Empirical Likelihood Ratio in Terms of Cumulative Hazard Function for Censored Data

Størrelse: px
Begynne med side:

Download "Empirical Likelihood Ratio in Terms of Cumulative Hazard Function for Censored Data"

Transkript

1 Joural of Multivariate Aalysis 80, 6688 (2002) doi0.006jmva , available olie at httpwww.idealibrary.com o Empirical Likelihood Ratio i Terms of Cumulative Hazard Fuctio for Cesored Data Xiao-Rog Pa ad Mai Zhou Uiversity of Ketucky ad Searle maims.uky.edu Received April 7, 2000; published olie July 9, 200 It has bee show that (with complete data) empirical likelihood ratios ca be used to form cofidece itervals ad test hypotheses about a liear fuctioal of the distributio fuctio just like the parametric case. We study here the empirical likelihood ratios for right cesored data ad with parameters that are liear fuctioals of the cumulative hazard fuctio. Martigale techiques make the asymptotic aalysis easier, eve for radom weightig fuctios. It is show that the empirical likelihood ratio i this settig ca be easily obtaied by solvig a oe parameter mootoe equatio. 200 Elsevier Sciece AMS 99 subject classificatios 62G0; 62G05. Key words ad phrases weighted hazard; oe sample log rak test; stochastic costrait; media.. INTRODUCTION Based o the likelihood fuctio there are three differet methods to produce cofidece itervals amely Wald's method, Rao's method, ad Wilks' method. Amog the three, the Wilks likelihood ratio (LR) method does ot eed the calculatio of iformatio or the iverse of that. It automatically adjust the statistics &2 log LR to a pivotal. This ca be a real advatage i the case where the iformatio (or iverse of it) is difficult to estimate. Eve whe all three are easy to obtai, the LR method still holds some uique advatages. For example, the cofidece itervals produced by the LR method are always rage respectig (cofidece bouds iside the parameter space), while the other two are ot. Therefore, trasformatio o the parameter is ofte used i coectio with Wald's ad Rao's methods to overcome the rage problem. However, the choice of the trasformatio is ad hoc. For ew parameters it is ofte uclear what trasformatio to use. I this respect, the LR method ca be described as achievig the result comparable to Wald's method with the best trasformatio, but without the eed to explicitly fid the best trasformatio X Elsevier Sciece All rights reserved.

2 CENSORED EMPIRICAL LIKELIHOOD RATIO 67 Recetly, Owe (988, 990) ad may others showed that the likelihood ratio method ca also be used to produce cofidece itervals i oparametric settigs after some modificatio. He termed this empirical likelihood ratio method. The empirical likelihood (EL) of i.i.d. observatios X i is just EL(F)= ` 2F(X i ). Without ay restrictios, the empirical distributio fuctio, F=F (t)= I [Xi t], will maximize the EL amog all possible distributio fuctios; therefore it is referred to as the oparametric maximum likelihood estimator or NPMLE. With a liear costrait of the form g(t) df(t)=+, (.) Owe (988, 990) showed that the distributio fuctio that maximizes the EL subject to the costrait ca be calculated usig the Lagrage multiplier method. He showed that such a distributio fuctio F has jump at X i equal to where * is defied by the equatio 2F(X i )=2F (X i )_ +*(g(x i )&+), 2F (X i ) g(x i ) +*(g(x i )&+) =+. Oce the costraied maximum is obtaied, it ca be show that the empirical likelihood ratio statistic, &2 log ELR(+), coverges i distributio to a chi-square distributio. However, a geeralizatio of the above settig to the right cesored data case is difficult. No explicit maximizatio uder costrait (.) ca be obtaied. I the aalysis of cesored data, it is ofte more coveiet to model the data i terms of the (cumulative) hazard fuctio 4(t) which is defied by 4(t)= [0, t) df(s) &F(s&). (.2) It gives rise to a martigale formulatio of the observatios. For example, the regressio model i terms of hazard leads to the Cox proportioal hazards model; oparametric estimatio i terms of cumulative hazard

3 68 PAN AND ZHOU leads to the NelsoAale estimator which is much easier to aalyze tha the KaplaMeier estimator. Also, iformatio i terms of hazard (Efro ad Johsto, 990) ad the Helliger distace i terms of hazard (Yig, 992) all have bee studied ad proved to be iformative. Therefore it is atural to look at the empirical likelihood i terms of hazard ad costraits i terms of hazard as i (2.6). It turs out that the theory for the EL i terms of hazard is much simpler for right cesored data. Also, martigale formulatio makes it easy to hadle eve stochastic (predictable) weight fuctios. We obtaied results for geeral parameters of the followig types () %= g(t) d4(t) for arbitrary give g(t). (2) % =g (t) d4(t) where g (t) is a radom but predictable fuctio ad depeds o sample size ; % ca also chage with sample size. (3) % is defied implicitly g(t, %) d4(t)=c for a costat C. Parameters of the first type ca arise i the cotext of a time-depedet covariate Cox model. I such a model the cumulative hazard for a perso with a time-depedet multiplicative covariate g(t) ca be computed as 4 i ({)= { 0 g(t) d4 b(t), where 4 b is the baselie cumulative hazard. The parameter of the secod type is prompted by the oe sample lograk type tests. The weight fuctio of the oe sample log-rak test takes the form g(t)=y(t) where Y(t) is the size of the risk set at time t. See, for example, Aderse et al. (993, Sect. V.) for details ad other similar types of tests. As a further example for the stochastic weight fuctio g, we take the mea, which ca be obtaied from the itegratio of the cumulative hazard with g(t)=t[&f(t&)]. Sice F is ukow, we may use g (t)=t[&f (t&)]. The prime example for the implicit type parameters is the quatiles. For example, the parameter % of the media may be defied implicitly as I [t%] d4(t)=log 2. Aother purpose of this paper is to serve as a startig poit i the compariso of the two differet types of empirical likelihoods with right cesored data, (2.4) ad (2.5). Sectio 4 shows that for cotiuous F ad as the two are equivalet, but there are may differeces whe F is discrete ador for small. We shall preset the differeces whe usig the three types of parameters discussed above i a forthcomig paper. Murphy (995) also studied the empirical likelihood ratio usig coutig process formulatios. She obtaied the explicit result whe the costrait is the hazard fuctio itself evaluated at a poit, 4(t 0 )=&log[&f(t 0 )]. Li (995), buildig o the earlier work of Thomas ad Grukemeier (975), studied the empirical likelihood method for cesored data, but oly for the parameters of the form F(t 0 ). Murphy ad Va der Vaart (997) proved a very geeral result but i each specific case oe still eeds to work out the ofte o-trivial coditios; also it is ot clear how the empirical

4 CENSORED EMPIRICAL LIKELIHOOD RATIO 69 likelihood should be computed. Our result gives a more explicit way to compute such itervals. We eed oly to fid the root of a mootoe uivariate fuctio. Oce the root is foud the likelihood ratio is easily obtaied (see (3.2) or (4.)). Besides, oe of the above papers deals with stochastic costraits. Due to the similarity of techical treatmet betwee the three types of costraits we shall preset the detailed proof oly for the first typ of costrait ad omit the proofs for the other two types of costraits. The rest of the paper is orgaized as follows Sectio 2 defies the likelihood i terms of hazard ad calculates the maximum of the likelihood uder the costrait of type. Sectio 3 studies the asymptotic behavior of the likelihood ratio ad shows that it coverges to a chi-square distributio. Sectio 4 looks at the differece betwee two versios of the likelihood. Sectio 5 deals with the stochastic costrait ad the implicit costrait. Sectio 6 cotais some examples. Fially some techical proofs are collected i the Appedix. 2. LIKELIHOOD IN TERMS OF HAZARD AND ITS MAXIMUM UNDER A CONSTRAINT OF TYPE Suppose that X,..., X are i.i.d. oegative radom variables deotig the lifetimes with a cotiuous distributio fuctio F 0. Idepedet of the lifetimes there are cesorig times C,..., C which are i.i.d. with a distributio G 0. Oly the cesored observatios are available to us T i =mi(x i, C i ); $ i =I[X i C i ] for, 2,...,. (2.) The empirical likelihood based o cesored observatios (T i, $ i ) pertaiig to F is EL(F)= ` [2F(T i )] $ i [&F(Ti )] &$ i. (2.2) Sice the NPMLE of the distributio F ad hazard 4 are both kow to be purely discrete fuctios (i.e., KaplaMeierNelsoAale estimator), it is reasoable to restrict the aalysis of the likelihood ratio to the purely discrete fuctios domiated by their NPMLEs. This is similar to the use of sieves i the likelihood aalysis. See Owe (988) for more discussio o this restrictio. Usig the relatio betwee hazard ad distributio &F(t)= ` st (&24(s)) ad 24(t)= 2F(t) &F(t&) (2.3)

5 70 PAN AND ZHOU that is valid for purely discrete distributios we ca rewrite (2.2) i terms of the cumulative hazard fuctio. The empirical likelihood (2.2) becomes EL(4)= ` [24(T i )] i_ $ ` (&24(T j )) & $ i j T j <T i ` (&24(T j )) & &$ i. (2.4) j T j T i The hazard fuctio that maximizes the likelihood EL(4) without ay costrait is the NelsoAale estimator; see, e.g., Aderso et al. (993). We shall deote the NelsoAale estimator by 4 NA(t). O the other had, a simpler versio of the likelihood ca be obtaied if we merge the secod ad third factors i (2.4) ad replace it by exp[&4(t i )], which was called a Poisso extesio of the likelihood by Murphy (994) AL(4)= ` [24(T i )] $ i exp[&4(ti )]. (2.5) See also Gill (989) for a detailed discussio of differet extesios of the likelihood fuctio for discrete distributios. Notice we have used a formula that is oly valid for cotiuous distributio i the case of a discrete distributio. But the differece is small ad egligible for large as we shall see later. O the other had, the maximizer for AL(4) for fiite is also the NelsoAale estimator, givig AL some legitimacy. We shall use AL i our aalysis first due to its simplicity ad examie the differece betwee AL ad EL later. The first ad crucial step i our aalysis is to fid a (discrete) cumulative hazard fuctio that maximizes AL(4) uder the costrait (of type ) g(t) d4(t)=%, (2.6) where g(t) is a give fuctio that satisfies some momet coditios, ad % is a give costat. We poit out before proceedig that the last jump of a (proper) discrete cumulative hazard fuctio must be oe. This is evidet from the relatio (2.3), secod equatio. This restrictio is similar to the ``jumps sum to oe'' restrictio o the discrete distributio fuctios. The cosequece is that ay discrete cumulative hazard fuctio domiated by the

6 CENSORED EMPIRICAL LIKELIHOOD RATIO 7 NelsoAale estimator must, at the last observatio, have the same jump as the NelsoAale estimator. I light of this we rewrite the costrait (2.6) i terms of jumps. For simplicity we shall assume there is o tie i the ucesored observatios. Without loss of geerality we assume T T 2 }}}T where oly possible ties are betwee cesored observatios. Let w i =24(T i ) for, 2,...,, where we otice w =$. The costrait (2.6) for ay 4, that is domiated by the NelsoAale estimator, ca be writte as & $ i g(t i ) w i + g(t ) $ =%. (2.7) Similarly, the likelihood AL at this 4 ca be writte i terms of the jumps AL= ` [w i ] $ i exp { & i j= w j=. (2.8) Aother importat issue is that the costrait equatio may ot always have a solutio for certai values of %. A obvious example is whe g(t)0 ad %>0. Thus for each give g(t) ad sample, we shall oly study i detail the feasible costraits, those % values that have at least oe set of solutio to (2.7). For those that do ot have a solutio we defie the value of the likelihood uder this costrait to be zero. Note that to be qualified as a solutio, we must have 0w i < for, 2,..., &. To fid the maximizer of AL uder costrait (2.7), we use Lagrage multiplier method. Oce the costraied maximizer is foud by the Lagrage multiplier (recall the ucostraied maximizer was kow to be the NelsoAale estimate), we ca proceed to study the empirical likelihood ratio. Theorem. The feasible values of % i the costrait (2.7) are give by the iterval V defied at the ed of the proof. If the costrait (2.7) is feasible, the the maximum of AL uder the costrait is obtaied whe $ i w i =W i = (&i+)+*g(t i ) $ i = $ i &i+ _ +*($ i g(t i )((&i+))), (2.9)

7 72 PAN AND ZHOU where * i tur is the solutio of the equatio & l(*)=%, where l(*)# g(t i ) $ i &i+ _ +*($ i g(t i )((&i+))) + g(t ) $. (2.0) Proof. To use the Lagrage multiplier, we form the target fuctio G= $ i log w i & i j= & w j +* _%& $ i g(t i ) w i &$ g(t ) &. Takig partial derivative with respect to w i, for,..., &, ad lettig them equal zero, we obtai G w i = $ i w i &(&i+)&*g(t i ) $ i =0,, 2,..., &. By solvig this equatio we get the explicit expressio for w i $ i W i = (&i+)+*g(t i ) $ i = $ i &i+ _ +*($ i g(t i )((&i+))) =24 NA(T i ) +*($ i g(t i )((&i+))) for, 2,..., &, where * has to be chose to satisfy the costrait (2.7). By pluggig W i ito (2.7) we see that * ca be obtaied as a solutio to the equatio & l(*)# g(t i ) $ i &i+ +*($ i g(t i )((&i+))) + g(t ) $ =%. The fuctio l(*) above is mootoe decreasig ad cotiuous i *, a fact that ca be verified by takig a derivative of l(*) with respect to *. O the other had, ay choice of legitimate value * must result i w i through (2.9) that are boa fide jumps of a discrete cumulative hazard fuctio, which must be bouded betwee zero ad oe. This restrictio leads to the followig legitimate * rage J.

8 CENSORED EMPIRICAL LIKELIHOOD RATIO 73 All max ad mi i the followig defiitios are take i the domai [i i&, $ i =, ad g(t i ){0]; if there is ay additioal restrictio the we specify i each idividual case. Case. Whe mi g(t i )>0 i& J= \max g(t i ), + =(*, ). Case 2. Whe max g(t i )<0 J= i& mi =(&, * ). \&, g(t i )+ Case 3. Whe max g(t i )>0>mi g(t i ) J= \ max g(t i )>0 i& g(t i ), mi g(t i )<0 i& g(t i )+ =(*, * ). Sice the fuctio l( } ) is cotiuous ad mootoe, the correspodig rage of the % value that makes Eq. (2.0) feasible (has a set of solutio that is a boa fide cumulative hazard fuctio) is as follows. Notice these % values also make the costrait (2.7) feasible. Case. Case 2. & V= \g(t ) $, $ i g(t i ) &i++* g(t i ) + g(t ) $ +. V= \ & $ i g(t i ) &i++* g(t i ) + g(t ) $, g(t ) $ +. Case 3. V= \ & $ i g(t i ) &i++* g(t i ) + g(t ) $, & $ i g(t i ) &i++* g(t i ) + g(t ) $ +. K

9 74 PAN AND ZHOU 3. ASYMPTOTIC PROPERTIES Now we study the large sample behavior of the empirical likelihood uder costrait (2.6). First, we preset a lemma about the large sample behavior of the solutio * of (2.0). Lemma. Suppose g(t) is a left cotiuous fuctio ad 0< g(x) m d4 0 (x) <, m=, 2. (&F 0 (x))(&g 0 (x)) The % 0 =g(t) d4 0 (t) is feasible with probability approachig as, ad the solutio * of (2.0) with %=% 0 satisfies * 2 w D / 2 ()\ g 2 & (x) d4 0 (x) (&F 0 (x))(&g 0 (x))+ as. Proof. See the Appedix. K Next we defie the empirical likelihood ratio i terms of the hazard for the costrait (2.7) as ALR(%)= sup[al(4) 4<<4 NA, ad 4 satisfy (2.7)]. AL(4 NA) By Theorem, ALR(%) ca be computed, whe the costrait is feasible, by usig W i defied there ad the kow property of 4 NA 24 NA(T i )=$ i (&i+). Theorem 2. Let (T, $ ),..., (T, $ ) be pairs of radom variables as defied i (2.). Suppose g is a left cotiuous fuctio ad 0< g(x) m (&F 0 (x))(&g 0 (x)) d4 0(x)<, m=, 2. The, % 0 =g(t) d4 0 (t) will be a feasible value with probability approachig oe as ad &2 log ALR(% 0 ) w D / 2 () as. Proof. I view of Lemma 2, we eed oly to prove the last claim &2 log ALR(% 0 ) w D / 2 () as. To this ed, defie Z i =$ i g(t i ) (&i+) for, 2,...,, (3.)

10 CENSORED EMPIRICAL LIKELIHOOD RATIO 75 ad cosider &2 log ALR(% 0 ) =2 _ &2 _ $ i log 24 NA (T i )& +2 _ & & + =&2 =&2 & &2 & =2 $ i log 24 NA (T i ) & $ i log(+*z i ) (&i+) 24 NA (T i ) & (&i+) 24 NA (T i ) +24 +*Z NA (T ) & i & $ i +2 & $ i +2 $ i *Z i +*Z i +2$ & $ i log(+*z i )&2 & $ i log(+*z i )+2 & $ i log(+*z i )+2 $ i +*Z i +2$ $ i & $ i *Z i +2 $ i * 2 Z 2 i +*Z i. (3.2) Notice max i *Z i =O p ( &2 ) max i Z i by Lemma. Now use Lemma A2 with h= g- (&F)(&G) ad Zhou (99) ad we have max Z i max i i $ i g(t i ) (&F 0 (T i ))(&G 0 (T i )) _ max i (&F 0 (T i ))(&G 0 (T i )) (&i+) =o p ( 2 ) O p ()=o p ( 2 ). (3.3) Thus max i& *Z i =O p ( &2 ) o p ( 2 )=o p () ad we may expad log(+*z i )=*Z i & 2 *2 Z 2 i +O p(* 3 ) Z 3 i. (3.4)

11 76 PAN AND ZHOU Substitutig (3.4) i the expressio of &2 log ALR(% 0 ), we have & &2 log ALR(% 0 )=2 where, as, & &2 & $ i Z i & & =* 2 ad, otig $ i Z 3 i =Z3 i, & $ i *Z i +2 & $ i * 2 Z 2 +O i p(* 3 ) & $ i Z 2 i +O p (* 3 ) Z 3 i & $ i * 2 Z 2 &2 i & Z 3 i &2* 3 & } O p(* 3 ) Z 3 i } O p( &2 ) o p ( 2 ) _ & 2* 3 By Lemma A3 ad (3.3) we have $ i Z 3 i +*Z i O p ( &2 ) o p ( 2 ) _ $ i * 3 Z 3 i +*Z i $ i Z 3 i +*Z i, (3.5) Z 2 i, Z 2 i. Plim Z 2 =Plim & i = $ i Z 2 =Plim & i Z 2 i g 2 (x) d4 0 (x) (&F 0 (x))(&g 0 (x)) <, where Plim deotes the limit i probability as. Therefore the last two terms i (3.5) are egligible. As for the first term there, we see that it coverges to a / 2 () distributio i view of Lemma, Lemma A3, ad the Slutsky theorem. Thus we have as &2 log ALR(% 0 ) w D / 2. K () 4. COMPARISON OF TWO VERSIONS OF LIKELIHOOD I this sectio we examie the differece betwee the two versios of the likelihood EL ad AL as defied i (2.4) ad (2.5). We shall prove that if we replace AL i Theorem 2 by EL ad everythig else remai the same, the likelihood ratio statistic &2 log ELR(% 0 ) still coverges to / 2 () as.

12 CENSORED EMPIRICAL LIKELIHOOD RATIO 77 Defie ELR(%)= EL(4*) EL(4 NA), where 4* is give by the jumps W i defied i Theorem. Theorem 3. Suppose all the coditios of Theorem 2 hold. The &2 log ELR(% 0 ) w D / 2 () as. Proof. We shall prove that the two likelihood ratio statistics are asymptotically equivalet i the sese that their differece goes to zero i probability. By (3.2) we have & &2 log ALR(% 0 )=2 & $ i log(+*z i )&2 $ i *Z i +*Z i, where Z i is defied as i (3.). O the other had, we also have & 2 log ELR(% 0 )=2 $ i log(+*z i ) Observe & +2 & &2 (&i+&$ i ) log(&24 NA(T i )) (&i+&$ i ) log \&24 NA(T i ) +*Z i+. (4.) log \&24 NA(T i ) +*Z i+ =log \ &24 NA(T i )+24 NA(T i ) By the same reaso as i (3.3), (3.4) we may expad log \&24 NA(T i ) +*Z i+ =log \&24 NA(T i )+24 NA(T i ) *Z i +*Z i+ *Z i +*Z i+.

13 78 PAN AND ZHOU =log(&24 NA(T i ))+ 24 NA(T i ) &24 NA(T i ) _ *Z i & \ 24 2 NA(T i ) +*Z i &24 NA(T i )+ =log(&24 NA(T i ))+ &i+&$ i _ *Z i & \ 2 $ i +*Z i &i+&$ i+ ' 2, (4.2) i where ' i *Z i (+*Z i ). Substitutig (4.2) i the expressio of &2 log ELR(% 0 ), we obtai $ i ' 2 i & &2 log ELR(% 0 )=2 & +2 & $ i log(+*z i )&2 ' 2 i &i+&$ i. $ i *Z i +*Z i Therefore where & &2 log ELR(% 0 )+2 log ALR(% 0 )=2 ' 2 i &i+&$ i, & 0 ' 2 i * 2 &i+&$ i & Z 2 i &i+&$ i. By Lemma ad Lemma A3 we have Therefore * & 2 Z 2 i &i+&$ i =O p () o p ()=o p (). &2 log ELR(% 0 )+2 log ALR(% 0 ) w P 0 as. I view of Theorem 2, we have &2 log ELR(% 0 ) w D / 2 () as. K

14 CENSORED EMPIRICAL LIKELIHOOD RATIO STOCHASTIC CONSTRAINTS AND IMPLICIT CONSTRAINTS 5.. Stochastic Costraits Some applicatios, specifically oe sample log-rak type tests (cf. Aderse et al., 993, p. 334), madate a radom weight fuctio g(t)= g (t) i the costrait. Also, i order to obtai the mea from the itegratio of the cumulative hazard, we eed to let g(t)=g (t)=t[&f (t&)], agai a radom fuctio. To accommodate this, we allow the fuctio g to deped o the sample (of size ) but require that it be a predictable fuctio with respect to the filtratio that makes 4 NA(t)&4(t) a martigale. For example, the filtratio F t =_[T k I [Tk t]; $ k I [Tk t]; k=, 2,..., ]. (5.) Furthermore we require that for some oradom left cotiuous fuctio g(t), we have sup g (t)&g(t) =o p () ad sup tt i} g (T i ) g(t i ) } =O p() as. (5.2) The weight fuctios for the oe sample log-rak test ad ma ca be show to satisfy these requiremets. The stochastic versio of the costrait is therefore g (t) d4(t)=%. (5.3) The % value may also deped o. For example, if we are testig the hypothesis H 0 4#4 0 the we should take % =g (t) d4 0 (t). The empirical likelihood ratio statistics for the stochastic costrait is defied as &2 log ALR s (% )= sup[al(4) 4<<4 NA ad 4 satisfy (5.3)], AL(4 NA) where the umerator of the ratio ca be computed similarly as i Theorem with g (t) ad % replacig g(t) ad % there. Theorem 4. Let (T, $ ),..., (T, $ ) be pairs of radom variables as defied i (2.). Suppose g (t) is a sequece of predictable fuctios with respect to the filtratio (5.) ad satisfyig (5.2). Also assume 0< g(x) m (&F 0 (x))(&g 0 (x)) d4 0(x)<, m=, 2.

15 80 PAN AND ZHOU The % 0 =g (t) d4 0 (t) will be a feasible value with probability approachig oe as ad &2 log ALR s (% 0 ) wd / 2 () as Implicit Costraits For the implicit fuctioal costrait, we require that (i) g(t, %) d4(t) (5.4) be mootoe i % for ay give cumulative hazard fuctio 4, ad (ii) g(t, %) d4 0(t)=C (5.5) uiquely defie the parameter % 0. The likelihood ratio i this case is formed similarly. For give % we first solve the followig equatio to get *, & g(t i, %) $ i &i+ _ +*($ i g(t i, %)(&i+)) + g(t, %) $ =C, (5.6) where C is a give costat. The ALR i (%) is defied as the ratio of two ALs with the umerator computed as (2.8) with w i = $ i &i+ _ +*($ i g(t i, %)(&i+)) ad the deomiator computed via (2.8) with w i =$ i (&i+) as before. Theorem 5. Let (T, $ ),..., (T, $ ) be pairs of radom variables as defied i (2.). Suppose g(t, %) is a fuctio satisfyig (5.4) ad (5.5). Also assume The, 0< g(x, %) m d4(x)<, m=, 2. (&F 0 (x))(&g 0 (x)) &2 log ALR i (% 0 ) w D / 2 () as.

16 CENSORED EMPIRICAL LIKELIHOOD RATIO 8 6. SIMULATIONS AND EXAMPLES Notice our results i Sectio 2 reduce the computatio of the maximizatio to a sigle parameter *. All we eed to solve is the costrait equatio for * ad it is mootoe decreasig i *. A Splus fuctio that computes the empirical likelihood ratio described i this paper is available from the secod author. Example. For a small sample simulatio, we geerate the cesored survival data from the followig settig Survival time distributio Cesorig distributio Cumulative hazard fuctio F 0 (t)=&e &t G 0 (t)=&e &0.35t 4 0 (t)=t Sample size =20 g Parameter % 0 g(t)=e &t % 0 = 0 g(t) d4 0 (t)= The 950 cofidece iterval for % 0 ca be costructed as [% &2 log ALR(%)3.84]. Each time we compute &2 log ALR(%=) ad check to see if it is less the 3.84 (iside the iterval). I 000 idepedet such rus we recorded 947 iside for itervals that are supposed to have a asymptotical omial coverage probability of For the same data the Wald cofidece iterval based o the NelsoAale type estimator results i 920 iside out of the 000 rus. Example 2. For a cocrete example we took the data of remissio times for solid tumor patiets (=0). These are a slightly modified (break tie) versio of Lee (992, Example 4.2) 3, 6.5, 6.5, 0, 2, 5, 8.4+, 4+, 5.7+, ad 0+. Suppose we are iterested i gettig a 950 cofidece iterval for the cumulative hazard at the time t=9.8, 4 0 (9.8). Hece % 0 =4 0 (9.8). I this case the fuctio g is a idicator fuctio g(t)=i [t9.8]. The 95 0 cofidece iterval usig the empirical likelihood ratio, &2 log ALR, for 4 0 (9.8) is (0.0024,.097). O the other had, the Wald cofidece iterval based o the NelsoAale estimator ad Greewood's formula is (&0.063, 0.882). Sice the cumulative hazard fuctio is oegative, this shows that the empirical likelihood ratio based

17 82 PAN AND ZHOU cofidece iterval iherits some of the advatage from its parametric cousi. Example 3. For the implicit fuctio example we shall look at the data of Australia AIDS patiets. The descriptio of the data ad some aalysis ca be foud i Veables ad Ripley (994). We shall take the 780 cases from the State of New South Wales ad igore other covariates, i.e., treat the 780 cases as i.i.d. observatios from oe populatio. The implicit fuctio we illustrate here is the media. Sice the media may ot be uiquely defied for discrete distributio like the empirical distributios, some smoothig or other modificatio may be eeded, particularly for small sample sizes. However, those modificatios will become egligible for large samples. We shall discuss the discrete distributio i aother paper ad igore the discreteess here i this example i view of its sample size. Aother aspect of the AIDS data is that it has a lot of ties i the observatios. Sice our formula developed i this paper assumes o ties i the data, we shall break the ties by subtractig a small amout (0.0000) from the successive observatios. This is equivalet to assumig that the survival time of AIDS patiet is a cotiuous radom variable, ad ties i the data are due to roudig (to the earest day). We therefore suppose the distributio F 0 is cotiuous ad the media is uiquely defied for F 0.We shall take g(t, %)=I [t%] ad costrait g(t, %) d4(t)=log 2. The 950 cofidece iterval (434.8, 492.8) for the media of the AIDS survival data is obtaied as [% &2 log ALR i (%)<3.84] with the costrait g(t, %) d4(t)=log 2. The 0.8 i the cofidece iterval is due to the additio of 0.9 to the origial data by Veables ad Ripley ad my subtractio of a small amout to break ties. APPENDIX Lemma A. For ay radom variable Y, if E Y k < the for a i.i.d. sample Y, Y 2,..., Y that has the same distributio as Y, we have max Y i =o( k ) a.s. i Proof. See Chow ad Teicher (980, p. 3, problem No. 8). K

18 CENSORED EMPIRICAL LIKELIHOOD RATIO 83 Lemma A2. Let (T, $ ),..., (T, $ ) be i.i.d. pairs of radom variables, where each (T i, $ i ) is defied by (2.). Let also T *=max i T i. If h 2 (x) d4 0 (x)<, the max i $ i h(t i ) - (&F 0 (T i ))(&G 0 (T i )) =o(2 ) a.s. ad $ *h(t *)=o p (), where $ * is the idicator fuctio correspodig to T *. Proof. Sice h 2 (x) d4 0 (x)<, we have E F0, G 0 $ i h 2 (T i ) (&F 0 (T i ))(&G 0 (T i )) = h2 (x) d4 0 (x)<. Therefore, by Lemma A, we have max i $ i h(t i ) - (&F 0 (T i ))(&G 0 (T i )) =o(2 ), (A.) with probability as. The fact that $ * h(t *) - (&F 0 (T *))(&G 0 (T *)) max i $ i h(t i ) - (&F 0 (T i ))(&G 0 (T i )) implies $ * h(t *) - (&F 0 (T *))(&G 0 (T *)) =o(2 ), (A.2) with probability as. Let H 0 (t) be the distributio fuctio of T i, where T i =mi(x i, C i ). The &H 0 (t)=(&f 0 (t))(&g 0 (t)). If we ca show &H 0 (T *)=O p ( & ), (A.3) or - (&F 0 (T *))(&G 0 (T *))=O p ( &2 ), the it follows from (A.2) that $ *h(t *)=o p ().

19 84 PAN AND ZHOU Now we show &H 0 (T *)=O p ( & ). For ay =>0, there exists M 0 >0 such that exp(&m 0 )<=. For M>M 0 cosider P \&H 0(T *) & >M +=P \ &max i H 0 (T i ) & >M + =P( max H 0 (T i )<(& & _M)) i = + \&M exp(&m)<=. Therefore &H 0 (T *)=O p ( & ). K Lemma A3. Uder the assumptios of Theorem 2, we have, for Z i defied i (3.), Z 2 i = $ i g 2 (T i ) (&i+) 2 = g2 (t) Y(t) d4 NA(t) w P g 2 d4(t) (&F)(&G) (A.4) ad & Z 2 i &i = I [Y(t)>] g 2 (t) (Y(t)&) Y(t) d4 NA(t) w P 0 as, (A.5) where Y(t)=I [Ti t]. Proof. For (A.5), use Leglart's iequality o the itegral to switch to a similar itegral except with respect to 4(t), ad the use uiform covergece of the empirical distributios to fiish the proof. The proof of (A.4) is similar. K Lemma A4. Uder the assumptios of Theorem 2, we have, for Z i defied i (3.), - \ Z i &% 0+ =- \ g(t i ) 24 NA(T i )&% 0+ wd N(0, _ 2 4 (g)), where _ 2 4 (g)= (g2 (x) d4 0 (x)(&f 0 (x))(&g 0 (x))) ad % 0 =g(t) d4 0 (t).

20 CENSORED EMPIRICAL LIKELIHOOD RATIO 85 Proof. Notice the summatio ca be writte as a itegral g(t i ) 24 NA(T i )&% 0 = g(t) d[4 NA(t)&4 0 (t)]. Now the coutig process ad a martigale argumet similar to Aderse et al. (993, Chap. 4) ca be used to aalyze the itegral (sice g( } ) is left cotiuous, it is predictable). A applicatio of the martigale cetral limit theorem will fiish the proof. K Proof of Lemma. First we otice that if we set *=0 i the costrait equatio (2.0), the jumps W i reduce to those of the NelsoAale estimator, implyig that %=% =g(t) d4 NA(t) is always a feasible value, i.e., % # V. O the other had, otice that the derivative l(*) * =& & Z i $ i g(t i ) &i+ _ [+*Z i ] 2, ad whe evaluated at *=0 we have l(*) =& * } & *=0 Z 2 i. By Lemmas A2 ad A3 it coverges (i fact almost surely) to & g 2 (x) d4 0 (x) (&F 0 (x))(&g 0 (x)). The itegral is positive by assumptio. Therefore the derivative of l(*) at *=0 will be bouded away from zero, i fact l$(0)'<0 at least for large. This implies that if the legitimate value of *, J, covers at least a ope iterval of legth o p ( 2 ) for all large cetered at 0, the the feasible value of %, V, will also cotai a ope iterval of legth o p ( 2 ) cetered at %. Sice % &% 0 =O p ( &2 ), this will esure that % 0 will be i V, i.e., a feasible value, for large. The fact that the legitimate value of *, J, covers at least a ope iterval of legth o p ( 2 ) for all large cetered at zero ca easily be see from the defiitio of J by oticig that * =o p( 2 ) which ca be proved similarly to (3.3). The argume t for * is the same.

21 86 PAN AND ZHOU Now we tur to the asymptotic distributio of the solutio * whe %=% 0. The first step is to show that *=O p ( &2 ) where * is the solutio of (2.0) so that we ca use expasio later. Recall the defiitio of Z i i (3.) ad its boud (3.3) We rewrite (2.0) i terms of Z i 's as max Z i = max Z i =o p ( 2 ). i 0= l(*) = } % 0& & = } % 0& & = }\% 0& Z i & +*Z i } Z Z i + * & & Z i+ +* Z 2 i & +*Z i } Z Z 2 i +*Z i} & * + * max Z i Z 2& i } % 0& Z i}. (A.6) The secod term of (A.6) is O p ( &2 ) by Lemma A4. Now we cosider the first term of (A.6). Sice & Z 2= i Z 2 i & Z2, by (3.3) we have Z2 =o p(). Hece by Lemma A3 & Z 2 i w P g 2 (x) (&F 0 (x))(&g 0 (x)) d4 0(x), (A.7) ad it follows that * + * max Z i =O p( &2 ), which implies that *=O p ( &2 ). (A.8)

22 CENSORED EMPIRICAL LIKELIHOOD RATIO 87 Expadig (2.0), we obtai 0= = Z i &% 0 & * & Z i &% 0 & * & Z 2 i +*Z i Z 2 i +*2 &2 Z 3 i +*Z i. (A.9) The last term i (A.9) is bouded by ((A.8), (3.3), ad Lemma A3) * & 2 Z 3 i * 2 max Z i & Therefore we get a expressio of * as Z 2 i =O p ( & ) o p ( 2 ) O p ()=o p ( &2 ). By Lemma A4, as *= () Z i&% 0 +o () & p ( &2 ). (A.0) Z2 i Z i &% 0 =- \ g(t i ) 24 NA(T i )&% 0+ wd N(0, _ 2 4 (g)). Thus by the Slutsky theorem ad (A.7), as * 2 w D / 2 ()\ g 2 & (x) d4 0 (x). K (A.) (&F 0 (x))(&g 0 (x))+ REFERENCES. P. K. Aderse, O. Borga, R. D. Gill, ad N. Keidig, ``Statistical Models Based o Coutig Processes,'' Spriger-Verlag, New York, Y. S. Chow ad H. Teicher, ``Probability Theory,'' Spriger-Verlag, New York, B. Efro ad I. M. Johstoe, Fisher's iformatio i terms of the hazard rate, A. Statist. 8 (990), R. D. Gill, No- ad semi-parametric maximum likelihood estimators ad the VoMises Method, Part I, Scad. J. Statist. 6 (989), E. T. Lee, ``Statistical Methods for Survival Data Aalysis,'' Wiley, New York, G. Li, O oparametric likelihood ratio estimatio of survival probabilities for cesored data, Statist. Probab. Lett. 25 (995), S. A. Murphy, Likelihood ratio based cofidece itervals i survival aalysis, J. Amer. Statist. Assoc. 90 (995), S. A. Murphy ad A. W. Va der Vaart, Semi-parametric likelihood ratio iferece, A. Statist. 25 (997),

23 88 PAN AND ZHOU 9. A. B. Owe, Empirical likelihood ratio cofidece itervals for a sigle fuctioal, Biometrika 75 (988), A. B. Owe, Empirical likelihood cofidece regios, A. Statist. 8 (990), X. R. Pa ad M. Zhou, Empirical likelihood ratio, oe parameter sub-family of distributio fuctios ad cesored data, J. Statist. Pla. Iferece 75 (999), X. R. Pa ad M. Zhou, ``Empirical Likelihood i Terms of Cumulative Hazard Fuctio for Cesored Data,'' Tech. Rep. 36, Departmet of Statistics, Uiversity of Ketucky, 997b. 3. D. R. Thomas ad G. L. Grukemeier, Cofidece iterval estimatio of survival probabilities for cesored data, J. Amer. Statist. Assoc. 70 (975), Z. L. Yig, Miimum Helliger-type distace estimatio for cesored data, A. Statist. 20 (992), W. N. Veables ad B. D. Ripley, ``Moder Applied Statistics with S-Plus,'' Spriger- Verlag, New York, M. Zhou, Some properties of the KaplaMeier estimator for idepedet o-idetically distributed radom variables, A. Statist. 9 (99),

Continuity. Subtopics

Continuity. Subtopics 0 Cotiuity Chapter 0: Cotiuity Subtopics.0 Itroductio (Revisio). Cotiuity of a Fuctio at a Poit. Discotiuity of a Fuctio. Types of Discotiuity.4 Algebra of Cotiuous Fuctios.5 Cotiuity i a Iterval.6 Cotiuity

Detaljer

Gir vi de resterende 2 oppgavene til én prosess vil alle sitte å vente på de to potensielt tidskrevende prosessene.

Gir vi de resterende 2 oppgavene til én prosess vil alle sitte å vente på de to potensielt tidskrevende prosessene. Figure over viser 5 arbeidsoppgaver som hver tar 0 miutter å utføre av e arbeider. (E oppgave ka ku utføres av é arbeider.) Hver pil i figure betyr at oppgave som blir pekt på ikke ka starte før oppgave

Detaljer

TMA4245 Statistikk. Øving nummer 12, blokk II Løsningsskisse. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

TMA4245 Statistikk. Øving nummer 12, blokk II Løsningsskisse. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Vår 205 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 2, blokk II Løsigsskisse Oppgave a - β agir biles besiforbruk i liter/mil - Rimelig med α 0 fordi med x 0 ige

Detaljer

TMA4245 Statistikk Eksamen 20. desember 2012

TMA4245 Statistikk Eksamen 20. desember 2012 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA4245 Statistikk Eksame 20. desember 202 Løsigsskisse Oppgave a Sasylighete for å få 5 kro er P 5 kro = = /32 = 0.03. 25 Sasylighete

Detaljer

Prediction from Randomly Right Censored Data 1

Prediction from Randomly Right Censored Data 1 Joural of Multivariate Aalysis 80, 7300 (2002) doi:0.006jmva.2000.973, available olie at http:www.idealibrary.com o Predictio from Radomly Right Cesored Data Michael Kohler ad Kiga Ma the Uiversita t Stuttgart,

Detaljer

MU-Estimation and Smoothing

MU-Estimation and Smoothing Joural of Multivariate Aalysis 76, 277293 (2001) doi:10.1006jmva.2000.1916, available olie at http:www.idealibrary.com o MU-Estimatio Smoothig Z. J. Liu Mississippi State Uiversity C. R. Rao Pe State Uiversity

Detaljer

Asymptotics for Homogeneity Tests Based on a Multivariate Random Effects Proportional Hazards Model

Asymptotics for Homogeneity Tests Based on a Multivariate Random Effects Proportional Hazards Model Joural of Multivariate Aalysis 78, 8310 (001) doi10.1006jmva.000.1940, available olie at httpwww.idealibrary.com o Asymptotics for Homogeeity Tests Based o a Multivariate Radom Effects Proportioal Hazards

Detaljer

Second Order Hadamard Differentiability in Statistical Applications

Second Order Hadamard Differentiability in Statistical Applications Joural of Multivariate Aalysis 77, 187228 (21) doi:1.16jmva.2.1926, available olie at http:www.idealibrary.com o Secod Order Hadamard Differetiability i Statistical Applicatios Jia-Jia Re 1 Tulae Uiversity

Detaljer

On Parameters of Increasing Dimensions

On Parameters of Increasing Dimensions Joural of Multivariate Aalysis 73, 0135 (2000) doi:10.1006jmva.1999.1873, available olie at http:www.idealibrary.com o O Parameters of Icreasig Dimesios Xumig He 1 Departmet of Statistics, Uiversity of

Detaljer

Slope-Intercept Formula

Slope-Intercept Formula LESSON 7 Slope Intercept Formula LESSON 7 Slope-Intercept Formula Here are two new words that describe lines slope and intercept. The slope is given by m (a mountain has slope and starts with m), and intercept

Detaljer

The Accuracy and the Computational Complexity of a Multivariate Binned Kernel Density Estimator 1

The Accuracy and the Computational Complexity of a Multivariate Binned Kernel Density Estimator 1 Joural of Multivariate Aalysis 72, 264309 (2000) Article ID jmva.1999.1863, available olie at httpwww.idealibrary.com o The Accuracy ad the Computatioal Complexity of a Multivariate Bied Kerel Desity Estimator

Detaljer

ASYMPTOTIC NORMALITY OF THE MAXIMUM LIKELIHOOD ESTIMATOR IN. Abstract. State space models is a very general class of time series models capable of

ASYMPTOTIC NORMALITY OF THE MAXIMUM LIKELIHOOD ESTIMATOR IN. Abstract. State space models is a very general class of time series models capable of ASYMPTOTIC NORMALITY OF THE MAIMUM LIKELIHOOD ESTIMATOR IN STATE SPACE MODELS Jes Ledet Jese 1 Niels Vver Peterse 2 Uiversity of Aarhus 1;2 ad MaPhySto 1 Abstract State space models is a very geeral class

Detaljer

Trigonometric Substitution

Trigonometric Substitution Trigonometric Substitution Alvin Lin Calculus II: August 06 - December 06 Trigonometric Substitution sin 4 (x) cos (x) dx When you have a product of sin and cos of different powers, you have three different

Detaljer

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Istitutt for matematiske fag Eksamesoppgave i TMA432 Itroduksjo til viteskapelige beregiger Faglig kotakt uder eksame: Ato Evgrafov Tlf: 453 163 Eksamesdato: 6. jui 216 Eksamestid (fra til): 9: 13: Hjelpemiddelkode/Tillatte

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Høst 205 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 2, blokk II Løsigsskisse Oppgave a - β agir biles besiforbruk i liter/mil - Rimelig med α 0 fordi med x 0 ige

Detaljer

Z. D. Bai. and. Y. Wu. Department of Mathematics and Statistics, York University, 4700 Keele Street, North York, Ontario, Canada M3J 1P3

Z. D. Bai. and. Y. Wu. Department of Mathematics and Statistics, York University, 4700 Keele Street, North York, Ontario, Canada M3J 1P3 joural of multivariate aalysis 63, 119135 (1997) article o. MV971694 Geeral M-Estimatio Z. D. Bai Departmet of Applied Mathematics, Natioal Su Yat-se Uiversity, Kaohsiug, Taiwa ad Y. Wu Departmet of Mathematics

Detaljer

0.5 (6x 6x2 ) dx = [3x 2 2x 3 ] 0.9. n n. = n. ln x i + (β 1) i=1. n i=1

0.5 (6x 6x2 ) dx = [3x 2 2x 3 ] 0.9. n n. = n. ln x i + (β 1) i=1. n i=1 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 9, blokk II Løsigsskisse Oppgave a The probability is.9.5 6x( x dx.9.5 (6x 6x dx [3x x 3 ].9.5.47. b The likelihood fuctio

Detaljer

SVM and Complementary Slackness

SVM and Complementary Slackness SVM and Complementary Slackness David Rosenberg New York University February 21, 2017 David Rosenberg (New York University) DS-GA 1003 February 21, 2017 1 / 20 SVM Review: Primal and Dual Formulations

Detaljer

Analysis of Algorithms

Analysis of Algorithms Aalysis of Algorithms Aalysis Fram Most algorithms trasform iput objects ito output objects. The ruig time of a algorithm typically grows with the iput size. Average case time is ofte difficult to determie.

Detaljer

Inference for the Mean Difference in the Two-Sample Random Censorship Model

Inference for the Mean Difference in the Two-Sample Random Censorship Model Joural of Multivariate Aalysis 79, 9535 () doi:.6jva..974, available olie at http:www.idealibrary.co o Iferece for the Mea Differece i the Two-Saple Ro Cesorship Model Qihua Wag Chiese Acadey of Sciece,

Detaljer

Dynamic Programming Longest Common Subsequence. Class 27

Dynamic Programming Longest Common Subsequence. Class 27 Dynamic Programming Longest Common Subsequence Class 27 Protein a protein is a complex molecule composed of long single-strand chains of amino acid molecules there are 20 amino acids that make up proteins

Detaljer

Comparison of LR, Score, and Wald Tests in a Non-IID Setting

Comparison of LR, Score, and Wald Tests in a Non-IID Setting oural of multivariate aalysis 60, 99110 (1997) article o. MV961645 Compariso of LR, Score, ad Wald Tests i a No-IID Settig C. Radhakrisha Rao The Pesylvaia State Uiversity ad Rahul Mukeree Idia Istitute

Detaljer

Permutation Tests for Reflected Symmetry

Permutation Tests for Reflected Symmetry joural of multivariate aalysis 67, 129153 (1998) article o. MV971697 Permutatio Tests for Reflected Symmetry Georg Neuhaus ad Li-Xig Zhu* Uiversity of Hamburg, Hamburg, Germay ad Chiese Academy of Scieces,

Detaljer

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3 Relational Algebra 1 Unit 3.3 Unit 3.3 - Relational Algebra 1 1 Relational Algebra Relational Algebra is : the formal description of how a relational database operates the mathematics which underpin SQL

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT2400 Analyse 1. Eksamensdag: Onsdag 15. juni 2011. Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

Conditional Empirical Processes Defined by Nonstationary Absolutely Regular Sequences

Conditional Empirical Processes Defined by Nonstationary Absolutely Regular Sequences Joural of Multivariate Aalysis 70, 250285 (1999) Article ID jmva.1999.1822, available olie at httpwww.idealibrary.com o Coditioal Empirical Processes Defied by Nostatioary Absolutely Regular Sequeces Michel

Detaljer

Endelig ikke-røyker for Kvinner! (Norwegian Edition)

Endelig ikke-røyker for Kvinner! (Norwegian Edition) Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Click here if your download doesn"t start automatically Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Endelig ikke-røyker

Detaljer

Normal Approximation Rate and Bias Reduction for Data-Driven Kernel Smoothing Estimator in a Semiparametric Regression Model

Normal Approximation Rate and Bias Reduction for Data-Driven Kernel Smoothing Estimator in a Semiparametric Regression Model Joural of Multivariate Aalysis 80, 120 (2002) doi:10.1006mva.2000.1925, available olie at http:www.idealibrary.com o Normal Approximatio Rate ad Bias Reductio for Data-Drive Kerel Smoothig Estimator i

Detaljer

Characteristic Functions of L 1 -Spherical and L 1 -Norm Symmetric Distributions and Their Applications

Characteristic Functions of L 1 -Spherical and L 1 -Norm Symmetric Distributions and Their Applications Joural of Multivariate Aalysis 76, 192213 (2001) doi10.1006jmva.2001.1910, available olie at httpwww.idealibrary.com o Characteristic Fuctios of L 1 -Spherical ad L 1 -Norm Symmetric Distributios ad Their

Detaljer

Average Regression Surface for Dependent Data

Average Regression Surface for Dependent Data Joural of Multivariate Aalysis 75, 242 (2000) doi:0.006jmva.999.896, available olie at http:www.idealibrary.com o Average Regressio Surface for Depedet Data Zogwu Cai Uiversity of North Carolia E-mail:

Detaljer

Nonparametric analysis of covariance Holger Dette Ruhr-Universitat Bochum Fakultat fur Mathematik Bochum Germany

Nonparametric analysis of covariance Holger Dette Ruhr-Universitat Bochum Fakultat fur Mathematik Bochum Germany oparametric aalysis of covariace Holger Dette Rur-Uiversitat Bocum Faultat fur Matemati 4478 Bocum Germay email: olger.dette@rur-ui-bocum.de FAX: +49 34 7 94 559 atalie eumeyer Rur-Uiversitat Bocum Faultat

Detaljer

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001) by Simin Feng, Herbert G. Winful Opt. Lett. 26, 485-487 (2001) http://smos.sogang.ac.r April 18, 2014 Introduction What is the Gouy phase shift? For Gaussian beam or TEM 00 mode, ( w 0 r 2 E(r, z) = E

Detaljer

Call function of two parameters

Call function of two parameters Call function of two parameters APPLYUSER USER x fµ 1 x 2 eµ x 1 x 2 distinct e 1 0 0 v 1 1 1 e 2 1 1 v 2 2 2 2 e x 1 v 1 x 2 v 2 v APPLY f e 1 e 2 0 v 2 0 µ Evaluating function application The math demands

Detaljer

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postponed exam: ECON420 Mathematics 2: Calculus and linear algebra Date of exam: Tuesday, June 8, 203 Time for exam: 09:00 a.m. 2:00 noon The problem set covers

Detaljer

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2 Mathematics 4Q Name: SOLUTIONS. (x + 5)(x +5x) 7 8 (x +5x) 8 + C [u x +5x]. (3 x) (3 x) + C [u 3 x] 3. 7x +9 (7x + 9)3/ [u 7x + 9] 4. x 3 ( + x 4 ) /3 3 8 ( + x4 ) /3 + C [u + x 4 ] 5. e 5x+ 5 e5x+ + C

Detaljer

Moving Objects. We need to move our objects in 3D space.

Moving Objects. We need to move our objects in 3D space. Transformations Moving Objects We need to move our objects in 3D space. Moving Objects We need to move our objects in 3D space. An object/model (box, car, building, character,... ) is defined in one position

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON20 Forbruker, bedrift og marked, høsten 2004 Exam: ECON20 - Consumer behavior, firm behavior and markets, autumn 2004 Eksamensdag: Onsdag 24. november

Detaljer

Emneevaluering GEOV272 V17

Emneevaluering GEOV272 V17 Emneevaluering GEOV272 V17 Studentenes evaluering av kurset Svarprosent: 36 % (5 av 14 studenter) Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet PhD Candidate Samsvaret mellom

Detaljer

Stationary Phase Monte Carlo Methods

Stationary Phase Monte Carlo Methods Stationary Phase Monte Carlo Methods Daniel Doro Ferrante G. S. Guralnik, J. D. Doll and D. Sabo HET Physics Dept, Brown University, USA. danieldf@het.brown.edu www.het.brown.edu Introduction: Motivations

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag 8. desember

Detaljer

Strassen's LIL for the Lorenz Curve

Strassen's LIL for the Lorenz Curve joural of multivariate aalysis 59, 112 (1996) article o. 5 Strasse's LIL for the Lorez Curve Miklo s Cso rgo * ad Ric$ ardas Zitikis - Carleto Uiversity, Ottawa, Otario, Caada We prove Strasse's law of

Detaljer

Spectral method for deconvolving a density Marine Carrasco Department of Economics University of Rochester Jean-Pierre Flor

Spectral method for deconvolving a density Marine Carrasco Department of Economics University of Rochester Jean-Pierre Flor Spectral method for decovolvig a desity Marie Carrasco Departmet of coomics Uiversity of Rochester csco@troi.cc.rochester.edu Jea-Pierre Flores GRMAQ ad IDI, Uiversite Toulouse I ores@cict.fr Prelimiary

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. april 2008 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

A New Approach to the BHEP Tests for Multivariate Normality

A New Approach to the BHEP Tests for Multivariate Normality joural of multivariate aalysis 6, 13 (1997) article o. MV971684 A New Approach to the BHEP Tests for Multivariate Normality Norbert Heze ad Thorste Wager Uiversita t Karlsruhe, D-7618 Karlsruhe, Germay

Detaljer

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

5 E Lesson: Solving Monohybrid Punnett Squares with Coding 5 E Lesson: Solving Monohybrid Punnett Squares with Coding Genetics Fill in the Brown colour Blank Options Hair texture A field of biology that studies heredity, or the passing of traits from parents to

Detaljer

Varieties of two-dimensional cylindric algebras II

Varieties of two-dimensional cylindric algebras II Algebra uivers. 51 (004) 177 06 000-540/04/030177 30 DOI 10.1007/s0001-004-1856- c Birkhäuser Verlag, Basel, 004 Algebra Uiversalis Varieties of two-dimesioal cylidric algebras II Nick Bezhaishvili Abstract.

Detaljer

Exercise 1: Phase Splitter DC Operation

Exercise 1: Phase Splitter DC Operation Exercise 1: DC Operation When you have completed this exercise, you will be able to measure dc operating voltages and currents by using a typical transistor phase splitter circuit. You will verify your

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT BOKMÅL Eksamen i: ECON1210 - Forbruker, bedrift og marked Eksamensdag: 26.11.2013 Sensur kunngjøres: 18.12.2013 Tid for eksamen: kl. 14:30-17:30 Oppgavesettet er

Detaljer

Neural Network. Sensors Sorter

Neural Network. Sensors Sorter CSC 302 1.5 Neural Networks Simple Neural Nets for Pattern Recognition 1 Apple-Banana Sorter Neural Network Sensors Sorter Apples Bananas 2 Prototype Vectors Measurement vector p = [shape, texture, weight]

Detaljer

Generalization of age-structured models in theory and practice

Generalization of age-structured models in theory and practice Generalization of age-structured models in theory and practice Stein Ivar Steinshamn, stein.steinshamn@snf.no 25.10.11 www.snf.no Outline How age-structured models can be generalized. What this generalization

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Date of exam: Friday, May

Detaljer

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F. September 9, 2011 Physics 131 Prof. E. F. Redish Theme Music: Speed Racer Theme Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz 1 Reading questions Are the lines on the spatial graphs representing

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON360/460 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Exam: ECON360/460 - Resource allocation and economic policy Eksamensdag: Fredag 2. november

Detaljer

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) INF247 Er du? Er du? - Annet Ph.D. Student Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. juni 2010 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

Databases 1. Extended Relational Algebra

Databases 1. Extended Relational Algebra Databases 1 Extended Relational Algebra Relational Algebra What is an Algebra? Mathematical system consisting of: Operands --- variables or values from which new values can be constructed. Operators ---

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON1410 - Internasjonal økonomi Exam: ECON1410 - International economics Eksamensdag: 18.06.2013 Date of exam: 18.06.2013 Tid for eksamen: kl.

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag 7. juni

Detaljer

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23 UTKAST ENGLISH VERSION EKSAMEN I: MOT100A STOKASTISKE PROSESSER VARIGHET: 4 TIMER DATO: 16. februar 2006 TILLATTE HJELPEMIDLER: Kalkulator; Tabeller og formler i statistikk (Tapir forlag): Rottman: Matematisk

Detaljer

Information search for the research protocol in IIC/IID

Information search for the research protocol in IIC/IID Information search for the research protocol in IIC/IID 1 Medical Library, 2013 Library services for students working with the research protocol and thesis (hovedoppgaven) Open library courses: http://www.ntnu.no/ub/fagside/medisin/medbiblkurs

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksame i: ECON30 Statistikk Exam: ECON30 Statistics UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamesdag: Tirsdag. jui 00 Sesur kugjøres: Tirsdag 5. jui, ca. 6.00 Date of exam: Tuesday, Jue, 00 Grades will

Detaljer

Deskriptiv statistikk for sentrum og spredning i fordelingen. Gjennomsnitt og standardavvik. eller

Deskriptiv statistikk for sentrum og spredning i fordelingen. Gjennomsnitt og standardavvik. eller Eksempel : tall dager i sykehus. Ikke-parametriske tester versus parametriske tester Stia Lyderse Presetert på Regioal forskigskoferase for psykiatri og rusfeltet Ålesud 4 jui 03 Behadlig : 6, 5, 37,,

Detaljer

Den som gjør godt, er av Gud (Multilingual Edition)

Den som gjør godt, er av Gud (Multilingual Edition) Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Click here if your download doesn"t start automatically Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Den som gjør godt,

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON30/40 Matematikk : Matematisk analyse og lineær algebra Exam: ECON30/40 Mathematics : Calculus and Linear Algebra Eksamensdag: Tirsdag 0. desember

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt ksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON3120/4120 Mathematics 2: Calculus and linear algebra Eksamensdag:

Detaljer

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 1 MAT131 Bokmål Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 09-14 Oppgavesettet er 4 oppgaver fordelt på

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON1910 Poverty and distribution in developing countries Exam: ECON1910 Poverty and distribution in developing countries Eksamensdag: 1. juni 2011 Sensur

Detaljer

General position subsets and independent hyperplanes in d-space

General position subsets and independent hyperplanes in d-space J. Geom. c 016 Spriger Iteratioal Publishig DOI 10.1007/s000-016-033-5 Joural of Geometry Geeral positio subsets ad idepedet hyperplaes i d-space Jea Cardial, Csaba D. Tóth, ad David R. Wood Abstract.

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON3120/4120 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag

Detaljer

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen The Process Goal Definition Data Collection Data Preprocessing EDA Choice of Variables Choice of Method(s) Performance Evaluation

Detaljer

FIRST LEGO League. Härnösand 2012

FIRST LEGO League. Härnösand 2012 FIRST LEGO League Härnösand 2012 Presentasjon av laget IES Dragons Vi kommer fra Härnosänd Snittalderen på våre deltakere er 11 år Laget består av 4 jenter og 4 gutter. Vi representerer IES i Sundsvall

Detaljer

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Emneevaluering GEOV325 Vår 2016 Kommentarer til GEOV325 VÅR 2016 (emneansvarlig) Forelesingsrommet inneholdt ikke gode nok muligheter for å kunne skrive på tavle og samtidig ha mulighet for bruk av power

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSIEE I OSLO ØKONOMISK INSIU Eksamen i: ECON320/420 Mathematics 2: Calculus and Linear Algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag:. desember 207 Sensur kunngjøres:

Detaljer

Perpetuum (im)mobile

Perpetuum (im)mobile Perpetuum (im)mobile Sett hjulet i bevegelse og se hva som skjer! Hva tror du er hensikten med armene som slår ut når hjulet snurrer mot høyre? Hva tror du ordet Perpetuum mobile betyr? Modell 170, Rev.

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON20/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON20/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Fredag 2. mai

Detaljer

Graphs similar to strongly regular graphs

Graphs similar to strongly regular graphs Joint work with Martin Ma aj 5th June 2014 Degree/diameter problem Denition The degree/diameter problem is the problem of nding the largest possible graph with given diameter d and given maximum degree

Detaljer

Emnedesign for læring: Et systemperspektiv

Emnedesign for læring: Et systemperspektiv 1 Emnedesign for læring: Et systemperspektiv v. professor, dr. philos. Vidar Gynnild Om du ønsker, kan du sette inn navn, tittel på foredraget, o.l. her. 2 In its briefest form, the paradigm that has governed

Detaljer

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX)

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX) Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX) Peter J. Rosendahl Click here if your download doesn"t start automatically Han Ola of Han Per:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Mathematics 2: Calculus an linear algebra Exam: ECON3120/4120 Mathematics 2: Calculus an linear algebra Eksamensag: Tirsag 3. juni 2008

Detaljer

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) INF283, HØST 16 Er du? Er du? - Annet Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 =

Detaljer

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) INF234 Er du? Er du? - Annet Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Hvor

Detaljer

32.2. Linear Multistep Methods. Introduction. Prerequisites. Learning Outcomes

32.2. Linear Multistep Methods. Introduction. Prerequisites. Learning Outcomes Linear Multistep Methods 32.2 Introduction In the previous Section we saw two methods (Euler and trapezium) for approximating the solutions of certain initial value problems. In this Section we will see

Detaljer

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ.

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ. Oppgave 1 Beviskalklen i læreboka inneholder sluttningsregelen QR: {ψ φ}, ψ ( xφ). En betingelse for å anvende regelen er at det ikke finnes frie forekomste av x i ψ. Videre så inneholder beviskalklen

Detaljer

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes Kneser hypergraphs Frédéric Meunier May 21th, 2015 CERMICS, Optimisation et Systèmes Kneser hypergraphs m, l, r three integers s.t. m rl. Kneser hypergraph KG r (m, l): V (KG r (m, l)) = ( [m]) l { E(KG

Detaljer

TMA4329 Intro til vitensk. beregn. V2017

TMA4329 Intro til vitensk. beregn. V2017 Norges teknisk naturvitenskapelige universitet Institutt for Matematiske Fag TMA439 Intro til vitensk. beregn. V17 ving 4 [S]T. Sauer, Numerical Analysis, Second International Edition, Pearson, 14 Teorioppgaver

Detaljer

Maple Basics. K. Cooper

Maple Basics. K. Cooper Basics K. Cooper 2012 History History 1982 Macsyma/MIT 1988 Mathematica/Wolfram 1988 /Waterloo Others later History Why? Prevent silly mistakes Time Complexity Plots Generate LATEX This is the 21st century;

Detaljer

Appendix B, not for publication, with screenshots for Fairness and family background

Appendix B, not for publication, with screenshots for Fairness and family background Appendix B, not for publication, with screenshots for Fairness and family background Ingvild Almås Alexander W. Cappelen Kjell G. Salvanes Erik Ø. Sørensen Bertil Tungodden This document shows screenshots

Detaljer

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN EKSAMEN I FAGET STE 6243 MODERNE MATERIALER KLASSE: 5ID DATO: 7 Oktober 2005 TID: 900-200, 3 timer ANTALL SIDER: 7 (inklusiv Appendix: tabell og formler) TILLATTE

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag:

Detaljer

PSi Apollo. Technical Presentation

PSi Apollo. Technical Presentation PSi Apollo Spreader Control & Mapping System Technical Presentation Part 1 System Architecture PSi Apollo System Architecture PSi Customer label On/Off switch Integral SD card reader/writer MENU key Typical

Detaljer

Of all the places in the world, I love to stay at Grandma Genia and

Of all the places in the world, I love to stay at Grandma Genia and Of all the places in the world, I love to stay at Grandma Genia and Grandpa Yuda s house. I spend all my vacations there away from my nagging sister, away from my parents without ever having to wake up

Detaljer

Ukebrevet BARNEHAGEN. Velkommen til Damenes Aften - 8.februar kl se vedlegg i forrige ukebrev for mer info om denne dagen!

Ukebrevet BARNEHAGEN. Velkommen til Damenes Aften - 8.februar kl se vedlegg i forrige ukebrev for mer info om denne dagen! Ukebrevet Uke 6 (5/2-11/2) BARNEHAGEN Velkommen til Damenes Aften i Barnas Hus 3-6: 3 Velkommen til Damenes Aften - 8.februar kl 16.00-18.00 - se vedlegg i forrige ukebrev for mer info om denne dagen!

Detaljer

Smart High-Side Power Switch BTS730

Smart High-Side Power Switch BTS730 PG-DSO20 RoHS compliant (green product) AEC qualified 1 Ω Ω µ Data Sheet 1 V1.0, 2007-12-17 Data Sheet 2 V1.0, 2007-12-17 Ω µ µ Data Sheet 3 V1.0, 2007-12-17 µ µ Data Sheet 4 V1.0, 2007-12-17 Data Sheet

Detaljer

PATIENCE TÅLMODIGHET. Is the ability to wait for something. Det trenger vi når vi må vente på noe

PATIENCE TÅLMODIGHET. Is the ability to wait for something. Det trenger vi når vi må vente på noe CARING OMSORG Is when we show that we care about others by our actions or our words Det er når vi viser at vi bryr oss om andre med det vi sier eller gjør PATIENCE TÅLMODIGHET Is the ability to wait for

Detaljer

INF5820 Natural Language Processing - NLP. H2009 Jan Tore Lønning

INF5820 Natural Language Processing - NLP. H2009 Jan Tore Lønning INF5820 Natural Language Processing - NLP H2009 jtl@ifi.uio.no HMM Tagging INF5830 Lecture 3 Sep. 7 2009 Today More simple statistics, J&M sec 4.2: Product rule, Chain rule Notation, Stochastic variable

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Onsdag 6. desember

Detaljer

GEO231 Teorier om migrasjon og utvikling

GEO231 Teorier om migrasjon og utvikling U N I V E R S I T E T E T I B E R G E N Institutt for geografi Emnerapport høsten 2013: GEO231 Teorier om migrasjon og utvikling Innhold: 1. Informasjon om emnet 2. Statistikk 3. Egenevaluering 4. Studentevaluering

Detaljer

Ole Isak Eira Masters student Arctic agriculture and environmental management. University of Tromsø Sami University College

Ole Isak Eira Masters student Arctic agriculture and environmental management. University of Tromsø Sami University College The behavior of the reindeer herd - the role of the males Ole Isak Eira Masters student Arctic agriculture and environmental management University of Tromsø Sami University College Masters student at Department

Detaljer

Vekeplan 4. Trinn. Måndag Tysdag Onsdag Torsdag Fredag AB CD AB CD AB CD AB CD AB CD. Norsk Matte Symjing Ute Norsk Matte M&H Norsk

Vekeplan 4. Trinn. Måndag Tysdag Onsdag Torsdag Fredag AB CD AB CD AB CD AB CD AB CD. Norsk Matte Symjing Ute Norsk Matte M&H Norsk Vekeplan 4. Trinn Veke 39 40 Namn: Måndag Tysdag Onsdag Torsdag Fredag AB CD AB CD AB CD AB CD AB CD Norsk Engelsk M& Mitt val Engelsk Matte Norsk Matte felles Engelsk M& Mitt val Engelsk Norsk M& Matte

Detaljer

Hvordan føre reiseregninger i Unit4 Business World Forfatter:

Hvordan føre reiseregninger i Unit4 Business World Forfatter: Hvordan føre reiseregninger i Unit4 Business World Forfatter: dag.syversen@unit4.com Denne e-guiden beskriver hvordan du registrerer en reiseregning med ulike typer utlegg. 1. Introduksjon 2. Åpne vinduet

Detaljer