420 Mathematics 2: Calculus and linear algebra Date of exam: Tuesday, June 8, 203 Time for exam: 09:00 a.m. 2:00 noon The problem set covers

Detaljer

Normal Approximation Rate and Bias Reduction for Data-Driven Kernel Smoothing Estimator in a Semiparametric Regression Model

Normal Approximation Rate and Bias Reduction for Data-Driven Kernel Smoothing Estimator in a Semiparametric Regression Model Joural of Multivariate Aalysis 80, 120 (2002) doi:10.1006mva.2000.1925, available olie at http:www.idealibrary.com o Normal Approximatio Rate ad Bias Reductio for Data-Drive Kerel Smoothig Estimator i

Detaljer

0.5 (6x 6x2 ) dx = [3x 2 2x 3 ] 0.9. n n. = n. ln x i + (β 1) i=1. n i=1

0.5 (6x 6x2 ) dx = [3x 2 2x 3 ] 0.9. n n. = n. ln x i + (β 1) i=1. n i=1 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 9, blokk II Løsigsskisse Oppgave a The probability is.9.5 6x( x dx.9.5 (6x 6x dx [3x x 3 ].9.5.47. b The likelihood fuctio

Detaljer

Exercise 1: Phase Splitter DC Operation

Exercise 1: Phase Splitter DC Operation Exercise 1: DC Operation When you have completed this exercise, you will be able to measure dc operating voltages and currents by using a typical transistor phase splitter circuit. You will verify your

Detaljer

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal.

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal. KROPPEN LEDER STRØM Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal. Hva forteller dette signalet? Gå flere sammen. Ta hverandre i hendene, og la de to ytterste personene

Detaljer

Den som gjør godt, er av Gud (Multilingual Edition)

Den som gjør godt, er av Gud (Multilingual Edition) Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Click here if your download doesn"t start automatically Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Den som gjør godt,

Detaljer

Prediction from Randomly Right Censored Data 1

Prediction from Randomly Right Censored Data 1 Joural of Multivariate Aalysis 80, 7300 (2002) doi:0.006jmva.2000.973, available olie at http:www.idealibrary.com o Predictio from Radomly Right Cesored Data Michael Kohler ad Kiga Ma the Uiversita t Stuttgart,

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag 8. desember

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. juni 2010 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

PSi Apollo. Technical Presentation

PSi Apollo. Technical Presentation PSi Apollo Spreader Control & Mapping System Technical Presentation Part 1 System Architecture PSi Apollo System Architecture PSi Customer label On/Off switch Integral SD card reader/writer MENU key Typical

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON3120/4120 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag

Detaljer

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen The Process Goal Definition Data Collection Data Preprocessing EDA Choice of Variables Choice of Method(s) Performance Evaluation

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Date of exam: Friday, May

Detaljer

Average Regression Surface for Dependent Data

Average Regression Surface for Dependent Data Joural of Multivariate Aalysis 75, 242 (2000) doi:0.006jmva.999.896, available olie at http:www.idealibrary.com o Average Regressio Surface for Depedet Data Zogwu Cai Uiversity of North Carolia E-mail:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON20/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON20/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Fredag 2. mai

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Mathematics 2: Calculus an linear algebra Exam: ECON3120/4120 Mathematics 2: Calculus an linear algebra Eksamensag: Tirsag 3. juni 2008

Detaljer

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2 Mathematics 4Q Name: SOLUTIONS. (x + 5)(x +5x) 7 8 (x +5x) 8 + C [u x +5x]. (3 x) (3 x) + C [u 3 x] 3. 7x +9 (7x + 9)3/ [u 7x + 9] 4. x 3 ( + x 4 ) /3 3 8 ( + x4 ) /3 + C [u + x 4 ] 5. e 5x+ 5 e5x+ + C

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON30/40 Matematikk : Matematisk analyse og lineær algebra Exam: ECON30/40 Mathematics : Calculus and Linear Algebra Eksamensdag: Tirsdag 0. desember

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT BOKMÅL Eksamen i: ECON1210 - Forbruker, bedrift og marked Eksamensdag: 26.11.2013 Sensur kunngjøres: 18.12.2013 Tid for eksamen: kl. 14:30-17:30 Oppgavesettet er

Detaljer

Information search for the research protocol in IIC/IID

Information search for the research protocol in IIC/IID Information search for the research protocol in IIC/IID 1 Medical Library, 2013 Library services for students working with the research protocol and thesis (hovedoppgaven) Open library courses: http://www.ntnu.no/ub/fagside/medisin/medbiblkurs

Detaljer

A New Approach to the BHEP Tests for Multivariate Normality

A New Approach to the BHEP Tests for Multivariate Normality joural of multivariate aalysis 6, 13 (1997) article o. MV971684 A New Approach to the BHEP Tests for Multivariate Normality Norbert Heze ad Thorste Wager Uiversita t Karlsruhe, D-7618 Karlsruhe, Germay

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. april 2008 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag 7. juni

Detaljer

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD 1 Bakgrunnen for dette initiativet fra SEF, er ønsket om å gjøre arbeid i høyden tryggere / sikrere. Både for stillasmontører og brukere av stillaser. 2 Reviderte

Detaljer

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with. Solutions #1 1. a Show that the path γ : [, π] R 3 defined by γt : cost ı sint j sint k lies on the surface z xy. b valuate y 3 cosx dx siny z dy xdz where is the closed curve parametrized by γ. Solution.

Detaljer

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ.

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ. Oppgave 1 Beviskalklen i læreboka inneholder sluttningsregelen QR: {ψ φ}, ψ ( xφ). En betingelse for å anvende regelen er at det ikke finnes frie forekomste av x i ψ. Videre så inneholder beviskalklen

Detaljer

Forecast Methodology September LightCounting Market Research Notes

Forecast Methodology September LightCounting Market Research Notes Forecast Methodology September 2015 LightCounting Market Research Notes Vladimir Market Kozlov Forecast Methodology, September, September, 2015 2015 1 Summary In summary, the key assump=on of our forecast

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON1910 Poverty and distribution in developing countries Exam: ECON1910 Poverty and distribution in developing countries Eksamensdag: 1. juni 2011 Sensur

Detaljer

Ringvorlesung Biophysik 2016

Ringvorlesung Biophysik 2016 Ringvorlesung Biophysik 2016 Born-Oppenheimer Approximation & Beyond Irene Burghardt (burghardt@chemie.uni-frankfurt.de) http://www.theochem.uni-frankfurt.de/teaching/ 1 Starting point: the molecular Hamiltonian

Detaljer

Verifiable Secret-Sharing Schemes

Verifiable Secret-Sharing Schemes Aarhus University Verifiable Secret-Sharing Schemes Irene Giacomelli joint work with Ivan Damgård, Bernardo David and Jesper B. Nielsen Aalborg, 30th June 2014 Verifiable Secret-Sharing Schemes Aalborg,

Detaljer

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) INF247 Er du? Er du? - Annet Ph.D. Student Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen,

Detaljer

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23 UTKAST ENGLISH VERSION EKSAMEN I: MOT100A STOKASTISKE PROSESSER VARIGHET: 4 TIMER DATO: 16. februar 2006 TILLATTE HJELPEMIDLER: Kalkulator; Tabeller og formler i statistikk (Tapir forlag): Rottman: Matematisk

Detaljer

TMA4329 Intro til vitensk. beregn. V2017

TMA4329 Intro til vitensk. beregn. V2017 Norges teknisk naturvitenskapelige universitet Institutt for Matematiske Fag TMA439 Intro til vitensk. beregn. V17 ving 4 [S]T. Sauer, Numerical Analysis, Second International Edition, Pearson, 14 Teorioppgaver

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt ksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON3120/4120 Mathematics 2: Calculus and linear algebra Eksamensdag:

Detaljer

Dagens tema: Eksempel Klisjéer (mønstre) Tommelfingerregler

Dagens tema: Eksempel Klisjéer (mønstre) Tommelfingerregler UNIVERSITETET I OSLO INF1300 Introduksjon til databaser Dagens tema: Eksempel Klisjéer (mønstre) Tommelfingerregler Institutt for informatikk Dumitru Roman 1 Eksempel (1) 1. The system shall give an overview

Detaljer

Deskriptiv statistikk for sentrum og spredning i fordelingen. Gjennomsnitt og standardavvik. eller

Deskriptiv statistikk for sentrum og spredning i fordelingen. Gjennomsnitt og standardavvik. eller Eksempel : tall dager i sykehus. Ikke-parametriske tester versus parametriske tester Stia Lyderse Presetert på Regioal forskigskoferase for psykiatri og rusfeltet Ålesud 4 jui 03 Behadlig : 6, 5, 37,,

Detaljer

SERVICE BULLETINE 2008-4

SERVICE BULLETINE 2008-4 S e r v i c e b u l l e t i n e M a t e r i e l l Materiellsjef F/NLF kommuniserer påminnelse omkring forhold som ansees som vesentlige for å orientere om viktige materiellforhold. Målgruppen for Servicbulletinen

Detaljer

Splitting the differential Riccati equation

Splitting the differential Riccati equation Splitting the differential Riccati equation Tony Stillfjord Numerical Analysis, Lund University Joint work with Eskil Hansen Innsbruck Okt 15, 2014 Outline Splitting methods for evolution equations The

Detaljer

Start MATLAB. Start NUnet Applications Statistical and Computational packages MATLAB Release 13 MATLAB 6.5

Start MATLAB. Start NUnet Applications Statistical and Computational packages MATLAB Release 13 MATLAB 6.5 Start MATLAB Start NUnet Applications Statistical and Computational packages MATLAB Release 13 MATLAB 6.5 Prompt >> will appear in the command window Today: MATLAB overview In-class HW: Chapter 1, Problems

Detaljer

3/1/2011. I dag. Recursive descent parser. Problem for RD-parser: Top Down Space. Jan Tore Lønning & Stephan Oepen

3/1/2011. I dag. Recursive descent parser. Problem for RD-parser: Top Down Space. Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2011 TABELLPARSING Jan Tore Lønning & Stephan Oepen 1. mars 2011 2 I dag Oppsummering fra sist: Recursive-descent og Shift-reduce parser Svakheter med disse Tabellparsing: Dynamisk

Detaljer

klassisk angoragenser classic angora sweater

klassisk angoragenser classic angora sweater klassisk angoragenser classic angora sweater www.pickles.no / shop.pickles.no NORSK Størrelser XS (S) M (L) XL (XXL) Garn Pickles Angora 150 (175) 200 (225) 250 (275) g Pinner 80 og 40 cm rundpinne og

Detaljer

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen TABELLPARSING 1. mars 2011 2 I dag Oppsummering fra sist: Recursive-descent og Shift-reduce parser Svakheter med disse Tabellparsing: Dynamisk

Detaljer

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 1 MAT131 Bokmål Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 09-14 Oppgavesettet er 4 oppgaver fordelt på

Detaljer

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F. September 9, 2011 Physics 131 Prof. E. F. Redish Theme Music: Speed Racer Theme Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz 1 Reading questions Are the lines on the spatial graphs representing

Detaljer

Medisinsk statistikk, KLH3004 Dmf, NTNU 2009. Styrke- og utvalgsberegning

Medisinsk statistikk, KLH3004 Dmf, NTNU 2009. Styrke- og utvalgsberegning Styrke- og utvalgsberegning Geir Jacobsen, ISM Sample size and Power calculations The essential question in any trial/analysis: How many patients/persons/observations do I need? Sample size (an example)

Detaljer

Comparison of LR, Score, and Wald Tests in a Non-IID Setting

Comparison of LR, Score, and Wald Tests in a Non-IID Setting oural of multivariate aalysis 60, 99110 (1997) article o. MV961645 Compariso of LR, Score, ad Wald Tests i a No-IID Settig C. Radhakrisha Rao The Pesylvaia State Uiversity ad Rahul Mukeree Idia Istitute

Detaljer

Appendix B, not for publication, with screenshots for Fairness and family background

Appendix B, not for publication, with screenshots for Fairness and family background Appendix B, not for publication, with screenshots for Fairness and family background Ingvild Almås Alexander W. Cappelen Kjell G. Salvanes Erik Ø. Sørensen Bertil Tungodden This document shows screenshots

Detaljer

GEO231 Teorier om migrasjon og utvikling

GEO231 Teorier om migrasjon og utvikling U N I V E R S I T E T E T I B E R G E N Institutt for geografi Emnerapport høsten 2013: GEO231 Teorier om migrasjon og utvikling Innhold: 1. Informasjon om emnet 2. Statistikk 3. Egenevaluering 4. Studentevaluering

Detaljer

STØTTEMATERIALE TIL FORELESNINGENE OM SKATT

STØTTEMATERIALE TIL FORELESNINGENE OM SKATT STØTTEMATERIALE TIL FORELESNINGENE OM SKATT ECON3610, H2017 Kristoffer Midttømme Eksempler på skattevridninger: Den britiske vindusskatten Fordeling av antall vinduer (1) Oates, Wallace E., and Robert

Detaljer

Merak Un-glazed Porcelain Wall and Floor Tiles

Merak Un-glazed Porcelain Wall and Floor Tiles 6 Colours 3 es Absolute Collection 7 s Merak Un-glazed Porcelain Wall and Floor Tiles Merak includes seven sizes perfectly designed for seamless installation. 600 x 50mm 600 x 100mm 600 x 300mm 600 x 150mm

Detaljer

The regulation requires that everyone at NTNU shall have fire drills and fire prevention courses.

The regulation requires that everyone at NTNU shall have fire drills and fire prevention courses. 1 The law The regulation requires that everyone at NTNU shall have fire drills and fire prevention courses. 2. 3 Make your self familiar with: Evacuation routes Manual fire alarms Location of fire extinguishers

Detaljer

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems Department of Economics May 004 Arne Strøm ECON0/40 Mathematics, spring 004 Problem solutions for the seminar on 5 May 004 (For practical reasons (read laziness, most of the solutions this time are in

Detaljer

Characteristic Functions of L 1 -Spherical and L 1 -Norm Symmetric Distributions and Their Applications

Characteristic Functions of L 1 -Spherical and L 1 -Norm Symmetric Distributions and Their Applications Joural of Multivariate Aalysis 76, 192213 (2001) doi10.1006jmva.2001.1910, available olie at httpwww.idealibrary.com o Characteristic Fuctios of L 1 -Spherical ad L 1 -Norm Symmetric Distributios ad Their

Detaljer

stjerneponcho for voksne star poncho for grown ups

stjerneponcho for voksne star poncho for grown ups stjerneponcho for voksne star poncho for grown ups www.pickles.no / shop.pickles.no NORSK Størrelser XS (S) M (L) Garn Pickles Pure Alpaca 300 (350) 400 (400) g hovedfarge 100 (100) 150 (150) g hver av

Detaljer

Motzkin monoids. Micky East. York Semigroup University of York, 5 Aug, 2016

Motzkin monoids. Micky East. York Semigroup University of York, 5 Aug, 2016 Micky East York Semigroup University of York, 5 Aug, 206 Joint work with Igor Dolinka and Bob Gray 2 Joint work with Igor Dolinka and Bob Gray 3 Joint work with Igor Dolinka and Bob Gray 4 Any questions?

Detaljer

Du må håndtere disse hendelsene ved å implementere funksjonene init(), changeh(), changev() og escape(), som beskrevet nedenfor.

Du må håndtere disse hendelsene ved å implementere funksjonene init(), changeh(), changev() og escape(), som beskrevet nedenfor. 6-13 July 2013 Brisbane, Australia Norwegian 1.0 Brisbane har blitt tatt over av store, muterte wombater, og du må lede folket i sikkerhet. Veiene i Brisbane danner et stort rutenett. Det finnes R horisontale

Detaljer

Oppgave. føden)? i tråd med

Oppgave. føden)? i tråd med Oppgaver Sigurd Skogestad, Eksamen septek 16. des. 2013 Oppgave 2. Destillasjon En destillasjonskolonne har 7 teoretiske trinn (koker + 3 ideelle plater under føden + 2 ideellee plater over føden + partielll

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON20 Forbruker, bedrift og marked, høsten 2004 Exam: ECON20 - Consumer behavior, firm behavior and markets, autumn 2004 Eksamensdag: Onsdag 24. november

Detaljer

Level-Rebuilt B-Trees

Level-Rebuilt B-Trees Gerth Stølting Brodal BRICS University of Aarhus Pankaj K. Agarwal Lars Arge Jeffrey S. Vitter Center for Geometric Computing Duke University August 1998 1 B-Trees Bayer, McCreight 1972 Level 2 Level 1

Detaljer

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX)

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX) Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX) Peter J. Rosendahl Click here if your download doesn"t start automatically Han Ola of Han Per:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSIEE I OSLO ØKONOMISK INSIU Eksamen i: ECON320/420 Mathematics 2: Calculus and Linear Algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag:. desember 207 Sensur kunngjøres:

Detaljer

INF5820 Natural Language Processing - NLP. H2009 Jan Tore Lønning

INF5820 Natural Language Processing - NLP. H2009 Jan Tore Lønning INF5820 Natural Language Processing - NLP H2009 jtl@ifi.uio.no HMM Tagging INF5830 Lecture 3 Sep. 7 2009 Today More simple statistics, J&M sec 4.2: Product rule, Chain rule Notation, Stochastic variable

Detaljer

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) INF283, HØST 16 Er du? Er du? - Annet Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 =

Detaljer