Characteristic Functions of L 1 -Spherical and L 1 -Norm Symmetric Distributions and Their Applications

Størrelse: px
Begynne med side:

Download "Characteristic Functions of L 1 -Spherical and L 1 -Norm Symmetric Distributions and Their Applications"

Transkript

1 Joural of Multivariate Aalysis 76, (2001) doi jmva , available olie at httpwww.idealibrary.com o Characteristic Fuctios of L 1 -Spherical ad L 1 -Norm Symmetric Distributios ad Their Applicatios Kai Wag Ng The Uiversity of Hog Kog, Hog Kog hrtwhucc.hu.h ad Guo-Liag Tia 1 Peig Uiversity ad Chiese Academy of Scieces, Beijig, People's Republic of Chia Received December 10, 1997 I this article we obtai the characteristic fuctios (c.f.'s) for L 1 -spherical distributios ad simplify that of the L 1 -orm symmetric distributios to a expressio of a fiite sum. These forms of c.f.'s ca be used to derive the probability desity fuctios (p.d.f.'s) of liear combiatios of variables. We shall show that this gives a uified approach to the treatmet of the liear fuctio of i.i.d. radom variables ad their order statistics associated with double-expoetial (i.e., Laplace), expoetial, ad uiform distributios. Some applicatios i reliability predictio, radom weightig, ad serial correlatio are also show Academic Press AMS 1991 subject classificatios 60E10, 62E15, 62G30, 62H99, 62N05. Key words ad phrases characteristic fuctio, L 1 -orm symmetric distributios, L 1 -spherical distributios, order statistics, radom weightig method, serial correlatio. 1. INTRODUCTION Osiewalsi ad Steel (1993) itroduced the class of multivariate L p -spherical distributios, the symmetry is imposed through the desity fuctio. A importat special class of L p -spherical distributios is geerated by idepedet samplig from expoetial power distributio (Box ad Tiao, 1973, Chap. 3). For p=1 the sample comes from doubleexpoetial distributio, for p=2 it correspods to samplig from a ormal, ad for p=+ it is from a uiform distributio. A -variate radom vector x is said to have ad L p -spherical distributio, deoted by 1 Preset address Departmet of Biostatistics ad Epidemiology, St. Jude Childre's Research Hospital, 332 North Lauderdale St., Memphis, TN guoliag.tia stjude.org X Copyright 2001 by Academic Press All rights of reproductio i ay form reserved. 192

2 FUNCTIONS OF L 1 DISTRIBUTIONS 193 xts(, p; G), if x = d R*}w, w has the uiform distributio o the surface of the L p -sphere i R, F, p = {x=(x 1,..., x ) T &<x j <+, x j p =1 =, (1.1) ad R*, beig idepedet of w, is uivariate oegative radom variable with c.d.f. G. Based o the symmetry of a stochastic represetatio, Gupta ad Sog (1997a, b) recetly studied the properties of the L-spherical distributio. The c.f. of the L p -spherical distributio has ot bee available. Yue ad Ma (1995) developed a family of the multivariate versios of the Weibull distributios, called the multivariate L p -orm symmetric distributios, which are extesios of the family of multivariate L 1 -orm symmetric distributios studied by Fag ad Fag (1988). A -dimesioal radom vector z is said to have a L p -orm symmetric distributio, deoted by ztl(, p; G), if z = d R*}u, u is uiformly distributed o the L p -orm closed simplex i R, + T, p = {x=(x 1,..., x ) T x j 0, x p j =1 =, (1.2) ad R*, beig idepedet of u, is uivariate oegative radom variable with c.d.f. G. Whe p=1, we deote F,1 ad T,1 by F ad T respectively. The c.f. of the uiform distributio o T, i.e., utu(t ), is give by Fag et al. (1990, p. 116) as follows E(e ittu )=1() e it j=0 i j 1(+ j) r 1 +}}}+r &1=j &1 ` (t &t ) r. (1.3) Note that the right side of (1.3) is a summatio with ifiite terms. I this paper we shall employ the partial-fractio expasio, the CKS (Cambais, Keeer, ad Simos) formula ad the HG (Hermite Geocchi) formula to obtai for the first time the c.f. for L 1 -spherical distributios i Theorem 1 of Sectio 3. Our secod cotributio is to simplify (1.3) as fiite summatios for three differet situatios (see Theorem 2). Aalogous results are developed for the c.f.'s of ztl(, 1; G) ad ytu(v ), V V (1) is a special case of the ope simplex i R +, V (c)= {x=(x 1,..., x ) T x j 0, x j c =, (1.4) c is a positive costat. I Sectio 4, we use the c.f. to obtai the p.d.f. of the liear combiatios of variables for three ids of cases. This leads to a uified approach to the treatmet of the liear fuctio of i.i.d.

3 194 NG AND TIAN radom variables ad their order statistics associated with expoetial ad uiform distributios. The formula (5.5.4) of David (1981, p. 103) is a direct cosequece of our (4.13). The applicatios i reliability predictio, radom weightig ad serial correlatio are show i Sectio PRELIMINARIES I order to derive the characteristic fuctios i the ext sectio, we shall collect some useful formulae about the partial-fractio expasio ad other multi-fold itegrals o the ope simplex V (c) Partial-Fractio Expasio. A lot of useful formulae ca be obtaied by combiig the surface itegral formula with the partialfractio idetity (Hazewiel, 1990, p. 311) N(x) (x&b 1 )}}}(x&b ) = N(b ) 2(b 1,..., b ) x&b, (2.1) 2 (b 1,..., b )=> j{, (b &b j ) &1, N(x) is a polyomial of degree r, 0r&1, ad b j {b for j,,...,, j{. Especially, taig N(x)=&x i (2.1) ad settig x=0, we have 0= 2 (b 1,..., b ). (2.2) 2.2. CKS Formula. Let h( } ) ad g( } ) be measurable fuctios o R 1 + ad R 1 respectively, ad further let g( } ) have the (&1)th absolutely cotiuous derivatives. It ca be show by iductio ad through the use of (2.2) that (Cambais et al. 1983, p. 225) R + h \ = x j+ g(&1) \ s j x j+ dx 2 (s 1,..., s ) h(u) g(us ) du. (2.3) From the proof of Theorem 3.1 i Cambais et al. (1983, pp ), we ow that (2.3) ca derive the itegral h \ R + x j+ ` cos(s j x j ) dx= 0 2 (s 2,..., 1 s2)}b (s 2 ), (2.4)

4 FUNCTIONS OF L 1 DISTRIBUTIONS 195 B (t)={(&1) (&1)2 t (&1)2 cos(u - t) h(u) du, 0 (&1) (&2)2 t (&1)2 si(u - t) h(u) du, 0 odd, eve. We shall call (2.4) the CKS formula i the followig. A alterative versio of (2.3) is give by V (c) h \ Aother importat formula is x j+ g(&1) \ s j x j+ dx = 2 (s 1,..., s ) c h(u) g(us ) du. (2.5) 0 h \ x V (c) j+ dx= 1 (&1)! c h(u) u &1 du, (2.6) which ca be obtaied by usig (5.10) of Fag et al. (1990, p. 115) HG Formula. The classical HermiteGeocchi (HG) formula (Karli et al., 1986, p. 71) ca be stated as T g (&1) 0 \ s j x j+ dx=- g(s ) 2 (s 1,..., s ), (2.7) dx deotes the volume elemet of T ad g( } ) has the same meaig as i (2.3). The followig three lemmas will be used i the sequel ad their proofs are omitted. Lemma 1. Assume that t # R 1 +, b # R1, ad b{0. Let! =! (t; b) t 0 ebx } x &1 dx, the! (t; b)=!(&b) & &! t e bt (&bt) & (&)!. (2.8) Lemma 2. Assume that t # R 1 +, a, b # R1, ad b{0. Let ' =' (t; a, b) t 0 cos(a+xb)}x &1 dx ad `=`(t; a, b) t 0 si(a+xb)}x &1 dx. Deote the largest iteger ot exceedig x by [x]. The

5 196 NG AND TIAN [(+1)2]&2 ' =si(a+tb) =0 [(+1)2]&2 +cos(a+tb) =0 (&1) (&1)! b 2+1 t &2&1 (&2&1)! (&1) (&1)! b 2+2 t &2&2 (&2&2)! +(&1) [(+1)2]&1 (&1)! b } C (t; a, b), (2.9) [(+1)2]&2 `=&cos(a+tb) =0 [(+1)2]&2 +si(a+tb) =0 (&1) (&1)! b 2+1 t &2&1 (&2&1)! (&1) (&1)! b 2+2 t &2&2 (&2&2)! +(&1) [(+1)2]&1 (&1)! b } D (t; a, b), (2.10) C (t; a, b)= {si(a+tb)&si(a), (tb) si(a+tb)+cos(a+tb)&cos(a), D (t; a, b)= {cos(a)&cos(a+tb), &(tb) cos(a+tb)+si(a+tb)&si(a), odd, eve. odd, eve. Lemma 3. Assume that t # R 1 +, b # R1, ad defie The we have &1 $ (t) cos V&1 (t) \t& $ (t)= (t2)&1 (&1)! &1& _ j=0 \ &1 =0 &1 u j+ ` 2 \&1 t + & the fuctio ' + j is give by (2.9). cos(u j ) du j. &1& j + (&t)&j ' + j (t; t, &0.5), (2.11) 3. CHARACTERISTIC FUNCTIONS Cosider x=(x 1,..., x ) T which has a L 1 -spherical distributio, i.e., xts(, 1;G). The the c.f. of x is give by E(e itt x )=E(e itt R*}w )=, w (r*t 1,..., r*t ) dg(r*), (3.1) 0

6 FUNCTIONS OF L 1 DISTRIBUTIONS 197 R* has c.d.f. G ad, w is the c.f. of wtu(f ). Therefore, it suffices to ivestigate, w. A special feature of this characteristic fuctio is that it is a real fuctio. We have the followig mai result. Theorem 1. Let, w (t 1,..., t ) be the c.f. of wtu(f ), the, w (t 1,..., t ) ={1() 1() (&1) (&1)2 t &1 cos(t )}2 (t 2 1,..., t2 ), (&1) (2)&1 t &1 t 2 j {t2, for j,,...,, j{. si(t )}2 (t 2 1,..., t 2 ), odd, eve, (3.2) Proof. The techique i provig this case is similar to that of Lemma 7.1 i Fag et al. (1990, p. 185). Let x 1,..., x be a i.i.d. sample from double-expoetial with p.d.f. (2*) &1 exp[&* &1 x ], *>0, &<x<, that is, x 1,..., x t iid DE(*), x=(x 1,..., x ) T. It follows from Theorem 1.1 i Sog ad Gupta (1997a, b) that w=(w 1,..., w ) T = d \ x 1< x j,..., x < x j + T tu(f ). (3.3) Without loss of geerality, we tae *=1 ad obtai the c.f. of w as, w (t 1,..., t ) =E exp[it T w]=e exp {itt x < = R = R + x j = exp t 1x 1 +}}}+t x {i x 1 + }}} + x = 2& exp[&( x 1 + }}} + x )]dx exp[&(x 1 +}}}+x )] ` cos \ t j x j x 1 +}}}+x + dx,

7 198 NG AND TIAN i the last step we have used the symmetry of the itegrad. The trasformatio y j =x j x i=1 i, 1j&1, y = x i=1 i, has the Jacobia J(x 1,..., x y 1,..., y )=y &1. Therefore, we have, w (t 1,..., t ) =1() V&1 &1 cos \ _t 1& &1 y j+& ` cos(t j y j ) dy j. (3.4) Puttig h(u)=cos(t (1&u)) } I [0, 1] (u) i the CKS formula (2.4), I D ( } ) represets the idicator fuctio of domai D, we have &1, w (t 1,..., t )=1() 2 (t 2 1,..., t2 &1 )}B &1(t 2 ), B &1 (t)={(&1) (&2)2 t (&2)2 (- t si(- t)&t si(t ))(t&t 2 ), &1 odd, (&1) (&3)2 t (&2)2 } - t(cos(t )&cos(- t))(t&t 2 ), &1 eve. Notig the idetity (&1) (&3)2 t &1 2 (t 2,..., 1 t2 )=0, is odd, (3.5) which ca be obtaied by taig N(x)=(&1) (&1)2 x (+1)2 i (2.1) ad settig x=0, we have, whe is odd,, w (t 1,..., t ) &1 =1() 2 (t 2 1,..., t 2 )}(&1)(&3)2 t &1 (cos(t )&cos(t )). This implies the first expressio of (3.2) by virtue of (3.5). Liewise the secod expressio of (3.2) ca be reached. K Remar 1. (i) If t 2 j =t2,for,...,, the we have, w (t,..., t)=1() t &(&1) $ (t), (3.6) the fuctio $ (t) is give by (2.11). I fact, if t=0, of course,, w (0,..., 0)=1. Sice, w (&t,..., &t)=, w (t,..., t), we may assume without loss of geerality that t>0. Formula (3.6) follows immediately by usig (3.4) ad (2.11).

8 FUNCTIONS OF L 1 DISTRIBUTIONS 199 (ii) I priciple, the c.f. of wtu(f ) for other cases ca be obtaied by taig appropriate limits of (3.2) because of uiform cotiuity i real space R. For example, let be odd. The from (3.2) we have, whe t 2 1 =}}}=t2 r =t2,2r<, adt 2,..., r+1 t2, t2 are distict,, w (t 1,..., t ) 1()(&1) (&1)2=0 r } + ` j=r+1 =r+1 (t 2 &t 2 j )&1 t &1 cos(t ) (t 2 &t2 ) r 2 (t 2 r+1,..., t2 ), 0 r lim t 1 t,..., t r t r t &1 cos(t ) 2 (t 2 1,..., t2 r ). If we could fid a geeral expressio for 0 r, other cases follow from (3.2). I fact, this idea will be employed i showig Theorems 2 ad 3. However, there is a techical difficulty for the preset theorem ad its corollary. For ay specific r, oe ca wor out 0 r. For example, 0 2 = 1 2[(&1) t &3 cos(t)&t &2 si(t)], 0 3 = 1 8 [(&t&3 +(&1)(&3) t &5 )cos(t) &((&1) t &4 +(&2) t &5 ) si(t)]. But it is ot easy to fid the recursive patter of 0 r, hece iductio caot be used i this situatio. A direct attac o the geeral patter of 0 r without iductio would be eve harder. Next, let us cosider the uiform distributio iside the L 1 -sphere i R, E = {x=(x 1,..., x ) T x # R, x j 1 =. If vtu(e ), the the joit p.d.f. of v is 2 &!}I E (v) (see Gupta ad Sog, 1997a, Example 2.7). I this case, we ca represet it as v = d R*}w with R*tBe(, 1) beig idepedet of wtu(f ); that is, vts(, 1;G) with G(x)=x } I [0, 1] (x). We use Be(a, b) to deote the beta distributio with parameters a ad b. Applyig (3.1) ad Theorem 1, we immediately obtai

9 200 NG AND TIAN Corollary 1. Let v (t 1,..., t ) be the c.f. of vtu(e ), the v (t 1,..., t ) ={!! (&1) (&1)2 t &2 si(t )}2 (t 2 1,..., t2 ), (&1) 2 t &2 cos(t )}2 (t 2 1,..., t2 ), odd, eve, t 2 j {t2, for j,,...,, j{. Now let us cosider the c.f. of a L 1 -orm symmetric distributio. Let z=(z 1,..., z ) T have such a distributio, i.e., ztl(, 1;G), the the c.f. of z is give by E(e ittz )=E(e )= ittr*}u 8 u (r*t 1,..., r*t ) dg(r*), 0 R* has c.d.f. G ad 8 u is the c.f. of utu(t ). If the momet geeratig fuctio (m.g.f.) E(e st u ) of radom vector u is available, we ca obtai the c.f. of u by replacig s with it. For this reaso, we derive the m.g.f. of U(T ) to sigify that all momets exist. Theorem 2. Let 8 u (s 1,..., s ) be the m.g.f. of utu(t ). (i) If s j {s, for j,,...,, j{, the 8 u (s 1,..., s )=(&1)! e s 2 (s 1,..., s ). (3.7) (ii) (iii) If s j =s, for,...,, the 8 u (s,..., s)=exp(s). If s 1 =}}}=s r =s, 2r<, ad s, s r+1,..., s are distict, the 8 u (s 1,..., s )=(&1)! { e s (r&1)! + =r+1 ` j=r+1 (s&s j ) &1 e s (s &s) &r 2 (s r+1,..., s ) =. (3.8) Proof. (i) Sice the joit p.d.f. of utu(t ) is (&1)!- } I T (u), the the m.g.f. of u is give by 8 u (s 1,..., s )=E(e st u )= (&1)! - T exp { s j u j= du.

10 FUNCTIONS OF L 1 DISTRIBUTIONS 201 Applyig the HG formula (2.7) to the fuctio g(t)=exp(t), we obtai (3.7) immediately. (ii) (iii) It is trivial. Cosiderig the limit of (3.7), we have 8 u (s 1,..., s ) (&1)! =0 r *} ` + j=r+1 =r+1 (s&s j ) &1 e s (s &s) &r 2 (s r+1,..., s ), (3.9) 0 r * lim s 1 s,..., s r s r e s 2 (s 1,..., s r ). I particular, we ca obtai 0 2 *=e s, 0 3 *= es 2!, 0 4*= es 3!,.... Therefore 0 r *=e s (r&1)!. By substitutig this ito (3.9), we obtai (3.8). K Now we tur to the c.f. of U(V ). Agai, we ca do more by derivig the m.g.f. of U(V ). Theorem 3. Let 9 y (s 1,..., s ) be the m.g.f. of ytu(v ). (i) If s j {s, for j,,...,, j{, the 9 y (s 1,..., s )=! s &1 (es &1) 2 (s 1,..., s ). (3.10) (ii) If s j =s, for,...,, the 9 y (s,..., s)=!(&s) & &! e s (&s) & (&)!. (3.11)

11 202 NG AND TIAN (iii) If s 1 =}}}=s r =s, 2r<, ad s, s r+1,..., s are distict, the 9 y (s 1,..., s ) r =! &e s {\(&s)&r + =r+1 (&s) & (r&)! + ` j=r+1 (s&s j ) &1 s &1 (es &1)(s &s) &r 2 (s r+1,..., s ) =. (3.12) Proof. (i) As the joit p.d.f. of ytu(v )is!}i V (y), we have E(e sty )=! V exp { s j y j= dy. (3.13) If all s 1,..., s are distict, we see from (3.13) ad (2.5) that E(e sty )=! 2 (s 1,..., s ) 1 exp( ys ) dy 0 =! 2 (s 1,..., s ) s &1 (es &1), which implies (3.10). (ii) If all s j =s, for,...,, we have from (3.13) ad (2.6) E(e sty )=! V exp {s y j= dy= 1 So we obtai (3.11) by Lemma 1. (iii) Cosiderig the limit of (3.10), we have 0 e sx } x &1 dx=! (1; s). 9 y (s 1,..., s )! =0 r ** } ` + j=r+1 =r+1 (s&s j ) &1 s &1 (es &1)(s &s) &r 2 (s r+1,..., s ), (3.14) 0 r ** lim s 1 s,..., s r s r s &1 (es &1) 2 (s 1,..., s r ).

12 FUNCTIONS OF L 1 DISTRIBUTIONS 203 I particular, we have 0 2 ** =s &2 (se s &e s +1), 0* 3 *=s &3 ( 1 2 s2 e s &se s +e s &1), 0 4 **=s &4 ( 1 6 s3 e s & 1 2 s2 e s +se s &e s +1),.... The geeral patter of 0 r ** is ot quite obvious. Notig that the limit of (3.10) is (3.11), i.e., lim s 1 s,..., s s =(&s) & &e s s &1 (e s &1) 2 (s 1,..., s ) (&s) & (&)!. (3.15) We have 0 r **=(&s) &r &e s r (&s)& (r&)! by replacig with r i (3.14). By substitutig of 0 r ** ito (3.14), we obtai (3.12). K 4. DENSITY FUNCTIONS FOR LINEAR FORMS We first cosider the liear fuctio associated with U(F ) ad the double-expoetial distributio. Let x 1,..., x t iid DE(1) ad x=(x 1,..., x ) T. From (3.3), we ow that w=x x tu(f ). We are ofte iterested i the exact p.d.f. of liear fuctio such as w=a T w= a w ad x=a T x= a x. (4.1) Sice &x = d x ad &w = d w, we ca assume without loss of geerality that all a 1,..., a are positive. The cofiguratio classificatios for [a 1,..., a ] are as follows. Case 1. All a are differet, say, 0<a 1 <}}}<a. Case 2. All a are equal, say, a 1 =}}}=a =1. Case 3. At least two of a are equal. For example, (a 1,..., a 5 ) T = (0.5,0.5,1,4,4) T ; For Cases 1 ad 2, we have the followig results.

13 204 NG AND TIAN Theorem 4. Case 1. The p.d.f.'s ofw=a T w ad x=a T x are respectively give by f 1 (w)= g 1 (x)= { } &1 &2 2a \ 1& w I a + [&a, a ] (w), (4.2) 1 { } exp 2a x \& a +, &<x<+, (4.3) { =a 2(&1) 2 (a 2,..., 1 a2 ),,...,. (4.4) Case 2. give by The p.d.f.'s ofw= w ad x= x are respectively f 2 (w)= g 2 (x)= \ } w &1 (1& w ) &&1, w 1, (4.5) 2B(, &) \ } x &1 exp(& x ), &<x<+, (4.6) 21() \ = \2&&1 &1 +< 22&&1,,...,. (4.7) Proof. Case 1. It suffices to cosider the situatio whe is odd. From (3.2), the c.f. of w=a T w is. w (t)=e(e itw )=E(e itat w )=, w (ta 1,..., ta ) =1() (&1) (&1)2 a &1 2 (a 2 1,..., a2 )}t&(&1) cos(ta ). I terms of the iversio theorem, the p.d.f. of w is give by f 1 (w)= 1 2? + & = 1 2? } 1() e &itw. w (t) dt (&1) (&1)2 a &1 2 (a 2 1,..., a2 )}I 1, (4.8)

14 FUNCTIONS OF L 1 DISTRIBUTIONS 205 I 1 + & e &itw } t &(&1) cos(ta ) dt= + e &itw (e ita +e &ita ) dt. & 2t &1 By meas of residue theorem i complex aalysis, Stuart ad Ord (1987, p. 362) derived the complex itegral + e ibz & z dz= { &2?i b &1 (&1)!, 0, if if b0, b>0, (4.9) which ca be employed to give I 1 = {?(&1)(&1)2 (a & w ) &2 (&2)!, 0, w a, otherwise. (4.10) By substitutig (4.10) ito (4.8), we obtai (4.2). Defie ` x, the `tga(, 1) ad idepedet w (Gupta ad Sog, 1997a, Theorem 1.1). So x=w } ` ad ` is idepedet of w. The p.d.f. of x=a T x is give by g 1 (x)= 0 = which implies (4.3). f 1\ x t+ 1 t } t&1 e &t dt 1() { } &1 2a x x a \ 1& ta + &2 t &2 e &t dt, 1() Case 2. c.f. to p.d.f. It ca be show similarly by usig the iversio theorem from K Some isights ito (4.2)(4.6) are give i Remar 2 below. We recall some distributios related to the beta distributio. Deote by xt Be( p, q; a), the beta distributio with scale a, ifx has p.d.f. 1 a } B( p, q)\ x p&1 q&1 a+ \ 1&x, 0xa, a>0. a+ The p.d.f.'s of the symmetric beta distributio ad the symmetric beta distributio with scale a are respectively defied as

15 206 NG AND TIAN 1 2}B( p, q) x p&1 (1& x ) q&1, p&1\ 1& x a + 1 2a } B( p, q) } x a} x 1, q&1, x a, a>0, ad they are symbolized by Sbe( p, q) ad Sbe( p, q; a). Remar 2. (i) We ow that each compoet w of w has the same symmetric beta distributio with parameters 1 ad &1, i.e., w t Sbe(1, &1), thereby, a w tsbe(1, &1; a ). Equatio (4.2) idicates that the distributio for the sum of depedet variables with Sbe(1, &1; a ) is the mixture of Sbe(1, &1; a ). Liewise, (4.3) implies that the distributio for the sum of idepedet variables with DE(a ) (a x tde(a )) is the mixture of DE(a ). (ii) Formula (4.5) ad (4.6) deote the mixtures of the symmetric beta distributio Sbe(, &) ad the symmetric gamma distributio SGa(, 1) respectively. The latter coicides with the result listed o p. 24 of Johso ad Kotz (1970). Now let us cosider the exact distributio of liear fuctio y=a T y= a y, y=(y 1,..., y ) T tu(v ). The relatioship betwee the c.f. of y=a T y ad the c.f. of y is. y (t)=9 y (ta 1,..., ta ). By meas of (3.10), we have. y (t)=! _ } exp(ita )&1 (ita ), (4.11) _ =a &1 2 (a 1,..., a ),,...,. (4.12) I aalogy with (4.8), the p.d.f. of y=a T y is give by h 1 ( y)=! 2? I 2 = + & By (4.9), we have for some fixed a, _ 1 (ia ) } I 2, e it(&y+a ) t dt& + e &ity & t dt. I 2 = { &2?i ( y&a ) &1 }(&1) (&1)!, &2?i (&y+a ) &1 (&1)!, if a >0, 0ya, if a <0, a y0,

16 FUNCTIONS OF L 1 DISTRIBUTIONS 207 that is, I 2 = 2?i (a & y) &1 } sg(a )}I [mi(0, a ), max(0, a (&1)! )]( y). These results are summarized ito the followig theorem. Theorem 5. Let y=(y 1,..., y ) T tu(v ). If all a ({0) are differet, the the p.d.f. of y=a T y= a y is h 1 ( y)= _ } a \ 1& y &1 a + } sg(a )}I [mi(0, a ), max(0, a )]( y), (4.13) weights [_,,..., ] are give by (4.12) ad sg( } ) deotes the sig fuctio. Remar 3. (i) Whe a >0, the formula (5.5.4) i David (1981, p. 103) coicides with (4.13), which idicates that h 1 ( y) is the mixture of Be(1, ; a ), the beta distributio with scale a. (ii) If a 1 =}}}=a =1, it is easy to see y= y tbe(, 1) by viewig (3.11). Correspodig to Theorem 5, we have Theorem 6. Let u=(u 1,..., u ) T tu(t ). If all a ({0) are differet, the the p.d.f. of u=a T u= a u is h 2 (u)= _ } &1 a \ 1& u &1 a + } sg(a )}I [mi(0, a ), max(0, a )](u), (4.14) weights [_,,..., ] are give by (4.12). Fially, we preset a uified approach to liear fuctios of variables. We shall adopt the followig otatios for samples ad their order statistics y=(y 1,..., y ) T tu(v ), y (1) }}}y (), u=(u 1,..., u ) T tu(t ), u (1) }}}u (), z=(z 1,..., z ) T tl(, 1;G), z (1) }}}z (),!=(/ 1,...,! +1 ) T t iid E(1),! (1) }}}! (+1), '=(' 1,..., ' ) T t iid U[0, 1], ' (1) }}}' (),

17 208 NG AND TIAN E(*) deotes the expoetial with p.d.f. * &1 exp(&* &1!), *>0,!>0. We shall illustrate that all distributios of the liear fuctios b y (), b u (), b z (), c z, ad c! b! (), b ' (), ca be reduced to the distributio of a y as give by (4.13) or to that of a u as give by (4.14). (i) b y () a y. From Example 5.1 of Fag et al. (1990, p. 121), we ow that ytu(v ) belogs to the class of the L 1 -orm symmetric distributio. Therefore, the coclusio stated i Theorem 5.12 of Fag et al. (1990, p. 126) is also available to y. Defie y * (&+1) ( y () & y (&1) ), y (0) =0,,...,, called ormalized spacigs of y, the ( y 1 *,..., y *) T = d y, which implies b y () = d a y, a = j= b j (&+1). (4.15) (ii) b u () a u. Sice utu(t ) also belogs to the family of the L 1 -orm symmetric distributio, similar to (4.15), we obtai b u () = d a u, a = j= b j (&+1). (iii) b z () ad c z a y. Now z=(z 1,..., z ) T tl(, 1;G) which implies z = d R*}u, R*tG( } ) idepedet of utu(t ), hece b z () = d R*} b u (), c z = d R*} c u. (iv) b! () ad c! a y. Because ( y 1,..., y ) T = d +1 \ 1<! +1!,...,! < T! +,

18 FUNCTIONS OF L 1 DISTRIBUTIONS 209 the b! () = d c! = d c!, c = j= b j (&+1), +1 \! + } a y, a =c, +1! tga(+1, 1) idepedet of a y. (v) b ' () a y.nowy = d (' () & ' (&1) ), ' (0) =0,,...,, the b ' () = d a y, a = j= b j. 5. APPLICATIONS I this sectio, we shall demostrate the usefuless of the precedig results with three importat examples predictig the reliability of compoets i a system, the radom weightig method, ad serial correlatio. Example 1 (Predictio Problem i Reliability). Cosider the oparametric problem of predictig a T x (2) based o the first m observatios x (1), a is a (&m)_1 scalar vector ad x=(x T, (1) xt (2) )T t S(, 1;G). It is easy to see that t(x)=a T x (2) m x is scale-ivariat (see, Gupta ad Sog, 1997a, Theorem 6.2). Hece we ca tae x= (x 1,..., x ) T, x 1,..., x t iid DE(1). If all compoets of a are 1, the the p.d.f. of xa T x (2) = x =m+1 from (4.6) is give by &m g 2 (x)= \ &m, } x &1 exp(& x ), &<x<. 21() Sice m x tga(m, 1) ad is idepedet of a T x (2), the p.d.f. of t(x) is h(u)= 1 g 2 (uv)} 1(m) vm&1 e &v vdv 0 &m = u &1 1 \ &m, } 2B(, m) } (1+ u ) +m. (5.1)

19 210 NG AND TIAN I this case we ca obtai the predictio iterval [L 1, U 1 ] of a T x (2) = =m+1 x for a give cofidece coefficiet 1&, 1&=P {L 1 x U =m+1 1= Hece =P { L 1 m x t(x) U 1 m x =. [L 1, U 1 ]= _\ m x + } L 2, \ m L 2 ad U 2 are determied by virtue of (5.1) by 1&=P[L 2 t(x)u 2 ]= U 2 x + } U 2&, (5.2) L 2 h(u) du. (5.3) I the same fashio we may also get the predictio iterval of a T x (2) whe a i {a j, i{ j, by meas of (4.3). Example 2 (Radom Weightig Method). Sice Efro's (1979) wellow paper appeared there has bee cosiderable wor o resamplig methods. Amog all of these techiques, the bootstrap is the simplest ad most attractive oe, ad the radom weightig method is a alterative which is aimed at estimatig the error distributio of estimators. Let x =++e,, 2,..., (5.4) be a measure model, [e,, 2,...] are radom errors of measuremets. It is assumed that [e 1, e 2,...] are i.i.d. with a commo distributio fuctio F(x) satisfyig xdf(x)=+ ad (x&+) 2 df(x)= _ 2 >0, ad that + ad _ 2 are uow. The commo estimator for + is the sample mea x, with sample size. To costruct a cofidece iterval for +, we eed to ow the distributio of the error x &+. The mai idea of the radom weightig method is to costruct a distributio based o samples x 1,..., x, to mimic the distributio of x &+. Letu=(u 1,..., u ) T t U(T ) be idepedet of x 1,..., x, ad defie D *=- (x &x ) u, (5.5) which is the weighted mea of - (x &x ) with radom weight u. Zheg (1987, 1992) shows that D * (x 1, x 2,...), the coditioal distributio of D *

20 FUNCTIONS OF L 1 DISTRIBUTIONS 211 give (x 1, x 2,...), is close to the distributio of the error - (x &+) whe is large, i.e., with probability oe, D * (x 1, x 2,...) w L N(0, _ 2 ), (5.6) the otatio w L stads for covergece i law, provided that i model (5.4) the errors [e,,2,...] are i.i.d. with E(e )=0 ad Var(e )=_ 2 <. Our iterest here is to fid the exact (coditioal) p.d.f. of D * (x 1, x 2,...). I fact, the (coditioal) p.d.f. of D * (x 1, x 2,...) is a mixture of beta distributios with scale by virtue of (4.14) with a =- (x &x ). Example 3 (Serial Correlatio Problem). Cosider the followig model of time series (Johso ad Kotz, 1970, p. 233) X t =\X t&1 +Z t, \ <1, t=1, 2,..., (5.7) the Z$ t s are mutually idepedet uit ormal variables, ad further, Z t is idepedet of all X for <t. Defie a modified ocircular serial correlatio coefficiet as R 1, 1 = &1 2&1 (X &X 1)(X +1 &X 1)+ X 1= &1 =+1 2 (X &X 1) 2 + =+1 2 X ; X 2= &1 (X &X 2)(X +1 &X 2) (X &X 2) 2, (5.8) =+1 The exact distributio of R 1, 1 has bee obtaied by Pa (1968) for the case whe the correlatio betwee X i ad X j is \ for i& j =1, ad is 0 otherwise. I this case it ca be show that R 1, 1 is distributed as ( &1 *! )( &1! ), the!'s are mutually idepedet variables, each distributed as stadard expoetial, i.e., (! 1,...,! ) T t iid E(1), ad * 2&1 =cos(2?(+1)),, 2,..., [2], while * 2, * 4,..., * 2[(&1)2] are roots of the equatio X. (1&*) &2 [(& 1 2 ) & 1 2 D &1(*)&(+1&*) D (*)]

21 212 NG AND TIAN with D (*)= \ &1 2 * + [2+1] \ +1 2&1+ (&1)&1 (* 2 &1) &1. It's easy to see that R 1, 1 has the same distributio as &1 * u whose p.d.f. is give by (4.14) with (u 1,..., u &1 ) T tu(t &1 ). ACKNOWLEDGMENTS The authors express their gratitude to Drs. G. Wei, H. B. Fag, M. Y. Xie, ad R. X. Yue for their commets. Special thas go to Dr. R. Z. Li for valuable suggestios. The authors are grateful to the reviewers for costructive commets which have greatly improved Theorems 2 ad 3. This wor was partially supported by a FRG grat from the Hog Kog Baptist Uiversity, the Statistics Research ad Cosultacy Cetre of HKBU, ad The Chiese Academy of Scieces. REFERENCES 1. G. E. P. Box ad G. C. Tiao, ``Bayesia Iferece i Statistical Aalysis,'' Addiso Wesley, Readig, S. Cambais, R. Keeer, ad G. Simos, O -symmetric multivariate distributios, J. Multivariate Aal. 13 (1983), H. A. David, ``Order Statistics,'' 2d ed., Wiley, New Yor, B. Efro, Bootstrap methods Aother loo at the jacife, A. Statist. 7 (1979), K. T. Fag ad B. Q. Fag, Some families of multivariate symmetric distributios related to expoetial distributio, J. Multivariate Aal. 24 (1988), K. T. Fag, S. Kotz, ad K. W. Ng, ``Symmetric Multivariate ad Related Distributios,'' Chapma ad Hall, Lodo, A. K. Gupta ad D. Sog, L p -orm spherical distributio, J. Statist. Plaig Iferece 60 (1997a), A. K. Gupta ad D. Sog, Characterizatio of p-geeralized ormality, J. Multivariate Aal. 60 (1977b), M. Hazewiel, ``Ecyclopedia of Mathematics,'' Vol. 9, Kluwer, Dordrecht, N. L. Johso ad S. Kotz, ``Distributio i Statistics Cotiuous Uivariate Distributio2,'' Vol. 3, Wiley, New Yor, S. Karli, Micchelli, ad Y. Riot, Multivariate splies A probabilistic perspective, J. Multivariate Aal. 20 (1986), J. Osiewalsi ad M. F. J. Steel, Robust Bayesia iferece i L q -spherical models, Biometria 80 (1993), J. J. Pa, Distributio of the serial correlatio coefficiets with o-circular statistics, i ``Selected Traslatios i Mathematical Statistics ad Probability,'' Vol. 7, pp , America Mathematics Society, Providece, RI, D. Sog ad A. K. Gupta, L p -orm uiform distributio, Proc. Amer. Math. Soc. 125 (1997), A. Stuart ad J. K. Ord, ``Kedall's Advaced Theory of Statistics Distributio Theory,'' 5th ed., Vol. 1, Oxford Uiv. Press, Oxford, 1987.

22 FUNCTIONS OF L 1 DISTRIBUTIONS X. N. Yue ad C. S. Ma, Multivariate L p -orm symmetric distributios, Statist. Probab. Lett. 24 (1995), Z. G. Zheg, Radom weightig methods, Acta Math. Appl. Siica 10 (1987), Z. G. Zheg, Radom weightig method Aother approach to approximate the error distributio of estimators, i ``The Developmet of Statistics Recet Cotributios from Chia'' (X. R. Che, K. T. Fag, ad C. C. Yag, Eds.), pp , Logma Scietific, Harlow, 1992.

Continuity. Subtopics

Continuity. Subtopics 0 Cotiuity Chapter 0: Cotiuity Subtopics.0 Itroductio (Revisio). Cotiuity of a Fuctio at a Poit. Discotiuity of a Fuctio. Types of Discotiuity.4 Algebra of Cotiuous Fuctios.5 Cotiuity i a Iterval.6 Cotiuity

Detaljer

TMA4245 Statistikk. Øving nummer 12, blokk II Løsningsskisse. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

TMA4245 Statistikk. Øving nummer 12, blokk II Løsningsskisse. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Vår 205 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 2, blokk II Løsigsskisse Oppgave a - β agir biles besiforbruk i liter/mil - Rimelig med α 0 fordi med x 0 ige

Detaljer

On Parameters of Increasing Dimensions

On Parameters of Increasing Dimensions Joural of Multivariate Aalysis 73, 0135 (2000) doi:10.1006jmva.1999.1873, available olie at http:www.idealibrary.com o O Parameters of Icreasig Dimesios Xumig He 1 Departmet of Statistics, Uiversity of

Detaljer

Gir vi de resterende 2 oppgavene til én prosess vil alle sitte å vente på de to potensielt tidskrevende prosessene.

Gir vi de resterende 2 oppgavene til én prosess vil alle sitte å vente på de to potensielt tidskrevende prosessene. Figure over viser 5 arbeidsoppgaver som hver tar 0 miutter å utføre av e arbeider. (E oppgave ka ku utføres av é arbeider.) Hver pil i figure betyr at oppgave som blir pekt på ikke ka starte før oppgave

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Høst 205 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 2, blokk II Løsigsskisse Oppgave a - β agir biles besiforbruk i liter/mil - Rimelig med α 0 fordi med x 0 ige

Detaljer

Trigonometric Substitution

Trigonometric Substitution Trigonometric Substitution Alvin Lin Calculus II: August 06 - December 06 Trigonometric Substitution sin 4 (x) cos (x) dx When you have a product of sin and cos of different powers, you have three different

Detaljer

MU-Estimation and Smoothing

MU-Estimation and Smoothing Joural of Multivariate Aalysis 76, 277293 (2001) doi:10.1006jmva.2000.1916, available olie at http:www.idealibrary.com o MU-Estimatio Smoothig Z. J. Liu Mississippi State Uiversity C. R. Rao Pe State Uiversity

Detaljer

SVM and Complementary Slackness

SVM and Complementary Slackness SVM and Complementary Slackness David Rosenberg New York University February 21, 2017 David Rosenberg (New York University) DS-GA 1003 February 21, 2017 1 / 20 SVM Review: Primal and Dual Formulations

Detaljer

Second Order Hadamard Differentiability in Statistical Applications

Second Order Hadamard Differentiability in Statistical Applications Joural of Multivariate Aalysis 77, 187228 (21) doi:1.16jmva.2.1926, available olie at http:www.idealibrary.com o Secod Order Hadamard Differetiability i Statistical Applicatios Jia-Jia Re 1 Tulae Uiversity

Detaljer

Empirical Likelihood Ratio in Terms of Cumulative Hazard Function for Censored Data

Empirical Likelihood Ratio in Terms of Cumulative Hazard Function for Censored Data Joural of Multivariate Aalysis 80, 6688 (2002) doi0.006jmva.2000.977, available olie at httpwww.idealibrary.com o Empirical Likelihood Ratio i Terms of Cumulative Hazard Fuctio for Cesored Data Xiao-Rog

Detaljer

TMA4245 Statistikk Eksamen 20. desember 2012

TMA4245 Statistikk Eksamen 20. desember 2012 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA4245 Statistikk Eksame 20. desember 202 Løsigsskisse Oppgave a Sasylighete for å få 5 kro er P 5 kro = = /32 = 0.03. 25 Sasylighete

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT2400 Analyse 1. Eksamensdag: Onsdag 15. juni 2011. Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

Normal Approximation Rate and Bias Reduction for Data-Driven Kernel Smoothing Estimator in a Semiparametric Regression Model

Normal Approximation Rate and Bias Reduction for Data-Driven Kernel Smoothing Estimator in a Semiparametric Regression Model Joural of Multivariate Aalysis 80, 120 (2002) doi:10.1006mva.2000.1925, available olie at http:www.idealibrary.com o Normal Approximatio Rate ad Bias Reductio for Data-Drive Kerel Smoothig Estimator i

Detaljer

Slope-Intercept Formula

Slope-Intercept Formula LESSON 7 Slope Intercept Formula LESSON 7 Slope-Intercept Formula Here are two new words that describe lines slope and intercept. The slope is given by m (a mountain has slope and starts with m), and intercept

Detaljer

Z. D. Bai. and. Y. Wu. Department of Mathematics and Statistics, York University, 4700 Keele Street, North York, Ontario, Canada M3J 1P3

Z. D. Bai. and. Y. Wu. Department of Mathematics and Statistics, York University, 4700 Keele Street, North York, Ontario, Canada M3J 1P3 joural of multivariate aalysis 63, 119135 (1997) article o. MV971694 Geeral M-Estimatio Z. D. Bai Departmet of Applied Mathematics, Natioal Su Yat-se Uiversity, Kaohsiug, Taiwa ad Y. Wu Departmet of Mathematics

Detaljer

Permutation Tests for Reflected Symmetry

Permutation Tests for Reflected Symmetry joural of multivariate aalysis 67, 129153 (1998) article o. MV971697 Permutatio Tests for Reflected Symmetry Georg Neuhaus ad Li-Xig Zhu* Uiversity of Hamburg, Hamburg, Germay ad Chiese Academy of Scieces,

Detaljer

Asymptotics for Homogeneity Tests Based on a Multivariate Random Effects Proportional Hazards Model

Asymptotics for Homogeneity Tests Based on a Multivariate Random Effects Proportional Hazards Model Joural of Multivariate Aalysis 78, 8310 (001) doi10.1006jmva.000.1940, available olie at httpwww.idealibrary.com o Asymptotics for Homogeeity Tests Based o a Multivariate Radom Effects Proportioal Hazards

Detaljer

The Accuracy and the Computational Complexity of a Multivariate Binned Kernel Density Estimator 1

The Accuracy and the Computational Complexity of a Multivariate Binned Kernel Density Estimator 1 Joural of Multivariate Aalysis 72, 264309 (2000) Article ID jmva.1999.1863, available olie at httpwww.idealibrary.com o The Accuracy ad the Computatioal Complexity of a Multivariate Bied Kerel Desity Estimator

Detaljer

ASYMPTOTIC NORMALITY OF THE MAXIMUM LIKELIHOOD ESTIMATOR IN. Abstract. State space models is a very general class of time series models capable of

ASYMPTOTIC NORMALITY OF THE MAXIMUM LIKELIHOOD ESTIMATOR IN. Abstract. State space models is a very general class of time series models capable of ASYMPTOTIC NORMALITY OF THE MAIMUM LIKELIHOOD ESTIMATOR IN STATE SPACE MODELS Jes Ledet Jese 1 Niels Vver Peterse 2 Uiversity of Aarhus 1;2 ad MaPhySto 1 Abstract State space models is a very geeral class

Detaljer

Varieties of two-dimensional cylindric algebras II

Varieties of two-dimensional cylindric algebras II Algebra uivers. 51 (004) 177 06 000-540/04/030177 30 DOI 10.1007/s0001-004-1856- c Birkhäuser Verlag, Basel, 004 Algebra Uiversalis Varieties of two-dimesioal cylidric algebras II Nick Bezhaishvili Abstract.

Detaljer

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3 Relational Algebra 1 Unit 3.3 Unit 3.3 - Relational Algebra 1 1 Relational Algebra Relational Algebra is : the formal description of how a relational database operates the mathematics which underpin SQL

Detaljer

Moving Objects. We need to move our objects in 3D space.

Moving Objects. We need to move our objects in 3D space. Transformations Moving Objects We need to move our objects in 3D space. Moving Objects We need to move our objects in 3D space. An object/model (box, car, building, character,... ) is defined in one position

Detaljer

Average Regression Surface for Dependent Data

Average Regression Surface for Dependent Data Joural of Multivariate Aalysis 75, 242 (2000) doi:0.006jmva.999.896, available olie at http:www.idealibrary.com o Average Regressio Surface for Depedet Data Zogwu Cai Uiversity of North Carolia E-mail:

Detaljer

Prediction from Randomly Right Censored Data 1

Prediction from Randomly Right Censored Data 1 Joural of Multivariate Aalysis 80, 7300 (2002) doi:0.006jmva.2000.973, available olie at http:www.idealibrary.com o Predictio from Radomly Right Cesored Data Michael Kohler ad Kiga Ma the Uiversita t Stuttgart,

Detaljer

Comparison of LR, Score, and Wald Tests in a Non-IID Setting

Comparison of LR, Score, and Wald Tests in a Non-IID Setting oural of multivariate aalysis 60, 99110 (1997) article o. MV961645 Compariso of LR, Score, ad Wald Tests i a No-IID Settig C. Radhakrisha Rao The Pesylvaia State Uiversity ad Rahul Mukeree Idia Istitute

Detaljer

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2 Mathematics 4Q Name: SOLUTIONS. (x + 5)(x +5x) 7 8 (x +5x) 8 + C [u x +5x]. (3 x) (3 x) + C [u 3 x] 3. 7x +9 (7x + 9)3/ [u 7x + 9] 4. x 3 ( + x 4 ) /3 3 8 ( + x4 ) /3 + C [u + x 4 ] 5. e 5x+ 5 e5x+ + C

Detaljer

Dynamic Programming Longest Common Subsequence. Class 27

Dynamic Programming Longest Common Subsequence. Class 27 Dynamic Programming Longest Common Subsequence Class 27 Protein a protein is a complex molecule composed of long single-strand chains of amino acid molecules there are 20 amino acids that make up proteins

Detaljer

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5) Gradient Masahiro Yamamoto last update on February 9, 0 definition of grad The gradient of the scalar function φr) is defined by gradφ = φr) = i φ x + j φ y + k φ ) φ= φ=0 ) ) 3) 4) 5) uphill contour downhill

Detaljer

Conditional Empirical Processes Defined by Nonstationary Absolutely Regular Sequences

Conditional Empirical Processes Defined by Nonstationary Absolutely Regular Sequences Joural of Multivariate Aalysis 70, 250285 (1999) Article ID jmva.1999.1822, available olie at httpwww.idealibrary.com o Coditioal Empirical Processes Defied by Nostatioary Absolutely Regular Sequeces Michel

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag 8. desember

Detaljer

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001) by Simin Feng, Herbert G. Winful Opt. Lett. 26, 485-487 (2001) http://smos.sogang.ac.r April 18, 2014 Introduction What is the Gouy phase shift? For Gaussian beam or TEM 00 mode, ( w 0 r 2 E(r, z) = E

Detaljer

Analysis of Algorithms

Analysis of Algorithms Aalysis of Algorithms Aalysis Fram Most algorithms trasform iput objects ito output objects. The ruig time of a algorithm typically grows with the iput size. Average case time is ofte difficult to determie.

Detaljer

Call function of two parameters

Call function of two parameters Call function of two parameters APPLYUSER USER x fµ 1 x 2 eµ x 1 x 2 distinct e 1 0 0 v 1 1 1 e 2 1 1 v 2 2 2 2 e x 1 v 1 x 2 v 2 v APPLY f e 1 e 2 0 v 2 0 µ Evaluating function application The math demands

Detaljer

Strassen's LIL for the Lorenz Curve

Strassen's LIL for the Lorenz Curve joural of multivariate aalysis 59, 112 (1996) article o. 5 Strasse's LIL for the Lorez Curve Miklo s Cso rgo * ad Ric$ ardas Zitikis - Carleto Uiversity, Ottawa, Otario, Caada We prove Strasse's law of

Detaljer

Graphs similar to strongly regular graphs

Graphs similar to strongly regular graphs Joint work with Martin Ma aj 5th June 2014 Degree/diameter problem Denition The degree/diameter problem is the problem of nding the largest possible graph with given diameter d and given maximum degree

Detaljer

A New Approach to the BHEP Tests for Multivariate Normality

A New Approach to the BHEP Tests for Multivariate Normality joural of multivariate aalysis 6, 13 (1997) article o. MV971684 A New Approach to the BHEP Tests for Multivariate Normality Norbert Heze ad Thorste Wager Uiversita t Karlsruhe, D-7618 Karlsruhe, Germay

Detaljer

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

5 E Lesson: Solving Monohybrid Punnett Squares with Coding 5 E Lesson: Solving Monohybrid Punnett Squares with Coding Genetics Fill in the Brown colour Blank Options Hair texture A field of biology that studies heredity, or the passing of traits from parents to

Detaljer

Den som gjør godt, er av Gud (Multilingual Edition)

Den som gjør godt, er av Gud (Multilingual Edition) Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Click here if your download doesn"t start automatically Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Den som gjør godt,

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON30/40 Matematikk : Matematisk analyse og lineær algebra Exam: ECON30/40 Mathematics : Calculus and Linear Algebra Eksamensdag: Tirsdag 0. desember

Detaljer

Emneevaluering GEOV272 V17

Emneevaluering GEOV272 V17 Emneevaluering GEOV272 V17 Studentenes evaluering av kurset Svarprosent: 36 % (5 av 14 studenter) Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet PhD Candidate Samsvaret mellom

Detaljer

Nonparametric analysis of covariance Holger Dette Ruhr-Universitat Bochum Fakultat fur Mathematik Bochum Germany

Nonparametric analysis of covariance Holger Dette Ruhr-Universitat Bochum Fakultat fur Mathematik Bochum Germany oparametric aalysis of covariace Holger Dette Rur-Uiversitat Bocum Faultat fur Matemati 4478 Bocum Germay email: olger.dette@rur-ui-bocum.de FAX: +49 34 7 94 559 atalie eumeyer Rur-Uiversitat Bocum Faultat

Detaljer

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with. Solutions #1 1. a Show that the path γ : [, π] R 3 defined by γt : cost ı sint j sint k lies on the surface z xy. b valuate y 3 cosx dx siny z dy xdz where is the closed curve parametrized by γ. Solution.

Detaljer

Generalization of age-structured models in theory and practice

Generalization of age-structured models in theory and practice Generalization of age-structured models in theory and practice Stein Ivar Steinshamn, stein.steinshamn@snf.no 25.10.11 www.snf.no Outline How age-structured models can be generalized. What this generalization

Detaljer

Endelig ikke-røyker for Kvinner! (Norwegian Edition)

Endelig ikke-røyker for Kvinner! (Norwegian Edition) Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Click here if your download doesn"t start automatically Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Endelig ikke-røyker

Detaljer

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Istitutt for matematiske fag Eksamesoppgave i TMA432 Itroduksjo til viteskapelige beregiger Faglig kotakt uder eksame: Ato Evgrafov Tlf: 453 163 Eksamesdato: 6. jui 216 Eksamestid (fra til): 9: 13: Hjelpemiddelkode/Tillatte

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt ksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON3120/4120 Mathematics 2: Calculus and linear algebra Eksamensdag:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Date of exam: Friday, May

Detaljer

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 1 MAT131 Bokmål Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 09-14 Oppgavesettet er 4 oppgaver fordelt på

Detaljer

Stationary Phase Monte Carlo Methods

Stationary Phase Monte Carlo Methods Stationary Phase Monte Carlo Methods Daniel Doro Ferrante G. S. Guralnik, J. D. Doll and D. Sabo HET Physics Dept, Brown University, USA. danieldf@het.brown.edu www.het.brown.edu Introduction: Motivations

Detaljer

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postponed exam: ECON420 Mathematics 2: Calculus and linear algebra Date of exam: Tuesday, June 8, 203 Time for exam: 09:00 a.m. 2:00 noon The problem set covers

Detaljer

General position subsets and independent hyperplanes in d-space

General position subsets and independent hyperplanes in d-space J. Geom. c 016 Spriger Iteratioal Publishig DOI 10.1007/s000-016-033-5 Joural of Geometry Geeral positio subsets ad idepedet hyperplaes i d-space Jea Cardial, Csaba D. Tóth, ad David R. Wood Abstract.

Detaljer

0.5 (6x 6x2 ) dx = [3x 2 2x 3 ] 0.9. n n. = n. ln x i + (β 1) i=1. n i=1

0.5 (6x 6x2 ) dx = [3x 2 2x 3 ] 0.9. n n. = n. ln x i + (β 1) i=1. n i=1 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 9, blokk II Løsigsskisse Oppgave a The probability is.9.5 6x( x dx.9.5 (6x 6x dx [3x x 3 ].9.5.47. b The likelihood fuctio

Detaljer

Hvordan kvalitetssikre åpne tidsskrift?

Hvordan kvalitetssikre åpne tidsskrift? Hvordan kvalitetssikre åpne tidsskrift? Innlegg ved Halvdagsseminar om åpen tilgang til vitenskapelige artikler I forbindelse med den internasjonale Open Access-uken, Universitetsbiblioteket i Bergen 26.

Detaljer

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX)

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX) Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX) Peter J. Rosendahl Click here if your download doesn"t start automatically Han Ola of Han Per:

Detaljer

Spectral method for deconvolving a density Marine Carrasco Department of Economics University of Rochester Jean-Pierre Flor

Spectral method for deconvolving a density Marine Carrasco Department of Economics University of Rochester Jean-Pierre Flor Spectral method for decovolvig a desity Marie Carrasco Departmet of coomics Uiversity of Rochester csco@troi.cc.rochester.edu Jea-Pierre Flores GRMAQ ad IDI, Uiversite Toulouse I ores@cict.fr Prelimiary

Detaljer

Unbiased Estimation in the Non-central Chi-Square Distribution 1

Unbiased Estimation in the Non-central Chi-Square Distribution 1 Journal of Multivariate Analysis 75, 112 (2000) doi10.1006mva.2000.1898, available online at httpwww.idealibrary.com on Unbiased Estimation in the Non-central Chi-Square Distribution 1 F. Lo pez-bla zquez

Detaljer

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD 1 Bakgrunnen for dette initiativet fra SEF, er ønsket om å gjøre arbeid i høyden tryggere / sikrere. Både for stillasmontører og brukere av stillaser. 2 Reviderte

Detaljer

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ.

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ. Oppgave 1 Beviskalklen i læreboka inneholder sluttningsregelen QR: {ψ φ}, ψ ( xφ). En betingelse for å anvende regelen er at det ikke finnes frie forekomste av x i ψ. Videre så inneholder beviskalklen

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksame i: ECON30 Statistikk Exam: ECON30 Statistics UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamesdag: Tirsdag. jui 00 Sesur kugjøres: Tirsdag 5. jui, ca. 6.00 Date of exam: Tuesday, Jue, 00 Grades will

Detaljer

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Emneevaluering GEOV325 Vår 2016 Kommentarer til GEOV325 VÅR 2016 (emneansvarlig) Forelesingsrommet inneholdt ikke gode nok muligheter for å kunne skrive på tavle og samtidig ha mulighet for bruk av power

Detaljer

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems Department of Economics May 004 Arne Strøm ECON0/40 Mathematics, spring 004 Problem solutions for the seminar on 5 May 004 (For practical reasons (read laziness, most of the solutions this time are in

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag:

Detaljer

Information search for the research protocol in IIC/IID

Information search for the research protocol in IIC/IID Information search for the research protocol in IIC/IID 1 Medical Library, 2013 Library services for students working with the research protocol and thesis (hovedoppgaven) Open library courses: http://www.ntnu.no/ub/fagside/medisin/medbiblkurs

Detaljer

Exercise 1: Phase Splitter DC Operation

Exercise 1: Phase Splitter DC Operation Exercise 1: DC Operation When you have completed this exercise, you will be able to measure dc operating voltages and currents by using a typical transistor phase splitter circuit. You will verify your

Detaljer

Vekeplan 4. Trinn. Måndag Tysdag Onsdag Torsdag Fredag AB CD AB CD AB CD AB CD AB CD. Norsk Matte Symjing Ute Norsk Matte M&H Norsk

Vekeplan 4. Trinn. Måndag Tysdag Onsdag Torsdag Fredag AB CD AB CD AB CD AB CD AB CD. Norsk Matte Symjing Ute Norsk Matte M&H Norsk Vekeplan 4. Trinn Veke 39 40 Namn: Måndag Tysdag Onsdag Torsdag Fredag AB CD AB CD AB CD AB CD AB CD Norsk Engelsk M& Mitt val Engelsk Matte Norsk Matte felles Engelsk M& Mitt val Engelsk Norsk M& Matte

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON360/460 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Exam: ECON360/460 - Resource allocation and economic policy Eksamensdag: Fredag 2. november

Detaljer

Ringvorlesung Biophysik 2016

Ringvorlesung Biophysik 2016 Ringvorlesung Biophysik 2016 Born-Oppenheimer Approximation & Beyond Irene Burghardt (burghardt@chemie.uni-frankfurt.de) http://www.theochem.uni-frankfurt.de/teaching/ 1 Starting point: the molecular Hamiltonian

Detaljer

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) INF247 Er du? Er du? - Annet Ph.D. Student Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen,

Detaljer

FIRST LEGO League. Härnösand 2012

FIRST LEGO League. Härnösand 2012 FIRST LEGO League Härnösand 2012 Presentasjon av laget IES Dragons Vi kommer fra Härnosänd Snittalderen på våre deltakere er 11 år Laget består av 4 jenter og 4 gutter. Vi representerer IES i Sundsvall

Detaljer

Inference for the Mean Difference in the Two-Sample Random Censorship Model

Inference for the Mean Difference in the Two-Sample Random Censorship Model Joural of Multivariate Aalysis 79, 9535 () doi:.6jva..974, available olie at http:www.idealibrary.co o Iferece for the Mea Differece i the Two-Saple Ro Cesorship Model Qihua Wag Chiese Acadey of Sciece,

Detaljer

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23 UTKAST ENGLISH VERSION EKSAMEN I: MOT100A STOKASTISKE PROSESSER VARIGHET: 4 TIMER DATO: 16. februar 2006 TILLATTE HJELPEMIDLER: Kalkulator; Tabeller og formler i statistikk (Tapir forlag): Rottman: Matematisk

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON3120/4120 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Mathematics 2: Calculus an linear algebra Exam: ECON3120/4120 Mathematics 2: Calculus an linear algebra Eksamensag: Tirsag 3. juni 2008

Detaljer

Perpetuum (im)mobile

Perpetuum (im)mobile Perpetuum (im)mobile Sett hjulet i bevegelse og se hva som skjer! Hva tror du er hensikten med armene som slår ut når hjulet snurrer mot høyre? Hva tror du ordet Perpetuum mobile betyr? Modell 170, Rev.

Detaljer

6350 Månedstabell / Month table Klasse / Class 1 Tax deduction table (tax to be withheld) 2012

6350 Månedstabell / Month table Klasse / Class 1 Tax deduction table (tax to be withheld) 2012 6350 Månedstabell / Month table Klasse / Class 1 Tax deduction table (tax to be withheld) 2012 100 200 3000 0 0 0 13 38 63 88 113 138 163 4000 188 213 238 263 288 313 338 363 378 386 5000 394 402 410 417

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT BOKMÅL Eksamen i: ECON1210 - Forbruker, bedrift og marked Eksamensdag: 26.11.2013 Sensur kunngjøres: 18.12.2013 Tid for eksamen: kl. 14:30-17:30 Oppgavesettet er

Detaljer

Start MATLAB. Start NUnet Applications Statistical and Computational packages MATLAB Release 13 MATLAB 6.5

Start MATLAB. Start NUnet Applications Statistical and Computational packages MATLAB Release 13 MATLAB 6.5 Start MATLAB Start NUnet Applications Statistical and Computational packages MATLAB Release 13 MATLAB 6.5 Prompt >> will appear in the command window Today: MATLAB overview In-class HW: Chapter 1, Problems

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON20/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON20/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Fredag 2. mai

Detaljer

2018 ANNUAL SPONSORSHIP OPPORTUNITIES

2018 ANNUAL SPONSORSHIP OPPORTUNITIES ANNUAL SPONSORSHIP OPPORTUNITIES MVP SPONSORSHIP PROGRAM CALLING ALL VENDORS! Here is your chance to gain company exposure while strengthening your dealer Association at the same time. Annual Sponsorship

Detaljer

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes Kneser hypergraphs Frédéric Meunier May 21th, 2015 CERMICS, Optimisation et Systèmes Kneser hypergraphs m, l, r three integers s.t. m rl. Kneser hypergraph KG r (m, l): V (KG r (m, l)) = ( [m]) l { E(KG

Detaljer

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN EKSAMEN I FAGET STE 6243 MODERNE MATERIALER KLASSE: 5ID DATO: 7 Oktober 2005 TID: 900-200, 3 timer ANTALL SIDER: 7 (inklusiv Appendix: tabell og formler) TILLATTE

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON2915 Vekst og næringsstruktur Exam: ECON2915 - Growth and business structure Eksamensdag: Fredag 2. desember 2005 Sensur kunngjøres: 20. desember

Detaljer

Optimal Spherical Deconvolution 1

Optimal Spherical Deconvolution 1 Joura o Mutivariate Aaysis doi10.1006jmva.2000.1968, avaiabe oie at httpwww.ideaibrary.com o Optima Spherica Decovoutio 1 Peter T. Kim Uiversity o Gueph, Gueph, Otario, Caada ad Ja-Yog Koo Haym Uiversity,

Detaljer

GEO231 Teorier om migrasjon og utvikling

GEO231 Teorier om migrasjon og utvikling U N I V E R S I T E T E T I B E R G E N Institutt for geografi Emnerapport høsten 2013: GEO231 Teorier om migrasjon og utvikling Innhold: 1. Informasjon om emnet 2. Statistikk 3. Egenevaluering 4. Studentevaluering

Detaljer

Løsningsførslag i Matematikk 4D, 4N, 4M

Løsningsførslag i Matematikk 4D, 4N, 4M Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Løsningsførslag i Matematikk 4D, 4N, 4M Oppgave (Kun før 4D Vi har f(x, y x + y x y, for x y. Dette gir For (x, y

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON1910 Poverty and distribution in developing countries Exam: ECON1910 Poverty and distribution in developing countries Eksamensdag: 1. juni 2011 Sensur

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag 7. juni

Detaljer

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal.

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal. KROPPEN LEDER STRØM Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal. Hva forteller dette signalet? Gå flere sammen. Ta hverandre i hendene, og la de to ytterste personene

Detaljer

IN 211 Programmeringsspråk. Dokumentasjon. Hvorfor skrive dokumentasjon? For hvem? «Lesbar programmering» Ark 1 av 11

IN 211 Programmeringsspråk. Dokumentasjon. Hvorfor skrive dokumentasjon? For hvem? «Lesbar programmering» Ark 1 av 11 Dokumentasjon Hvorfor skrive dokumentasjon? For hvem? «Lesbar programmering» Ark 1 av 11 Forelesning 8.11.1999 Dokumentasjon Med hvert skikkelig program bør det komme følgende dokumentasjon: innføring

Detaljer

Approximation of the Power of Kurtosis Test for Multinormality

Approximation of the Power of Kurtosis Test for Multinormality Journal of Multivariate Analysis 65, 166180 (1998) Article No. MV97178 Approximation of the Power of Kurtosis Test for Multinormality Kanta Naito Hiroshima University, Higashi-Hiroshima, 739, Japan Received

Detaljer

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Institutt for matematiske fag Eksamensoppgave i TMA432 Introduksjon til vitenskapelige beregninger Faglig kontakt under eksamen: Anton Evgrafov Tlf: 453 163 Eksamensdato: 8. august 217 Eksamenstid (fra

Detaljer

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F. September 9, 2011 Physics 131 Prof. E. F. Redish Theme Music: Speed Racer Theme Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz 1 Reading questions Are the lines on the spatial graphs representing

Detaljer

Forecast Methodology September LightCounting Market Research Notes

Forecast Methodology September LightCounting Market Research Notes Forecast Methodology September 2015 LightCounting Market Research Notes Vladimir Market Kozlov Forecast Methodology, September, September, 2015 2015 1 Summary In summary, the key assump=on of our forecast

Detaljer

The regulation requires that everyone at NTNU shall have fire drills and fire prevention courses.

The regulation requires that everyone at NTNU shall have fire drills and fire prevention courses. 1 The law The regulation requires that everyone at NTNU shall have fire drills and fire prevention courses. 2. 3 Make your self familiar with: Evacuation routes Manual fire alarms Location of fire extinguishers

Detaljer

EN Skriving for kommunikasjon og tenkning

EN Skriving for kommunikasjon og tenkning EN-435 1 Skriving for kommunikasjon og tenkning Oppgaver Oppgavetype Vurdering 1 EN-435 16/12-15 Introduction Flervalg Automatisk poengsum 2 EN-435 16/12-15 Task 1 Skriveoppgave Manuell poengsum 3 EN-435

Detaljer

Second Order ODE's (2P) Young Won Lim 7/1/14

Second Order ODE's (2P) Young Won Lim 7/1/14 Second Order ODE's (2P) Copyright (c) 2011-2014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

Detaljer

32.2. Linear Multistep Methods. Introduction. Prerequisites. Learning Outcomes

32.2. Linear Multistep Methods. Introduction. Prerequisites. Learning Outcomes Linear Multistep Methods 32.2 Introduction In the previous Section we saw two methods (Euler and trapezium) for approximating the solutions of certain initial value problems. In this Section we will see

Detaljer

HONSEL process monitoring

HONSEL process monitoring 6 DMSD has stood for process monitoring in fastening technology for more than 25 years. HONSEL re- rivet processing back in 990. DMSD 2G has been continuously improved and optimised since this time. All

Detaljer

Motzkin monoids. Micky East. York Semigroup University of York, 5 Aug, 2016

Motzkin monoids. Micky East. York Semigroup University of York, 5 Aug, 2016 Micky East York Semigroup University of York, 5 Aug, 206 Joint work with Igor Dolinka and Bob Gray 2 Joint work with Igor Dolinka and Bob Gray 3 Joint work with Igor Dolinka and Bob Gray 4 Any questions?

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. juni 2010 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer