Localization Properties of the Chalker Coddington Model

Størrelse: px
Begynne med side:

Download "Localization Properties of the Chalker Coddington Model"

Transkript

1 Ann. Henri Poincaré (200), c 200 Springer Basel AG /0/ published online November 3, 200 DOI 0.007/s Annales Henri Poincaré Localization Properties of the Chalker Coddington Model Joachim Asch, Olivier Bourget and Alain Joye We dedicate this work to the memory of our friend and colleague Pierre Duclos Abstract. he Chalker Coddington quantum network percolation model is numerically pertinent to the understanding of the delocalization transition of the quantum Hall effect. We study the model restricted to a cylinder of perimeter 2M. We prove first that the Lyapunov exponents are simple and in particular that the localization length is finite; secondly, that this implies spectral localization. hirdly, we prove a houless formula and compute the mean Lyapunov exponent, which is independent of M.. Introduction We start with a mathematical then a physical description of the model. Fix the parameters r, t [0, ], such that, r 2 + t 2 =, denote by the complex numbers of modulus and for q =(q,q 2,q 3 ) 3 by S(q) the general unitary U(2) matrix depending on these three phases ( )( )( ) q q S(q) := 2 0 t r q q q 2 r t 0 q 3 Let ( Ω, F, P) be the probability space: Ω := ( 6) (2Z) 2, P := (2Z) 2d 6 l where dl is the normalized Lebesgue measure on, and F the σ-algebra generated by the cylinder sets. With p Ω, p(2j, 2k) =:(p,p 2,p 3, }{{} p 4,p 5,p 6 ) }{{} p e(2j,2k) p o(2j+,2k+) (j, k Z)

2 342 J. Asch et al. Ann. Henri Poincaré and the basis vectors e μ (ρ) :=δ μ,ρ (μ, ρ Z 2 ), the family of unitary operators Û(p) :l 2 (Z 2 ) l 2 (Z 2 ) is defined by its matrix elements Ûμ;ν = e μ, Ûe ν : Û μ;ν := 0 except for the blocks ( ) Û(p)(2j+,2k);(2j,2k) Û(p) (2j+,2k);(2j+,2k+) := S(p e (2j, 2k)) () Û(p) (2j,2k+);(2j,2k) Û(p) (2j,2k+);(2j+,2k+) ( Û(2j+2,2k+2);(2j+2,2k+) Û (2j+2,2k+2);(2j+,2k+2) Û (2j+,2k+);(2j+2,2k+) Û (2j+,2k+);(2j+,2k+2) ) := S(p o (2j +, 2k + )). Note that Û is an ergodic family of random unitary operators; indeed, Û Û = I = ÛÛ because of the unitarity of the blocks; further denote by Θ the action of Z 2 on functions f on Z 2 : ( Θ (l,m) f)(μ) :=f(μ +(2l, 2m)) (μ Z 2, (l, m) Z 2 ), and, by abuse of notation, the corresponding shift on Ω. hen Θ ismeasure preserving and ergodic on Ω and Û( Θp) = ΘÛ(p) Θ. his model was introduced in the physics literature by Chalker and Coddington [0], see [2] for a review, in order to study essential features of the quantum Hall transition in a quantitative way. Û describes the dynamics of a 2D electron in a strong perpendicular magnetic field and a smooth bounded random electric potential which is supposed to have some array of hyperbolic fixed points forming the nodes of a graph. In this picture, the electron moves on the directed edges of the graph whose nodes are even : {(/2, /2)+(2j, 2k),j,k Z} or odd : {(/2, /2)+ (2j +, 2k +),j,k Z} with edges connecting the even (odd) nodes to their nearest odd (even) neighbors. Û describes the evolution at time one of the electron. he edges are labeled by their midpoints. hey are directed in such a way that Û models the tunneling near the hyperbolic fixed points of the potential, see Fig.. he tunneling is described by the scattering matrices S associated with the even, respectively odd, nodes. he i.i.d. random phases associated with each node take into account the deviation of the random electric potential from periodicity. Following the literature on tunneling near a hamiltonian saddle point [,4], the parameter t is +e ε where ε is the distance of the electron s energy to the nearest Landau Level. An application of a finite size scaling

3 Vol. (200) Localization Properties of the Chalker Coddington Model 343 (2j,2k) (2j+,2k+) x-axis even node odd node y-axis Figure. he network model with its incoming (solid arrows) and outgoing links method to their numerical observations led Chalker and Coddington [0], see also [2], to conjecture that the localization length diverges as t/r as ( ) α ln t r, where the critical exponent α exceeds substantially the exponent expected when a classical percolation model is applied to the problem [25]; the values advocated for α are 2.5 ± 0.5 for the quantum and 4/3 for the classical case. Because of its importance for the understanding of the integer quantum Hall effect the one electron magnetic random model in two dimensions was and continues to be heavily studied in the mathematical literature. Mathematical results concerning the full Schrödinger Hamiltonian can be traced from the following contributions and their references: [27] for percolation, [6] for the existence of the localization delocalization transition [2, 8, 5] for the general theory of the quantum Hall effect. For results concerning a 2D electron in a magnetic field and periodic potential, which corresponds to the absence of phases here, see [8, 26]. For recent work on Lyapunov exponents on Hamiltonian strip models see [6, 7, 23]. Our results concern the restriction of the model to a strip of width 2M and periodic boundary conditions; they are presented as follows. In Sect. 2, we analyze the extreme cases, r =0andr =. hen, for the case where all phases are chosen to be, we give a description of the spectrum. Questions related to transfer matrix formalism are handled in Sects. 3, 4, 5. In Sect. 6, weprove simplicity of the Lyapunov spectrum and finiteness of the localization length. In Sect. 7, we prove a houless formula and show that the density of states is flat, which implies our results on the mean Lyapunov exponent. In Sect. 8, we prove complete spectral localization.

4 344 J. Asch et al. Ann. Henri Poincaré 2. Some Properties of the Model 2.. Extreme Cases Note that in case of complete reflection or transmission the system localizes completely: Proposition 2.. Let rt =0. hen, for any p Ω, the spectrum of Û(p) is pure point. Proof. Assume r =0,p Ω and define the family of subspaces (H j,k ) (j,k) Z 2 as: H j,k =Ran(e 2j,2k,e 2j+,2k,e 2j+,2k,e 2j,2k ). hese subspaces are invariant under Û(p) and (j,k) Z 2 H j,k = l 2 (Z 2 ), (2) which means the operator Û(p) is pure point. he case t = 0 is treated similarly. On the other hand, one has complete propagation if all the phases are equal to one; define Ω p =(...,,,,...)byp(2j, 2k) :=(,,,,, ) then we have: Proposition 2.2. Let rt 0. hen, the spectrum of Û(...,,,,...) is purely absolutely continuous. Proof. We make use of a decomposition similar to (2) and define the unitary V from l 2 (Z 2 )tol 2 (Z 2 ) C 4 by Ve 2j,2k := e j,k e,ve 2j+,2k+ := e j,k e 2,Ve 2j,2k+ := e j,k e 3,Ve 2j+,2k := e j,k e 4.LetP be the projection P := I ( e e + e 2 e 2 ). From the definition of Û in () one reads that V Û 2 V commutes with P and that PVÛ2 V P is equivalent to ( ) rt(0,,0 ) r 2,0 + t 2 0, t 2 0, + r 2,0 rt(,0 0, ) with the translations on l 2 (Z 2 ) defined by n,m ψ(j, k) :=ψ(j + n, k + m) (n, m Z). he Fourier transform F : l 2 (Z 2 ) L 2 ( 2 ) transforms the translations to multiplication operators: F n,m F =exp( i(nx + my)), thus the restriction to the range of P of FPVÛ2 V P F is equivalent to a matrix-valued multiplication operator ( ) rt(e iy e ix ) r 2 e ix + t 2 e iy. (3) t 2 e iy + r 2 e ix rt(e ix e iy ) he trace of this matrix is not constant, its determinant is hence the spectral bands are not flat, thus the spectrum of the restriction of Û 2 is purely absolutely continuous. By an analogous argument this also holds for the restriction to P.

5 Vol. (200) Localization Properties of the Chalker Coddington Model 345 Remark that a more general periodic distribution of phases leads to matrix-valued translation operators with periodic coefficients thus to nontrivial Hofstadter like problems. 3. Restriction to a Cylinder, ransfer Matrices Let M N. Use the notation Z 2M := Z/(2MZ) for the discrete circle of perimeter 2M. Consider the restriction of the model to the cylinder Z Z 2M : U(p) :l 2 (Z Z 2M ) l 2 (Z Z 2M ) defined by its matrix elements with respect to the canonical basis U(p) μ,ν := Û(μ,μ 2 mod 2M);(ν,ν 2 mod 2M). (4) Remark that U(p) has the same spectral properties for the extreme cases as Û(p), the model on the full lattice: Proposition 3.. Let rt =0. hen, for any p Ω, the spectrum of U(p) is pure point. Proof. Similar to the proof of Proposition 2.. Proposition 3.2. Let rt 0. hen the spectrum of U(...,,,,...) is purely absolutely continuous. Proof. In the proof of Proposition 2.2 note that V now acts from l 2 (Z Z 2M ) to l 2 (Z Z M ) C 4 and replace F by the Fourier transform from l 2 (Z Z M ) to L 2 ( Z M ) defined by Fψ(x, κ) = M κk j Z,k Z M ψ j,k e ixj e i 2π which diagonalizes the translations. hen, setting y = 2π M κ (κ Z M ), the matrix-valued multiplication operator obtained in (3) is understood as a family of matrix-valued operators indexed over Z M. he spectral bands are not flat by the same argument. From now on we restrict the discussion to the case rt 0. In the following z denotes a complex number; also, unless otherwise stated, all indices in the second variable are to be understood mod 2M, e.g.: ψ 2j,2k+ = ψ 2j,2k+ mod 2M = ψ 2j,2k+[2M]. A standard approach to the spectral problem of U is the transfer matrix method. hough this is well known, we wish to recall the construction explicitly for the model at hand.

6 346 J. Asch et al. Ann. Henri Poincaré Proposition 3.3. For z 0, q =(q,q 2,q 3 ) 3 define ( ) ( )( ) q q eo (z,q) := 2 0 z r q3 0, 0 q 3 t r z 0 q q 2 ( ) ( )( ) q3 0 z t q q oe (z,q) := q q 2 r t z. 0 q 3 hen. For ψ : Z Z 2M it holds: U μν ψ ν = zψ μ μ Z Z 2M ν Z Z 2M ( ψ2j+,2k ψ 2j+,2k+ ) = eo (z,p e (2j, 2k)) and ( ) ψ2j+2,2k+ = oe (z,p o (2j +, 2k + )) ψ 2j+2,2k+2 ( ψ2j,2k ψ 2j,2k+ ) ( ψ2j+,2k+ ψ 2j+,2k+2 2. For z, it holds that oe, eo U(, ), the Lorentz group defined as a subset of the complex 2 2 matrices by { ( )} U(, ) := B M 2,2 (C); B 0 JB = J, J := 0 Proof. By definition of U, we have for the even nodes: ( ) ( ) (Uψ)2j+,2k ψ2j,2k = S (p e (2j, 2k)) = z (Uψ) 2j,2k+ and, for the odd nodes: For a matrix it holds: ( ) a = S b with S (p o (2j +, 2k + )) Ŝ = S 22 Now ( t r r t ( ψ2j+2,2k+ ( ) S S S = 2 S 2 S 22 ( ) x y ψ 2j+,2k+2 ( ) a = y Ŝ ψ 2j+,2k+ ) = z with S 22 S 2 0 ( ) x b ). ( ψ2j+,2k ( ψ2j+2,2k+2 ψ 2j+,2k+ ( ) x = a S ψ 2j,2k+ ). ( ) b y ( ) ( ) det S S2 S22, S =. S 2 S 2 S det S ) = t ( ) r ; r ( ) t r = ( ) t r t r t ),

7 Vol. (200) Localization Properties of the Chalker Coddington Model 347 so ( ) ( )( )( )( ) a q2 0 t r q3 0 x z = q b 0 q 2 r t 0 q 3 y ( ) ( ) ( )( )( ) a q q = 2 0 z r q3 0 x y 0 q 3 t r z 0 q q 2 b ( ) ( ) ( )( )( ) x q3 0 z t q q = 2 0 b a 0 q q 2 r t z 0 q 3 y from which the first claim follows. Denote by I the identity matrix in C 2. S is a unitary matrix if( and only ) I if the pullback of the quadratic form in C 4 associated with Q = I (blanks stand for 0 entries) to the graph of S: { (u, Su) C 4,u ( C 2} ) is zero. J he mapping from (x, y, a, b) to(x, b, a, y) transforms Q to.he J pullback of the corresponding form to the graph of eo being zero, it follows that eo and, by the analogous argument, oe,belongtothelorentzgroup. For later use we fix the following notation Definition 3.4. Denote by J the 2M 2M block diagonal matrix consisting of M non-zero diagonal blocks equal to J and by U M (, ) := {B M 2M,2M (C); B JB = J}. the unitary group of the hermitian form defined by J. Note that U M (, ) is isomorphic to the classical unitary group U(M,M) of the hermitian form z z M 2 z M+ 2 z 2M Relevant Phases Because of the uniform distribution, it is possible to reduce the number of relevant phases in the model to two phases per node. Before proceeding we do this reduction. We shall repeatedly make use of Lemma 4.. Let ϕ,...,ϕ n be independent and uniformly distributed random variables on R/Z and let A M m,n (Z). hen,θ,...,θ m defined by θ = A ϕ are independent and uniformly distributed if and only if Rank A is maximal. Proof. For k Z m it holds E(e i k, θ )=E(e i k,a ϕ )=E(e i At k, ϕ )=δ A t k,0. hus, the θ are independent and uniformly distributed if and only if E(e i k, θ )= δ k,0 if and only if KerA t = {0}, equivalently, if and only if Rank A is maximal.

8 348 J. Asch et al. Ann. Henri Poincaré Proposition 4.2. here exists g : Ω Z2 such that for p Ω the evolution Û(p) defined by () is unitarily equivalent to D(g(p))S on l 2 (Z 2 ) where D(q) is diagonal, D(q) (j,k);(j,k) = q j,k,ands = Û(...,,,,...). Moreover, the image measure of (2Z) 2d 6 l by g is Z 2dl. Proof. By (), Û(p) isoftheformû(p) =D() (p)sd (2) (p) where D (j) (p) are diagonal, and defined by their diagonal elements: D () (p) 2j+,2k = p p 2 (2j, 2k), D () (p) 2j+2,2k+2 = p 4 p 5 (2j +, 2k +), D (2) (p) 2j,2k = p 3 (2j, 2k), D (2) (p) 2j+2,2k+ = p 6 (2j +, 2k +), D () (p) 2j,2k+ = p p 2 (2j, 2k), D () (p) 2j+,2k+ = p 4 p 5 (2j +, 2k +), D (2) (p) 2j+,2k+ = p 3 (2j, 2k), D (2) (p) 2j+,2k+2 = p 6 (2j +, 2k +). Hence, Û(p) is unitarily equivalent to D (2) (p)d () (p)s which has the asserted shape. Define q = g(p) by q(2j +, 2k) :=p 6 (2j +, 2k )p p 2 (2j, 2k), q(2j, 2k +):=p 6 (2j, 2k +)p p 2 (2j, 2k), q(2j +2, 2k +2):=p 3 (2j +2, 2k +2)p 4 p 5 (2j +, 2k +), q(2j +, 2k +):=p 3 (2j, 2k)p 4 p 5 (2j +, 2k +). Now, an application of Lemma 4. shows the q s are i.i.d. and uniformly distributed. Remark 4.3. Note that the unitary transformation just constructed is diagonal and thus does not affect the localization properties of the model. In the following, we abuse notations and call for q Z2 the matrix operator D(q)S again Û(q); same abuse for the restriction to the cylinder. 5. Characteristic Exponents We now define and analyze the transfer matrices and in particular the localization length. Consider U(p) =D(p)S on l 2 (Z Z 2M ) (5) with identically distributed uniformly distributed phases in Z Z2M, Z Z2M dl and the cylinder set algebra.

9 Vol. (200) Localization Properties of the Chalker Coddington Model 349 We use the unitary equivalence l 2 (Z Z 2M ) = l 2 (Z {0,...,2M }) l 2 (Z; l 2 (Z 2M )) = l 2 (Z, C 2M ) ψ Ψ (6) Ψ j := (ψ j,0,...,ψ j,2m ). Note that with the reduced phases the building blocks of the transfer matrices read with phases p,q ( ) ( )( ) p 0 z r 0, 0 t r z 0 q ( ) ( )( ) 0 z t q 0 0 p r t z. 0 As we shall explain below, the previous analysis leads us to deal with the following random dynamical system: Consider the probability space defined by Ω = ( 4M ) 2Z, P = Z d 4M l, and F, the cylinder set algebra. he shift Θ:Ω Ω, Θp(2m) :=p(2(m + )) (m Z) is measure preserving and ergodic. For p Ω define the following elements of ( ) 2M 2Z p r =(,p,,p 3,...,,p 2M ) p l =(p 0,,p 2,,...,p 2M 2, ) p m =(p 2M,p 2M+,...,p 4M ). Denote for q 2M the unitary diagonal matrix D(q) := q... q 2M, (where 0 valued matrix entries are represented by blanks) and for z 0the 2M 2M matrices z r M (z) := r z..., t z r r z z t z t M 2 (z) := t z.... r z t t z t z

10 350 J. Asch et al. Ann. Henri Poincaré Define for a fixed z 0 A z :Ω U M (, ) (7) A z (p) :=D (p l ) M 2 (z)d (p m ) M (z)d (p r ). hen A generates the cocycle Φ over the ergodic dynamical system (Ω, F, P, (Θ n ) n Z ) defined by Φ z : Z Ω U M (, ) A(Θ n p)...a(p) n>0 Φ z (n, p) := I n =0. A (Θ n p)...a (Θ p) n<0 Oseledets theorem holds for Φ, see [], heorem 3.4. and Remark (ii): Definition 5.. Let z 0. here exists an invariant subset of full measure of p Ω such that the limits lim n (Φ z(n, p)φ z (n, p)) /2n = lim n (Φ z(n, p)φ z (n, p)) /2 n =: Ψ z (p) exist. Denote by γ k (p, z), k {,...,2M}, the eigenvalues of Ψ z (p) arranged in decreasing order. Due to ergodicity there exists γ k (z) 0 such that γ k (p, z) = γ k (z) on an invariant subset of full measure. he characteristic exponents are defined by λ k (z) := log γ k (z). Due to the Lorentz symmetry of the transfer matrices for z we have Proposition Let B U M (, ). hen for the singular values SV (B) it holds γ SV (B) γ SV (B). 2. For λ j := log γ j,γ j SV (B) arranged in decreasing order it holds: λ j+m = λ M j+ j {0,...,M}. Proof. We have B JB=J. In particular, det B 0,soγ 0andJ B = B J as well as BJ = JB.Now, det ( B B z 2) =0 det ( J B BJ z 2) =0 det ( (B B) z 2) ( ) =0 z 4M det(b B) det z 2 B B =0. From which the two claims follow. hus, we restrict our discussions to the first M non-negative Lyapunov exponents λ λ 2 λ M 0 which we shall call for simplicity the Lyapunov exponents in the sequel. We show that due to the translation invariance of the uniform distribution, the exponents are independent of z:

11 Vol. (200) Localization Properties of the Chalker Coddington Model 35 Lemma 5.3. For any w, A wz (p) =A z (w p), where w p is defined by w p 2j := w p 2j,andw p 2j+ := wp 2j+. Proof. Write D(p m )in(7) asd(p l )D(p r), where p r := (,p 2M+,,p 2M+3,...,,p 4M ) p l := (p 2M,,p 2M+2,,...,p 4M 2, ). hus, A z (p) is the product of the block diagonal matrices D(p l )M 2 (z)d(p l ) and D(p r)m (z)d(p r ) whose blocks are ( ) ( )( ) a l 0 z t 0 z(p, q) := 0 p r t z = ( ) z qt 0 q r pt pqz ( ) ( )( ) a r 0 z r 0 z(p, q) := = ( ) z qr. 0 p t r z 0 q r pr pqz For any w, these matrices satisfy a l wz(p, q) =wa l z(w p, w q), a r wz(p, q) =w a l z(wp, wq), from which the result follows. herefore, for any fixed w, the matrices A z (w p) have the same distribution as A wz (p). As a consequence, Corollary 5.4. All characteristic exponents λ k (z) = λ k are independent of z. Proof. λ k = E (log(γ k (z,p))) = E ( log(γ k (, z p))) = E (log(γ k (,p))). Definition 5.5. he localization length ξ M [0, ] is defined as ξ M :=. λ M Remark 5.6. In the physics literature, see [2], ξ M in assumed to be finite for all parameters; a change of the asymptotic behavior as M is conjectured when the parameters of the model approach the critical point t = r. his conjecture is supported by a numerical finite size scaling method and is supposed to reflect the divergence of the localization length of the full system at the critical point. hus a first step to support these heuristics is to prove finiteness of ξ M and to establish precise information of its behavior as a function of M. he announced equivalence to the propagation problem is the content of the following Proposition 5.7. Let U(p) be the ergodic family of unitary operators defined in (5) over the probability space Γ:= Z Z2M, Z Z2M dl and the cylinder set algebra. Let f :Γ Ω be defined for j Z by f(p)(2j) :=(p 2j,0,p 2j+2,,p 2j,2,p 2j+2,3...p 2j,2M 2,p 2j+2,2M p 2j+,0,p 2j+,...p 2j+,2M ).

12 352 J. Asch et al. Ann. Henri Poincaré he image measure by f is the measure on Ω and it holds U(p)ψ = zψ Ψ 2N =Φ z (N,f(p))Ψ 0 for Ψ defined in (6). Proof. he construction of f follows from Proposition (3.3). he image measure follows from Lemma (4.). 6. Finiteness of the Localization Length Using the methods exposed in [5], see also [7], we prove that all Lyapunov exponents are distinct and in particular that the localization length for the cylinder in finite. heorem 6.. For rt 0,z it holds λ >λ 2 > >λ M > 0. Proof. We follow the strategy exposed in [5] and prove the theorem in several steps making use of lemmata to be proven below. Denote by G := the smallest subgroup of U M (, ) generated by {A(p),p Ω}. By Lemma 6.2 G = U M (, ). In particular it is then known: G is connected. Furthermore, see also [23], G is isomorphic to the complex symplectic group. Indeed : denote by ( ג the 2M ) 2M block diagonal matrix consisting of 0 = ג write: M non-zero blocks σ = ; we 0 M σ for short; denote by {ג = Bג B Sp(M,C) :={B M 2M,2M (C); the complex symplectic group. From ( ) i J ( ) i = iσ 2 i 2 i it follows defining C := ( ) M i 2 that i G = U M (, ) = CSp(M,C)C. In order to freely use results in [5] we shall do our argument for real matrices. o this end we separate real and imaginary parts and consider τ : M 2M,2M (C) M 4M,4M (R) ( ) a b x = a + ib. b a

13 Vol. (200) Localization Properties of the Chalker Coddington Model 353 It holds: τ(x + y) =τ(x) +τ(y); τ(xy) =τ(x)τ(y); τ(x )=τ(x) t ; ker{τ} = {0}; det τ(x) = det x 2,thus with the real symplectic group τ (C GC) Sp(2M,R) {ג = Bג Sp(2M,R) :={B M 4M,4M (R); B t for = ג 2M σ. det τ(x) = det x 2 implies that τ(x) shares its eigenvalues with x with the degeneracies doubled. So the Lyapunov exponents γ defined by the τ C transformed products of transfer matrices are γ = γ 2 = λ γ 2p = γ 2p = λ p γ 2M = γ 2M = λ M. As τ (C GC) is connected one can infer from [5] heorem 3.4 and Exercice 2.9 for p {,...,M}: τ (C GC) L 2p irreducible and τ (C = γ 2p = λ p >λ p+ = γ 2p+ GC) 2p contracting in particular for p = M: λ M > 0. Now by Lemmas 6.3 and 6.4, the group τ (C GC) is2p irreducible and 2p contracting for all p {,...,M} so all Lyapunov exponents are distinct and λ M > 0. he following lemmata complete the proof of heorem 6., we use the notations introduced in the above proof. Lemma 6.2. G = U M (, ). Proof. By definition G U M (, ) is a closed subgroup of Gl(2M,C) thusg is a Lie group. By connectedness of U M (, ) it is sufficient to show that the Lie algebras g and u M (, ) coincide. Now u M (, ) = {A M 2M,2M (C); A jk = A kj ( ) k+j } whose dimension as a real vector space equals 4M 2. Denote by D j (t) = diag(,,...,,e it,,...,) the unitary matrix where the phase sits at the j th slot, for j =, 2,...,2M and use the M j as defined in Sect. 5. Forz the matrices i j j, im 2 (z) j j M 2 (z), im (z) j j M (z) (8) belong to g, forj =, 2,...,2M as they are the generators of the curves D j (t), M 2 (z)d j (t)m2 (z), M (z)d j(t)m (z), which lie in G as D j (t) =D j (t)m 2 (z)m (z)(m 2 (z)m (z)), M 2 (z)d j (t)m 2 (z) =M 2(z)D j (t)m (z)(m 2 (z)m (z)), M (z)d j(t)m (z) =(M 2 (z)m (z)) M 2 (z)d j (t)m (z).

14 354 J. Asch et al. Ann. Henri Poincaré he generators in (8) have the same block structure as the M j. We compute the relevant blocks. For im 2 (z) j j M 2 (z) we get ( )( ) i z t 0 )( z t r 2 = i ( ) tz t z 0 0 t z r 2 t z t 2 ( )( ) i z t 0 0 )( z t r 2 = i ( ) t 2 tz t z 0 t z r 2. t z Similarly, for im (z) j j M (z), the blocks take the form ( )( )( ) i z r 0 z r t 2 = i ( ) rz r z 0 0 r z t 2 r z r 2 ( )( )( ) i z r 0 0 z r t 2 = i ( ) r 2 rz r z 0 r z t 2. r z Now using these matrices for z / R and the diagonal matrix i j j, j =, 2 one gets by taking suitable real linear combinations of the matrices above that, in both cases, the relevant blocks are generated by { ( ) ( ) ( ) ( )} i,i,i, For real z, use ( the curves ) D j (t), D e M ( 2 D j (t)m ) 2 D e, Do M D j(t) 0 w 0 M D o, with D e = and D 0 w o = for w, which amounts 0 to perform the change z w z. aking into account the shift in the blocks and the period 2M of the indices in the matrices, we get that the restrictions of g and u M (, ) to their tridiagonal elements, mod 2M coincide. o go off the diagonals we use commutators, i.e. we exploit that X, Y g implies [X, Y ] g. Let A k = k + k + k k + g, fork Z 2M. Considering [A j,a k ]for all values of j, k, we generate a basis of all anti self-adjoint matrices that have non-zero real matrix elements at distance two away from the diagonal (and in the corners, by periodicity). By commuting A k with Ãj = i( j + j j j + ) g, we get a basis of self-adjoint matrices with non-zero purely imaginary elements on the same upper and lower diagonals (plus corners) only. hese matrices correspond to the restriction of all matrices in u M (, ) to these diagonals. We generalize the argument as follows: Assume we already generated a basis of all matrices A u M (, ) such that A jk =0if j k >m, m fixed. Again, periodicity is implicit here. Let u M (, ) B ± j (m) = j + m j ± j j + m. We compute [A j+m,b ± j (m)] = B j (m +). his way we generate all matrices A u M (, ) such A jk =0if j k > m +. Hence by induction, we see that g = u M (, ), so that G = U M (, ).

15 Vol. (200) Localization Properties of the Chalker Coddington Model 355 Lemma 6.3. τ (C GC) =τ (Sp(M,C)) is L 2p irreducible for p {,...,M}. Proof. Denote e i, i {,...,4M} the canonical basis vectors of R 4M.By definition (see [5] with adaptation to our symplectic form) L q := span { v Λ q R 4M ; v = Me Me 3 Me 2q,M Sp(2M,R) } for q 2M. Remark that the set of directions in L q corresponds to the set of isotropic subspaces of R 4M. τ (C GC) isl q -irreducible if there is no proper linear subspace V L q invariant under Λ q τ (C GC). Consider M real numbers a >a 2 > a M >. he 4M 4M diagonal matrix ( A = diag a,,a 2,,...,a M,,a,,a 2,,...,a M, a a 2 a M a a 2 belongs to τ (C GC) ande e 3 e 2q is an eigenvector of (Λ q A) n for all n with simple dominant eigenvalue >. hus for an invariant subspace V of L q either e e 3 e 2q V which implies Λ q M(e e 3 e 2q ) V, M, thus V = L q,ore e 3 e 2q V, which implies for all w V 0= Λ q M t w, e e 3 e 2q = w, Λ q Me e 3 e 2q thus V = L q V = {0}. hus we conclude the claimed irreducibility for q =2p. Lemma 6.4. τ (C GC)=τ (Sp(M,C)) is 2p contracting for p {,...,2M }. ( Proof. For ) any a R\0 there exist x, y R with x 2 y 2 = such that x y, which belongs to U(, ), has eigenvalues a, /a. aking such matrices as blocks one sees that there exists an element of U M (, ) whose singular y x values are distinct: a >a 2 > >a M > > /a M and thus an element of τ (C GC) with 2M distinct singular values b = b 2 = a > >b 2p = b 2p = a p > >b 2M = b 2M = a M > 0. hus b n 2p+/b n 2p n 0 and it follows from Proposition 2., p. 8 of [5] that τ (C GC) is2p contracting. Remark 6.5. o summarize, we have proved that if the transfer matrices generate the complex symplectic group Sp(M,C) then the results of [5] apply, i.e.: the Lyapunov spectrum is simple. he results in [5] are stated for real groups only. While it is remarked in their introduction that these results should hold in the complex case, this seems not to be obvious to specialists in the field. a M )

16 356 J. Asch et al. Ann. Henri Poincaré 7. houless Formula and the Mean Lyapunov Exponent In this section we shall prove the announced identity in a series of lemmata. heorem 7.. Let M N. For the first M Lyapunov exponents associated with U defined in Definition (5.) with z it holds: M M λ i (z) = 2 log rt 2 log 2 i= Proof. Let z. Denoting by P 2L (z) the propagator i P 2L (z) :Ω U M (, ) P 2L (z)(p) :=Φ z (L, p)(φ z ( L, p)) we have for m {,...,M} m λ i = lim L 4L log m P 2L (z)(p) p a.e. (9) where m denotes the mth exterior product (cf. [], ch. 3). We analyze the above limit in Proposition 7.2 below and show: M M i λ i =2 log z x dl(x)+ 2 log rt. he assertion follows by an explicit calculation proving that log z x dl(x) =0. Proposition 7.2. (houless formula) Let M N,z C\0 then M λ i (z) =2 log z x dl(x)+ M 2 log log z rt i Proof. Will be done in Appendix. Remark 7.3. We prove in particular that the density of states is the Lebesgue measure, see Lemma 9.3 below. 7.. Bounds on the Localization Length We now use the houless formula and an M independent bound on the largest Lyapunov exponent to derive a bound on the localization length. We remark that this bound is very crude and that more involved techniques should be established to get more detailed information; cf. [23] and references therein. First observe that a lower bound on the mean Lyapunov exponent together with a tight upper bound on the largest, implies a lower bound on all.

17 Vol. (200) Localization Properties of the Chalker Coddington Model 357 Lemma 7.4. Let κ>0,δ >0 such that M N,z M λ j κ, and λ κ + δ, M j= then, for all j =0,,...,M, λ j+ κ jδ M j. (0) Proof. First note that λ M M j= λ j.husλ κ, which corresponds to (0) forj = 0. Similarly, using also the upper bound on λ, we have for any j M, j M M Mκ + λ k j(κ + δ)+ so that k= k=j+ λ j+ M j M k=j+ λ k κ k=j+ jδ M j. Remark. In view of localization properties, the estimate is useful only if κ>(m )δ. () We now estimate the cocycle to derive an upper bound on the largest Lyapunov exponent, which is uniform in the quasienergy and width of the strip M. Proposition 7.5. Let M N. For the generator of the cocycle defined in (7), it holds A(p) ( + r)( + t); rt 2. It follows: 2λ log ( rt) + log (( + r)( + t)). 3. here exists a c>0 such that for M N it holds: dist(r, {0, }) <e cm = ξ M = λ M log ( rt λ k 2 ). (M ) log (( + r)( + t)) Proof. he estimate on A follows from its definition. he estimate on λ is obtained using the equality (9). Finally, from the estimate (0) it follows ξ M = λ M log ( rt 2 ). (M ) log (( + r)( + t)) he bound is symmetric around t = r = 2 and finite for r sufficiently away from the critical point 2 because of the singularity of log /rt.

18 358 J. Asch et al. Ann. Henri Poincaré 8. Spectral Localization We follow the strategy which was successfully employed for the case of one dimensional Schrödinger operators: polynomial boundedness of generalized eigenfunctions, positivity of the Lyapunov exponent and spectral averaging. We lean on the work of [4,9]. Our result is: heorem 8.. Let M N, rt 0. hen, the Chalker Coddington model on the cylinder exhibits spectral localization throughout the spectrum, almost surely. More precisely,. the almost sure : spectrum Σ, continuous spectrum Σ c and pure point spectrum Σ pp of U(p) satisfy Σ=Σ pp = and Σ c = ; 2. the eigenfunctions decay exponentially, almost surely. Proof. We prove the theorem in Appendix 2. Acknowledgements We should like to thank the referee for his constructive criticism and H. Schulz Baldes and H. Boumaza for enlightening discussions. We acknowledge gratefully support from the grants Fondecyt Grant ; Anillo PBC-AC3; MAH-AmSud, 09MAH05; Scientific Nucleus Milenio ICM P F. 9. Appendix We follow the strategy of [3] and first prove the lower bound M λ i (z) 2 log z x dl(x)+ M 2 log log z (2) rt i for 0 z C\ which follows from Lemma 9.3 Eq. 5 below in the limit L. Lemma 9.. Denote by U D the unitary operator defined by restriction of U to l ( 2 { 2L,...,2L},l 2 (Z 2M ) ) with reflecting boundary conditions: the scattering picture for the links which are incoming to walls at (2L+) and 2L+ reads U D e 2L,2k+ = e 2L,2k+2, U D e 2L,2k = e 2L,2k+. For z C let F z := { ψ l 2 } (Z 2M ); ψ 2k+ = zψ 2k+2,k Z M, G z := { ψ l 2 } (Z 2M ); zψ 2k+ = ψ 2k,k Z M and denote by Q F the orthogonal projection to a subspace F. It holds: z is an eigenvalue of U D Ψ 2L = P 2L (z)ψ 2L and Ψ 2L F z and Ψ 2L G z Ker ( Q G z P 2L (z)q Fz ) {0}

19 Vol. (200) Localization Properties of the Chalker Coddington Model 359 Proof. It holds U D ψ = zψ = ψ 2L,2k+ = zψ 2L,2k+2 and zψ 2L,2k+ = ψ 2L,2k so Ψ 2L F z and Ψ 2L G z. he identity Ψ 2L = P 2L (z)ψ 2L holds by construction of the transfer matrices so U D ψ = zψ Q G z P 2L (z)q Fz Ψ=0. Lemma 9.2. Denote the even subspace of l 2 (Z 2M ) by E := span{e 2k ; k Z M }. For z 0 there exist invertible operators V z,w z on l 2 (Z 2M ) such that W z (E) =F z and V z (E) =G z such that. z is an eigenvalue of U D det ( Q E Vz ) P 2L (z)w z Q E =0 where we understand the determinant to apply to the restriction to E. 2. For z 0; {z,...,z (4L+)2M } the eigenvalues of U D it holds: z (4L+)M det ( Q E Vz ) P 2L W z Q E = Π(4L+)2M (rt) 2LM i= z z i. (3) Proof. Fix 0 z C. In the following N j,d j denote generic, z independent matrices whose precise values may change from line to line. he D j are diagonal. he transfer matrix A z defined in (7) isoftheform A z = ( z 2 D Q O + z 2 D 2 Q E + zn + N 2 + z ) N 3 rt where O denotes the odd subspace defined by O + E = l 2 (Z 2M ). hus Note that (rt) 2L P 2L = z 4L D Q O + z 4L D 2 Q E + 4L j= 4L+ z j N j. { } 2 F z = span (ze 2k+ + e 2k+2 );k Z M { } ( G z = span e2k + z ) e 2k+ ; k ZM. 2

20 360 J. Asch et al. Ann. Henri Poincaré On l 2 (Z 2M ) define the operators W z := ze 2k+ + e 2k+2 e 2k+2 + e 2k+ + z e 2k+2 e 2k+ 2 k Z M V z := e 2k+ + ze 2k e 2k + e 2k + z e 2k+ e 2k+. 2 k Z M hen W z Q E = Q Fz W z and V z Q E = Q G z V z. Moreover, one checks that Wz 2 = I, Vz = KV z K (4) with K := k Z M e 2k+ e 2k + e 2k e 2k+. It follows: Now z is eigenvalue of U D ker ( Q E V z P 2L W z Q E ) {0}. Q E Vz P 2L W z Q E = e 2k e 2k+ + 2 z e 2k,P 2L (ze 2m+ + e 2m+2 ) e 2m+2 k,m = z 4L+ (rt) 2L D Q O + z 4L D 2 Q E + z j N j. j <4L+ Multiplication by z 4L+ implies that for some a j C z (4L+)M det ( (8L+2)M Q E Vz ) P 2L W z Q E = (rt) 2LM z j a j. D is unitary thus, in particular, a (8L+2)M =.z (4L+)M det...being a polynomial of degree (8L +2)M whose leading coefficient has modulus (rt) 2LM and which is zero on the (4L + )2M eigenvalues of U D the formula for the determinant follows. We now prove convergence of the finite volume (L < ) density of states μ M L as L to a non-random measure: the density of state. hen we show that this measure equals the Lebesgue measure. Lemma 9.3. Denote μ (M) L the measure defined by (4L + )2M trf(u D )=: f(x)dμ M L (x). hen μ M L the Lebesgue measure on. vaguely L dl 0 (f C()).

21 Vol. (200) Localization Properties of the Chalker Coddington Model 36 For M N there exists c M > 0 such that for all L N, 0 z C\ M 4L log M P 2L 2 log ( rt + 2+ ) log z x dμ M L (x) 2L ( + ) log z c M 4L L. (5) Proof.. We first prove the existence of a non-random limit measure. he first step consists in showing that p a.e, lim L f(u D (p))dμ M L = 4 {E ( e 0,0,f(U)e 0,0 )+E ( e,,f(u)e, ) + E ( e,0,f(u)e,0 )+E ( e 0,,f(U)e 0, )} =: fdμ M, for all f C(). his follows from a classical argument based on ergodicity, separability of C() and from the fact that U U D has norm and rank uniformly bounded in L, see e.g. [20] for the details for the unitary case. In order to identify μ M recall that the normalized Lebesgue measure dl on is uniquely characterized by : p n dl = δ n,0 n Z where p n (x) :=x n. Consider the space of loops of euclidean length n starting at (0, 0) : Γ (0,0) = {γ : {0,...,n} { 2L,...,2L} Z 2M,γ(0) = γ(n) =(0, 0)}. hen because of the structure of U e 0,0,p n (U)e 0,0 = γ Γ (0,0) e 0,0,Ue γ()... e γ(n ),Ue 0,0. Now e γ(j),u(p)e γ(j+) = l(p)t α r β for some α, β 0andl a uniformly distributed random variable. hus, E ( e 0,0,p n (U)e 0,0 )=δ n,0. Applying the same argument to e,,f(u)e,, e 0,..., we conclude: dμ M = dl

22 362 J. Asch et al. Ann. Henri Poincaré 2. By formula (3): 4LM log ( ) det QE Vz P 2L W z Q E = 2 log ( rt + 2+ ) log z x dμ M L (x) 2L ( + ) log z 4L 4LM log ( M Q E Vz ) P 2L W z Q E M 4L log M P 2L + ( log M Q E Vz + log M W z Q E ) L } 4M {{} =:c M where we used the identity det Q E AQ E = e 0 e 2M 2, M Ae 0 e 2M 2. From this, the claim follows. We turn now to the proof of the opposite inequality: M λ i (z) 2 log z x dl(x)+ M 2 log log z (6) rt for 0 z C\: i Proposition { 9.4. Suppose that for any choice of sets of vectors d 0,d } { 2,...,d 2M 2 and d + 0,d + } 2,...,d+ 2M 2 in the odd subspace O lim sup L M(4L +) log (e 0 + d 0 ) (e 2M 2 + d 2M 2 ), M (Vz P 2L (z)w z )(e 0 + d + 0 ) (e 2M 2 + d + 2M 2 ) 2 ln rt +2 log x z dl(x) log z (7) i then, for all 0 z C\, M λ i (z) M 2 log rt +2 log x z dl(x) log z Proof. he vectors of the form {(e 0 +d 0 ) (e 2M 2 +d 2M 2 ); d 0,...,d 2M 2 O} span M C 2M. On the other hand, given any spanning sets S and S 2 in M C 2M, the mapping S defined by A S sup φ, Aψ φ S,ψ S 2

23 Vol. (200) Localization Properties of the Chalker Coddington Model 363 defines a norm over the algebra of operators in M C 2M. It follows that there exists c>0, which depends on S and S 2, such that for any matrix A, A S c A, hence that M M λ i (z) 2 log rt +2 log ζ z dl(ζ) log z. i We now prove that the inequality (7) is satisfied. his will be achieved in two steps. In order to keep track of the L dependence denote by UL D the former U D. Now reinterpret the left hand side of Eq. 7 as the characteristic polynomial of a deformation of UL D denoted V L D ; more precisely: we aim at Eq. 8 below. he problem is then reduced to the proof of the weak convergence of the associated sequence of counting measures (νl,z M ) towards μm. 9.. Deformation of U D L Let L in N and define the matrix V D L+ on l2 ({ 2L 2,...,2L +2},l 2 (Z 2M )) by: ψ l 2 ({ 2L 2,...,2L +2},l 2 (Z 2M )), (V D L+ψ) 2L+2,2k = M l=0 (V D L+ψ) 2L+,k = ψ 2L+,k (V D L+ψ) 2L,2k+ = (V D L+ψ) 2L,2k = M l=0 M l=0 (V D L+ψ) 2L,k = ψ 2L,k (V D L+ψ) 2L 2,2k+ = M l=0 B + 2k,2l ψ 2L,2l C + 2k+,2l+ ψ 2L+2,2l+, B 2k,2l ψ 2L 2,2l C 2k+,2l+ ψ 2L,2l+, with the same reflecting boundary conditions as UL+ D and (V L+ D ψ) μ,ν = (UL+ D ψ) μ,ν for any values of (μ, ν) which were not described previously. he matrix VL+ D is a deformation of the matrix U L+ D, but its structure remains close to the structure of UL+ D. Note that span{e 2L+,k,e 2L,j ; j, k Z 2M } belongs to ker ( VL+ D I).Forψ an eigenvector of VL+ D associated with the eigenvalue z, V D L+ψ = zψ. his implies that either ψ span{e 2L+,k,e 2L,j ; j, k Z 2M } and z =,or ψ 2L 2 F z and ψ 2L+2 G z and

24 364 J. Asch et al. Ann. Henri Poincaré ψ 2L = P 2L (z)ψ 2L ψ 2L+2 = A + (z)ψ 2L = z Q E B + Q E ψ 2L + zq O C + Q O ψ 2L ψ 2L = A (z)ψ 2L 2 = z Q E B Q E ψ 2L 2 + zq O C Q O ψ 2L 2. he transfer matrices A + (z) anda (z) are deformations of the matrices A z. his construction is useful to establish the following lemma. In the following, z will be fixed as a parameter. Lemma 9.5. Let (d + 2k ) k {0,...,M } and (d 2k ) k {0,...,M } two families of vectors belonging to the odd subspace O. hese families are the columns of two corresponding matrices denoted ( D + and ) D respectively. Assume that for z 0, max( D, D + ) max z, z and consider the matrix VL D parametrized by z B + z = z + D + C + z B z C z = z( z D + ) = z + z 2 D =(z D ) with hen, 0 0 = (e 0 + d 0 ) (e 2M 2 + d 2M 2 ), M (Vz P 2L (z)w z )(e 0 + d + 0 ) (e 2M 2 + d + 2M 2 ) = e 0 e 2M 2, M (Vz A P 2L (z)a + W z )e 0 e 2M 2. (8) Proof. By (4), Wz 2 {0,...,M } : = I, V z = KV z K, z 0. It follows for all k A + W z e 2k = W z (e 2k + d + 2k ) A Vz e 2k = Vz (e 2k + d 2k ). Given z, D + and D and the associated matrix VL+ D, we consider the corresponding eigenvalue problem: V D L+ψ = z ψ

25 Vol. (200) Localization Properties of the Chalker Coddington Model 365 he complex number z is an eigenvalue of V D L+ iff (z ) 4M e 0 e 2M 2, M (V z A z (z )P 2L (z )A + z (z )W z ) e 0 e 2M 2 =0 where A ± z (z )=z Q E B z ± Q E + z Q O C z ± Q O. Once multiplied by z (4L+5)M, the left-hand side is a polynomial of degree 2M(4L +5)inz. Following the houless argument, we get for the logarithm of the modulus divided by 4ML: 2 log ( rt log z + 2+ ) ( ) log x z dν M 2L L,z(x)+O, L B(0,R z) where the family of measures ν M L,z are supported on some closed ball B(0,R z), due to the fact that sup L U D L V D L <. Note that if z = z, A + z (z) =A + and A z (z) =A End of Proof of Inequality (7) We split the proof in the two following lemmas, whose proof is an adaptation of the argument given in [3]. Lemma 9.6. If (ν L ) L N and μ are measures supported on B(0,R) for some R>0, andif(ν L ) converge weakly to μ, then for any z C log ζ z dν L (ζ) log ζ z dμ(ζ). Proof. Given z C, letf ɛ be defined by: { fɛ (ζ) = log ζ z if ζ z ɛ f ɛ (ζ) = log ɛ L if ζ z ɛ Since the support is compact, lim f ɛ (ζ)dν L (ζ) = f ɛ (ζ)dμ(ζ). On the other hand, for any ζ in, so that: lim sup L log ζ z f ɛ (ζ) log ζ z dν L (ζ) lim sup f ɛ (ζ)dν L (ζ) L = f ɛ (ζ)dμ(ζ). he result follows by monotone convergence theorem when ɛ goes to zero.

26 366 J. Asch et al. Ann. Henri Poincaré Remark. Let us note that the -algebra of trigonometric polynomials F defined by: F = {f C(B(0,R)); f(r, θ) = a k,k 2 r k e ik2θ, N N 0,k N 0,k 2 Z} k + k 2 N separates points and contains the constants. Its closure under the supremum norm is C(B(0,R)). he weak convergence of the measures is equivalent to have for all f in F, lim f(ζ)dν L (ζ) = f(ζ)dμ(ζ). L B(0,R) B(0,R) Lemma 9.7. As a Borel measure on C, the sequence of measures (ν M L,z ) parametrized by z,m converges almost surely weakly to dl as L tends to infinity. Proof. Let (r j,z e iξj,z ) 2M(4L+) j= and (e iλj ) 2M(4L+) j= be the eigenvalues of the problems with reflecting boundary conditions for V and U D, which correspond respectively to the modified and unmodified potentials. We have that: ν M L,z = μ M L = 2M(4L +) 2M(4L +) j δ rj,ze iξ j,z δ e iλ j. hese measures are supported on some B(0,R z ). We will drop the z subscript in the sequel. Since we already know that (μ M L ) converges almost surely weakly to dl, we only need to show that for any non-negative integer k and any integer k 2, lim L 2M(4L+) 2M(4L +) j= j e ik2λj r k j eik2ξj =0. Actually, it is enough to prove it for non-negative integers k, k 2. Let us fix such a couple (k,k 2 ) and decompose the term on the left-hand side as follows: 2M(4L+) e ik2λj r k j 2M(4L +) eik2ξj = (L)+ 2 (L) where (L) = 2 (L) = j= 2M(4L+) (r k2 j 2M(4L +) j= k2 r(ud 2M(4L +) V k2 ). r k j )eik2ξj

27 Vol. (200) Localization Properties of the Chalker Coddington Model 367 If k = min(k,k 2 )andl = max(k,k 2 ), we have (L) Following [3], we first prove that: lim L 2M(4L+) r k r l k j 2M(4L +) j= Rz k 2M(4L+) r l k j. 2M(4L +) j= 2M(4L+) 2M(4L +) j= r j =0. We know that there exists two orthonormal bases (φ j ) 2M(4L+) j= and (φ j )2M(4L+) j= such that: V D L = 2M(4L+) j= μ j (V D L ) φ j φ j, where (μ j (VL D)) are the singular values of the operator V L D. Actually, μ j(vl D)= r j and we assume them to be ordered: μ j+ (VL D) μ j(vl D ) 0. Note that: {μ 2 j(vl D ); j {,...,2M(4L +)}} = σ(vl D V D L )\{0}. Since for each j {,...,2M(4L +)}, μ j (UL D ) = we deduce from the remark following heorem.20 in [24] that: 2M(4L+) j= r j = 2M(4L+) j= μ j (V D L ) μ j (U D L ) 2M(4L+) j= μ j (V D L U D L ). Since VL D U L D has rank and norm uniformly bounded in L, we obtain that: lim (L) =0. L he term 2 (L) will be treated in a similar way. he operator UL D V L D has rank and norm uniformly bounded in L. his implies that for all integer k 2, UL D k 2 VL D k 2 has also rank and norm uniformly bounded in L. So, lim 2(L) =0, L which concludes the proof. he above lemmata together with Eq. 8 establish the inequality (7) which implies (6). We finish with the proof of the houless formula on : Lemma 9.8. For all z, M λ i (z) = M 2 log rt +2 i log x z dl(x)

28 368 J. Asch et al. Ann. Henri Poincaré Proof. We note with [2] that lim L 4L log M (P 2L )(z) is subharmonic in C\{0} and log z x dl(x) subharmonic on C\. he two exceptional sets are of measure zero in C, these quantities must agree everywhere. Remark 9.9. We note that the above proof does not depend on the specific form of the density of states. 0. Appendix 2 Now we prove heorem 8. in several steps. By heorem 6. the localization length is finite for all values of the parameters. Note that the spectrum is characterized by the existence of generalized eigenfunctions: Suppose that the support of E p ( ), the spectral resolution of U(p), is the whole circle. Proposition 0.. For M N, p Ω the spectrum of U(p) is the closure of the set S p = {z ; U(p)φ = zφ has a non-trivial polynomially bounded solution} and E p (\S p )=0. Proof. he stated behaviour at infinity of the generalized eigenvectors and the spectrum of U(p) are related by Sh nol s heorem. his well known deterministic fact for self-adjoint operators was proven in [4] to hold in the unitary setup for band matrices on l 2 (Z). It is straightforward to check that the result holds for band matrices on l 2 (Z, C 2M ), with M finite. Secondly we prove the existence of a finite cyclic subspace: Lemma 0.2. Let M N,rt 0. Denote I 0 := {0} Z 2M. he vectors {e μ ; μ I 0 } span a cyclic subspace of l 2 (Z Z 2M ). Proof. he only non-vanishing elements in U are the blocks given in Eq.. Denoting generically the elements of S by ( ) α β S =: γ δ and observing that Uμ,ν = U ν,μ we have ( ) ( ) U(2j+,2k);(2j,2k) U (2j+,2k);(2j+,2k+) α β = U (2j,2k+);(2j,2k) U (2j,2k+);(2j+,2k+) γ δ ( ) U(2j+2,2k+2);(2j+2,2k+) U = (2j+2,2k+2);(2j+,2k+2) U (2j+,2k+);(2j+2,2k+) U (2j+,2k+);(2j+,2k+2) and ( U (2j,2k);(2j+,2k) U (2j+,2k+);(2j+,2k) = ( U 2j+2,2k+;2j+2,2k+2 U 2j+,2k+2;2j+2,2k+2 U (2j,2k);(2j,2k+) U (2j+,2k+);(2j,2k+) U 2j+2,2k+;2j+,2k+ U 2j+,2k+2;2j+,2k+ ) ( ) α γ = β δ ).

29 Vol. (200) Localization Properties of the Chalker Coddington Model 369 Computing Ue (0,2k) = αe (,2k) + γe (0,2k+) and the corresponding expressions for U e (,2k),Ue (0,2k+),U e (,2k+) we infer: e (,2k) = ( ) Ue(0,2k) γe (0,2k+) α e (,2k+) = β α e (0,2k) γ β U e (0,2k+) e (,2k+) = γ ( Ue(0,2k+) αe (0,2k+2) ) e (,2k+2) = δ γ e (0,2k+) α δ U e (0,2k+2). hus vectors with indices in {±} Z 2M belong to the subspace generated by U ± (I 0 ). he lemma follows by induction. Let I = {0, } Z 2M, Ω= Z4M \I, P = k Z 4M \I dl, p = {p j } j Z 4M \I Ω, and Θ I = {θ j } j I. We shall use the notation Ω p =(p, Θ I ). Denote λ M (p, z) := lim L ( 4L log( M P 2L (z)(p) ) ) 4L log( M P 2L (z)(p) ), if the limit exists. By construction, 5., it holds for almost every p λ M = λ M (p) By definition λ M (p, z) is independent of the finitely many Θ I,ifp = (p, Θ I ). By heorem 6. there exists Ω(z) Ω with P(Ω(z)) = such that for any z \R λ M ((p, Θ I ),z)=λ M > 0, for all θ j Θ I and all p Ω(z). We can apply Fubini to the measure P dl to get the existence of Ω 0 Ω with P(Ω 0 ) = such that for every p Ω 0 there is B p with l(b p )=0and λ M ((p, Θ I ),z) > 0 for all θ j Θ I, and all z B p C. (9) hen we show that for p Ω 0, B p C is a support of the spectral resolution of U((p, Θ I )) for almost every θ j Θ I w.r.t. d I l on I. For any fixed j I, we introduce the spectral measures μ j p associated with U(p) = xde p(x) defined for all Borel sets Δ by μ j p(δ) = e j E p (Δ) e j. Since U(p) = D(p)S, where D(p) is diagonal, the variation of a random phase at one site is described by a rank one perturbation. More precisely, dropping the variable p temporarily, we define D by taking θ j = in the definition of D: D = D + e j e j ( θ j )=e log(θj) ej ej D,

30 370 J. Asch et al. Ann. Henri Poincaré so that, with the obvious notations, Ũ = DS =e log(θj) ej ej U. he unitary version of the spectral averaging formula, see [9] and [3], reads in our case: for any f L (), dl(θ j ) f(x)dμ j (p,θ I ) (x) = f(x)dl(x). Applied to f = χ Bp, the characteristic function of B p, this yields 0=l(B p )= μ j (p,θ I ) (B p), dl(θ j ). (20) Consequently, μ j (p,θ I ) (B p)=0, for every θ k Θ I,k jand Lebesgue-a.e. θ j. herefore, for all p Ω 0, there exists J p I s.t. l(j p C )=0and Θ I J p μ j (p,θ I ) (B p)=0, j I. (2) Now fix p Ω 0 and Θ I J p and consider p =(p, Θ I ). By Lemma 0.2 and (2) we deduce that E p (B p )=0.IfS p is the set from Sh nol s heorem 0., then the set S p B C p is a support for E p ( ). Now take z S p B C p. By heorem 0., U(p)ψ = zψ has a non-trivial polynomially bounded solution ψ. On the other hand, by (9), λ M (p, z) > 0. hus, by Osceledec s heorem, every solution which is polynomially bounded necessarily has to decay exponentially both at + and, and therefore it is an eigenfunction of U(p). In other words, every z S p B C p is an eigenvalue of U(p), hence S p B C p is countable. herefore E p ( ) has countable support thus U(p) has pure point spectrum. With Ω 0 := {(p, {θ j } j I ) s.t. p Ω 0, {θ j } j I Θ I J p }, we have p Ω 0 σ c (U(p)) =. (22) Also, from l(j C p )=0wehave ( j I dl)(j p )=( j I dl)( I )=. (23) As P(Ω 0 ) =, we conclude from (22) and (23) that P(σ c (U(p)) = ) P(Ω 0 )= dp(p)( j Idl)(J p )=, Ω 0 which proves that U(p) has almost surely pure point spectrum. he fact that the support of the density of state coincides with the almost sure spectrum, see [20], shows that Σ pp =. We finally show that almost surely all eigenfunctions decay exponentially. Note that we actually have shown above that the event all eigenvectors of

31 Vol. (200) Localization Properties of the Chalker Coddington Model 37 U(p) decay at the rate of the smallest Lyapunov exponent has probability one, since this is true for all p Ω 0. Measurability of this event was proven for the case of ergodic one-dimensional Schrödinger operators by Kotani and Simon in heorem A. of [22]. he proof of this fact provided in [22] carries over to the CC model as well. It is enough to note that, due to Lemma 0.2, we may use ρ p = j I μj p as spectral measures in their argument. References [] Arnold, L.: Random dynamical systems. Springer Monographs in Mathematics. Springer, Berlin (998) [2] Avron, J.E., Seiler, R., Simon, B.: Charge deficiency, charge transport and comparison of dimensions. Comm. Math. Phys. 59, (994) [3] Bourget, O.: Singular continuous Floquet operator for periodic quantum systems. J. Math. Anal. Appl. 30, (2005) [4] Bourget, O., Howland, J.S., Joye, A.: Spectral analysis of unitary band matrices. Commun. Math. Phys. 234, (2003) [5] Bougerol, P., Lacroix, J.: Products of Random Matrices with Applications to Schrödinger Operators. Progress in Probability and Statistics, vol. 8. Birkhäuser, Boston (985) [6] Boumaza, H.: Hölder continuity of the IDS for matrix-valued Anderson models. Rev. Math. Phys. 20, (2008) [7] Boumaza, H., Stolz, G.: Positivity of Lyapunov exponents for Anderson-type models on two coupled strings. Elecron. J. Differ. Equ. 47, 8 (2007) [8] Bellissard, J., van Elst, A., Schulz-Baldes, H.: he noncommutative geometry of the quantum Hall effect. J. Math. Phys. 35, (994) [9] Combescure, M.: Spectral properties of a periodically kicked quantum Hamiltonian. J. Stat. Phys. 59, (990) [0] Chalker, J.., Coddington, P.D.: Percolation, quantum tunneling and the integer Hall effect. J. Phys. C 2, (988) [] Colin de Verdière, Y., Parisse, B.: Équilibre instable en régime semi-classique. I. Concentration microlocale. Commun. Partial Differ. Equ. 9, (994) [2] Craig, W., Simon, B.: Subharmonicity of the Lyaponov index. Duke Math. J. 50, (983) [3] Craig, W., Simon, B.: Log Hölder continuity of the integrated density of states for stochastic Jacobi matrices. Commun. Math. Phys. 90(2), (983) [4] Fertig, H.A., Halperin, B.I.: ransmission coefficient of an electron through a saddle-point potential in a magnetic field. Phys. Rev. B 36, (987) [5] Graf, G.M.: Aspects of the integer quantum Hall effect. Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon s 60th birthday. In: Proceedings of symposium of Pure Mathematics vol. 76, Part, pp American Mathematical Society, Providence, RI (2007) [6] Germinet, F., Klein, A., Schenker, J.: Dynamical delocalization in random Landau Hamiltonians. Ann. Math. 66, (2007) [7] Goldsheĭd, I.Ya., Margulis, G.A.: Lyapunov exponents of a product of random matrices. Uspekhi Mat. Nauk 44, 3 60 (989)

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT2400 Analyse 1. Eksamensdag: Onsdag 15. juni 2011. Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001)

Physical origin of the Gouy phase shift by Simin Feng, Herbert G. Winful Opt. Lett. 26, (2001) by Simin Feng, Herbert G. Winful Opt. Lett. 26, 485-487 (2001) http://smos.sogang.ac.r April 18, 2014 Introduction What is the Gouy phase shift? For Gaussian beam or TEM 00 mode, ( w 0 r 2 E(r, z) = E

Detaljer

Moving Objects. We need to move our objects in 3D space.

Moving Objects. We need to move our objects in 3D space. Transformations Moving Objects We need to move our objects in 3D space. Moving Objects We need to move our objects in 3D space. An object/model (box, car, building, character,... ) is defined in one position

Detaljer

Graphs similar to strongly regular graphs

Graphs similar to strongly regular graphs Joint work with Martin Ma aj 5th June 2014 Degree/diameter problem Denition The degree/diameter problem is the problem of nding the largest possible graph with given diameter d and given maximum degree

Detaljer

Slope-Intercept Formula

Slope-Intercept Formula LESSON 7 Slope Intercept Formula LESSON 7 Slope-Intercept Formula Here are two new words that describe lines slope and intercept. The slope is given by m (a mountain has slope and starts with m), and intercept

Detaljer

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3

Unit Relational Algebra 1 1. Relational Algebra 1. Unit 3.3 Relational Algebra 1 Unit 3.3 Unit 3.3 - Relational Algebra 1 1 Relational Algebra Relational Algebra is : the formal description of how a relational database operates the mathematics which underpin SQL

Detaljer

SVM and Complementary Slackness

SVM and Complementary Slackness SVM and Complementary Slackness David Rosenberg New York University February 21, 2017 David Rosenberg (New York University) DS-GA 1003 February 21, 2017 1 / 20 SVM Review: Primal and Dual Formulations

Detaljer

Trigonometric Substitution

Trigonometric Substitution Trigonometric Substitution Alvin Lin Calculus II: August 06 - December 06 Trigonometric Substitution sin 4 (x) cos (x) dx When you have a product of sin and cos of different powers, you have three different

Detaljer

Existence of resistance forms in some (non self-similar) fractal spaces

Existence of resistance forms in some (non self-similar) fractal spaces Existence of resistance forms in some (non self-similar) fractal spaces Patricia Alonso Ruiz D. Kelleher, A. Teplyaev University of Ulm Cornell, 12 June 2014 Motivation X Fractal Motivation X Fractal Laplacian

Detaljer

Neural Network. Sensors Sorter

Neural Network. Sensors Sorter CSC 302 1.5 Neural Networks Simple Neural Nets for Pattern Recognition 1 Apple-Banana Sorter Neural Network Sensors Sorter Apples Bananas 2 Prototype Vectors Measurement vector p = [shape, texture, weight]

Detaljer

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 1 MAT131 Bokmål Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 09-14 Oppgavesettet er 4 oppgaver fordelt på

Detaljer

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes

Kneser hypergraphs. May 21th, CERMICS, Optimisation et Systèmes Kneser hypergraphs Frédéric Meunier May 21th, 2015 CERMICS, Optimisation et Systèmes Kneser hypergraphs m, l, r three integers s.t. m rl. Kneser hypergraph KG r (m, l): V (KG r (m, l)) = ( [m]) l { E(KG

Detaljer

Dynamic Programming Longest Common Subsequence. Class 27

Dynamic Programming Longest Common Subsequence. Class 27 Dynamic Programming Longest Common Subsequence Class 27 Protein a protein is a complex molecule composed of long single-strand chains of amino acid molecules there are 20 amino acids that make up proteins

Detaljer

Second Order ODE's (2P) Young Won Lim 7/1/14

Second Order ODE's (2P) Young Won Lim 7/1/14 Second Order ODE's (2P) Copyright (c) 2011-2014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

Detaljer

Stationary Phase Monte Carlo Methods

Stationary Phase Monte Carlo Methods Stationary Phase Monte Carlo Methods Daniel Doro Ferrante G. S. Guralnik, J. D. Doll and D. Sabo HET Physics Dept, Brown University, USA. danieldf@het.brown.edu www.het.brown.edu Introduction: Motivations

Detaljer

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postponed exam: ECON420 Mathematics 2: Calculus and linear algebra Date of exam: Tuesday, June 8, 203 Time for exam: 09:00 a.m. 2:00 noon The problem set covers

Detaljer

Ringvorlesung Biophysik 2016

Ringvorlesung Biophysik 2016 Ringvorlesung Biophysik 2016 Born-Oppenheimer Approximation & Beyond Irene Burghardt (burghardt@chemie.uni-frankfurt.de) http://www.theochem.uni-frankfurt.de/teaching/ 1 Starting point: the molecular Hamiltonian

Detaljer

Trust region methods: global/local convergence, approximate January methods 24, / 15

Trust region methods: global/local convergence, approximate January methods 24, / 15 Trust region methods: global/local convergence, approximate methods January 24, 2014 Trust region methods: global/local convergence, approximate January methods 24, 2014 1 / 15 Trust-region idea Model

Detaljer

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5)

Gradient. Masahiro Yamamoto. last update on February 29, 2012 (1) (2) (3) (4) (5) Gradient Masahiro Yamamoto last update on February 9, 0 definition of grad The gradient of the scalar function φr) is defined by gradφ = φr) = i φ x + j φ y + k φ ) φ= φ=0 ) ) 3) 4) 5) uphill contour downhill

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Date of exam: Friday, May

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt ksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON3120/4120 Mathematics 2: Calculus and linear algebra Eksamensdag:

Detaljer

Generalization of age-structured models in theory and practice

Generalization of age-structured models in theory and practice Generalization of age-structured models in theory and practice Stein Ivar Steinshamn, stein.steinshamn@snf.no 25.10.11 www.snf.no Outline How age-structured models can be generalized. What this generalization

Detaljer

Qi-Wu-Zhang model. 2D Chern insulator. León Martin. 19. November 2015

Qi-Wu-Zhang model. 2D Chern insulator. León Martin. 19. November 2015 Qi-Wu-Zhang model 2D Chern insulator León Martin 19. November 2015 Motivation Repeat: Rice-Mele-model Bulk behavior Edge states Layering 2D Chern insulators Robustness of edge states Motivation topological

Detaljer

TFY4170 Fysikk 2 Justin Wells

TFY4170 Fysikk 2 Justin Wells TFY4170 Fysikk 2 Justin Wells Forelesning 5: Wave Physics Interference, Diffraction, Young s double slit, many slits. Mansfield & O Sullivan: 12.6, 12.7, 19.4,19.5 Waves! Wave phenomena! Wave equation

Detaljer

Splitting the differential Riccati equation

Splitting the differential Riccati equation Splitting the differential Riccati equation Tony Stillfjord Numerical Analysis, Lund University Joint work with Eskil Hansen Innsbruck Okt 15, 2014 Outline Splitting methods for evolution equations The

Detaljer

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with.

Solutions #12 ( M. y 3 + cos(x) ) dx + ( sin(y) + z 2) dy + xdz = 3π 4. The surface M is parametrized by σ : [0, 1] [0, 2π] R 3 with. Solutions #1 1. a Show that the path γ : [, π] R 3 defined by γt : cost ı sint j sint k lies on the surface z xy. b valuate y 3 cosx dx siny z dy xdz where is the closed curve parametrized by γ. Solution.

Detaljer

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23 UTKAST ENGLISH VERSION EKSAMEN I: MOT100A STOKASTISKE PROSESSER VARIGHET: 4 TIMER DATO: 16. februar 2006 TILLATTE HJELPEMIDLER: Kalkulator; Tabeller og formler i statistikk (Tapir forlag): Rottman: Matematisk

Detaljer

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ.

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ. Oppgave 1 Beviskalklen i læreboka inneholder sluttningsregelen QR: {ψ φ}, ψ ( xφ). En betingelse for å anvende regelen er at det ikke finnes frie forekomste av x i ψ. Videre så inneholder beviskalklen

Detaljer

Abstract. i x + a x +. a = (a x, a y ) z γ + 1 γ + z )

Abstract. i x + a x +. a = (a x, a y ) z γ + 1 γ + z ) Abstract R, Aharonov-Bohm Schrödinger Landau level Aharonov-Bohm Schrödinger 1 Aharonov-Bohm R Schrödinger ( ) ( ) 1 1 L a = i + a = i x + a x + ( ) 1 i y + a y (1). a = (a x, a y ) rot a = ( x a y y a

Detaljer

TMA4329 Intro til vitensk. beregn. V2017

TMA4329 Intro til vitensk. beregn. V2017 Norges teknisk naturvitenskapelige universitet Institutt for Matematiske Fag TMA439 Intro til vitensk. beregn. V17 ving 4 [S]T. Sauer, Numerical Analysis, Second International Edition, Pearson, 14 Teorioppgaver

Detaljer

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN EKSAMEN I FAGET STE 6243 MODERNE MATERIALER KLASSE: 5ID DATO: 7 Oktober 2005 TID: 900-200, 3 timer ANTALL SIDER: 7 (inklusiv Appendix: tabell og formler) TILLATTE

Detaljer

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2

Mathematics 114Q Integration Practice Problems SOLUTIONS. = 1 8 (x2 +5x) 8 + C. [u = x 2 +5x] = 1 11 (3 x)11 + C. [u =3 x] = 2 (7x + 9)3/2 Mathematics 4Q Name: SOLUTIONS. (x + 5)(x +5x) 7 8 (x +5x) 8 + C [u x +5x]. (3 x) (3 x) + C [u 3 x] 3. 7x +9 (7x + 9)3/ [u 7x + 9] 4. x 3 ( + x 4 ) /3 3 8 ( + x4 ) /3 + C [u + x 4 ] 5. e 5x+ 5 e5x+ + C

Detaljer

Level-Rebuilt B-Trees

Level-Rebuilt B-Trees Gerth Stølting Brodal BRICS University of Aarhus Pankaj K. Agarwal Lars Arge Jeffrey S. Vitter Center for Geometric Computing Duke University August 1998 1 B-Trees Bayer, McCreight 1972 Level 2 Level 1

Detaljer

Verifiable Secret-Sharing Schemes

Verifiable Secret-Sharing Schemes Aarhus University Verifiable Secret-Sharing Schemes Irene Giacomelli joint work with Ivan Damgård, Bernardo David and Jesper B. Nielsen Aalborg, 30th June 2014 Verifiable Secret-Sharing Schemes Aalborg,

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON30/40 Matematikk : Matematisk analyse og lineær algebra Exam: ECON30/40 Mathematics : Calculus and Linear Algebra Eksamensdag: Tirsdag 0. desember

Detaljer

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F.

Speed Racer Theme. Theme Music: Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz. September 9, 2011 Physics 131 Prof. E. F. September 9, 2011 Physics 131 Prof. E. F. Redish Theme Music: Speed Racer Theme Cartoon: Charles Schultz / Jef Mallett Peanuts / Frazz 1 Reading questions Are the lines on the spatial graphs representing

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. juni 2010 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

Motzkin monoids. Micky East. York Semigroup University of York, 5 Aug, 2016

Motzkin monoids. Micky East. York Semigroup University of York, 5 Aug, 2016 Micky East York Semigroup University of York, 5 Aug, 206 Joint work with Igor Dolinka and Bob Gray 2 Joint work with Igor Dolinka and Bob Gray 3 Joint work with Igor Dolinka and Bob Gray 4 Any questions?

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag 7. juni

Detaljer

Databases 1. Extended Relational Algebra

Databases 1. Extended Relational Algebra Databases 1 Extended Relational Algebra Relational Algebra What is an Algebra? Mathematical system consisting of: Operands --- variables or values from which new values can be constructed. Operators ---

Detaljer

Call function of two parameters

Call function of two parameters Call function of two parameters APPLYUSER USER x fµ 1 x 2 eµ x 1 x 2 distinct e 1 0 0 v 1 1 1 e 2 1 1 v 2 2 2 2 e x 1 v 1 x 2 v 2 v APPLY f e 1 e 2 0 v 2 0 µ Evaluating function application The math demands

Detaljer

Asymptotic FOEL for the Heisenberg model on boxes

Asymptotic FOEL for the Heisenberg model on boxes Asymptotic FOEL for the Heisenberg model on boxes Mathematical Many Body Theory, June 13 18 BCAM, Bilbao, Spain Shannon Starr University of Alabama at Birmingham June 16, 2016 https://arxiv.org/abs/1509.00907

Detaljer

Unfoldable Self-Avoiding Walks

Unfoldable Self-Avoiding Walks Unfoldable Self-Avoiding Walks Christophe Guyeux - Luigi Marangio Femto-ST Institute, Université de Bourgogne Franche-Comté 06/11/2017 Christophe Guyeux - Luigi Marangio Unfoldable Self-Avoiding Walks

Detaljer

Lie 2-Groups, Lie 2-Algebras, and Loop Groups

Lie 2-Groups, Lie 2-Algebras, and Loop Groups Lie 2-Groups, Lie 2-Algebras, and Loop Groups Alissa S. Crans Joint work with: John Baez Urs Schreiber & Danny Stevenson in memory of Saunders Mac Lane April 8, 2006 Internalization Often a useful first

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON3120/4120 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag

Detaljer

Exercise 1: Phase Splitter DC Operation

Exercise 1: Phase Splitter DC Operation Exercise 1: DC Operation When you have completed this exercise, you will be able to measure dc operating voltages and currents by using a typical transistor phase splitter circuit. You will verify your

Detaljer

Periodic solutions for a class of non-autonomous differential delay equations

Periodic solutions for a class of non-autonomous differential delay equations Nonlinear Differ. Equ. Appl. 16 (2009), 793 809 c 2009 Birkhäuser Verlag Basel/Switzerland 1021-9722/09/060793-17 published online July 4, 2009 DOI 10.1007/s00030-009-0035-8 Nonlinear Differential Equations

Detaljer

Eksamen i FY3466 KVANTEFELTTEORI II Tirsdag 20. mai :00 13:00

Eksamen i FY3466 KVANTEFELTTEORI II Tirsdag 20. mai :00 13:00 NTNU Side 1 av 3 Institutt for fysikk Faglig kontakt under eksamen: Professor Kåre Olaussen Telefon: 9 36 52 eller 45 43 71 70 Eksamen i FY3466 KVANTEFELTTEORI II Tirsdag 20. mai 2008 09:00 13:00 Tillatte

Detaljer

5 E Lesson: Solving Monohybrid Punnett Squares with Coding

5 E Lesson: Solving Monohybrid Punnett Squares with Coding 5 E Lesson: Solving Monohybrid Punnett Squares with Coding Genetics Fill in the Brown colour Blank Options Hair texture A field of biology that studies heredity, or the passing of traits from parents to

Detaljer

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX)

Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX) Han Ola of Han Per: A Norwegian-American Comic Strip/En Norsk-amerikansk tegneserie (Skrifter. Serie B, LXIX) Peter J. Rosendahl Click here if your download doesn"t start automatically Han Ola of Han Per:

Detaljer

Exam in Quantum Mechanics (phys201), 2010, Allowed: Calculator, standard formula book and up to 5 pages of own handwritten notes.

Exam in Quantum Mechanics (phys201), 2010, Allowed: Calculator, standard formula book and up to 5 pages of own handwritten notes. Exam in Quantum Mechanics (phys01), 010, There are 3 problems, 1 3. Each problem has several sub problems. The number of points for each subproblem is marked. Allowed: Calculator, standard formula book

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag 8. desember

Detaljer

Maple Basics. K. Cooper

Maple Basics. K. Cooper Basics K. Cooper 2012 History History 1982 Macsyma/MIT 1988 Mathematica/Wolfram 1988 /Waterloo Others later History Why? Prevent silly mistakes Time Complexity Plots Generate LATEX This is the 21st century;

Detaljer

Lipschitz Metrics for Non-smooth evolutions

Lipschitz Metrics for Non-smooth evolutions Lipschitz Metrics for Non-smooth evolutions Alberto Bressan Department of Mathematics, Penn State University bressan@math.psu.edu Alberto Bressan (Penn State) Nonsmooth evolutions 1 / 36 Well-posedness

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT BOKMÅL Utsatt eksamen i: ECON2915 Vekst og næringsstruktur Eksamensdag: 07.12.2012 Tid for eksamen: kl. 09:00-12:00 Oppgavesettet er på 5 sider Tillatte hjelpemidler:

Detaljer

On time splitting for NLS in the semiclassical regime

On time splitting for NLS in the semiclassical regime On time splitting for NLS in the semiclassical regime Rémi Carles CNRS & Univ. Montpellier Rémi Carles (Montpellier) Splitting for semiclassical NLS 1 / 21 Splitting for NLS i t u + 1 2 u = f ( u 2) u,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. april 2008 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

Oppgave 1. Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk EKSAMEN I: MNFFY 245 INNFØRING I KVANTEMEKANIKK

Oppgave 1. Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk EKSAMEN I: MNFFY 245 INNFØRING I KVANTEMEKANIKK Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk EKSAMEN I: MNFFY 45 INNFØRING I KVANTEMEKANIKK DATO: Fredag 4 desember TID: 9 5 Antall vekttall: 4 Antall sider: 5 Tillatte hjelpemidler:

Detaljer

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal.

KROPPEN LEDER STRØM. Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal. KROPPEN LEDER STRØM Sett en finger på hvert av kontaktpunktene på modellen. Da får du et lydsignal. Hva forteller dette signalet? Gå flere sammen. Ta hverandre i hendene, og la de to ytterste personene

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Onsdag 6. desember

Detaljer

Solvability and Regularity for an Elliptic System Prescribing the Curl, Divergence, and Partial Trace of a Vector Field on Sobolev-Class Domains

Solvability and Regularity for an Elliptic System Prescribing the Curl, Divergence, and Partial Trace of a Vector Field on Sobolev-Class Domains J. Math. Fluid Mech. 19 (2017), 375 422 c 2016 Springer International Publishing 1422-6928/17/030375-48 DOI 10.1007/s00021-016-0289-y Journal of Mathematical Fluid Mechanics Solvability and Regularity

Detaljer

Start MATLAB. Start NUnet Applications Statistical and Computational packages MATLAB Release 13 MATLAB 6.5

Start MATLAB. Start NUnet Applications Statistical and Computational packages MATLAB Release 13 MATLAB 6.5 Start MATLAB Start NUnet Applications Statistical and Computational packages MATLAB Release 13 MATLAB 6.5 Prompt >> will appear in the command window Today: MATLAB overview In-class HW: Chapter 1, Problems

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSIEE I OSLO ØKONOMISK INSIU Eksamen i: ECON320/420 Mathematics 2: Calculus and Linear Algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag:. desember 207 Sensur kunngjøres:

Detaljer

Endelig ikke-røyker for Kvinner! (Norwegian Edition)

Endelig ikke-røyker for Kvinner! (Norwegian Edition) Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Click here if your download doesn"t start automatically Endelig ikke-røyker for Kvinner! (Norwegian Edition) Allen Carr Endelig ikke-røyker

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag

Detaljer

Den som gjør godt, er av Gud (Multilingual Edition)

Den som gjør godt, er av Gud (Multilingual Edition) Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Click here if your download doesn"t start automatically Den som gjør godt, er av Gud (Multilingual Edition) Arne Jordly Den som gjør godt,

Detaljer

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD

STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD FORSLAG FRA SEF TIL NY STILLAS - STANDARD 1 Bakgrunnen for dette initiativet fra SEF, er ønsket om å gjøre arbeid i høyden tryggere / sikrere. Både for stillasmontører og brukere av stillaser. 2 Reviderte

Detaljer

Entropy of Semiclassical Measures for Nonpositively Curved Surfaces

Entropy of Semiclassical Measures for Nonpositively Curved Surfaces Ann. Henri Poincaré 11 010, 1085 1116 c 010 Springer Basel AG 144-0637/10/061085-3 published online September 9, 010 DOI 10.1007/s0003-010-0055- Annales Henri Poincaré Entropy of Semiclassical Measures

Detaljer

Factorization in Weighted Wiener Matrix Algebras on Linearly Ordered Abelian Groups

Factorization in Weighted Wiener Matrix Algebras on Linearly Ordered Abelian Groups Integr. equ. oper. theory 58 (2007), 65 86 c 2007 Birkhäuser Verlag Basel/Switzerland 0378-620X/010065-22, published online April 16, 2007 DOI 10.1007/s00020-007-1491-3 Integral Equations and Operator

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON360/460 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Exam: ECON360/460 - Resource allocation and economic policy Eksamensdag: Fredag 2. november

Detaljer

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) INF247 Er du? Er du? - Annet Ph.D. Student Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen,

Detaljer

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen TABELLPARSING 1. mars 2011 2 I dag Oppsummering fra sist: Recursive-descent og Shift-reduce parser Svakheter med disse Tabellparsing: Dynamisk

Detaljer

Elektronisk innlevering/electronic solution for submission:

Elektronisk innlevering/electronic solution for submission: VIKINGTIDSMUSEET Plan- og designkonkurranse/design competition Elektronisk innlevering/electronic solution for submission: Det benyttes en egen elektronisk løsning for innlevering (Byggeweb Anbud). Dette

Detaljer

Smart High-Side Power Switch BTS730

Smart High-Side Power Switch BTS730 PG-DSO20 RoHS compliant (green product) AEC qualified 1 Ω Ω µ Data Sheet 1 V1.0, 2007-12-17 Data Sheet 2 V1.0, 2007-12-17 Ω µ µ Data Sheet 3 V1.0, 2007-12-17 µ µ Data Sheet 4 V1.0, 2007-12-17 Data Sheet

Detaljer

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen

Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen Andrew Gendreau, Olga Rosenbaum, Anthony Taylor, Kenneth Wong, Karl Dusen The Process Goal Definition Data Collection Data Preprocessing EDA Choice of Variables Choice of Method(s) Performance Evaluation

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON20/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON20/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Fredag 2. mai

Detaljer

32.2. Linear Multistep Methods. Introduction. Prerequisites. Learning Outcomes

32.2. Linear Multistep Methods. Introduction. Prerequisites. Learning Outcomes Linear Multistep Methods 32.2 Introduction In the previous Section we saw two methods (Euler and trapezium) for approximating the solutions of certain initial value problems. In this Section we will see

Detaljer

Emneevaluering GEOV272 V17

Emneevaluering GEOV272 V17 Emneevaluering GEOV272 V17 Studentenes evaluering av kurset Svarprosent: 36 % (5 av 14 studenter) Hvilket semester er du på? Hva er ditt kjønn? Er du...? Er du...? - Annet PhD Candidate Samsvaret mellom

Detaljer

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet.

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet. TDT445 Øving 4 Oppgave a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet. Nøkkel: Supernøkkel: Funksjonell avhengighet: Data i en database som kan unikt identifisere (et sett

Detaljer

Optical Properties of Plasmas Based on an Average-Atom Model

Optical Properties of Plasmas Based on an Average-Atom Model Optical Properties of Plasmas Based on an Average-Atom Model Walter Johnson, Notre Dame University Claude Guet, CEA/DAM Ile de France George Bertsch, University of Washington Motivation for this work:

Detaljer

Eksamen i TMA4190 Mangfoldigheter Onsdag 4 juni, Tid :

Eksamen i TMA4190 Mangfoldigheter Onsdag 4 juni, Tid : Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag SOLUTIONS Eksamen i TMA4190 Mangfoldigheter Onsdag 4 juni, 2013. Tid : 09.00 13.00 Oppgave 1 a) La U R n være enhetsdisken x

Detaljer

Continuity. Subtopics

Continuity. Subtopics 0 Cotiuity Chapter 0: Cotiuity Subtopics.0 Itroductio (Revisio). Cotiuity of a Fuctio at a Poit. Discotiuity of a Fuctio. Types of Discotiuity.4 Algebra of Cotiuous Fuctios.5 Cotiuity i a Iterval.6 Cotiuity

Detaljer

EKSAMENSOPPGAVE I BI2034 Samfunnsøkologi EXAMINATION IN: BI Community ecology

EKSAMENSOPPGAVE I BI2034 Samfunnsøkologi EXAMINATION IN: BI Community ecology Norges teknisk-naturvitenskapelige universitet Institutt for Biologi EKSAMENSOPPGAVE I BI2034 Samfunnsøkologi EXAMINATION IN: BI2034 - Community ecology - Faglig kontakt under eksamen/contact person/subject

Detaljer

Kurskategori 2: Læring og undervisning i et IKT-miljø. vår

Kurskategori 2: Læring og undervisning i et IKT-miljø. vår Kurskategori 2: Læring og undervisning i et IKT-miljø vår Kurs i denne kategorien skal gi pedagogisk og didaktisk kompetanse for å arbeide kritisk og konstruktivt med IKT-baserte, spesielt nettbaserte,

Detaljer

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT and and ECMI week 2008 Outline and Problem Description find model for processes consideration of effects caused by presence of salt point and numerical solution and and heat equations liquid phase: T L

Detaljer

Solution for INF3480 exam spring 2012

Solution for INF3480 exam spring 2012 Solution for INF3480 exam spring 0 June 6, 0 Exercise Only in Norwegian a Hvis du har en robot hvor ikke den dynamiske modellen er kjent eller spesielt vanskelig å utlede eksakt, kan en metode liknende

Detaljer

An oscillatory bifurcation from infinity, and

An oscillatory bifurcation from infinity, and Nonlinear differ. equ. appl. 15 (28), 335 345 121 9722/8/3335 11, DOI 1.17/s3-8-724-1 c 28 Birkhäuser Verlag Basel/Switzerland An oscillatory bifurcation from infinity, and from zero Philip Korman Abstract.

Detaljer

Perpetuum (im)mobile

Perpetuum (im)mobile Perpetuum (im)mobile Sett hjulet i bevegelse og se hva som skjer! Hva tror du er hensikten med armene som slår ut når hjulet snurrer mot høyre? Hva tror du ordet Perpetuum mobile betyr? Modell 170, Rev.

Detaljer

PROBLEM 2 (40%) Consider electron-muon scattering e + µ e + µ. (a) Draw the lowest order Feynman diagram and compute M.

PROBLEM 2 (40%) Consider electron-muon scattering e + µ e + µ. (a) Draw the lowest order Feynman diagram and compute M. ENGLISH 1 PROBLEM 1 (60%) (a) Draw the general primitive vertices used in Feynman diagrams for the following cases: electromagnetic interactions, charged weak interactions, neutral weak interactions, and

Detaljer

GEF2200 Atmosfærefysikk 2017

GEF2200 Atmosfærefysikk 2017 GEF2200 Atmosfærefysikk 2017 Løsningsforslag til sett 3 Oppgaver hentet fra boka Wallace and Hobbs (2006) er merket WH06 WH06 3.18r Unsaturated air is lifted (adiabatically): The rst pair of quantities

Detaljer

INF5820 Natural Language Processing - NLP. H2009 Jan Tore Lønning

INF5820 Natural Language Processing - NLP. H2009 Jan Tore Lønning INF5820 Natural Language Processing - NLP H2009 jtl@ifi.uio.no HMM Tagging INF5830 Lecture 3 Sep. 7 2009 Today More simple statistics, J&M sec 4.2: Product rule, Chain rule Notation, Stochastic variable

Detaljer

IN2010: Algoritmer og Datastrukturer Series 2

IN2010: Algoritmer og Datastrukturer Series 2 Universitetet i Oslo Institutt for Informatikk S.M. Storleer, S. Kittilsen IN2010: Algoritmer og Datastrukturer Series 2 Tema: Grafteori 1 Publisert: 02. 09. 2019 Utvalgte løsningsforslag Oppgave 1 (Fra

Detaljer

Appendix B, not for publication, with screenshots for Fairness and family background

Appendix B, not for publication, with screenshots for Fairness and family background Appendix B, not for publication, with screenshots for Fairness and family background Ingvild Almås Alexander W. Cappelen Kjell G. Salvanes Erik Ø. Sørensen Bertil Tungodden This document shows screenshots

Detaljer

1 Aksiomatisk definisjon av vanlige tallsystemer

1 Aksiomatisk definisjon av vanlige tallsystemer Notat XX for MAT1140 1 Aksiomatisk definisjon av vanlige tallsystemer 1.1 Aksiomer Vi betrakter en mengde R, utstyrt med to avbild- Algebraiske aksiomer. ninger: addisjon { R R R, (x, y) x + y. { R R R,

Detaljer

On the Existence of Strong Solutions to a Fluid Structure Interaction Problem with Navier Boundary Conditions

On the Existence of Strong Solutions to a Fluid Structure Interaction Problem with Navier Boundary Conditions J. Math. Fluid Mech. 2019 21:36 c 2019 Springer Nature Switzerland AG https://doi.org/10.1007/s00021-019-0440-7 Journal of Mathematical Fluid Mechanics On the Existence of Strong Solutions to a Fluid Structure

Detaljer

Dagens tema: Eksempel Klisjéer (mønstre) Tommelfingerregler

Dagens tema: Eksempel Klisjéer (mønstre) Tommelfingerregler UNIVERSITETET I OSLO INF1300 Introduksjon til databaser Dagens tema: Eksempel Klisjéer (mønstre) Tommelfingerregler Institutt for informatikk Dumitru Roman 1 Eksempel (1) 1. The system shall give an overview

Detaljer

Løsning til deleksamen 2 i SEKY3322 Kybernetikk 3

Løsning til deleksamen 2 i SEKY3322 Kybernetikk 3 Høgskolen i Buskerud. Finn Haugen (finn@techteach.no). Løsning til deleksamen 2 i SEKY3322 Kybernetikk 3 Tid: 7. april 28. Varighet 4 timer. Vekt i sluttkarakteren: 3%. Hjelpemidler: Ingen trykte eller

Detaljer

Noetherian Automorphisms of Groups

Noetherian Automorphisms of Groups Mediterr. j. math. 2 (2005), 125 135 1660-5446/020125-11, DOI 10.1007/s00009-005-0034-x c 2005 Birkhäuser Verlag Basel/Switzerland Mediterranean Journal of Mathematics Noetherian Automorphisms of Groups

Detaljer