Oppgave 5.1 Dimensjonering av lager

Størrelse: px
Begynne med side:

Download "Oppgave 5.1 Dimensjonering av lager"

Transkript

1 MS0 Mskinkonstruksjon ØSNINGSORSAG TI ØVINGSOPPGAVER. 5 Ogve ØVING 5: DIMENSJONERING AV AGER OG JÆRER Ogve 5. Diensjonering v ger ) or å vege et ger for en åiteighet å 90%: Det dyniske bæretet (C) ved en ekv. gerbestning sk være større enn eer ik gerets bæreevne gitt v S ktog. C 0 Dynisk bæretet (C) er gitt ved: ( ) P () der 0 ved 90% overevesessnnsynighet, og P er den ekv. gersten ved vribe bestning. evetid ved n 750 o/in: o in t u 750 *60 *0 *8 * 5år in t u år 6 o ( der o iion odreininger). 0 6 o, 0% overevesessnnsynighet. Ekv. gerbestning: Ved trinnvis bestning finnes den ekvivent gerbestningen fr og i P i P i der () iioner odreininger so de sengte deskdene ( i, i, ) fr de to bestningsnivåene. og. S nbefer føgende for den ekvivent gersten: P r når / r e og P X r + Y når / r > e. r,5 kn Ogitt: 0, 67., kn r oss nt t e > 0,67 sik t r 0, 67 e () Dered bir P r,5 kn ved fuksitet (P ekv. gerst ed fudrift i / v evetiden) og Innstt i () P ½P,5 kn (P ekv. gerst ed hvdrift i / v evetiden). P P P +.,5 +.,5, 6 kn Innstt i (): C (6) / *,6 kn 0,7 kn Av S veges ger nr. 606 ed: C 0, kn; C 0, kn og f 0 Sist odtert /H Side /6

2 MS0 Mskinkonstruksjon ØSNINGSORSAG TI ØVINGSOPPGAVER. 5 Ogve Vi vi kontroere o den sttiske bæreevnen er tifredsstiende for det vgte geret. f0. *,,5 C, 0 Vi tr utgngsunkt i Tbe 5- (gjengitt under) og interoerer for e. r 0,67 e 0, ntgesen er O. b) Når 95% overevesessnnsynighet er ønsket: Diensjonering for en sviktsnnsynighet vere enn 0%: 0 der 6 o so sk gi 95% overevesessnnsynighet, og er evetidsfktoren. 0 Iføge ISO/S er føgende evetidsfktorer ( ) so funksjon v gerets åiteighet, nbeft. Sviktsnnsynighet ( f) Påiteighet ( s) evetidsfktor 5,,0 0,6 0,5 0, 0, 0, Av denne tbeen får vi: 0,6. 0 ( ) P ( 8,),6, kn C 6 6 0,6 0 8, o Av S ktog veges ger nr. 606 ed: C 9,6 kn; C 0 6 kn og f 0. Sist odtert /H Side /6

3 MS0 Mskinkonstruksjon ØSNINGSORSAG TI ØVINGSOPPGAVER. 5 Ogve Ogve 5. Av S ktog er føgende dt o det ogitte geret hentet: ) Sttisk bæreevne: høyre ger I føge S er føgende uttrykk nbeft for enrdet sorkueger P 0 0,6 r + 0,5 0,6*0 + 0,5*8 6 kn. Etterso P 0 ( 6 kn) < r (0 kn) regner vi ed P 0 r 0 kn. Nødvendig sttisk bæret for dette geret: C 0 s 0P 0 der s 0 for nor drift. 0 kn (ens gerets bæreevne er 60 kn) O! Aksi bæret: ( 8) 0,5C 0 0,5*0 0 kn O! Sttisk bæreevne: venstre ger geret bærer bre en rdist: P 0 r 5 kn Nødvendig sttisk bæret for dette geret: C 0 s 0P 0 der s 0 for nor drift. 5 kn (ens gerets bæreevne er 60 kn) O Dvs. t grene er tistrekkeig diensjonert! Dynisk bæreevne: høyre ger f 0. *8,7,07 (vi veger den neste næreste t) e 0, (se Tbe 5-). C0 60 Merk t vi kn også interoere eo næreste tene for å få riktig t for e, det er ikke noe vits gjøre dette i dette tifee. 8 0,0 > e 0, r 0 Dered finner vi det ekvivent bæretet fr P X r + Y der X 0,56 og Y,. 0,56*0 +,*8,68 kn 0 Nødvendig dynisk bæret: C ( ) P ( 5,9),68 6, 6 kn der o in t d å 5, 9 Mo og er skinens oertivtid. in t d å Dynisk bæreevne: venstre ger Venstre ger hr rdikrft r 5 kn og ksikrft 0 kn. Dvs. X og Y 0. Dered finner vi den ekvivent bæretet fr P r 5 kn 5 0,9 Nødvendig dynisk bæret: C ( ) P ( ) 5 7 kn Det ogitte geret (S 6) hr bæreevne C 97,5 kn. Dvs. t grene er tistrekkeig diensjonert! Sist odtert /H Side /6

4 MS0 Mskinkonstruksjon ØSNINGSORSAG TI ØVINGSOPPGAVER. 5 Ogve b) Når 96% overevesessnnsynighet er ønsket er den inste noinee evetiden gitt ved: 0 der 5,9 Mo so sk gi 96% overevesessnnsynighet, og er evetidsfktoren. 0 Iføge ISO/S finner vi 0,5 (se Tbe 5.). Dvs. den inste noinee evetiden bir or å kontroere for det dyniske bæret: 8 0 5,9 0,5 0 C P,9,68 79, Høyre ger: ( ) ( ) kn 0 Venstre ger: C ( ) P ( 8,9) 5 9, kn. 8,9 o Det ogitte geret (S 6) hr bæreevne C 97,5 kn. Dvs. t bæreevnen ti grene er tistrekkeig! c) Beregningen v den inste noine evetid er utført i tbeen under Høyre ger Venstre ger 0,75 0,75 0,5 0,5 P P,68 kn 5 kn P 0,5P 0,8 kn,5 kn C 97,5 kn 97,5 kn P P + P 0 kn kn ( ) 5,86 Mo 76,8 Mo C 0 P or å beregne gerkobinsjonens evetid for en åiteighet å 90%, kn Weibu- fordeing benyttes og forutsi evetiden ti skinen ved hje v føgende igning. k b b 0, kob i 0, i der k nt ger i skinen, i,,. k og b Weibe-exonent so besteer fordeingen. S nbefer t b 0/9, ,068 0 / 9 / 9 0 / 9 0 / 9 0 / 9 0, kob 0, 0, 5,86 76, / 9 0, kob 78,87 0, kob (78,87) 9,8Mo Mskinens oertivtid er 5,9 Mo. Det betyr t gerkobinsjonens overevesesfktor bir: 5,9 0,55. 9,8 0 Dette tisvrer en snnsynighet for overevese å c. 96% for t grene sk få en evetid å år (se Tbe 5-). Sist odtert /H Side /6

5 MS0 Mskinkonstruksjon ØSNINGSORSAG TI ØVINGSOPPGAVER. 6 Ogve AP 6: DIMENSJONERING AV JÆRER Ogve 6. ) Vi ntr C 8. Av ign. (6-) hr vi: 6x D C + 6xC C + x x ti π d C π d C n fs der x 70 MP og n fs, er sikkerhetsfktor ht fjærsenningen. d 6 * 600 *8 *8+ * 70 /, *8 π 6 x C C + π ti C,8 d,89. Tbe Anbefte størreser for tråddieter d og fjærdieter D Av nbefte (stndrdiserte) størreser veger vi d 5 (se Tbeen ovenfor). Dvs. D C*d 8*5 0. Av en svensk stndrd vist i Tbe ovenfor veger vi D 0 so svrer ti D i 5 for en trykkfjær. Merk t størresene for D i tbeen tisvrer indre dieter D i for trykkfjærer og ytre dieter D 0 for strekkfjærer. Ant virksoe vindinger finner vi fr ign. (6-6): Gd N Gd Gd 8 *0 *5 k der k 0 N / n 0 8nD δ kD 8kC 8*0 *8 jærens ubestet engde 0 n + δ n Der n fjærens engde ved tette (het sentrykte) vindinger n.d og δ n deforsjon v fjæren oti tette vindinger s, x der n krften so trenges for å få tette vindinger k k, x,* 60 N 0 n. d + 0*5 + 6 k 0 N / b) jæren får uendeig evetid når N > 0 7 odreininger Ant driftstier for å diensjonere for en uendeig evetid bir dered 0 7 odr. T drift > 56tier odr in 650 * 60 in t Sist odtert /H Side 5/6

6 MS0 Mskinkonstruksjon ØSNINGSORSAG TI ØVINGSOPPGAVER. 6 Ogve D πd x in 50 Senningsvrisjonen g torsjon: ± ( ± ) 66,7, MP ± der ( + ) 50 N og ( ) N x in k c) jærens resonns frekvens er gitt ved: ω kr der k fjærstivheten og A. e.ρ πd A 9,65 er tråddieterets tverrsnitt e n.π.d 56,6 er effektive trådegde ρ 7800 kg/ 7,8*0-6 kg/ er tettheten v jernterier. N 000 Innstt tverdier får vi 0,9 kg og k 0 * rd ω kr 8. 0,9 kg s Merk t N kg. s Ogve 6. ) i) Når kruningen er negisjert, hr vi fr ign. (6-) 8D d der d,5 og D 6 + π d D Av ign. (6-6) får vi Gd δ Gdδ D der C 0,67, n 5. 8n D 8nC d Innstt tverdier får vi: 9,5 N 8*9.5*6,5 * 57, MP + π (,5) 6 ii) Når kruningen er ttt hensyn ti Av ign. (6-) får vi: 6D C 6*9,5*6 *0,67 + d + C (,5) *0,67 π π 65, MP b) jærstivheten er gitt ved ign. (6-6) 9,5 N k 0,975 N / δ 0 jærens engde ved fustendig sentrykking n n.d *,5 9,5 c) x 65, M og ti 0,5*R 000 MP x < ti den er riktig diensjonert! Sist odtert /H Side 6/6

C13 SKIVER 263. Figur C 13.13. Eksempel på standard fotplate for vegger. «F orskalingsplater» T o kamstål B500 Ø16 til 32 mm Sveiset til sideplate

C13 SKIVER 263. Figur C 13.13. Eksempel på standard fotplate for vegger. «F orskalingsplater» T o kamstål B500 Ø16 til 32 mm Sveiset til sideplate C13 SKIVER 263 13.2.1 Horisont skjøt, strekkoverføring Behovet for strekkoverføring er som rege forårsket v horisonte krefter som gir momentstrekk og skjærkrft i den horisonte fgen. I prinsippet er det

Detaljer

Løsningsforslag til eksamen i klassisk mekanikk våren e N. R ρ m

Løsningsforslag til eksamen i klassisk mekanikk våren e N. R ρ m Løsningsforsag ti eksamen i kassisk mekanikk våren 010 Oppgave 1 ω v e T θ R ρ m e N Figure 1: a Lagrangefunksjonen er gitt ved: L = T V der T V er den kinetiske potensiee energien ti systemet. Finner

Detaljer

ØVING 4: DIMENSJONERING AV AKSLINGER OG ROTORER. M w. er tangentavsettet ved pkt B i forhold til tangenten ved opplagring A.

ØVING 4: DIMENSJONERING AV AKSLINGER OG ROTORER. M w. er tangentavsettet ved pkt B i forhold til tangenten ved opplagring A. SK10 askinkonstruksjon Kap. Oppgae.1. ØVING : DIENSJONERING AV AKSLINGER OG ROTORER Oppgae.1 a) aks. øyespenningen regnes fra: σ _ max ) Nedøyningen ed punkt C (der aften F angriper) er gitt ed δ C CC

Detaljer

TFY4102 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 12.

TFY4102 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 12. TFY4102 Fysikk. Institutt for fysikk, NTNU. Løsningsforsag ti øving 12. Oppgave 1. Termisk fysikk: Idee gass. Voumutvidese. a) Hvis du vet, eer finner ut, at uft har massetetthet ca 1.2-1.3 kg/m 3 (mindre

Detaljer

Fritt opplagret søyle. w = 0 w, xx = 0

Fritt opplagret søyle. w = 0 w, xx = 0 Fritt oppgret søye w w, w M i w, M y w w w, Knekking v fritt oppgret søye Differentiigning Genere øsning w, α +( ) w α w() A sin( )+ B α cos( ) Grensebetingeser w() w() B A sinα Løsning Euer knekkst sinα

Detaljer

Fasit til utvalgte oppgaver MAT1100, uka 20-24/9

Fasit til utvalgte oppgaver MAT1100, uka 20-24/9 Fsit til utvlgte oppgver MAT00, uk 20-24/9 Øyvind Ryn oyvindry@ifi.uio.no September 24, 200 Oppgve 5..5 år vi viser t f er kontinuerlig i ved et ɛ δ-bevis, er det lurt å strte med uttrykket fx f, og finne

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturitenskapeige fakutet Eksamen i: FYS1120 Eektromagnetisme Eksamensdag: 4. desember 2017 Tid for eksamen: 14.30 18.30 Oppgaesettet er på 9 sider. Vedegg: Tiatte hjepemider:

Detaljer

dx = 1 2y dy = dx/ x 3 y3/2 = 2x 1/2 + C 1

dx = 1 2y dy = dx/ x 3 y3/2 = 2x 1/2 + C 1 NTNU Institutt for mtemtiske fg TMA Mtemtikk høsten Løsningsforslg - Øving 7 Avsnitt 6.5 ) En hr t y = e, så y + 3y = e + 3e = e. b) En hr t y = e 3 e (3/), så y + 3y = e 3e (3/) + 3e + 3e (3/) = e. c)

Detaljer

Løsningsforslag SIE4010 Elektromagnetisme 5. mai 2003

Løsningsforslag SIE4010 Elektromagnetisme 5. mai 2003 Oppgve 1 Løsningsforslg SIE4010 Elektromgnetisme 5. mi 2003 ) Av symmetrigrunner må det elektriske feltet være rdielt rettet og uvhengig v φ, E = E(r)u r.vilrs være overflten til en sylinder med rdius

Detaljer

TKP4100 Strømning og varmetransport Løsningsforslag til øving 10

TKP4100 Strømning og varmetransport Løsningsforslag til øving 10 TKP4 Strømning og vrmetrnsport Løsningsforslg til øving Oppgve ) Entlpi ved utløpet (5 br, ), kj/kg Entlpi ved innløpet (5 br, x,95), 7 kj/kg overført: kj/kg Dvs. 4*/6,7 kw b) I området med overhetet dmp

Detaljer

Eksamen FY8104 Symmetri i fysikken Fredag 7. desember 2007 Løsninger

Eksamen FY8104 Symmetri i fysikken Fredag 7. desember 2007 Løsninger Eksamen FY8104 Symmetri i fysikken Fredag 7. desember 007 Løsninger 1a En konjugasjonskasse i SO(3 består av ae rotasjoner med en gitt rotasjonsvinke α og vikårig rotasjonsakse. En konjugasjonskasse i

Detaljer

MEK Stabilitet og knekning av konstruksjoner. Høst Prosjektoppgave: Forslag til løsning (skisse)

MEK Stabilitet og knekning av konstruksjoner. Høst Prosjektoppgave: Forslag til løsning (skisse) EK 50 tabiitet og knekning a konstruksjoner Høst 005 Prosjektoppgae: Forsag ti øsning (skisse). Hayman 0..005 - - Innedning Dette er kun en skisse ikke en fustendig rapport. Inndeingen i asnitt er bare

Detaljer

Kjeglesnitt Harald Hanche-Olsen Versjon

Kjeglesnitt Harald Hanche-Olsen Versjon Kjegesnitt Hrd Hnche-Osen hnche@mth.ntnu.no Versjon 1.0 2013-01-25 Definisjon og grunneggende egenskper Et kjegesnitt er en pn kurve gitt v en styreinje, et brennpunkt B og et positivt t ε som vi ker eksentrisiteten

Detaljer

Rullingslager. Innhold. Kap. 5 Dimensjonering av Rullingslager. Friksjon: glide- og rullefriksjon. Et lager er

Rullingslager. Innhold. Kap. 5 Dimensjonering av Rullingslager. Friksjon: glide- og rullefriksjon. Et lager er Kp. 5 Densjonerng v Rullngslger Rullngslger Frksjon: glde- og rullefrksjon Innhold Hovedtyper rullngslger Densjonerng v rullngslger Med hensyn tl sttsk lgerlst Med hensyn tl dynsk lgerlst evetd for en

Detaljer

Vår 2004 Ordinær eksamen

Vår 2004 Ordinær eksamen år Ordinær eksmen. En bil kjører med en hstighet på 9 km/h lngs en rett strekning. Sjåføren tråkker plutselig på bremsene, men gjør dette med økende krft slik t (den negtive) kselersjonen (retrdsjonen)

Detaljer

Oppgave 1 Svar KORTpå disse oppgavene:

Oppgave 1 Svar KORTpå disse oppgavene: Løsningsforslag eksaen FYS1 V11 Oppgave 1 Svar KORTpå disse oppgavene: a) Tversbølge: Svingebevegelsen til hvert punkt på bølgen går på tvers av forplantningsretningen til bølgen. Langsbølge: Svingebevegelsen

Detaljer

FYS 105 Fysikk Ordinær eksamen vår 2007

FYS 105 Fysikk Ordinær eksamen vår 2007 FYS 05 Fysikk Ordinær eksen vår 007. Et skip so lier i ro på hvet sender ut en lydbøle (sonr ed en frekvens på.00 khz. Lydhstiheten i vnn settes til 48 /s. Beste bølelenden til denne sonrbølen. b En hvl

Detaljer

12.4 HORISONTALE SKIVER Virkemåte Generelt Vindlastene i skivebygg overføres fra ytterveggene til dekkekonstruksjonene,

12.4 HORISONTALE SKIVER Virkemåte Generelt Vindlastene i skivebygg overføres fra ytterveggene til dekkekonstruksjonene, 112 B12 SKIVESYSTEM Oppsummering av punkt 12.3 Enke, reguære bygg kan håndregnes etter former som er utedet. Føgende betingeser må være oppfyt. - Ae vertikae avstivende deer må ha hovedaksene i - og y-retning

Detaljer

INF 1040 høsten 2009: Oppgavesett 10 Løsningsforslag - Digitale bilder (kapittel 12,13,14)

INF 1040 høsten 2009: Oppgavesett 10 Løsningsforslag - Digitale bilder (kapittel 12,13,14) INF 040 høsten 009: Oppgesett 0 Løsningsforsg - Digite ider (kpitte,3,4) Tenk se -oppger 0. Hor små detjer kn i se med øyet? ) Ant t i hr stt opp et hitmt stkitt med 5 cm rede sprosser med 5 cm meomrom.

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet NIVERSITETET I OSLO Det matematisk-naturvitenskapeige akutet Eksamen i: FYS 13 - Svingninger og bøger Eksamensdag: 4. mars 6 Tid or eksamen: K. 9-1 Godkjente hjepemider: Øgrim og Lian (eer Ange og Lian):

Detaljer

en forutsetning for god dyrevelferd og trygg matproduksjon

en forutsetning for god dyrevelferd og trygg matproduksjon TEMA: DYREHELSE REINE DYR en forutsetning for god dyreveferd og trygg matproduksjon Triveige dyr er reine og vestete. Hud og hårager er viktig i forsvaret mot skader og infeksjoner. Reint hårag er også

Detaljer

a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene.

a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene. Oppgave 1 Bestem løsningen av differensialligningen Oppgave 2 dy dx + y = e x, y(1) = 1 e Du skal beregne en kulekondensator som består av 2 kuleskall av metall med samme sentrum. Det indre skallet har

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapeige fakutet Eksamen i: FYS140 Kvantefysikk Eksamensdag: 10. juni Tid for eksamen: 09.00 (4 timer) Oppgavesettet er på fem (5) sider Vedegg: Ingen

Detaljer

FYS2130. Tillegg til kapittel 13. Harmonisk oscillator. Løsning med komplekse tall

FYS2130. Tillegg til kapittel 13. Harmonisk oscillator. Løsning med komplekse tall FYS130. Tillegg til kapittel 13 Haronisk oscillator. Løsning ed koplekse tall Differensialligningen for en udepet haronisk oscillator er && x+ ω x = 0 (1) so er en hoogen lineær differensialligning av.

Detaljer

Oppgaver MAT2500. Fredrik Meyer. 10. september 2014

Oppgaver MAT2500. Fredrik Meyer. 10. september 2014 Oppgaver MAT500 Fredrik Meyer 0. september 04 Oppgave. Bruk forrige oppgave ti å vise at hvis m er orienteringsreverserende, så er m en transasjon. (merk: forrige oppgave sa at ae isometrier er på formen

Detaljer

TFY4160 Bølgefysikk/FY1002 Generell Fysikk II 1. Løsning Øving 2. m d2 x. k = mω0 2 = m. k = dt 2 + bdx + kx = 0 (7)

TFY4160 Bølgefysikk/FY1002 Generell Fysikk II 1. Løsning Øving 2. m d2 x. k = mω0 2 = m. k = dt 2 + bdx + kx = 0 (7) TFY4160 Bølgefysikk/FY100 Generell Fysikk II 1 Løsning Øving Løsning oppgave 1 Ligning 1) i oppgaveteksten er i dette tilfellet: Vi setter inn: i lign. 1) og får: m d x + kx = 0 1) dt x = A cosω 0 t +

Detaljer

Eksamen i SIF5036 Matematisk modellering Onsdag 12. desember 2001 Kl

Eksamen i SIF5036 Matematisk modellering Onsdag 12. desember 2001 Kl Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Harald E Krogstad, tlf: 9 35 36/ mobil:416 51 817 Sensur: uke 1, 2002 Tillatte hjelpemidler:

Detaljer

Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen Q ligger i punktet ( 3, 0) [mm].

Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen Q ligger i punktet ( 3, 0) [mm]. Oppgave 1 Finn løsningen til følgende 1.ordens differensialligninger: a) y = x e y, y(0) = 0 b) dy dt + a y = b, a og b er konstanter. Oppgave 2 Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen

Detaljer

VEGTYPER OG VEGKLASSER

VEGTYPER OG VEGKLASSER VEG NORMALER GEOMETRISK UTFORMING AR VEGTYPER 111 1 1 INNDELING I I det funksjonsdelte vegnett karakteriseres vegene ved angivelse av vegtyper og vegklasser hvor: vegtypen angir vegens funksjon og fastsettes

Detaljer

Newtons lover i én dimensjon

Newtons lover i én dimensjon Newtons lover i én dimensjon 6.01.017 YS-MEK 1110 6.01.017 1 Hva er kraft? Vi har en intuitivt idé om hva kraft er. Vi kan kvantifisere en kraft med elongasjon av en fjær. YS-MEK 1110 6.01.017 Bok på bordet

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK Mandag 10. desember 2007 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK Mandag 10. desember 2007 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK

Detaljer

Slik bestiller du. Rektangulært. lindab rektangulært

Slik bestiller du. Rektangulært. lindab rektangulært Sik estier u Rektnguært in rektnguært Generet om Rektnguært Rektnguært estår v rektnguære kner og etjer me må som psser ti SS-EN 1505 når ikke nnet er spesifisert. Knsystemet krer tettetsksse C. Smtige

Detaljer

B4 TEMPERATURER, KRYP OG SVINN

B4 TEMPERATURER, KRYP OG SVINN 4.4 BEREGNING AV HORISONTAKREFTER I BJEKER OG DEKKER FRA TEMPERATUR, KRYP OG SVINN Summen av bevegeser fra temperaturendringer, kryp og svinn kaes kort for voumendringer. I dette kapitteet beregnes horisontae

Detaljer

Wilhelmi Byggevarer. Overvannshåndtering Tanker. Wilhelmi Byggevarer tel. +47/405 65 431 info@wilhelmi.no

Wilhelmi Byggevarer. Overvannshåndtering Tanker. Wilhelmi Byggevarer tel. +47/405 65 431 info@wilhelmi.no Wihemi Byggevarer Overvannshåndtering Tanker Wihemi Byggevarer te. +47/405 65 431 info@wihemi.no Produksjonsanegg i Dachstein (Frankrike) Produksjonsanegg i Teningen (Tyskand) i nærheten av Freiburg GRAF

Detaljer

TKP4100 og TMT4206 Løsningsforslag til øving 9

TKP4100 og TMT4206 Løsningsforslag til øving 9 TKP4 og TMT46 Løsningsforslg til øving 9 Oppgve ) Entlpi ved utløpet (5 br, C), kj/kg Entlpi ved innløpet (5 br, x =,95), 7 kj/kg overført: kj/kg Dvs. 4*/6 =,7 kw b) I området med overhetet dmp (T >4C

Detaljer

lindab prisliste rektangulært Prisliste Rektangulære kanaler og detaljer

lindab prisliste rektangulært Prisliste Rektangulære kanaler og detaljer ind prisiste rektnguært Prisiste Rektnguære kner og detjer Gydig fr 15. ugust 2016 Sgs- og everingsetingeser ene i prisisten er produsert i henhod ti de spesifiksjoner som finnes i Linds Ventisjonsktog.

Detaljer

OPPGAVE 1 Francis Turbin

OPPGAVE 1 Francis Turbin NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for Terisk Energi og Vannkraft Eksaen i fag TEP 95 TURBOMASKNER, Løsningsforslag. Juni 005 Tid: 5.00 9.00 Faglig kontakt under eksaen: Navn: Ole

Detaljer

Formel III over kan sammenliknes med Ohm`s lov for en elektrisk krets.

Formel III over kan sammenliknes med Ohm`s lov for en elektrisk krets. 1 5.4 MAGETSKE KRETSER HOPKSOS LOV iguren 5.4.1 kan betraktes som en eektrisk krets. Hvor vi benytter den magnetiske kidespenningen, reuktansen og den magnetiske fuksen og sammenikner dem med spenningen

Detaljer

Oppgave 8.12 Gitt en potensialhvirvel med styrke K i origo. Bestem sirkulasjonen ' langs kurven C. Sirkulasjonen er definert som: ' /

Oppgave 8.12 Gitt en potensialhvirvel med styrke K i origo. Bestem sirkulasjonen ' langs kurven C. Sirkulasjonen er definert som: ' / Løsning øving 3 Oppgve 8. Gitt en potensilhvivel med styke i oigo. Bestem sikulsjonen ' lngs kuven C. C y (I oppgven stå det t vi skl gå med klokk, men he h vi gått mot klokk i oveensstemmelse med definisjonen

Detaljer

Når en kraft angriper et stykke material fører det til påkjenninger som betegnes spenninger.

Når en kraft angriper et stykke material fører det til påkjenninger som betegnes spenninger. Side 1 av 8 Mekanisk spenning i materiaer Tenk på et tungt egeme som ska bæres av en konstruksjon. Konstruksjonens må tåe kraften som går fra asten ti underaget. Denne kraften virker på konstruksjonen

Detaljer

JEMISI(-TEKNISKE FISKERIDIRE TORATETS FORSKNINGSINSTITUTT BERGEN. Analyser av fett og tørrstoff Sammenlikning av analyseresultater ved 7 laboratorier

JEMISI(-TEKNISKE FISKERIDIRE TORATETS FORSKNINGSINSTITUTT BERGEN. Analyser av fett og tørrstoff Sammenlikning av analyseresultater ved 7 laboratorier FISKERIDIRE TORATETS FORSKNINGSINSTITUTT JEMISI(-TEKNISKE Anayser av fett og tørrstoff Sammenikning av anayseresutater ved 7 aboratorier ved Kåre Bakken og Gunnar Tertnes R.nr. 135/74 A. h. 44 BERGEN Anayser

Detaljer

Musikkens fysikk. Johannes Skaar, NTNU. 9. januar 2010

Musikkens fysikk. Johannes Skaar, NTNU. 9. januar 2010 Musikkens fysikk Johannes Skaar, NTNU 9. januar 2010 I aboppgavene i TFE40 Eektromagnetisme ager du en eektrisk gitar, der den vibrerende strengen setter i gang vibrasjoner på en magnet, som videre induserer

Detaljer

2 π[r(x)] 2 dx = u 2 du = π 1 ] 2 = π u 1. V = π. V = π [R(x)] 2 [r(x)] 2 dx = π (x + 3) 2 (x 2 + 1) 2 dx = 117π 5.

2 π[r(x)] 2 dx = u 2 du = π 1 ] 2 = π u 1. V = π. V = π [R(x)] 2 [r(x)] 2 dx = π (x + 3) 2 (x 2 + 1) 2 dx = 117π 5. NTNU Institutt for mtemtiske fg TMA Mtemtikk høsten 2 Løsningsforslg - Øving 6 Avsnitt 6. 7 Ved å bruke disk-metoden får mn t volumet er π[r(x)] 2 dx 3 Ved å bruke disk-metoden får mn t volumet er L u

Detaljer

Hall effekt. 3. Mål sammenhørende verdier mellom magnetfeltet og Hall-spenningen for to ulike kontrollstrømmer (I = 25 og 50 ma).

Hall effekt. 3. Mål sammenhørende verdier mellom magnetfeltet og Hall-spenningen for to ulike kontrollstrømmer (I = 25 og 50 ma). FY1303 Eektrisitet og magnetisme nstitutt for fysikk, NTNU FY1303 Eektrisitet og magnetisme, høst 007 Laboratorieøvese 1 a effekt ensikt ensikten med øvesen er å gjøre seg kjent med a-effekten og måe denne

Detaljer

For bedre visualisering tegner vi

For bedre visualisering tegner vi MSK MSKIKOSTRUKSJO ØSIGSORSG TI ØVIGSOPPGVR Oppgave 8. 8.5 ØVIG 9: DIMSJORIG V SKRUORBIDSR Oppgave 8- a) Totalraften i ruen er gitt ved: b der er forpenningraften og er andelen av ytre raften o ta av en

Detaljer

Løsningsforslag Eksamen 19. august 2005 TFY4250 Atom- og molekylfysikk

Løsningsforslag Eksamen 19. august 2005 TFY4250 Atom- og molekylfysikk Eksmen TFY450 19. ugust 005 - løsningsforslg 1 Oppgve 1 Løsningsforslg Eksmen 19. ugust 005 TFY450 Atom- og molekylfysikk. For det oppgitte, symmetriske brønnpotensilet er bundne energiegentilstnder enten

Detaljer

1) Hva blir akselerasjonen til en kloss som glir nedover et friksjonsfritt skråplan med helningsvinkel 30?

1) Hva blir akselerasjonen til en kloss som glir nedover et friksjonsfritt skråplan med helningsvinkel 30? FY1001/TFY4145 Mekanisk Fysikk Eksaen Tirsdag 16. Deseber 2014 OPPGAVER MED LØSNINGSFORSLAG OPPGAVE 1: Flervalgsoppgaver (Teller 45%, 18 stk so teller 2.5% hver) 1) Hva blir akselerasjonen til en kloss

Detaljer

Løsningsforslag TFE4120 Elektromagnetisme 24. mai = 2πrlɛE(r) = Q innenfor S =

Løsningsforslag TFE4120 Elektromagnetisme 24. mai = 2πrlɛE(r) = Q innenfor S = Norges teknisk nturvitenskpelige universitet Institutt for elektronikk og telekommuniksjon Side 1 v 5 Løsningsforslg TFE4120 Elektromgnetisme 24. mi 2011 Oppgve 1 ) Av symmetrigrunner må det elektriske

Detaljer

LØSNINGSFORSLAG TIL ØVING NR. 5, Vår 2014

LØSNINGSFORSLAG TIL ØVING NR. 5, Vår 2014 NTNU Nrges teknisknturvitenskpelige universitet kultet nturvitenskp g teknlgi Institutt fr mterilteknlgi TMT1 JEMI LØSNINGSORSLAG TIL ØVING NR. 5, Vår 01 OPPGAVE 1 ) Vi kmbinerer den vnlige løselighetslikevekten

Detaljer

Oppgave 1: Blanda drops

Oppgave 1: Blanda drops Fysikkprøve-0402-f.nb Oppgave : Banda drops a) En avgrenset mengde oksygen-gass HO 2 L ar temperaturen T = 300 K, trykket p = 0 kpa og voum V =0,00 m 3. Beregn massen ti den avgrensede gassen. Vi bruker

Detaljer

FY2045/TFY4250 Kvantemekanikk I, øving 10 1 ØVING 10

FY2045/TFY4250 Kvantemekanikk I, øving 10 1 ØVING 10 FY45/TFY45 Kvntemeknikk I, - øving ØVING Mesteprten v denne øvingen går ut på å gjøre seg kjent med spinn, men øvingen inneholder også en oppgve om koherente tilstnder. Denne er en fortsettelse v oppgve

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag 3. desember 2007 kl

LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag 3. desember 2007 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 7 59 6 6 / 45 45 55 LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag.

Detaljer

EKSAMEN. Emne: Fysikk og datateknikk

EKSAMEN. Emne: Fysikk og datateknikk EKSAMEN Emnekode: ITD11006 Emne: Fysikk og datateknikk Dato: 05. Mai 010 Eksamenstid: k 9:00 ti k 13:00 Hjepemider: 4 sider (A4) ( ark) med egne notater. Kakuator. Gruppebesvarese, som bir det ut på eksamensdagen

Detaljer

Relativitet og matematikk

Relativitet og matematikk Reatiitet og matematikk Eementær agebra og igninger Beregning dersom rommet er absoutt og dersom det er reatit Horfor måingen i 887 ga det resutat man fant. At yset bruker ike ang tid ti å gå i ae retninger

Detaljer

A. forbli konstant B. øke med tida C. avta med tida D. øke først for så å avta E. ikke nok informasjon til å avgjøre

A. forbli konstant B. øke med tida C. avta med tida D. øke først for så å avta E. ikke nok informasjon til å avgjøre Flervlgsoppgver 1. En induktor L og en motstnd R er forbundet til en spenningskilde E som vist i figuren. Bryteren S 1 lukkes og forblir lukket slik t konstnt strøm går gjennom L og R. Så åpnes bryter

Detaljer

Kap 02 Posisjon / Hastighet / Akselerasjon 2D - Bevegelse langs en rett linje

Kap 02 Posisjon / Hastighet / Akselerasjon 2D - Bevegelse langs en rett linje Kp Poijon / Highe / kelerjon D - Beegele lng en re linje Løning Lufpuebenk Highe: oocellene kn flye Siden ognen hr konn highe ed beegele på lufpuebenken, il beregningen highe ære uhengig foocellene poijon

Detaljer

Kap. 3 Krumningsflatemetoden

Kap. 3 Krumningsflatemetoden SIDE. KRUMNINGSFLTEMETODEN I kpittel. og. hr vi sett t en bjelkes krefter og deformsjon kn beskrives ved fire integrler som henger smmen : Skjærkrft : V d Vinkelendring : φ M d Moment : M V d Forskyvning

Detaljer

Statikk og likevekt. Elastisitetsteori

Statikk og likevekt. Elastisitetsteori Statikk og ikevekt Eastisitetsteori 07.05.013 YS-MEK 1110 07.05.013 1 man tir uke 19 0 1 3 6 13 0 7 3 innev. obig 10 gruppe: statikk 7 14 1 8 4 foreesning: eastisitetsteori gruppe: eastisitet foreesning:

Detaljer

BIP200 Bore- og brønnvæsker

BIP200 Bore- og brønnvæsker EKSAMEN I: BIP00 Bore- og brønnvæsker TID FOR EKSAMEN:. juni 04 KL. 08:30 - :30 TILLATTE HJELPEMIDLER: Klkultor OPPGAVESETTET BESTÅR AV: 3 OPPGAVER PÅ 4 SIDER + VEDLEGG å 3 sider. Generell inormsjon: Alle

Detaljer

Øving 9. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt.

Øving 9. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt. Institutt for fysikk, NTNU TFY4155/FY1003: Elektromgnetisme år 2009 Øving 9 eiledning: Mndg 09. og fredg 13. (evt 06.) mrs Innleveringsfrist: Fredg 13. mrs kl. 1200 (Svrtbell på siste side.) Opplysninger:

Detaljer

BIP200 Bore- og brønnvæsker

BIP200 Bore- og brønnvæsker EKSAMEN I: BIP00 Bore- og brønnvæsker TID FOR EKSAMEN: 7. ugust 03 KL. 09:00 - :00 TILLATTE HJELPEMIDLER: Klkultor OPPGAVESETTET BESTÅR AV: 3 OPPGAVER PÅ 3 SIDER + VEDLEGG å 3 sider. Generell inormsjon:

Detaljer

(θ,φ) er de sfæriske harmoniske. Her bruker vi sfæriske koordinater. x = rsinθcosφ, (2) y = rsinθsinφ, (3) z = rcosθ. (4)

(θ,φ) er de sfæriske harmoniske. Her bruker vi sfæriske koordinater. x = rsinθcosφ, (2) y = rsinθsinφ, (3) z = rcosθ. (4) Oppgave 1 Hydrogenatom for kjemikere I denne oppgaven ska vi se på hydrogenatomet. Vrien i år er at vi ska skrive øsningen av Schrødingerigningen på en måte som kjemikere iker bedre. Vi ser bort fra spinn

Detaljer

TKP 4105 SEPARASJONSTEKNIKK Exercise 1 Membrane Technology - Løsningsforslag

TKP 4105 SEPARASJONSTEKNIKK Exercise 1 Membrane Technology - Løsningsforslag Fagærer: M-B Hägg /004 1 TKP 4105 SEPRSJONSTEKNIKK Eercise 1 Mebrane Technoogy - Løsningsforsag Ogave 1: Geankois 1.-1 (gassearasjon Si-gui ska sjekkes so egnet ebranateriae i hjerte-unge askin. For oregninger

Detaljer

Snordrag i pendel. Carl Angell Øyvind Guldahl Ellen. K. Henriksen UNIVERSITETET I OSLO. Skolelaboratoriet Gruppen for fysikkdidaktikk Fysisk institutt

Snordrag i pendel. Carl Angell Øyvind Guldahl Ellen. K. Henriksen UNIVERSITETET I OSLO. Skolelaboratoriet Gruppen for fysikkdidaktikk Fysisk institutt 1 UNIVERSITETET I OSLO Skoeaboratoriet Gruppen for fysikkdidaktikk Fysisk institutt Boks 1048 Bindern N-0316 Oso Teefon: 85 64 43 / 85 78 86 Teefaks: 85 64 e-mai: skoeab@fys.uio.no Snordrag i pende Car

Detaljer

Løsningsforslag til ukeoppgave 10

Løsningsforslag til ukeoppgave 10 Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 10 Oppgave 17.15 Tegn figur og bruk Kirchhoffs 1. lov for å finne strømmene. Vi begynner med I 3 : Mot forgreningspunktet kommer det to strømmer,

Detaljer

Hverdagen. er bedre med meny. Kjøttdeig av storfe, u/salt og vann (62,25/kg) Husk tøymykner! SPAR 46% ord.pris 46,90/pk

Hverdagen. er bedre med meny. Kjøttdeig av storfe, u/salt og vann (62,25/kg) Husk tøymykner! SPAR 46% ord.pris 46,90/pk Hvrn r br m mny 46% or.pris 46,/pk Kjøtti v storf, u/st o vnn (62,25/k) jr t u b i T ons n m KUN 13,31 PR STK 39% or.pris 41,10/pk 79 Ppsi Mx 6pk 6, Gi, (41,50/k) 6x1,5 tr, (8,87/) pr pk or.pris 37,/stk

Detaljer

Fysikkolympiaden Norsk finale 2019 Løsningsforslag

Fysikkolympiaden Norsk finale 2019 Løsningsforslag Fysikkolympiaden Norsk finale 09 Løsningsforslag Oppgave Vi kaller strømmene gjennom de to batteriene I og I og strømmen gjennom den ytre motstanden I = I + I. Da må vi ha at U = R I + RI U = R I + RI.

Detaljer

Midtsemesterprøve fredag 23. mars 2007 kl

Midtsemesterprøve fredag 23. mars 2007 kl Institutt for fysikk, NTNU FY1003 Elektrisitet og mgnetisme I TFY4155 Elektromgnetisme Vår 2007 Midtsemesterprøve fredg 23. mrs 2007 kl 1415 1615. Løsningsforslg 1) I et område er det elektriske feltet

Detaljer

Vår TMA4105 Matematikk 2. Løsningsforslag Øving 2. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag

Vår TMA4105 Matematikk 2. Løsningsforslag Øving 2. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA415 Matematikk 2 Vår 217 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 2 11.1.9: Den aktuelle kurven er gitt ved r(t) (3 cos t, 4 cos t, 5 sin t).

Detaljer

dy ycos 2 y = dx. Ved å integrere på begge sider av likhetstegnet får man ved å substituere u = y,du = dy dy ycos 2 y = 2du cos 2 u = x.

dy ycos 2 y = dx. Ved å integrere på begge sider av likhetstegnet får man ved å substituere u = y,du = dy dy ycos 2 y = 2du cos 2 u = x. NTNU Institutt for mtemtiske fg TMA Mtemtikk høsten 2 Løsningsforslg - Øving 7 Avsnitt 6.5 ) En hr t y = e, så 2y +y = 2e +e = e. b) En hr t y = e 2 e (/2), så 2y +y = 2e e (/2) +e +e (/2) = e. c) En hr

Detaljer

Bioberegninger - notat 3: Anvendelser av Newton s metode

Bioberegninger - notat 3: Anvendelser av Newton s metode Bioberegninger - nott 3: Anvendelser v Newton s metode 20. februr 2004 1 Euler-Lotk ligningen L oss tenke oss en populsjon bestående v individer v ulik lder. L n være mksiml lder. L m i være ntll vkom

Detaljer

Schöck Isokorb type W

Schöck Isokorb type W Øvre del Midtre del Schöck Isokorb type Nedre del Innhold Side Elementplssering/Tverrsnitt 122 Produktbeskrivelse/Kpsitetstbeller 123 eregningseksempel 124 Monteringsnvisning 125 126 Sjekkliste 127 rnnvern

Detaljer

Tema 2: Stokastiske variabler og sannsynlighetsfordelinger Kapittel 3 ST :44 (Gunnar Taraldsen)

Tema 2: Stokastiske variabler og sannsynlighetsfordelinger Kapittel 3 ST :44 (Gunnar Taraldsen) Tem 2: Stokstiske vribler og snnsynlighetsfordelinger Kpittel 3 ST1101 2019-01-13 12:44 (Gunnr Trldsen) Det nts i nottet t S er et utfllsrom utstyrt med en snnsynlighet P (A) for enhver hendelse A F. F

Detaljer

KONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME

KONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME NTNU Norges teknisk-naturvitenskapelige universitet ide 1 av 7 Fakultet for informatikk, matematikk og elektroteknikk Institutt for elektronikk og telekommunikasjon Bokmål/Nynorsk Faglig/fagleg kontakt

Detaljer

lindab prisliste rektangulært Prisliste Rektangulære kanaler og detaljer

lindab prisliste rektangulært Prisliste Rektangulære kanaler og detaljer ind prisist rktnguært Prisist Rktnguær knr og dtjr Gydig fr 1. pri 2015 Sgs- og vringstingsr n i prisistn r produsrt i nod ti d spsifiksjonr som finns i Linds Vntisjonsktog. Prisistn innodr t utvg v vårt

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FY 5 - Svingninger og bølger Eksamensdag: 5. januar 4 Tid for eksamen: Kl. 9-5 Tillatte hjelpemidler: Øgrim og Lian: Størrelser

Detaljer

MA2501 Numeriske metoder

MA2501 Numeriske metoder MA251 Numeriske metoder Løsningsforslag, Øving 3 Oppgave 1 a) Start med å tegne en skisse av funksjonen f(x) = x.99(e x 1). Vi oppdager fort at α må ligge svært nær, faktisk rundt.2. Newtons metode anvendt

Detaljer

FASIT, tips og kommentarer

FASIT, tips og kommentarer FASIT, tips og kommentrer JULEKALENDER 8.- 10- trinn Nivå 1 og Nivå 2. Tips til orgnisering: Kn jobbes med i gruppe, to og to eller individuelt. Spre rbeidet med klenderen i mttetimene i desember, eller

Detaljer

1b) Beregn den elektriske ladningstettheten inni kjernen og finn hvor stor den totale ladningen er.

1b) Beregn den elektriske ladningstettheten inni kjernen og finn hvor stor den totale ladningen er. FYS112 H-211: Løsningsforslg for vsluttende eksmen Oppgve 1 I en modell for en kuleformet tomkjerne med rdius R vrierer det elektriske feltet inne i kjernen som E(r) = Cr(xe x + ye y + ze z ). Her er C

Detaljer

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 5

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 5 Løsning av utvalgte øvingsoppgaver til Sigma R kapittel 5 5.5 Ce kx y = kce kx Vi setter inn i y + ky og ser om vi får 0: 5.5 ax + a y = ax Vi setter inn i y 5.54 kce kx + k Ce kx = 0 x x + y: ax x(ax

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 8. a = e m E

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 8. a = e m E TFY414 Fysikk. Institutt for fysikk, NTNU. Høsten 16. Løsningsforslg til øving 8. Oppgve 1. ) C F = E = m Newtons. lov. Her er = e, så elektronets kselersjon blir = e m E ltså mot venstre. b) C Totlt elektrisk

Detaljer

LØSNINGSFORSLAG TIL ØVING NR. 5, HØST 2009

LØSNINGSFORSLAG TIL ØVING NR. 5, HØST 2009 NTNU Nrges teknisknturvitenskpelige universitet kultet fr nturvitenskp g teknlgi Institutt fr mterilteknlgi TMT11 JEMI LØSNINGSORSLAG TIL ØVING NR. 5, HØST 009 OPPGAVE 1 ) Hg(OH) (s) = Hg + + OH sp,hg

Detaljer

Eksamen høsten 2016 Løsninger

Eksamen høsten 2016 Løsninger DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 1: 5x y : x y 9 Fr likning : y x+ 9 Innstt i likning 1 gir det 5x (x+ 9) 5x 4x 18 9x 18 x

Detaljer

Fasit. Grunnbok. Kapittel 1. Bokmål

Fasit. Grunnbok. Kapittel 1. Bokmål Fsit 9 Grunnbok Kpittel Bokmål Kpittel Prosent. = 0,5 = 50 % 2 b 0,333 = 33,3 % 3 c = 0,25 = 25 % 4 d = 0,2 = 20 % 5 e = 0,25 = 2,5 % 8.2 4 b 20 c 20 d 4 = 25 % e 20 = 5 % f 20 = 5 %.3 2 5 b 37,5% 3 c

Detaljer

2-komplements representasjon. Binær addisjon. 2-komplements representasjon (forts.) Dagens temaer

2-komplements representasjon. Binær addisjon. 2-komplements representasjon (forts.) Dagens temaer 2 Dgens temer Dgens temer hentes fr kpittel 3 i Computer Orgnistion nd Architecture Kort repetisjon 2-komplements form Binær ddisjon/sutrksjon Aritmetisk-logisk enhet (ALU) Sekvensiell logikk RS-ltch 2-komplements

Detaljer

C14 FASADEFORBINDELSER 323

C14 FASADEFORBINDELSER 323 C14 FASADEFORBINDELSER 323 Elementet Når mellomlegget har tilnærmet samme bredde som bærende elementvange i et veggelement, blir spaltestrekk på tvers av elementet ubetydelig. Spaltestrekk i lengderetningen

Detaljer

K j æ r e b e b o e r!

K j æ r e b e b o e r! 1 K e y s e r l ø k k a Ø s t B o r e t t s l a g K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d

Detaljer

INNKALLING TIL ORDINÆRT SAMEIERMØTE 2009

INNKALLING TIL ORDINÆRT SAMEIERMØTE 2009 INNKALLING TIL ORDINÆRT SAMEIERMØTE 2009 O r d i n æ r t s am e i e rm øt e i R u d s h ø g d a V B / S, a v h o l d e s m a n d a g 1 6. m a r s k l. 1 8 : 0 0 p å L o f s r u d s k o l e, L i l l e a

Detaljer

BINGO - Kapittel 11. Kokepunktet for vann (100 grader celsius) Tiltrekningskraft mellom legemer (gravitasjonskraft)

BINGO - Kapittel 11. Kokepunktet for vann (100 grader celsius) Tiltrekningskraft mellom legemer (gravitasjonskraft) BINGO - Kapitte 11 Bingo-oppgaven anbefaes so repetisjon etter at kapitte 11 er gjennogått. Kipp opp tabeen (nedenfor) i 24 apper. Gjør det kart for eevene o det er en saenhengende rekke vannrett, oddrett,

Detaljer

D l Kundenummer: Epost: Rehabilitering av boligblokk. All eksisterende installasjon er demontert, nytt anlegg.

D l Kundenummer: Epost: Rehabilitering av boligblokk. All eksisterende installasjon er demontert, nytt anlegg. NE Fo ~ EsikkmHETsde>kuMENTASje>N Samsvarserkæring Samsvarserkæring med garanti EIEkmoiNSTAIIArøR Firma/Navn: Kontaktperson: EkamAS Roger Skjønhaug Adresse: Kaerudsvingen 13 Postnr/Sted: 2816 Gjøvik Teefon:

Detaljer

LØSNINGSFORSLAG TIL SIGNALBEHANDLING 1 JUNI 2010

LØSNINGSFORSLAG TIL SIGNALBEHANDLING 1 JUNI 2010 LØSNINGSFORSLAG TIL SIGNALBEHANDLING JUNI Løsningsforslag til eksamen i Signalbehandling, mai Side av 5 Oppgave a) Inngangssignalet x(t) er gitt som x( t) = 5cos(π t) + 8cos(π 4 t). Bruker Eulers formel

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 4 Løsningsforslag Øving 5.7.4 Vi observerer at både y = cos πx 4 og y = x er like funksjoner. Det vil si

Detaljer

Løsning til KONTROLLOPPGAVER Sinus S2 1 Rekker Uten hjelpemidler OPPGAVE 1 a) 1) b) 1) c) d)

Løsning til KONTROLLOPPGAVER Sinus S2 1 Rekker Uten hjelpemidler OPPGAVE 1 a) 1) b) 1) c) d) Løsning til KONTROLLOPPGAVER Sinus S Rekker Uten hjelpemidler OPPGAVE ) ) Når følgen er ritmetisk, er 3 d 8 = + d 8 = d 6 d 8 d 8 0 ) Når følgen er geometrisk, er k 3 8 = k k = 8 = 9 k = 3 eller k = 3

Detaljer

S1 kapittel 4 Logaritmer Løsninger til oppgavene i boka

S1 kapittel 4 Logaritmer Løsninger til oppgavene i boka Løsninger til oppgvene i ok S kpittel 4 Logritmer Løsninger til oppgvene i ok 4. Vi leser v fr tllet 4 på y-ksen og ser t vi får den tilhørende verdien,6 på -ksen. lg 4,6 Vi leser v fr tllet,5 på y-ksen

Detaljer

! Dekoder: En av 2 n output linjer er høy, avhengig av verdien på n inputlinjer. ! Positive tall: Som før

! Dekoder: En av 2 n output linjer er høy, avhengig av verdien på n inputlinjer. ! Positive tall: Som før Dgens temer Enkoder! Dgens temer hentes fr kpittel 3 i Computer Orgnistion nd Architecture! Dekoder: En v 2 n output linjer er høy, vhengig v verdien på n inputlinjer! Enkoder/demultiplekser (vslutte fr

Detaljer

1 Mandag 8. mars 2010

1 Mandag 8. mars 2010 1 Mndg 8. mrs 21 Vi hr tidligere integrert funksjoner lngs x-ksen, og vi hr integrert funksjoner i flere vrible over begrensede områder i xy-plnet. I denne forelesningen skl vi integrere funksjoner lngs

Detaljer

Binomisk fordeling. Hypergeometrisk fordeling. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi har følgende situasjon: = = 2

Binomisk fordeling. Hypergeometrisk fordeling. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi har følgende situasjon: = = 2 MAT0100V Sannsynlighetsregning og kobinatorikk Oppgaver o Binoisk og hypergeoetrisk fordeling Forventning varians og standardavvik Tilnæring av binoiske sannsynligheter Konfidensintervall Ørnulf Borgan

Detaljer

Newtons lover i én dimensjon

Newtons lover i én dimensjon Newtons lover i én dimensjon 3.01.018 snuble-gruppe i dag, kl.16:15-18:00, Origo FYS-MEK 1110 3.01.018 1 Hva er kraft? Vi har en intuitivt idé om hva kraft er. Vi kan kvantifisere en kraft med elongasjon

Detaljer

SINTEF Byggforsk bekrefter at. Willa Nordic Ytterveggselementer

SINTEF Byggforsk bekrefter at. Willa Nordic Ytterveggselementer SINTEF Byggforsk bekrefter at Willa Nordic seleenter SINTEF Certification Nr. 2553 Utstedt første gang: 22.01.2009 Revidert: 09.01.2015 Korrigert: 13.09.2018 Gyldig til: 01.04.2020 Forutsatt publisert

Detaljer

Øving 13. Induksjon. Forskyvningsstrøm. Vekselstrømskretser.

Øving 13. Induksjon. Forskyvningsstrøm. Vekselstrømskretser. Inst for fysikk 2017 FY1003 Elektr & magnetisme Øving 13 Induksjon Forskyvningsstrøm Vekselstrømskretser Denne siste øvingen innholder ganske mye, for å få dekket opp siste del av pensum Den godkjennes

Detaljer