Asymptotics for Homogeneity Tests Based on a Multivariate Random Effects Proportional Hazards Model

Størrelse: px
Begynne med side:

Download "Asymptotics for Homogeneity Tests Based on a Multivariate Random Effects Proportional Hazards Model"

Transkript

1 Joural of Multivariate Aalysis 78, 8310 (001) doi jmva , available olie at httpwww.idealibrary.com o Asymptotics for Homogeeity Tests Based o a Multivariate Radom Effects Proportioal Hazards Model Lauret Bordes Uiversite de Techologie de Compie ge, Compie ge Cedex, Frace Lauret.Bordesutc.fr ad Daiel Commeges INSERM 330, Uiversite Victor-Segale Bordeaux, Bordeaux Cedex, Frace Daiel.Commegesu-bordeaux.fr Received Jue 3, 1999; published olie May 17, 001 D. Commeges ad H. Jacqmi-Gadda (1997, J. Roy. Statist. Soc. B 59, ) cosidered geeralized score tests of homogeeity that accommodate parametric ad semiparametric regressio models arisig from multivariate radom effects with commo variace ad kow correlatios. I this paper we give some sufficiet hypotheses uder which the asymptotic behavior of the test statistic is stadard ormal for the proportioal hazards model with right cesored data. Several examples of applicability are studied. 001 Academic Press AMS subject classificatios 6N; 6G0; 6H. Key words ad phrases coutig processes; frailty models; homogeeity test; multivariate radom effects; semiparametric proportioal hazards model. 1. INTRODUCTION A commo complicated feature of, e.g., reliability or survival aalysis may be the presece of uobserved heterogeeity betwee subjects (e.g. biological variatio ot explaied by available covariates i regressio models). Hece it is importat to both propose models that take ito accout such heterogeeity (like frailty models) ad test that such heterogeeity is ot preset for specific data (for a wide itroductio to these models ad tests see Sectio 1.1 i Ng ad Cook, 1999). Commeges ad JacqmiGadda (1997) proposed geeralized score test of homogeeity. The aim of these tests is to use frailties to itroduce specific deviatios from a uderlyig model, like the proportioal hazards model (PHM) ad the to test the absece of frailty. The structure of correlatio betwee frailties is kow ad allows to specify multivariate X Copyright 001 by Academic Press All rights of reproductio i ay form reserved.

2 84 BORDES AND COMMENGES effects like, for example, groups effects (see Commeges ad Aderse, 1995). The geeralizatio relatively to previous homogeeity tests is due to cosiderig a correlated (rather tha shared) radom effects model o oe had, ad cosiderig a geeral likelihood, which ca be a partial likelihood, o the other had thus homogeeity testig i a semiparametric cotext ca be doe. Li (1997) cosidered a more geeral parametric case i which the covariace of the radom effects depeds o a vector of parameters, while keepig the ull hypothesis to be a idepedece hypothesis. We will ot treat such a extesio here because the asymptotic is more complex tha i the semi-parametric case that we cosider. I Commeges ad JacqmiGadda (1997) the statistics were claimed to be asymptotically stadard ormal but coditios for asymptotic ormality were expected to be o trivial i the case of the PHM. Sice these homogeeity tests are based o the asymptotic behavior of the score statistic, it is clearly ecessary to give coditios for which asymptotic ormality of the score statistic is achieved; this is the aim of this paper. Suppose we observe (X i, $ i, z i )(1i) where X i =T i 7 C i is the miimum of the failure time T i ad the cesorig time C i, $ i =1(T i C i ) is the cesorig idicator (1( } ) is the idicator fuctio) ad z i # R p is a vector of covariates. Suppose that the coditioal hazard fuctio i of T i give z i is give by i (s)= 0 (s) exp(;$z i += i ), s0, (1) where 0 is the ukow baselie hazard fuctio of the PHM, ; # R p is the ukow regressio parameter ad exp(= i ) is the o observable frailty for the ith subject. Cosider ow the coutig processes N i (t)=1(x i t; $ i =1). It is well kow that for multiplicative itesity models with idepedet cesorig assumptio, processes M i (t)=n i (t)& t Y i (s) 0 (s) exp(;$z i += i ) ds, 0 t0, where Y i (t)=1(x i t), are martigales with respect to the right-cotiuous filtratio (F t ) t0 F t =_[N i (s), Y i (s), = i, z i ;1i; 0st], t0, with F t /F where (0, F, P) is the uderlyig complete probability space. Usig the above model Commeges ad JacqmiGadda (1997) proposed a score statistic to test the ull hypothesis that all the = i are ull. Notig = i =% 1 v i it is posed that E(v i )=0, E(v i )=1 ad E(v iv j )=w ij (kow)

3 ASYMPTOTICS FOR HOMOGENEITY TESTS 85 wheever i{ j, the the ull hypothesis reduces to %=0. They obtaied the followig stochastic itegral represetatio for the score at time t, where H i (s)= T () (;, t)= t H i (s) dm i (s), 0 (M j(s&)&p j (s))(w ij & k=1 w jk p k (s)), with p i (s)=exp(;$z i ) Y i (s)s (0) (s), S (0) (s)= exp(;$z j) Y j (s) ad the martigale residuals M i are defied by M i(t)=n i (t)& t 0 p i (s) dn j (s)=m i (t)& t p i (s) dm j (s). 0 The predictible variatio process (T () (;, }))(t) oft () (;, t) is defied by (T () (;, }))(t)= t H (s) Y i i(s) exp(;$z j ) 0 (s) ds. 0 I the followig sectio are give the mai results about the asymptotic behavior of suitable stadardizatio of T () whe both the regressio parameter ; is kow ad estimated. Sectio 3 deals with several examples were assumptios of Sectio are met. Sectio 4 is devoted to proofs while relegatig some techical developmets i Sectio 5.. MAIN RESULTS All covergece results are give with respect to tedig to ifiity. Deote by a & = w ij a ormalizig sequece ad $ ij =1(i= j)..1. The Regressio Parameter ; Is Kow I this subsectio we assume that parameter ; is kow; cosequetly i the sequel we will delete parameter ; from our otatios ad we will deote exp(;$z i )byr i for simplicity. A1. a. Let { #(0,+) be a real such that 0 is bouded o [0, {]. b. There exists a fiite costat R # R + such that 1 r R. A. lim 1 a 3 max 1i w ij =0.

4 86 BORDES AND COMMENGES A3. There exists a determiistic fuctio # defied o [0, {] such that } a w ij Y i(s) r i 4 1+$ ij j (s)&#(s) } wp 0, where the processes 4 i (})= } 0 r i Y i (s) 0 (s) ds are compesators of the coutig processes N i ( } ) uder the ull hypothesis. A4. For k=0, 1, there exist determiistic fuctios s (k) defied o [0, {] such that t #[0,{]} Y j (t) r k+1 j &s (k) (t) } wp 0, moreover, s (0) is bouded away from 0 o [0, {]. Theorem.1. Let us assume that assumptios A1A4 are satisfied ad '=lim + a T exists. The the statistic () ({) is asymptotically ((T () (})) ({)) stadard ormal. Moreover we have 1 (a T () (})) ({) w P! ({)=4 { 0 \ #(t)&' (s(1) (t)) s (0) (t) A 0 (t) + 0(t) dt. Remark.1. that Assumptio A1-a could be relaxed by choosig { such 0<{< {t0; A 0(t)= t 0 (s) ds<+ =... The Regressio Parameter ; Is Ukow We cosider the followig assumptios B1. Let us defie ad S (k) (;, t)= 1 S (3+k) (;, t)= 1 0 exp((k+1) ;$z j ) Y j (t), for k=0, 1,, z j exp((k+1) ;$z j ) Y j (t), for k=0, 1, S (5) (;, t)= 1 z j exp(;$z j ) Y j (t), where z =zz$ isap_p real matrix for z a p_1 real vector.

5 ASYMPTOTICS FOR HOMOGENEITY TESTS 87 There exists a eighborhood B of ; 0 ad real, vector ad matrix fuctios s (k) ad s (3+k) (k=0, 1, ) defied o B_[0, {] such that ad S (k) (;, t)&s (k) (;, t) w P 0, (;, t)#b_[0, {] &S (k) (;, t)&s (k) (;, t)& w P 0, (;, t)#b_[0, {] where &x&=max 1ip, 1jq x ij if x deotes a p_q real matrix with etries x ij. Moreover, s (0) is bouded away from 0 o B_[0, {] ad we have for all (;, t)#b_[0, {] ; s(0) (;, t)=s (3) (;, t) ad ;;$ s(0) (;, t)=s (5) (;, t). B. We have 1 &z &C<+. B3. The family of fuctios s (0) (},t), s (3) (},t) ad s (5) (},t), 0t{ is equicotiuous at ; 0. B4. The matrix 7 0 (; 0, {)= { 0 \ s(5) (; 0, t) s (0) (; 0, t) & \ s(3) (; 0, s (0) (; 0, t)+ + s(0) (; 0, t) 0 (t) dt, is positive defiite. From ow o, we replace ; by a estimator ; i T () (;, t). Theorem.. Uder A1-a, A ad B1B4, if '=lim + a exists ad ; is the Cox partial likelihood estimator of ; 0, a T () (;, {) is asymptotically ormal with zero mea ad variace _ ({) give by _ ({)=! ({)&\$({) 7 &1 0 (; 0, {) \$({), where the vector fuctio \ is defied by \({)=' 1 { 0 \ s(3) (t) s(1) (t) s (0) (t) &s(4) (t) + da 0(t). Remark.. Note that if lim + a =0, we get from Theorem. that statistics a T () (;, t) ad a T () (; 0, t) are asymptotically equivalet. For computatioal aspects see Commeges ad JacqmiGadda (1997).

6 88 BORDES AND COMMENGES 3. SPECIAL CASES I this sectio we give sufficiet coditios for which assumptios of Sectio may be satisfied. The, several examples are reviewed. Theorem 3.1. Suppose i the PHM that (T i, C i, z i ) (,..., ) are idepedet, idetically distributed replicates of (T, C, z), where the failure ad cesorig times variables T ad C are absolutely cotiuous positive radom variables coditioally idepedet give z. Let X i =T i 7 C i, $ i =1(T i C i ), N i (t)=1(t i t; $ i =1) ad Y i (t)=1(x i t). Assume the covariate vector z is costat (i time) ad bouded. Assumptios A1 ad B1B4 will be satisfied if P(Y i ({)>0)>0 ad 7 0 (; 0, {) is positive defiite. Moreover, if lim + a =0, assumptio A3 is satisfied too. Example 3.1 (Ucorrelated radom effects). This is the situatio where w ij =$ ij for 1i, j. It is easy to see that i such a case, assumptio A3 follows immediately from B1. The, uder assumptios of Theorem 3.1 without lim + a =0 but with lim + a =1 we get A1A3 ad B1B4. Theorem. may be applied. This test may be viewed as a goodessof-fit test for the PHM. Example 3. (Weak correlatio of radom effects). This is the situatio where w ij =$ ij +$ ij for 1i, j ($ i&$ ij ). It is easy to show that A is satisfied for >34. The we have lim + a =1 ad if B1 is satisfied it is easy to see that #=s () A 0 i A3. The, uder assumptios of Theorem 3.1 (without lim + a =0), Theorem. may be applied with '=1. Example 3.3 (Groups of same size). This is the situatio where there are k groups of size p. We have =kp ad w ij =1 if idividuals i ad j belog to the same group ad w ij =0 otherwise; this test shows up group effects. It is easy to see that lim 1 a 3 max 1i w ij =0. If p + as + we have lim + a =0 ad the, if assumptios of Theorem 3.1 are true, Theorem. may be applied. If p is fixed the lim + a =1p. Suppose that idividuals are umbered such that idividuals 1,..., p belog to the first group,

7 ASYMPTOTICS FOR HOMOGENEITY TESTS 89 idividuals p+1,..., p belog to the secod group ad so o. We ca write a w Y ij i(t) r i 4 1+$ ij j (t)=a 0 (t) t (s, t) 0 (s) ds, 0 where (s, t)= 1 k k Z i(s, t) with idepedet ad idetically distributed (i.i.d.) processes Z i 's defied by Z i (s, t)= 1 ip p j=(i&1) p+1 ip l=(i&1) p+1 r 1+$ jl j r l Y j (t) Y l (s). Sice the processes Z i 's are uiformly bouded o [0, {] by the strog law of large umbers for i.i.d. processes (see e.g. HoffmaJorgese, 1994) we get the strog (almost-surely) uiform covergece of to its mea o [0, {] ; assumptio A3 follows. Agai, assumptios of Theorem 3.1 without lim + a =0 allows the use of Theorem.. For groups of various sizes, a sufficiet coditio to get A is k &1 lim \ i+ where i is the size of the ith group. max i =0, 1ik 4. PROOFS I the sequel we delete ; from our otatios wheever it is equal to ; 0, we use the otatio $ i&$ ij ad we recall that covergece results are give with respect to tedig to ifiity. Proof (of Theorem.1). We have a T () (t)=a t 0 M j (s&) \w ij& k=1 w jk p k (s) + dm i(s) (a) +a t 0 &a t 0 (M j(s&)&m j (s&)) \w ij& p j (s) \w ij& k=1 k=1 w jk p k (s) + dm i(s). w jk p k (s) + dm i(s) (b) (c)

8 90 BORDES AND COMMENGES Let us ote respectively a T () b ad a T () c processes are martigales ad (a T () b a { 0 \ 4RA 0 ({) a\ max (M j(s&)&m j (s&)) \w ij& 1i } the terms i (b) ad (c). These (})) ({) is equal to k=1 w jk p k (s) ++ d4 i (s) w ij (M j(s)&m j (s)) }+ =o P (1), from Lemma 5.1(iv); it follows by the Leglart iequality that Likewise we have (a T () c (})) ({)=a a T ()(t) b wp 0. t #[0,{] { 0 \ 4RA 0 ({) a\ max 1i p j (s) \w ij& k=1 w jk p k (s) ++ d4 i (s) w ij p j (s) + =o P (1), from Lemma 5.1(iii); it follows by the Leglart iequality that a T () (t) c wp 0. t #[0,{] We have the proved that a T () (t) is asymptotically equivalet to a T () (t)=a t H 0 i(s) dm i (s) (defied by the right had side of (a)) uiformly o [0, {], so we shall apply the Rebolledo theorem (see e.g. Aderse et al., p. 8384) to a T (). First ote that from Lemma 5.1(ii), (a T () = (})) (t)=4a t 0 H i (s) 1(a H i(s) >=) d4 i (s) w P 0, ad the, the first assumptio of the Rebolledo theorem is satisfied. To fiish the proof we have to show that there exists a determiistic fuctio v such that (a T () (})) (t) v(t) for t #[0,{]. For this we ca see that (a T () (})) (t)=4v () () 1 (t)&4v (t),

9 ASYMPTOTICS FOR HOMOGENEITY TESTS 91 where, usig the fact that Y i (s) M i (s&)=(&1) 4 i (s) for =1,, we have V () 1 (t)=a =a t Y i (s) r i M j (s&) M k (s&) w ij w ik da 0 (s) k=1 0 t Y i (s) r i M j (s&) M k (s&) w ij w ik $ jkda 0 (s) (3a) k=1 0 +a t Y i (s) r i w (M (s&)&4 ij j j(s)) $ ijda 0 (s) 0 (3b) +a t Y i (s) r i w ij 41+$ ij j (s) da 0 (s) (3c) 0 ad V () (t)=a t 0 \ p i (u) w ij M j (u&) + S (0) (u) da 0 (u) = a t 0 \ + a t 0 \ Y i (u) r i w ij M j (u&) + Y i (u) r i w ij $ i jm j (u&) + 0 (u) s (0) (u) du \ S (0) (u) & 1 s (u)+ da 0(u) (0) (4a) (4b) & a t 0 +a t 0 \ k=1 Y i (u) r i 4 i (u) Y j (u) r j w jk $ jkm k (u&) 0(u) du (4c) s (0) (u) 1 Y i (u) r i 4 i (u) + 0 (u) s (0) (u) du (4d) Sice '=lim + a exists, Y i(s) 4 i (s)=y i (s) r i A 0 (s), from A3 ad A4 we get immediately that 4_(3c)&4_(4d) coverges to! (t)=4 t 0 \ #(u)&' (s(1) (u) A 0 (u)) s (0) (u) + 0(u) du. We shall achieve the proof by showig that terms (3a), (3b), (4a), (4b) ad (4c) ted to 0 i probability.

10 9 BORDES AND COMMENGES From A1A we get M i (s) 1+RA 0 ({) ad we kow that w ij 1. It follows that } a k=1 a 3 R(1+RA 0 ({)) Y i (s) r i M j (s&) M k (s&) w ij w ik $ jk} ad from calculatios of the appedix, both coditios (i) ad (ii) of Propositio 5.1 are satisfied. Hece term (3a) teds to 0 i probability. Let us remark that M j=m j &4 j are idepedet martigales uiformly bouded by (1+RA 0 ({)) +RA 0 ({)(+RA 0 ({)), thus } a Y i (s) r i w ij M j(s&) $ ij} a (+RA 0({)). The above result with calculatios of the appedix allow, oce agai, to use Propositio 5.1 ad so we get that term (3b) teds to 0 i probability. Term (4a) is bouded by u #[0,{] } S (0) (u) & 1 s (u)} a (0) t 0 \ Y i (s) r i w ij M j (s&) + da 0 (s). The remum teds to 0 i probability from A4 ad the we show for the remaider term (i a similar fashio as for (3a) ad (3b)) that coditios (i) ad (iii) of Propositio 5.1 are satisfied. Thus (4a) teds to 0 i probability. Sice 0 s (0) is bouded o [0, {] we apply Propositio 5.1 to (4b) ad (4c) as above to show that these terms ted to 0 i probability. Theorem.1 is proved. Now to prove Theorem. we eed the followig lemma. Lemma 4.1. Uder assumptios A1-a, A ad B1B, for all t #[0,{] we have a T () (;, t)=a T () (; 0, t)+a (; &; 0 )$ ; T () (; 0, t)+o P (1), if ; satisfies the asymptotic coditio 1 (; &; 0 )=O P (1).

11 ASYMPTOTICS FOR HOMOGENEITY TESTS 93 Proof (of Lemma 4.1). By a secod order Taylor expasio of T () (;, t) aroud ; 0 we get for t #[0,{] a T () (;, t)=a T () (; 0, t)+a (; &; 0 ) ; T () (; 0, t) (; &; 0 )$ a ;;$ T () (;*, t) 1 (; &; 0 ), (5) where ;* belogs to the lie segmet with extremities ; 0 ad ;. Let B(; 0, =) be the ball subset [; # R p ; &;&; 0 &=] of R p. Sice ; is cosistet, ;* is cosistet too, therefore we have just to show that ;*#B(; 0, =) " a ;;$ T () (;*, t) "=o P(1). We have the followig decompositio a ;;$ T () (;, t) =& a & a t 0 t z i 0 H i (;, s)z i 4 i (;, ds)& a ;$ H i(;, s) 4 i (;, ds)+ a t 0 t 0 ; H i(;, s) z$ i 4 i (;, ds) ;;$ H i(;, s) M i (;, ds). From A1, B ad for ; # B(; 0, =), there exists a fiite costat K such that " a t H i (;, s) z i 4 i (;, ds) " 0 K max 1i the, from Lemma 5. (iv) we get a H i (;, s), (s, ;)#[0,{]_B(; 0, =) (6) ; # B(; 0, =) " a t 0 H i (;, s) z i 4 i (;, ds) "=o P((a ) &1 )=o P (1). Similarly, usig Lemma 5. we show that the three other terms i the right had side of (6) coverge i probability to 0, which achieves the proof of Lemma 4.1. K

12 94 BORDES AND COMMENGES Proof (of Theorem.1). Uder regularity coditios A1-a ad B1B4 the Cox estimator ; of ; 0 satisfies 1 (; &; 0 )=O P (1) (see Aderse ad Gill, 198), therefore Lemma 4.1 may be applied. Let U () (; 0, } ) be the martigale process defied by U () (; 0, t)= t 0 \ z i& S (3) S (s)+ dm i(s). (0) Usig our Theorem.1, Theorem 8..1 i Flemig ad Harrigto (1991) ad the Rebolledo theorem we get that the process V () (})= \ a T () (; 0,}) &1 U () (; 0,})+ is asymptotically gaussia if there exists a determiistic vector fuctio defied o [0, {] such that for all t #[0,{] (a T () (; 0,}), &1 U () (; 0,})) (t) coverges poitwize i probability to that fuctio. By the stadard techique we used i the proof of Theorems.1 we get where (a T () (; 0,}), &1 U () (; 0,})) (t) = &1 a t 0 \ z i& S(3) S (s)+ H i(s) d4 (0) i (s) w P \(t)=&' 1 t 0 \ &\(t), s(4) (u)& s(1) (u) s (0) (u) s(3) (u)) da 0 (u). (7) Now we ca use the followig represetatio (see e.g. Flemig ad Harrigto, 1991, p. 99) for a T () (;, {), a T () (;, {)= \1, &1 a ; T () (; 0, {) I () (;*, {) + V() ({)+o P (1), where ;* is o a lie segmet betwee ; ad ; 0 ad I () (;*, {) w P 7 &1 0 (; 0, {). The, by the Slutsky theorem ad the asymptotic ormality of V () ({) we get that a T () (;, {) is asymptotically ormal with variace _ ({)=(1, \$({) 7 &1 0 (; 0, {)) \! ({) &\({) =! ({)&\$({) 7 &1 0 (; 0, {) \({), &\({) 7 0 (; 0, {)+\ 1 (; 0 0, {)\({)+ 7 &1

13 ASYMPTOTICS FOR HOMOGENEITY TESTS 95 where! is defied i Theorem.1. This achieves the proof of Theorem (.). K Proof (of Theorem 3.1). For A1 ad B1B4 it is eough to follow the lies of the proof of Theorem i Flemig ad Harrigto (1991). For A3 we ca write where Let us defie where a & =a & (s, t)=a (s, t)=a 1(t)= t (s, t) 0 (s) ds, 0 w ij r ir j Y i (t) Y j (s) 4 $ ij i (t). w ij $P ijr i r j Y i (t) Y j (s), &. Usig B ad lim + a =0, it is easy to see that (s, t)& (s, t) w P 0. (s, t)#[0,{] Moreover we have E( (s, t))=k(t) K(s), where K(t)=E(exp(;$ 0 z)1(t 7 Ct))=G(t) E(exp(;$ 0 z&a 0 (t) exp(;$ 0 z)), where G is the survival fuctio of C. By the Lebesgue Theorem the fuctio K is cotiuous ad o-icreasig. Now, with lim + a =0 straightforward calculatios lead to lim 0 E(( (s, t)&k(s) K(t)) )=0, the, for all (s, t)#[0,{] we have (s, t) w P K(s) K(t). By Propositio (5.) we get the expected result. K 5. TECHNICAL RESULTS Lemma 5.1. Uder assumptios A1, A ad A4 we have (i) (ii) max 1i a 1 w ijm j (s) =o P (1). max 1i a 1 H i(s) =o P (1).

14 96 BORDES AND COMMENGES (iii) max 1i (a ) 3 w ij p j (s)=o P (1). (iv) max 1i a 3 w ij (M j(s)&m j (s)) =o P (1). Proof. (i) First ote that a 1 w ijm j are martigales o [0, {] with a1 w ij M j (}) (s)ra 0({) a max 1i w ij =o(1), from A. The result follows immediately by applyig the Leglart iequality (see e.g. Aderse et al., 1993, p. 86). (ii) We have just to ote that for H i(s) max 1i } w ij M j (s) }, ad the apply (i). (iii) The result follows immediately form A1, A ad A4. (iv) Processes a 3 w ij (M j(t)&m j (t))=&a 3 are martigales ad we have t k=1 0 \ w ij p j (s) + dm k(s) a3 w ij (M j(})&m j (})) (t) RA 0 ({)(a ) 3 from (iii), therefore \ max 1i w ij p j (s) + =o P (1), max 1i w ij (M j(})&m j (})) ({) wp 0. The result follows by applyig the Leglart iequality. K Lemma 5.. Uder assumptios A1A ad B1B we have for B(; 0, =)/B (=0)

15 ASYMPTOTICS FOR HOMOGENEITY TESTS 97 (i) there exists a positive fiite real costat K such that for (s, ;)# [0, {]_B(; 0, =) max \" ; p i(;, s) ", " ; p i(;, s) "+Kp i(;, s). (ii) We have max 1i (s, ;)#[0,{]_B(; 0, =) " w ij p j (;, s) "=o P((a ) &3 ), where is the operator idetity, or ; (iii) max 1i (s, ;)#[0,{]_B(;0, =) w ijm j(;, s) =o P ( &1 a &3 ). (iv) max 1i (s, ;)#[0,{]_B(;0, =) H i (;, s) =o P ( &1 a &3 ). Proof. (i) Sice we have ;;$. ; p i(;, s)=p i (;, s) \z i& z j p j (;, s) +, j the result follows from B. The same method ca be applied to ;;$ p i (;, s). (ii) This is a straightforward cosequece of (i) ad A-b. (iii) We have w } ij M j (;, s) } = } w ij M j (; 0, s)+ s w ij (exp(;$ 0 z j )&exp(;$z j )) Y j (u) 0 (u) du }. 0 From A1, B ad the fact that ; # B(; 0, =), there exists a fiite positive costat K such that the last expressio is bouded by max 1i } From Lemma 5.1(i) ad A-b we get w ij M j (; 0, s) max }+K 1i w ij. max 1i (s, ;)#[0,{]_B(; 0, =) } w ij M j (;, s) }=o P( &1 a &3 ). (8)

16 98 BORDES AND COMMENGES We have also 1 a 3 & 1 a 3 & 1 a 3 w ij M j(;, s)= 1 a 3 s k=1 0 \ s k=1 0 \ w ij M j (;, s) w ij p j (;, u) + M k(; 0, du) w ij p j (;, u) + (e;$ (9a) (9b) 0 z k &e ;$z k ) Y k (u) 0 (u) du. (9c) From (8) the right had side i (9a) is a o P (1). Moreover (9b) is a martigale with covariatio process bouded by K a\ 3 max 1i (s, ;)#[0,{]_B(; 0, =) w ij p j (;, s) +, where K is a positive fiite costat which arises from A1, B ad the fact that ; belogs to B(; 0, =); hece, from (ii) the last expressio has a stochastic order o P ( a 3 (a ) &3 )=o P (1), the, by the Leglart iequality we get that 1 a 3 max 1i (s, ;)#[0,{]_B(; 0, =) } s k=1 0 \ w ij p j (;, u) + M k(; 0, du) } teds to 0 i probability. Now, for ; # B(; 0, =), (9c) is bouded by K$(a ) 3 max 1i (s, ;)#[0,{]_B(; 0, =) } w ij p j (;, s) }, where K$ is a fiite costat. Therefore, by (ii) the last expressio has stochastic order o P (1) ad the result (iii) follows. (iv) Straightforward i view of (ii), (iii) ad the fact that p j (;, s)=1. K The followig propositio is a corollary of a result by Hellad (1983) (see e.g. Aderse et al., 1993, p. 86). Propositio 5.1. Let [X (s), 0s{<+] 1 be a sequece of processes defied o the same probability space. We cosider the followig coditios (i) for all, X (s) is almost surely bouded. (ii) E[X (s)] 0. (iii) E[ X (s) ]0.

17 ASYMPTOTICS FOR HOMOGENEITY TESTS 99 The, if (i) is satisfied with (ii) or (iii) we have t #[0,{] } t X (s) ds } wp 0. 0 Proof. We give the proof whe coditios (i) ad (ii) are satisfied sice (ii) implies (iii). Let (k ) 1 be a sequece of fiite real umbers such that X (s) k almost surely. We may pose (k ) 1 o decreasig ad k 1 for all. Let=>0 be a fixed real; we put C 0 =k 0 where 0 satisfies E [X (s)]<=c 0, 0, which is possible from (ii). Let, from (i), for < 0 I [ X (s) >C]=0 for all C>C 0 ad the we have max 1< 0 E[ X (s) I [ X (s) >C]]=0. Moreover, for all C>C 0 E[ X (s) I [ X (s) >C]] E [X (s)] C =. Thus we have proved that for all s0 lim C + E[ X (s) I [ X (s) >C]]=0. 1 The sequece (X ) 1 is equi-itegrable. Now, from (ii) it follows that for ay, X (s) P 0. From the CauchySchwarz iequality we have E[ X (s) ](E[X (s)])1 ( E[X (s)])1 1 for all greater tha a give $ 0 (from (ii)), thus, from (i) we have for ay 1 ad E[ X (s) ]max(1, max k j ). 1 j$ 0 Now we ca apply a result of Hellad (1983) which says E _ t #[0,{] } t X (s) ds 0. 0 }&

18 100 BORDES AND COMMENGES By the Bieayme Tchebycheff iequality we achieve the proof of the propositio. Remark 5.1. Nothig is chaged i the proof of Propositio (5.1) if X is multiplied by a bouded positive fuctio defied o [0, {]. The followig propositio is stochastic versio of the well kow Dii theorem. Propositio 5.. Let (F ) 1 be a sequece of processes defied o A=> p [a j, b j ]/R p (with &<a j <b j <+ for,..., p) ad F a cotiuous determiistic fuctio defied o A. Suppose that F ad F (1) are (almost-surely for the F ) o-icreasig with respect to each of their compoets o A. If F coverges poitwise i probability to F o A, therefore F (x)&f(x) w P 0. x # A Proof. We give the proof for p=1; calculatios for p1 are straightforward. Let =>0 ad '>0 be two reals. Sice F is cotiuous o a compact subset [a, b] ofr it is uiformly cotiuous o [a, b]. The there exists $=$(=)>0 such that F(s)&F(t) <=. [(s, t)#[a, b] ; s&t <$] Let a=t 0 <t 1 <}}}<t k =b be a partitio of [a, b] such that t i+1 &t i < $ for i=0, 1,..., k&1 (k=k(=)). We have It follows that F (t)&f(t) =+ max F (t i )&F(t i ). t #[a, b] 0ik P( F (t)&f(t) >=)P( max F (t i )&F(t i ) >=4). (10) t #[a, b] 0ik Now, for 0ik there exists i =(i, =, ') such that for all i P( F (t i )&F(t i ) >=4)'k. The, for $=max 0ik i we have for all $ P( max F (t i )&F(t i ) >=4)'. 0ik

19 ASYMPTOTICS FOR HOMOGENEITY TESTS 101 By (10) we get for all $ P( F (t)&f(t) >=)'. t #[a, b] The proof is complete. K Term (3a) APPENDIX Straightforward but paiful calculatios lead to v () (s)=e 1 _\ a R (1+RA 0 ({))) 4 a{ k=1 R (1+RA 0 ({))) 4 + k=1 R (1+RA 0 ({))) 4 +a\ 4 max 1i It follows from A that Y i (s) r i w ij w ik $ jkm j (s&) M k (s&) + & k=1 w ij w ik + w ij +1 k=1 l=1 { 4a +16a4 \ max 1i w ij w ik l=1 w lj = { 4a \ +16a4 max 1i w ij + 3 =. k=1 w ij w ik w lj w lk = w ij + w ij + w ij w ik w jk v (s)=o(a )+o \ a4 a 3 + +o \ a4 3 a + =o(1). 9 Hece we proved that coditio (ii) of Propositio 5.1 is satisfied for term (3a).

20 10 BORDES AND COMMENGES Term (3b) First, it is easy to show that v () (s)=e _\a R (+RA 0 ({)) 4 a 4 \ Y i (s) r i w ij$ ijm j(s&) + Therefore, as for the above lies we get w ij + & k=1 v () (s)=o(a)+o \ a4 a+ =o(1). 3 Thus coditio (ii) of Propositio 5.1 is satisfied. w ij w ik +. ACKNOWLEDGMENTS The authors gratefully ackowledge the Editor, associate editor, ad referees for their valuable commets that substatially improved the presetatio of the paper. REFERENCES 1. P. K. Aderse, O. Borga, R. D. Gill, ad N. Keidig, ``Statistical Models Based o Coutig Processes,'' Spriger-Verlag, New York, P. K. Aderse ad R. D. Gill, Cox's regressio model for coutig processes A large sample study, A. Statist. 10 (198), D. Commeges ad H. Jacqmi-Gadda, Geeralized score test of homogeeity based o correlated radom effect models, J. R. Statist. Soc. B 59 (1997), D. Commeges ad P. K. Aderse, Score test of homogeeity for survival data, Lifetime Data Aal. 1 (1995), T. R. Flemig ad D. P. Harrigto, ``Coutig Processes ad Survival Aalysis,'' Wiley, New York, I. S. Hellad, Applicatios of cetral limit theorems for martigales with cotiuous time, Bull. It. Statist. Ist. 50 (1983), J. Hoffma-Jorgese, ``Probability with a View Toward Statistics,'' Probability Series, Chapma 6 Hall, Lodo, X. Li, Variace compoet testig i geeralised liear models with radom effects, Biometrika. 84 (1997), E. T. M. Ng ad R. J. Cook, Adjusted score tests of homogeeity for Poisso processes, J. Amer. Statist. Assoc. 94 (1999),

Continuity. Subtopics

Continuity. Subtopics 0 Cotiuity Chapter 0: Cotiuity Subtopics.0 Itroductio (Revisio). Cotiuity of a Fuctio at a Poit. Discotiuity of a Fuctio. Types of Discotiuity.4 Algebra of Cotiuous Fuctios.5 Cotiuity i a Iterval.6 Cotiuity

Detaljer

Second Order Hadamard Differentiability in Statistical Applications

Second Order Hadamard Differentiability in Statistical Applications Joural of Multivariate Aalysis 77, 187228 (21) doi:1.16jmva.2.1926, available olie at http:www.idealibrary.com o Secod Order Hadamard Differetiability i Statistical Applicatios Jia-Jia Re 1 Tulae Uiversity

Detaljer

On Parameters of Increasing Dimensions

On Parameters of Increasing Dimensions Joural of Multivariate Aalysis 73, 0135 (2000) doi:10.1006jmva.1999.1873, available olie at http:www.idealibrary.com o O Parameters of Icreasig Dimesios Xumig He 1 Departmet of Statistics, Uiversity of

Detaljer

ASYMPTOTIC NORMALITY OF THE MAXIMUM LIKELIHOOD ESTIMATOR IN. Abstract. State space models is a very general class of time series models capable of

ASYMPTOTIC NORMALITY OF THE MAXIMUM LIKELIHOOD ESTIMATOR IN. Abstract. State space models is a very general class of time series models capable of ASYMPTOTIC NORMALITY OF THE MAIMUM LIKELIHOOD ESTIMATOR IN STATE SPACE MODELS Jes Ledet Jese 1 Niels Vver Peterse 2 Uiversity of Aarhus 1;2 ad MaPhySto 1 Abstract State space models is a very geeral class

Detaljer

MU-Estimation and Smoothing

MU-Estimation and Smoothing Joural of Multivariate Aalysis 76, 277293 (2001) doi:10.1006jmva.2000.1916, available olie at http:www.idealibrary.com o MU-Estimatio Smoothig Z. J. Liu Mississippi State Uiversity C. R. Rao Pe State Uiversity

Detaljer

TMA4245 Statistikk. Øving nummer 12, blokk II Løsningsskisse. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

TMA4245 Statistikk. Øving nummer 12, blokk II Løsningsskisse. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Vår 205 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 2, blokk II Løsigsskisse Oppgave a - β agir biles besiforbruk i liter/mil - Rimelig med α 0 fordi med x 0 ige

Detaljer

Empirical Likelihood Ratio in Terms of Cumulative Hazard Function for Censored Data

Empirical Likelihood Ratio in Terms of Cumulative Hazard Function for Censored Data Joural of Multivariate Aalysis 80, 6688 (2002) doi0.006jmva.2000.977, available olie at httpwww.idealibrary.com o Empirical Likelihood Ratio i Terms of Cumulative Hazard Fuctio for Cesored Data Xiao-Rog

Detaljer

Z. D. Bai. and. Y. Wu. Department of Mathematics and Statistics, York University, 4700 Keele Street, North York, Ontario, Canada M3J 1P3

Z. D. Bai. and. Y. Wu. Department of Mathematics and Statistics, York University, 4700 Keele Street, North York, Ontario, Canada M3J 1P3 joural of multivariate aalysis 63, 119135 (1997) article o. MV971694 Geeral M-Estimatio Z. D. Bai Departmet of Applied Mathematics, Natioal Su Yat-se Uiversity, Kaohsiug, Taiwa ad Y. Wu Departmet of Mathematics

Detaljer

The Accuracy and the Computational Complexity of a Multivariate Binned Kernel Density Estimator 1

The Accuracy and the Computational Complexity of a Multivariate Binned Kernel Density Estimator 1 Joural of Multivariate Aalysis 72, 264309 (2000) Article ID jmva.1999.1863, available olie at httpwww.idealibrary.com o The Accuracy ad the Computatioal Complexity of a Multivariate Bied Kerel Desity Estimator

Detaljer

Conditional Empirical Processes Defined by Nonstationary Absolutely Regular Sequences

Conditional Empirical Processes Defined by Nonstationary Absolutely Regular Sequences Joural of Multivariate Aalysis 70, 250285 (1999) Article ID jmva.1999.1822, available olie at httpwww.idealibrary.com o Coditioal Empirical Processes Defied by Nostatioary Absolutely Regular Sequeces Michel

Detaljer

Gir vi de resterende 2 oppgavene til én prosess vil alle sitte å vente på de to potensielt tidskrevende prosessene.

Gir vi de resterende 2 oppgavene til én prosess vil alle sitte å vente på de to potensielt tidskrevende prosessene. Figure over viser 5 arbeidsoppgaver som hver tar 0 miutter å utføre av e arbeider. (E oppgave ka ku utføres av é arbeider.) Hver pil i figure betyr at oppgave som blir pekt på ikke ka starte før oppgave

Detaljer

Normal Approximation Rate and Bias Reduction for Data-Driven Kernel Smoothing Estimator in a Semiparametric Regression Model

Normal Approximation Rate and Bias Reduction for Data-Driven Kernel Smoothing Estimator in a Semiparametric Regression Model Joural of Multivariate Aalysis 80, 120 (2002) doi:10.1006mva.2000.1925, available olie at http:www.idealibrary.com o Normal Approximatio Rate ad Bias Reductio for Data-Drive Kerel Smoothig Estimator i

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Høst 205 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 2, blokk II Løsigsskisse Oppgave a - β agir biles besiforbruk i liter/mil - Rimelig med α 0 fordi med x 0 ige

Detaljer

Permutation Tests for Reflected Symmetry

Permutation Tests for Reflected Symmetry joural of multivariate aalysis 67, 129153 (1998) article o. MV971697 Permutatio Tests for Reflected Symmetry Georg Neuhaus ad Li-Xig Zhu* Uiversity of Hamburg, Hamburg, Germay ad Chiese Academy of Scieces,

Detaljer

Slope-Intercept Formula

Slope-Intercept Formula LESSON 7 Slope Intercept Formula LESSON 7 Slope-Intercept Formula Here are two new words that describe lines slope and intercept. The slope is given by m (a mountain has slope and starts with m), and intercept

Detaljer

Prediction from Randomly Right Censored Data 1

Prediction from Randomly Right Censored Data 1 Joural of Multivariate Aalysis 80, 7300 (2002) doi:0.006jmva.2000.973, available olie at http:www.idealibrary.com o Predictio from Radomly Right Cesored Data Michael Kohler ad Kiga Ma the Uiversita t Stuttgart,

Detaljer

TMA4245 Statistikk Eksamen 20. desember 2012

TMA4245 Statistikk Eksamen 20. desember 2012 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA4245 Statistikk Eksame 20. desember 202 Løsigsskisse Oppgave a Sasylighete for å få 5 kro er P 5 kro = = /32 = 0.03. 25 Sasylighete

Detaljer

SVM and Complementary Slackness

SVM and Complementary Slackness SVM and Complementary Slackness David Rosenberg New York University February 21, 2017 David Rosenberg (New York University) DS-GA 1003 February 21, 2017 1 / 20 SVM Review: Primal and Dual Formulations

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT2400 Analyse 1. Eksamensdag: Onsdag 15. juni 2011. Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

Nonparametric analysis of covariance Holger Dette Ruhr-Universitat Bochum Fakultat fur Mathematik Bochum Germany

Nonparametric analysis of covariance Holger Dette Ruhr-Universitat Bochum Fakultat fur Mathematik Bochum Germany oparametric aalysis of covariace Holger Dette Rur-Uiversitat Bocum Faultat fur Matemati 4478 Bocum Germay email: olger.dette@rur-ui-bocum.de FAX: +49 34 7 94 559 atalie eumeyer Rur-Uiversitat Bocum Faultat

Detaljer

Spectral method for deconvolving a density Marine Carrasco Department of Economics University of Rochester Jean-Pierre Flor

Spectral method for deconvolving a density Marine Carrasco Department of Economics University of Rochester Jean-Pierre Flor Spectral method for decovolvig a desity Marie Carrasco Departmet of coomics Uiversity of Rochester csco@troi.cc.rochester.edu Jea-Pierre Flores GRMAQ ad IDI, Uiversite Toulouse I ores@cict.fr Prelimiary

Detaljer

Comparison of LR, Score, and Wald Tests in a Non-IID Setting

Comparison of LR, Score, and Wald Tests in a Non-IID Setting oural of multivariate aalysis 60, 99110 (1997) article o. MV961645 Compariso of LR, Score, ad Wald Tests i a No-IID Settig C. Radhakrisha Rao The Pesylvaia State Uiversity ad Rahul Mukeree Idia Istitute

Detaljer

Average Regression Surface for Dependent Data

Average Regression Surface for Dependent Data Joural of Multivariate Aalysis 75, 242 (2000) doi:0.006jmva.999.896, available olie at http:www.idealibrary.com o Average Regressio Surface for Depedet Data Zogwu Cai Uiversity of North Carolia E-mail:

Detaljer

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3 Relational Algebra 1 Unit 3.3 Unit 3.3 - Relational Algebra 1 1 Relational Algebra Relational Algebra is : the formal description of how a relational database operates the mathematics which underpin SQL

Detaljer

Dynamic Programming Longest Common Subsequence. Class 27

Dynamic Programming Longest Common Subsequence. Class 27 Dynamic Programming Longest Common Subsequence Class 27 Protein a protein is a complex molecule composed of long single-strand chains of amino acid molecules there are 20 amino acids that make up proteins

Detaljer

A New Approach to the BHEP Tests for Multivariate Normality

A New Approach to the BHEP Tests for Multivariate Normality joural of multivariate aalysis 6, 13 (1997) article o. MV971684 A New Approach to the BHEP Tests for Multivariate Normality Norbert Heze ad Thorste Wager Uiversita t Karlsruhe, D-7618 Karlsruhe, Germay

Detaljer

0.5 (6x 6x2 ) dx = [3x 2 2x 3 ] 0.9. n n. = n. ln x i + (β 1) i=1. n i=1

0.5 (6x 6x2 ) dx = [3x 2 2x 3 ] 0.9. n n. = n. ln x i + (β 1) i=1. n i=1 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 9, blokk II Løsigsskisse Oppgave a The probability is.9.5 6x( x dx.9.5 (6x 6x dx [3x x 3 ].9.5.47. b The likelihood fuctio

Detaljer

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2 Mathematics 4Q Name: SOLUTIONS. (x + 5)(x +5x) 7 8 (x +5x) 8 + C [u x +5x]. (3 x) (3 x) + C [u 3 x] 3. 7x +9 (7x + 9)3/ [u 7x + 9] 4. x 3 ( + x 4 ) /3 3 8 ( + x4 ) /3 + C [u + x 4 ] 5. e 5x+ 5 e5x+ + C

Detaljer

Trigonometric Substitution

Trigonometric Substitution Trigonometric Substitution Alvin Lin Calculus II: August 06 - December 06 Trigonometric Substitution sin 4 (x) cos (x) dx When you have a product of sin and cos of different powers, you have three different

Detaljer

General position subsets and independent hyperplanes in d-space

General position subsets and independent hyperplanes in d-space J. Geom. c 016 Spriger Iteratioal Publishig DOI 10.1007/s000-016-033-5 Joural of Geometry Geeral positio subsets ad idepedet hyperplaes i d-space Jea Cardial, Csaba D. Tóth, ad David R. Wood Abstract.

Detaljer

Emneevaluering GEOV272 V17

Emneevaluering GEOV272 V17 Emneevaluering GEOV272 V17 Studentenes evaluering av kurset Svarprosent: 36 % (5 av 14 studenter) Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet PhD Candidate Samsvaret mellom

Detaljer

Characteristic Functions of L 1 -Spherical and L 1 -Norm Symmetric Distributions and Their Applications

Characteristic Functions of L 1 -Spherical and L 1 -Norm Symmetric Distributions and Their Applications Joural of Multivariate Aalysis 76, 192213 (2001) doi10.1006jmva.2001.1910, available olie at httpwww.idealibrary.com o Characteristic Fuctios of L 1 -Spherical ad L 1 -Norm Symmetric Distributios ad Their

Detaljer

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postponed exam: ECON420 Mathematics 2: Calculus and linear algebra Date of exam: Tuesday, June 8, 203 Time for exam: 09:00 a.m. 2:00 noon The problem set covers

Detaljer

Moving Objects. We need to move our objects in 3D space.

Moving Objects. We need to move our objects in 3D space. Transformations Moving Objects We need to move our objects in 3D space. Moving Objects We need to move our objects in 3D space. An object/model (box, car, building, character,... ) is defined in one position

Detaljer

Strassen's LIL for the Lorenz Curve

Strassen's LIL for the Lorenz Curve joural of multivariate aalysis 59, 112 (1996) article o. 5 Strasse's LIL for the Lorez Curve Miklo s Cso rgo * ad Ric$ ardas Zitikis - Carleto Uiversity, Ottawa, Otario, Caada We prove Strasse's law of

Detaljer

Generalization of age-structured models in theory and practice

Generalization of age-structured models in theory and practice Generalization of age-structured models in theory and practice Stein Ivar Steinshamn, stein.steinshamn@snf.no 25.10.11 www.snf.no Outline How age-structured models can be generalized. What this generalization

Detaljer

Varieties of two-dimensional cylindric algebras II

Varieties of two-dimensional cylindric algebras II Algebra uivers. 51 (004) 177 06 000-540/04/030177 30 DOI 10.1007/s0001-004-1856- c Birkhäuser Verlag, Basel, 004 Algebra Uiversalis Varieties of two-dimesioal cylidric algebras II Nick Bezhaishvili Abstract.

Detaljer

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

5 E Lesson: Solving Monohybrid Punnett Squares with Coding 5 E Lesson: Solving Monohybrid Punnett Squares with Coding Genetics Fill in the Brown colour Blank Options Hair texture A field of biology that studies heredity, or the passing of traits from parents to

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksame i: ECON30 Statistikk Exam: ECON30 Statistics UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamesdag: Tirsdag. jui 00 Sesur kugjøres: Tirsdag 5. jui, ca. 6.00 Date of exam: Tuesday, Jue, 00 Grades will

Detaljer

Endelig ikke-røyker for Kvinner! (Norwegian Edition)

Endelig ikke-røyker for Kvinner! (Norwegian Edition) Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Click here if your download doesn"t start automatically Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Endelig ikke-røyker

Detaljer

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ.

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ. Oppgave 1 Beviskalklen i læreboka inneholder sluttningsregelen QR: {ψ φ}, ψ ( xφ). En betingelse for å anvende regelen er at det ikke finnes frie forekomste av x i ψ. Videre så inneholder beviskalklen

Detaljer

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen The Process Goal Definition Data Collection Data Preprocessing EDA Choice of Variables Choice of Method(s) Performance Evaluation

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Date of exam: Friday, May

Detaljer

Graphs similar to strongly regular graphs

Graphs similar to strongly regular graphs Joint work with Martin Ma aj 5th June 2014 Degree/diameter problem Denition The degree/diameter problem is the problem of nding the largest possible graph with given diameter d and given maximum degree

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. juni 2010 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

Rank-Score Tests in Factorial Designs with Repeated Measures

Rank-Score Tests in Factorial Designs with Repeated Measures Joural of Multivariate Aalysis 70, 86317 (1999) Article ID jmva.1999.181, available olie at httpwww.iealibrary.com o Rak-Score Tests i Factorial Desigs with Repeate Measures Egar Bruer* a Ulrich Muzel*

Detaljer

GEOV219. Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet postbachelor phd

GEOV219. Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet postbachelor phd GEOV219 Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet postbachelor phd Mener du at de anbefalte forkunnskaper var nødvendig? Er det forkunnskaper du har savnet? Er det forkunnskaper

Detaljer

Analysis of Algorithms

Analysis of Algorithms Aalysis of Algorithms Aalysis Fram Most algorithms trasform iput objects ito output objects. The ruig time of a algorithm typically grows with the iput size. Average case time is ofte difficult to determie.

Detaljer

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001) by Simin Feng, Herbert G. Winful Opt. Lett. 26, 485-487 (2001) http://smos.sogang.ac.r April 18, 2014 Introduction What is the Gouy phase shift? For Gaussian beam or TEM 00 mode, ( w 0 r 2 E(r, z) = E

Detaljer

Smart High-Side Power Switch BTS730

Smart High-Side Power Switch BTS730 PG-DSO20 RoHS compliant (green product) AEC qualified 1 Ω Ω µ Data Sheet 1 V1.0, 2007-12-17 Data Sheet 2 V1.0, 2007-12-17 Ω µ µ Data Sheet 3 V1.0, 2007-12-17 µ µ Data Sheet 4 V1.0, 2007-12-17 Data Sheet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. april 2008 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON3120/4120 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag

Detaljer

Neural Network. Sensors Sorter

Neural Network. Sensors Sorter CSC 302 1.5 Neural Networks Simple Neural Nets for Pattern Recognition 1 Apple-Banana Sorter Neural Network Sensors Sorter Apples Bananas 2 Prototype Vectors Measurement vector p = [shape, texture, weight]

Detaljer

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes Kneser hypergraphs Frédéric Meunier May 21th, 2015 CERMICS, Optimisation et Systèmes Kneser hypergraphs m, l, r three integers s.t. m rl. Kneser hypergraph KG r (m, l): V (KG r (m, l)) = ( [m]) l { E(KG

Detaljer

Call function of two parameters

Call function of two parameters Call function of two parameters APPLYUSER USER x fµ 1 x 2 eµ x 1 x 2 distinct e 1 0 0 v 1 1 1 e 2 1 1 v 2 2 2 2 e x 1 v 1 x 2 v 2 v APPLY f e 1 e 2 0 v 2 0 µ Evaluating function application The math demands

Detaljer

INF5820 Natural Language Processing - NLP. H2009 Jan Tore Lønning

INF5820 Natural Language Processing - NLP. H2009 Jan Tore Lønning INF5820 Natural Language Processing - NLP H2009 jtl@ifi.uio.no HMM Tagging INF5830 Lecture 3 Sep. 7 2009 Today More simple statistics, J&M sec 4.2: Product rule, Chain rule Notation, Stochastic variable

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON360/460 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Exam: ECON360/460 - Resource allocation and economic policy Eksamensdag: Fredag 2. november

Detaljer

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23 UTKAST ENGLISH VERSION EKSAMEN I: MOT100A STOKASTISKE PROSESSER VARIGHET: 4 TIMER DATO: 16. februar 2006 TILLATTE HJELPEMIDLER: Kalkulator; Tabeller og formler i statistikk (Tapir forlag): Rottman: Matematisk

Detaljer

Den som gjør godt, er av Gud (Multilingual Edition)

Den som gjør godt, er av Gud (Multilingual Edition) Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Click here if your download doesn"t start automatically Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Den som gjør godt,

Detaljer

Ma Analyse II Øving 5

Ma Analyse II Øving 5 Ma0 - Aalyse II Øvig 5 Øistei Søvik.0.0 Oppgaver 9. Determie whether the give sequece is (a) bouded (above or below), (b) positive or egative (ultimately), (c) icreasig, decreasig, or alteratig, ad (d)

Detaljer

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 1 MAT131 Bokmål Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 09-14 Oppgavesettet er 4 oppgaver fordelt på

Detaljer

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with. Solutions #1 1. a Show that the path γ : [, π] R 3 defined by γt : cost ı sint j sint k lies on the surface z xy. b valuate y 3 cosx dx siny z dy xdz where is the closed curve parametrized by γ. Solution.

Detaljer

Databases 1. Extended Relational Algebra

Databases 1. Extended Relational Algebra Databases 1 Extended Relational Algebra Relational Algebra What is an Algebra? Mathematical system consisting of: Operands --- variables or values from which new values can be constructed. Operators ---

Detaljer

Medisinsk statistikk, KLH3004 Dmf, NTNU 2009. Styrke- og utvalgsberegning

Medisinsk statistikk, KLH3004 Dmf, NTNU 2009. Styrke- og utvalgsberegning Styrke- og utvalgsberegning Geir Jacobsen, ISM Sample size and Power calculations The essential question in any trial/analysis: How many patients/persons/observations do I need? Sample size (an example)

Detaljer

PATIENCE TÅLMODIGHET. Is the ability to wait for something. Det trenger vi når vi må vente på noe

PATIENCE TÅLMODIGHET. Is the ability to wait for something. Det trenger vi når vi må vente på noe CARING OMSORG Is when we show that we care about others by our actions or our words Det er når vi viser at vi bryr oss om andre med det vi sier eller gjør PATIENCE TÅLMODIGHET Is the ability to wait for

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON20 Forbruker, bedrift og marked, høsten 2004 Exam: ECON20 - Consumer behavior, firm behavior and markets, autumn 2004 Eksamensdag: Onsdag 24. november

Detaljer

Optimal Spherical Deconvolution 1

Optimal Spherical Deconvolution 1 Joura o Mutivariate Aaysis doi10.1006jmva.2000.1968, avaiabe oie at httpwww.ideaibrary.com o Optima Spherica Decovoutio 1 Peter T. Kim Uiversity o Gueph, Gueph, Otario, Caada ad Ja-Yog Koo Haym Uiversity,

Detaljer

Information search for the research protocol in IIC/IID

Information search for the research protocol in IIC/IID Information search for the research protocol in IIC/IID 1 Medical Library, 2013 Library services for students working with the research protocol and thesis (hovedoppgaven) Open library courses: http://www.ntnu.no/ub/fagside/medisin/medbiblkurs

Detaljer

Hvordan kvalitetssikre åpne tidsskrift?

Hvordan kvalitetssikre åpne tidsskrift? Hvordan kvalitetssikre åpne tidsskrift? Innlegg ved Halvdagsseminar om åpen tilgang til vitenskapelige artikler I forbindelse med den internasjonale Open Access-uken, Universitetsbiblioteket i Bergen 26.

Detaljer

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Emneevaluering GEOV325 Vår 2016 Kommentarer til GEOV325 VÅR 2016 (emneansvarlig) Forelesingsrommet inneholdt ikke gode nok muligheter for å kunne skrive på tavle og samtidig ha mulighet for bruk av power

Detaljer

TEKSTER PH.D.-KANDIDATER FREMDRIFTSRAPPORTERING

TEKSTER PH.D.-KANDIDATER FREMDRIFTSRAPPORTERING TEKSTER PH.D.-KANDIDATER FREMDRIFTSRAPPORTERING DISTRIBUSJONS-E-POST TIL ALLE KANDIDATER: (Fornavn, etternavn) Den årlige fremdriftsrapporteringen er et viktig tiltak som gjør instituttene og fakultetene

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt ksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON3120/4120 Mathematics 2: Calculus and linear algebra Eksamensdag:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag:

Detaljer

2A September 23, 2005 SPECIAL SECTION TO IN BUSINESS LAS VEGAS

2A September 23, 2005 SPECIAL SECTION TO IN BUSINESS LAS VEGAS 2A September 23, 2005 SPECIAL SECTION TO IN BUSINESS LAS VEGAS SPECIAL SECTION TO IN BUSINESS LAS VEGAS 3A September 23, 2005 SEE, PAGE 8A Businesses seek flexibility. It helps them compete in a fast-paced,

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON20/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON20/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Fredag 2. mai

Detaljer

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) INF247 Er du? Er du? - Annet Ph.D. Student Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen,

Detaljer

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal.

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal. KROPPEN LEDER STRØM Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal. Hva forteller dette signalet? Gå flere sammen. Ta hverandre i hendene, og la de to ytterste personene

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag 7. juni

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON30/40 Matematikk : Matematisk analyse og lineær algebra Exam: ECON30/40 Mathematics : Calculus and Linear Algebra Eksamensdag: Tirsdag 0. desember

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT BOKMÅL Eksamen i: ECON1210 - Forbruker, bedrift og marked Eksamensdag: 26.11.2013 Sensur kunngjøres: 18.12.2013 Tid for eksamen: kl. 14:30-17:30 Oppgavesettet er

Detaljer

Eksamen ENG1002/1003 Engelsk fellesfag Elevar og privatistar/elever og privatister. Nynorsk/Bokmål

Eksamen ENG1002/1003 Engelsk fellesfag Elevar og privatistar/elever og privatister. Nynorsk/Bokmål Eksamen 22.11.2012 ENG1002/1003 Engelsk fellesfag Elevar og privatistar/elever og privatister Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid Hjelpemiddel Eksamen varer i 5 timar. Alle hjelpemiddel

Detaljer

Emnedesign for læring: Et systemperspektiv

Emnedesign for læring: Et systemperspektiv 1 Emnedesign for læring: Et systemperspektiv v. professor, dr. philos. Vidar Gynnild Om du ønsker, kan du sette inn navn, tittel på foredraget, o.l. her. 2 In its briefest form, the paradigm that has governed

Detaljer

HONSEL process monitoring

HONSEL process monitoring 6 DMSD has stood for process monitoring in fastening technology for more than 25 years. HONSEL re- rivet processing back in 990. DMSD 2G has been continuously improved and optimised since this time. All

Detaljer

Perpetuum (im)mobile

Perpetuum (im)mobile Perpetuum (im)mobile Sett hjulet i bevegelse og se hva som skjer! Hva tror du er hensikten med armene som slår ut når hjulet snurrer mot høyre? Hva tror du ordet Perpetuum mobile betyr? Modell 170, Rev.

Detaljer

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems Department of Economics May 004 Arne Strøm ECON0/40 Mathematics, spring 004 Problem solutions for the seminar on 5 May 004 (For practical reasons (read laziness, most of the solutions this time are in

Detaljer

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX)

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX) Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX) Peter J. Rosendahl Click here if your download doesn"t start automatically Han Ola of Han Per:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag 8. desember

Detaljer

MA2501 Numerical methods

MA2501 Numerical methods MA250 Numerical methods Solutions to problem set Problem a) The function f (x) = x 3 3x + satisfies the following relations f (0) = > 0, f () = < 0 and there must consequently be at least one zero for

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON1410 - Internasjonal økonomi Exam: ECON1410 - International economics Eksamensdag: 18.06.2013 Date of exam: 18.06.2013 Tid for eksamen: kl.

Detaljer

FIRST LEGO League. Härnösand 2012

FIRST LEGO League. Härnösand 2012 FIRST LEGO League Härnösand 2012 Presentasjon av laget IES Dragons Vi kommer fra Härnosänd Snittalderen på våre deltakere er 11 år Laget består av 4 jenter og 4 gutter. Vi representerer IES i Sundsvall

Detaljer

Identification of Refined ARMA Echelon Form Models for Multivariate Time Series*

Identification of Refined ARMA Echelon Form Models for Multivariate Time Series* journal of multivariate analysis 56, 27231 (1996) article no. 11 Identification of Refined ARMA Echelon Form Models for Multivariate Time Series* Sai d siri Institut national de statistique et d'e conomie

Detaljer

TEKSTER PH.D.-VEILEDERE FREMDRIFTSRAPPORTERING DISTRIBUSJONS-E-POST TIL ALLE AKTUELLE VEILEDERE:

TEKSTER PH.D.-VEILEDERE FREMDRIFTSRAPPORTERING DISTRIBUSJONS-E-POST TIL ALLE AKTUELLE VEILEDERE: TEKSTER PH.D.-VEILEDERE FREMDRIFTSRAPPORTERING DISTRIBUSJONS-E-POST TIL ALLE AKTUELLE VEILEDERE: Kjære , hovedveileder for Den årlige fremdriftsrapporteringen er et viktig tiltak som gjør

Detaljer

Vekeplan 4. Trinn. Måndag Tysdag Onsdag Torsdag Fredag AB CD AB CD AB CD AB CD AB CD. Norsk Matte Symjing Ute Norsk Matte M&H Norsk

Vekeplan 4. Trinn. Måndag Tysdag Onsdag Torsdag Fredag AB CD AB CD AB CD AB CD AB CD. Norsk Matte Symjing Ute Norsk Matte M&H Norsk Vekeplan 4. Trinn Veke 39 40 Namn: Måndag Tysdag Onsdag Torsdag Fredag AB CD AB CD AB CD AB CD AB CD Norsk Engelsk M& Mitt val Engelsk Matte Norsk Matte felles Engelsk M& Mitt val Engelsk Norsk M& Matte

Detaljer

Christmas in the round A Holiday Prism for Band. Preview Only

Christmas in the round A Holiday Prism for Band. Preview Only Concert BAND 1 Conductor 3 1st C Flute 3 2nd C Flute 2 Oboe 3 1st Bb Clarinet 3 2nd Bb Clarinet 3 3rd Bb Clarinet 1 Eb Alto Clarinet 2 Bb Bass Clarinet 2 Bassoon 1 1st Eb Alto Saxophone 1 2nd Eb Alto Saxophone

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON2915 Vekst og næringsstruktur Exam: ECON2915 - Growth and business structure Eksamensdag: Fredag 2. desember 2005 Sensur kunngjøres: 20. desember

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Mathematics 2: Calculus an linear algebra Exam: ECON3120/4120 Mathematics 2: Calculus an linear algebra Eksamensag: Tirsag 3. juni 2008

Detaljer

FINAL EXAM IN STA-2001

FINAL EXAM IN STA-2001 Page 1 of 3 pages FINAL EXAM IN STA-2001 Exam in: STA-2001 Stochastic processes. Date: Tuesday the 21. of February, 2012. Time: 09:00 13:00. Place: Aud.max. Approved aids: 4 pages of your own notes. Approved

Detaljer

Stationary Phase Monte Carlo Methods

Stationary Phase Monte Carlo Methods Stationary Phase Monte Carlo Methods Daniel Doro Ferrante G. S. Guralnik, J. D. Doll and D. Sabo HET Physics Dept, Brown University, USA. danieldf@het.brown.edu www.het.brown.edu Introduction: Motivations

Detaljer

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD 1 Bakgrunnen for dette initiativet fra SEF, er ønsket om å gjøre arbeid i høyden tryggere / sikrere. Både for stillasmontører og brukere av stillaser. 2 Reviderte

Detaljer

Dagens tema: Eksempel Klisjéer (mønstre) Tommelfingerregler

Dagens tema: Eksempel Klisjéer (mønstre) Tommelfingerregler UNIVERSITETET I OSLO INF1300 Introduksjon til databaser Dagens tema: Eksempel Klisjéer (mønstre) Tommelfingerregler Institutt for informatikk Dumitru Roman 1 Eksempel (1) 1. The system shall give an overview

Detaljer