Oppgave 5.1 Dimensjonering av lager
|
|
- Lukas Halvorsen
- 7 år siden
- Visninger:
Transkript
1 MS0 Mskinkonstruksjon ØSNINGSORSAG TI ØVINGSOPPGAVER. 5 Ogve ØVING 5: DIMENSJONERING AV AGER OG JÆRER Ogve 5. Diensjonering v ger ) or å vege et ger for en åiteighet å 90%: Det dyniske bæretet (C) ved en ekv. gerbestning sk være større enn eer ik gerets bæreevne gitt v S ktog. C 0 Dynisk bæretet (C) er gitt ved: ( ) P () der 0 ved 90% overevesessnnsynighet, og P er den ekv. gersten ved vribe bestning. evetid ved n 750 o/in: o in t u 750 *60 *0 *8 * 5år in t u år 6 o ( der o iion odreininger). 0 6 o, 0% overevesessnnsynighet. Ekv. gerbestning: Ved trinnvis bestning finnes den ekvivent gerbestningen fr og i P i P i der () iioner odreininger so de sengte deskdene ( i, i, ) fr de to bestningsnivåene. og. S nbefer føgende for den ekvivent gersten: P r når / r e og P X r + Y når / r > e. r,5 kn Ogitt: 0, 67., kn r oss nt t e > 0,67 sik t r 0, 67 e () Dered bir P r,5 kn ved fuksitet (P ekv. gerst ed fudrift i / v evetiden) og Innstt i () P ½P,5 kn (P ekv. gerst ed hvdrift i / v evetiden). P P P +.,5 +.,5, 6 kn Innstt i (): C (6) / *,6 kn 0,7 kn Av S veges ger nr. 606 ed: C 0, kn; C 0, kn og f 0 Sist odtert /H Side /6
2 MS0 Mskinkonstruksjon ØSNINGSORSAG TI ØVINGSOPPGAVER. 5 Ogve Vi vi kontroere o den sttiske bæreevnen er tifredsstiende for det vgte geret. f0. *,,5 C, 0 Vi tr utgngsunkt i Tbe 5- (gjengitt under) og interoerer for e. r 0,67 e 0, ntgesen er O. b) Når 95% overevesessnnsynighet er ønsket: Diensjonering for en sviktsnnsynighet vere enn 0%: 0 der 6 o so sk gi 95% overevesessnnsynighet, og er evetidsfktoren. 0 Iføge ISO/S er føgende evetidsfktorer ( ) so funksjon v gerets åiteighet, nbeft. Sviktsnnsynighet ( f) Påiteighet ( s) evetidsfktor 5,,0 0,6 0,5 0, 0, 0, Av denne tbeen får vi: 0,6. 0 ( ) P ( 8,),6, kn C 6 6 0,6 0 8, o Av S ktog veges ger nr. 606 ed: C 9,6 kn; C 0 6 kn og f 0. Sist odtert /H Side /6
3 MS0 Mskinkonstruksjon ØSNINGSORSAG TI ØVINGSOPPGAVER. 5 Ogve Ogve 5. Av S ktog er føgende dt o det ogitte geret hentet: ) Sttisk bæreevne: høyre ger I føge S er føgende uttrykk nbeft for enrdet sorkueger P 0 0,6 r + 0,5 0,6*0 + 0,5*8 6 kn. Etterso P 0 ( 6 kn) < r (0 kn) regner vi ed P 0 r 0 kn. Nødvendig sttisk bæret for dette geret: C 0 s 0P 0 der s 0 for nor drift. 0 kn (ens gerets bæreevne er 60 kn) O! Aksi bæret: ( 8) 0,5C 0 0,5*0 0 kn O! Sttisk bæreevne: venstre ger geret bærer bre en rdist: P 0 r 5 kn Nødvendig sttisk bæret for dette geret: C 0 s 0P 0 der s 0 for nor drift. 5 kn (ens gerets bæreevne er 60 kn) O Dvs. t grene er tistrekkeig diensjonert! Dynisk bæreevne: høyre ger f 0. *8,7,07 (vi veger den neste næreste t) e 0, (se Tbe 5-). C0 60 Merk t vi kn også interoere eo næreste tene for å få riktig t for e, det er ikke noe vits gjøre dette i dette tifee. 8 0,0 > e 0, r 0 Dered finner vi det ekvivent bæretet fr P X r + Y der X 0,56 og Y,. 0,56*0 +,*8,68 kn 0 Nødvendig dynisk bæret: C ( ) P ( 5,9),68 6, 6 kn der o in t d å 5, 9 Mo og er skinens oertivtid. in t d å Dynisk bæreevne: venstre ger Venstre ger hr rdikrft r 5 kn og ksikrft 0 kn. Dvs. X og Y 0. Dered finner vi den ekvivent bæretet fr P r 5 kn 5 0,9 Nødvendig dynisk bæret: C ( ) P ( ) 5 7 kn Det ogitte geret (S 6) hr bæreevne C 97,5 kn. Dvs. t grene er tistrekkeig diensjonert! Sist odtert /H Side /6
4 MS0 Mskinkonstruksjon ØSNINGSORSAG TI ØVINGSOPPGAVER. 5 Ogve b) Når 96% overevesessnnsynighet er ønsket er den inste noinee evetiden gitt ved: 0 der 5,9 Mo so sk gi 96% overevesessnnsynighet, og er evetidsfktoren. 0 Iføge ISO/S finner vi 0,5 (se Tbe 5.). Dvs. den inste noinee evetiden bir or å kontroere for det dyniske bæret: 8 0 5,9 0,5 0 C P,9,68 79, Høyre ger: ( ) ( ) kn 0 Venstre ger: C ( ) P ( 8,9) 5 9, kn. 8,9 o Det ogitte geret (S 6) hr bæreevne C 97,5 kn. Dvs. t bæreevnen ti grene er tistrekkeig! c) Beregningen v den inste noine evetid er utført i tbeen under Høyre ger Venstre ger 0,75 0,75 0,5 0,5 P P,68 kn 5 kn P 0,5P 0,8 kn,5 kn C 97,5 kn 97,5 kn P P + P 0 kn kn ( ) 5,86 Mo 76,8 Mo C 0 P or å beregne gerkobinsjonens evetid for en åiteighet å 90%, kn Weibu- fordeing benyttes og forutsi evetiden ti skinen ved hje v føgende igning. k b b 0, kob i 0, i der k nt ger i skinen, i,,. k og b Weibe-exonent so besteer fordeingen. S nbefer t b 0/9, ,068 0 / 9 / 9 0 / 9 0 / 9 0 / 9 0, kob 0, 0, 5,86 76, / 9 0, kob 78,87 0, kob (78,87) 9,8Mo Mskinens oertivtid er 5,9 Mo. Det betyr t gerkobinsjonens overevesesfktor bir: 5,9 0,55. 9,8 0 Dette tisvrer en snnsynighet for overevese å c. 96% for t grene sk få en evetid å år (se Tbe 5-). Sist odtert /H Side /6
5 MS0 Mskinkonstruksjon ØSNINGSORSAG TI ØVINGSOPPGAVER. 6 Ogve AP 6: DIMENSJONERING AV JÆRER Ogve 6. ) Vi ntr C 8. Av ign. (6-) hr vi: 6x D C + 6xC C + x x ti π d C π d C n fs der x 70 MP og n fs, er sikkerhetsfktor ht fjærsenningen. d 6 * 600 *8 *8+ * 70 /, *8 π 6 x C C + π ti C,8 d,89. Tbe Anbefte størreser for tråddieter d og fjærdieter D Av nbefte (stndrdiserte) størreser veger vi d 5 (se Tbeen ovenfor). Dvs. D C*d 8*5 0. Av en svensk stndrd vist i Tbe ovenfor veger vi D 0 so svrer ti D i 5 for en trykkfjær. Merk t størresene for D i tbeen tisvrer indre dieter D i for trykkfjærer og ytre dieter D 0 for strekkfjærer. Ant virksoe vindinger finner vi fr ign. (6-6): Gd N Gd Gd 8 *0 *5 k der k 0 N / n 0 8nD δ kD 8kC 8*0 *8 jærens ubestet engde 0 n + δ n Der n fjærens engde ved tette (het sentrykte) vindinger n.d og δ n deforsjon v fjæren oti tette vindinger s, x der n krften so trenges for å få tette vindinger k k, x,* 60 N 0 n. d + 0*5 + 6 k 0 N / b) jæren får uendeig evetid når N > 0 7 odreininger Ant driftstier for å diensjonere for en uendeig evetid bir dered 0 7 odr. T drift > 56tier odr in 650 * 60 in t Sist odtert /H Side 5/6
6 MS0 Mskinkonstruksjon ØSNINGSORSAG TI ØVINGSOPPGAVER. 6 Ogve D πd x in 50 Senningsvrisjonen g torsjon: ± ( ± ) 66,7, MP ± der ( + ) 50 N og ( ) N x in k c) jærens resonns frekvens er gitt ved: ω kr der k fjærstivheten og A. e.ρ πd A 9,65 er tråddieterets tverrsnitt e n.π.d 56,6 er effektive trådegde ρ 7800 kg/ 7,8*0-6 kg/ er tettheten v jernterier. N 000 Innstt tverdier får vi 0,9 kg og k 0 * rd ω kr 8. 0,9 kg s Merk t N kg. s Ogve 6. ) i) Når kruningen er negisjert, hr vi fr ign. (6-) 8D d der d,5 og D 6 + π d D Av ign. (6-6) får vi Gd δ Gdδ D der C 0,67, n 5. 8n D 8nC d Innstt tverdier får vi: 9,5 N 8*9.5*6,5 * 57, MP + π (,5) 6 ii) Når kruningen er ttt hensyn ti Av ign. (6-) får vi: 6D C 6*9,5*6 *0,67 + d + C (,5) *0,67 π π 65, MP b) jærstivheten er gitt ved ign. (6-6) 9,5 N k 0,975 N / δ 0 jærens engde ved fustendig sentrykking n n.d *,5 9,5 c) x 65, M og ti 0,5*R 000 MP x < ti den er riktig diensjonert! Sist odtert /H Side 6/6
C13 SKIVER 263. Figur C 13.13. Eksempel på standard fotplate for vegger. «F orskalingsplater» T o kamstål B500 Ø16 til 32 mm Sveiset til sideplate
C13 SKIVER 263 13.2.1 Horisont skjøt, strekkoverføring Behovet for strekkoverføring er som rege forårsket v horisonte krefter som gir momentstrekk og skjærkrft i den horisonte fgen. I prinsippet er det
DetaljerLøsningsforslag til eksamen i klassisk mekanikk våren e N. R ρ m
Løsningsforsag ti eksamen i kassisk mekanikk våren 010 Oppgave 1 ω v e T θ R ρ m e N Figure 1: a Lagrangefunksjonen er gitt ved: L = T V der T V er den kinetiske potensiee energien ti systemet. Finner
DetaljerØVING 4: DIMENSJONERING AV AKSLINGER OG ROTORER. M w. er tangentavsettet ved pkt B i forhold til tangenten ved opplagring A.
SK10 askinkonstruksjon Kap. Oppgae.1. ØVING : DIENSJONERING AV AKSLINGER OG ROTORER Oppgae.1 a) aks. øyespenningen regnes fra: σ _ max ) Nedøyningen ed punkt C (der aften F angriper) er gitt ed δ C CC
DetaljerTFY4102 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 12.
TFY4102 Fysikk. Institutt for fysikk, NTNU. Løsningsforsag ti øving 12. Oppgave 1. Termisk fysikk: Idee gass. Voumutvidese. a) Hvis du vet, eer finner ut, at uft har massetetthet ca 1.2-1.3 kg/m 3 (mindre
DetaljerFritt opplagret søyle. w = 0 w, xx = 0
Fritt oppgret søye w w, w M i w, M y w w w, Knekking v fritt oppgret søye Differentiigning Genere øsning w, α +( ) w α w() A sin( )+ B α cos( ) Grensebetingeser w() w() B A sinα Løsning Euer knekkst sinα
DetaljerFasit til utvalgte oppgaver MAT1100, uka 20-24/9
Fsit til utvlgte oppgver MAT00, uk 20-24/9 Øyvind Ryn oyvindry@ifi.uio.no September 24, 200 Oppgve 5..5 år vi viser t f er kontinuerlig i ved et ɛ δ-bevis, er det lurt å strte med uttrykket fx f, og finne
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturitenskapeige fakutet Eksamen i: FYS1120 Eektromagnetisme Eksamensdag: 4. desember 2017 Tid for eksamen: 14.30 18.30 Oppgaesettet er på 9 sider. Vedegg: Tiatte hjepemider:
Detaljerdx = 1 2y dy = dx/ x 3 y3/2 = 2x 1/2 + C 1
NTNU Institutt for mtemtiske fg TMA Mtemtikk høsten Løsningsforslg - Øving 7 Avsnitt 6.5 ) En hr t y = e, så y + 3y = e + 3e = e. b) En hr t y = e 3 e (3/), så y + 3y = e 3e (3/) + 3e + 3e (3/) = e. c)
DetaljerLøsningsforslag SIE4010 Elektromagnetisme 5. mai 2003
Oppgve 1 Løsningsforslg SIE4010 Elektromgnetisme 5. mi 2003 ) Av symmetrigrunner må det elektriske feltet være rdielt rettet og uvhengig v φ, E = E(r)u r.vilrs være overflten til en sylinder med rdius
DetaljerTKP4100 Strømning og varmetransport Løsningsforslag til øving 10
TKP4 Strømning og vrmetrnsport Løsningsforslg til øving Oppgve ) Entlpi ved utløpet (5 br, ), kj/kg Entlpi ved innløpet (5 br, x,95), 7 kj/kg overført: kj/kg Dvs. 4*/6,7 kw b) I området med overhetet dmp
DetaljerEksamen FY8104 Symmetri i fysikken Fredag 7. desember 2007 Løsninger
Eksamen FY8104 Symmetri i fysikken Fredag 7. desember 007 Løsninger 1a En konjugasjonskasse i SO(3 består av ae rotasjoner med en gitt rotasjonsvinke α og vikårig rotasjonsakse. En konjugasjonskasse i
DetaljerMEK Stabilitet og knekning av konstruksjoner. Høst Prosjektoppgave: Forslag til løsning (skisse)
EK 50 tabiitet og knekning a konstruksjoner Høst 005 Prosjektoppgae: Forsag ti øsning (skisse). Hayman 0..005 - - Innedning Dette er kun en skisse ikke en fustendig rapport. Inndeingen i asnitt er bare
DetaljerKjeglesnitt Harald Hanche-Olsen Versjon
Kjegesnitt Hrd Hnche-Osen hnche@mth.ntnu.no Versjon 1.0 2013-01-25 Definisjon og grunneggende egenskper Et kjegesnitt er en pn kurve gitt v en styreinje, et brennpunkt B og et positivt t ε som vi ker eksentrisiteten
DetaljerRullingslager. Innhold. Kap. 5 Dimensjonering av Rullingslager. Friksjon: glide- og rullefriksjon. Et lager er
Kp. 5 Densjonerng v Rullngslger Rullngslger Frksjon: glde- og rullefrksjon Innhold Hovedtyper rullngslger Densjonerng v rullngslger Med hensyn tl sttsk lgerlst Med hensyn tl dynsk lgerlst evetd for en
DetaljerVår 2004 Ordinær eksamen
år Ordinær eksmen. En bil kjører med en hstighet på 9 km/h lngs en rett strekning. Sjåføren tråkker plutselig på bremsene, men gjør dette med økende krft slik t (den negtive) kselersjonen (retrdsjonen)
DetaljerOppgave 1 Svar KORTpå disse oppgavene:
Løsningsforslag eksaen FYS1 V11 Oppgave 1 Svar KORTpå disse oppgavene: a) Tversbølge: Svingebevegelsen til hvert punkt på bølgen går på tvers av forplantningsretningen til bølgen. Langsbølge: Svingebevegelsen
DetaljerFYS 105 Fysikk Ordinær eksamen vår 2007
FYS 05 Fysikk Ordinær eksen vår 007. Et skip so lier i ro på hvet sender ut en lydbøle (sonr ed en frekvens på.00 khz. Lydhstiheten i vnn settes til 48 /s. Beste bølelenden til denne sonrbølen. b En hvl
Detaljer12.4 HORISONTALE SKIVER Virkemåte Generelt Vindlastene i skivebygg overføres fra ytterveggene til dekkekonstruksjonene,
112 B12 SKIVESYSTEM Oppsummering av punkt 12.3 Enke, reguære bygg kan håndregnes etter former som er utedet. Føgende betingeser må være oppfyt. - Ae vertikae avstivende deer må ha hovedaksene i - og y-retning
DetaljerINF 1040 høsten 2009: Oppgavesett 10 Løsningsforslag - Digitale bilder (kapittel 12,13,14)
INF 040 høsten 009: Oppgesett 0 Løsningsforsg - Digite ider (kpitte,3,4) Tenk se -oppger 0. Hor små detjer kn i se med øyet? ) Ant t i hr stt opp et hitmt stkitt med 5 cm rede sprosser med 5 cm meomrom.
DetaljerUNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
NIVERSITETET I OSLO Det matematisk-naturvitenskapeige akutet Eksamen i: FYS 13 - Svingninger og bøger Eksamensdag: 4. mars 6 Tid or eksamen: K. 9-1 Godkjente hjepemider: Øgrim og Lian (eer Ange og Lian):
Detaljeren forutsetning for god dyrevelferd og trygg matproduksjon
TEMA: DYREHELSE REINE DYR en forutsetning for god dyreveferd og trygg matproduksjon Triveige dyr er reine og vestete. Hud og hårager er viktig i forsvaret mot skader og infeksjoner. Reint hårag er også
Detaljera) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene.
Oppgave 1 Bestem løsningen av differensialligningen Oppgave 2 dy dx + y = e x, y(1) = 1 e Du skal beregne en kulekondensator som består av 2 kuleskall av metall med samme sentrum. Det indre skallet har
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapeige fakutet Eksamen i: FYS140 Kvantefysikk Eksamensdag: 10. juni Tid for eksamen: 09.00 (4 timer) Oppgavesettet er på fem (5) sider Vedegg: Ingen
DetaljerFYS2130. Tillegg til kapittel 13. Harmonisk oscillator. Løsning med komplekse tall
FYS130. Tillegg til kapittel 13 Haronisk oscillator. Løsning ed koplekse tall Differensialligningen for en udepet haronisk oscillator er && x+ ω x = 0 (1) so er en hoogen lineær differensialligning av.
DetaljerOppgaver MAT2500. Fredrik Meyer. 10. september 2014
Oppgaver MAT500 Fredrik Meyer 0. september 04 Oppgave. Bruk forrige oppgave ti å vise at hvis m er orienteringsreverserende, så er m en transasjon. (merk: forrige oppgave sa at ae isometrier er på formen
DetaljerTFY4160 Bølgefysikk/FY1002 Generell Fysikk II 1. Løsning Øving 2. m d2 x. k = mω0 2 = m. k = dt 2 + bdx + kx = 0 (7)
TFY4160 Bølgefysikk/FY100 Generell Fysikk II 1 Løsning Øving Løsning oppgave 1 Ligning 1) i oppgaveteksten er i dette tilfellet: Vi setter inn: i lign. 1) og får: m d x + kx = 0 1) dt x = A cosω 0 t +
DetaljerEksamen i SIF5036 Matematisk modellering Onsdag 12. desember 2001 Kl
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Harald E Krogstad, tlf: 9 35 36/ mobil:416 51 817 Sensur: uke 1, 2002 Tillatte hjelpemidler:
DetaljerPunktladningen Q ligger i punktet (3, 0) [mm] og punktladningen Q ligger i punktet ( 3, 0) [mm].
Oppgave 1 Finn løsningen til følgende 1.ordens differensialligninger: a) y = x e y, y(0) = 0 b) dy dt + a y = b, a og b er konstanter. Oppgave 2 Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen
DetaljerVEGTYPER OG VEGKLASSER
VEG NORMALER GEOMETRISK UTFORMING AR VEGTYPER 111 1 1 INNDELING I I det funksjonsdelte vegnett karakteriseres vegene ved angivelse av vegtyper og vegklasser hvor: vegtypen angir vegens funksjon og fastsettes
DetaljerNewtons lover i én dimensjon
Newtons lover i én dimensjon 6.01.017 YS-MEK 1110 6.01.017 1 Hva er kraft? Vi har en intuitivt idé om hva kraft er. Vi kan kvantifisere en kraft med elongasjon av en fjær. YS-MEK 1110 6.01.017 Bok på bordet
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK Mandag 10. desember 2007 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK
DetaljerSlik bestiller du. Rektangulært. lindab rektangulært
Sik estier u Rektnguært in rektnguært Generet om Rektnguært Rektnguært estår v rektnguære kner og etjer me må som psser ti SS-EN 1505 når ikke nnet er spesifisert. Knsystemet krer tettetsksse C. Smtige
DetaljerB4 TEMPERATURER, KRYP OG SVINN
4.4 BEREGNING AV HORISONTAKREFTER I BJEKER OG DEKKER FRA TEMPERATUR, KRYP OG SVINN Summen av bevegeser fra temperaturendringer, kryp og svinn kaes kort for voumendringer. I dette kapitteet beregnes horisontae
DetaljerWilhelmi Byggevarer. Overvannshåndtering Tanker. Wilhelmi Byggevarer tel. +47/405 65 431 info@wilhelmi.no
Wihemi Byggevarer Overvannshåndtering Tanker Wihemi Byggevarer te. +47/405 65 431 info@wihemi.no Produksjonsanegg i Dachstein (Frankrike) Produksjonsanegg i Teningen (Tyskand) i nærheten av Freiburg GRAF
DetaljerTKP4100 og TMT4206 Løsningsforslag til øving 9
TKP4 og TMT46 Løsningsforslg til øving 9 Oppgve ) Entlpi ved utløpet (5 br, C), kj/kg Entlpi ved innløpet (5 br, x =,95), 7 kj/kg overført: kj/kg Dvs. 4*/6 =,7 kw b) I området med overhetet dmp (T >4C
Detaljerlindab prisliste rektangulært Prisliste Rektangulære kanaler og detaljer
ind prisiste rektnguært Prisiste Rektnguære kner og detjer Gydig fr 15. ugust 2016 Sgs- og everingsetingeser ene i prisisten er produsert i henhod ti de spesifiksjoner som finnes i Linds Ventisjonsktog.
DetaljerOPPGAVE 1 Francis Turbin
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for Terisk Energi og Vannkraft Eksaen i fag TEP 95 TURBOMASKNER, Løsningsforslag. Juni 005 Tid: 5.00 9.00 Faglig kontakt under eksaen: Navn: Ole
DetaljerFormel III over kan sammenliknes med Ohm`s lov for en elektrisk krets.
1 5.4 MAGETSKE KRETSER HOPKSOS LOV iguren 5.4.1 kan betraktes som en eektrisk krets. Hvor vi benytter den magnetiske kidespenningen, reuktansen og den magnetiske fuksen og sammenikner dem med spenningen
DetaljerOppgave 8.12 Gitt en potensialhvirvel med styrke K i origo. Bestem sirkulasjonen ' langs kurven C. Sirkulasjonen er definert som: ' /
Løsning øving 3 Oppgve 8. Gitt en potensilhvivel med styke i oigo. Bestem sikulsjonen ' lngs kuven C. C y (I oppgven stå det t vi skl gå med klokk, men he h vi gått mot klokk i oveensstemmelse med definisjonen
DetaljerNår en kraft angriper et stykke material fører det til påkjenninger som betegnes spenninger.
Side 1 av 8 Mekanisk spenning i materiaer Tenk på et tungt egeme som ska bæres av en konstruksjon. Konstruksjonens må tåe kraften som går fra asten ti underaget. Denne kraften virker på konstruksjonen
DetaljerJEMISI(-TEKNISKE FISKERIDIRE TORATETS FORSKNINGSINSTITUTT BERGEN. Analyser av fett og tørrstoff Sammenlikning av analyseresultater ved 7 laboratorier
FISKERIDIRE TORATETS FORSKNINGSINSTITUTT JEMISI(-TEKNISKE Anayser av fett og tørrstoff Sammenikning av anayseresutater ved 7 aboratorier ved Kåre Bakken og Gunnar Tertnes R.nr. 135/74 A. h. 44 BERGEN Anayser
DetaljerMusikkens fysikk. Johannes Skaar, NTNU. 9. januar 2010
Musikkens fysikk Johannes Skaar, NTNU 9. januar 2010 I aboppgavene i TFE40 Eektromagnetisme ager du en eektrisk gitar, der den vibrerende strengen setter i gang vibrasjoner på en magnet, som videre induserer
Detaljer2 π[r(x)] 2 dx = u 2 du = π 1 ] 2 = π u 1. V = π. V = π [R(x)] 2 [r(x)] 2 dx = π (x + 3) 2 (x 2 + 1) 2 dx = 117π 5.
NTNU Institutt for mtemtiske fg TMA Mtemtikk høsten 2 Løsningsforslg - Øving 6 Avsnitt 6. 7 Ved å bruke disk-metoden får mn t volumet er π[r(x)] 2 dx 3 Ved å bruke disk-metoden får mn t volumet er L u
DetaljerHall effekt. 3. Mål sammenhørende verdier mellom magnetfeltet og Hall-spenningen for to ulike kontrollstrømmer (I = 25 og 50 ma).
FY1303 Eektrisitet og magnetisme nstitutt for fysikk, NTNU FY1303 Eektrisitet og magnetisme, høst 007 Laboratorieøvese 1 a effekt ensikt ensikten med øvesen er å gjøre seg kjent med a-effekten og måe denne
DetaljerFor bedre visualisering tegner vi
MSK MSKIKOSTRUKSJO ØSIGSORSG TI ØVIGSOPPGVR Oppgave 8. 8.5 ØVIG 9: DIMSJORIG V SKRUORBIDSR Oppgave 8- a) Totalraften i ruen er gitt ved: b der er forpenningraften og er andelen av ytre raften o ta av en
DetaljerLøsningsforslag Eksamen 19. august 2005 TFY4250 Atom- og molekylfysikk
Eksmen TFY450 19. ugust 005 - løsningsforslg 1 Oppgve 1 Løsningsforslg Eksmen 19. ugust 005 TFY450 Atom- og molekylfysikk. For det oppgitte, symmetriske brønnpotensilet er bundne energiegentilstnder enten
Detaljer1) Hva blir akselerasjonen til en kloss som glir nedover et friksjonsfritt skråplan med helningsvinkel 30?
FY1001/TFY4145 Mekanisk Fysikk Eksaen Tirsdag 16. Deseber 2014 OPPGAVER MED LØSNINGSFORSLAG OPPGAVE 1: Flervalgsoppgaver (Teller 45%, 18 stk so teller 2.5% hver) 1) Hva blir akselerasjonen til en kloss
DetaljerLøsningsforslag TFE4120 Elektromagnetisme 24. mai = 2πrlɛE(r) = Q innenfor S =
Norges teknisk nturvitenskpelige universitet Institutt for elektronikk og telekommuniksjon Side 1 v 5 Løsningsforslg TFE4120 Elektromgnetisme 24. mi 2011 Oppgve 1 ) Av symmetrigrunner må det elektriske
DetaljerLØSNINGSFORSLAG TIL ØVING NR. 5, Vår 2014
NTNU Nrges teknisknturvitenskpelige universitet kultet nturvitenskp g teknlgi Institutt fr mterilteknlgi TMT1 JEMI LØSNINGSORSLAG TIL ØVING NR. 5, Vår 01 OPPGAVE 1 ) Vi kmbinerer den vnlige løselighetslikevekten
DetaljerOppgave 1: Blanda drops
Fysikkprøve-0402-f.nb Oppgave : Banda drops a) En avgrenset mengde oksygen-gass HO 2 L ar temperaturen T = 300 K, trykket p = 0 kpa og voum V =0,00 m 3. Beregn massen ti den avgrensede gassen. Vi bruker
DetaljerFY2045/TFY4250 Kvantemekanikk I, øving 10 1 ØVING 10
FY45/TFY45 Kvntemeknikk I, - øving ØVING Mesteprten v denne øvingen går ut på å gjøre seg kjent med spinn, men øvingen inneholder også en oppgve om koherente tilstnder. Denne er en fortsettelse v oppgve
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag 3. desember 2007 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 7 59 6 6 / 45 45 55 LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag.
DetaljerEKSAMEN. Emne: Fysikk og datateknikk
EKSAMEN Emnekode: ITD11006 Emne: Fysikk og datateknikk Dato: 05. Mai 010 Eksamenstid: k 9:00 ti k 13:00 Hjepemider: 4 sider (A4) ( ark) med egne notater. Kakuator. Gruppebesvarese, som bir det ut på eksamensdagen
DetaljerRelativitet og matematikk
Reatiitet og matematikk Eementær agebra og igninger Beregning dersom rommet er absoutt og dersom det er reatit Horfor måingen i 887 ga det resutat man fant. At yset bruker ike ang tid ti å gå i ae retninger
DetaljerA. forbli konstant B. øke med tida C. avta med tida D. øke først for så å avta E. ikke nok informasjon til å avgjøre
Flervlgsoppgver 1. En induktor L og en motstnd R er forbundet til en spenningskilde E som vist i figuren. Bryteren S 1 lukkes og forblir lukket slik t konstnt strøm går gjennom L og R. Så åpnes bryter
DetaljerKap 02 Posisjon / Hastighet / Akselerasjon 2D - Bevegelse langs en rett linje
Kp Poijon / Highe / kelerjon D - Beegele lng en re linje Løning Lufpuebenk Highe: oocellene kn flye Siden ognen hr konn highe ed beegele på lufpuebenken, il beregningen highe ære uhengig foocellene poijon
DetaljerKap. 3 Krumningsflatemetoden
SIDE. KRUMNINGSFLTEMETODEN I kpittel. og. hr vi sett t en bjelkes krefter og deformsjon kn beskrives ved fire integrler som henger smmen : Skjærkrft : V d Vinkelendring : φ M d Moment : M V d Forskyvning
DetaljerStatikk og likevekt. Elastisitetsteori
Statikk og ikevekt Eastisitetsteori 07.05.013 YS-MEK 1110 07.05.013 1 man tir uke 19 0 1 3 6 13 0 7 3 innev. obig 10 gruppe: statikk 7 14 1 8 4 foreesning: eastisitetsteori gruppe: eastisitet foreesning:
DetaljerBIP200 Bore- og brønnvæsker
EKSAMEN I: BIP00 Bore- og brønnvæsker TID FOR EKSAMEN:. juni 04 KL. 08:30 - :30 TILLATTE HJELPEMIDLER: Klkultor OPPGAVESETTET BESTÅR AV: 3 OPPGAVER PÅ 4 SIDER + VEDLEGG å 3 sider. Generell inormsjon: Alle
DetaljerØving 9. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt.
Institutt for fysikk, NTNU TFY4155/FY1003: Elektromgnetisme år 2009 Øving 9 eiledning: Mndg 09. og fredg 13. (evt 06.) mrs Innleveringsfrist: Fredg 13. mrs kl. 1200 (Svrtbell på siste side.) Opplysninger:
DetaljerBIP200 Bore- og brønnvæsker
EKSAMEN I: BIP00 Bore- og brønnvæsker TID FOR EKSAMEN: 7. ugust 03 KL. 09:00 - :00 TILLATTE HJELPEMIDLER: Klkultor OPPGAVESETTET BESTÅR AV: 3 OPPGAVER PÅ 3 SIDER + VEDLEGG å 3 sider. Generell inormsjon:
Detaljer(θ,φ) er de sfæriske harmoniske. Her bruker vi sfæriske koordinater. x = rsinθcosφ, (2) y = rsinθsinφ, (3) z = rcosθ. (4)
Oppgave 1 Hydrogenatom for kjemikere I denne oppgaven ska vi se på hydrogenatomet. Vrien i år er at vi ska skrive øsningen av Schrødingerigningen på en måte som kjemikere iker bedre. Vi ser bort fra spinn
DetaljerTKP 4105 SEPARASJONSTEKNIKK Exercise 1 Membrane Technology - Løsningsforslag
Fagærer: M-B Hägg /004 1 TKP 4105 SEPRSJONSTEKNIKK Eercise 1 Mebrane Technoogy - Løsningsforsag Ogave 1: Geankois 1.-1 (gassearasjon Si-gui ska sjekkes so egnet ebranateriae i hjerte-unge askin. For oregninger
DetaljerSnordrag i pendel. Carl Angell Øyvind Guldahl Ellen. K. Henriksen UNIVERSITETET I OSLO. Skolelaboratoriet Gruppen for fysikkdidaktikk Fysisk institutt
1 UNIVERSITETET I OSLO Skoeaboratoriet Gruppen for fysikkdidaktikk Fysisk institutt Boks 1048 Bindern N-0316 Oso Teefon: 85 64 43 / 85 78 86 Teefaks: 85 64 e-mai: skoeab@fys.uio.no Snordrag i pende Car
DetaljerLøsningsforslag til ukeoppgave 10
Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 10 Oppgave 17.15 Tegn figur og bruk Kirchhoffs 1. lov for å finne strømmene. Vi begynner med I 3 : Mot forgreningspunktet kommer det to strømmer,
DetaljerHverdagen. er bedre med meny. Kjøttdeig av storfe, u/salt og vann (62,25/kg) Husk tøymykner! SPAR 46% ord.pris 46,90/pk
Hvrn r br m mny 46% or.pris 46,/pk Kjøtti v storf, u/st o vnn (62,25/k) jr t u b i T ons n m KUN 13,31 PR STK 39% or.pris 41,10/pk 79 Ppsi Mx 6pk 6, Gi, (41,50/k) 6x1,5 tr, (8,87/) pr pk or.pris 37,/stk
DetaljerFysikkolympiaden Norsk finale 2019 Løsningsforslag
Fysikkolympiaden Norsk finale 09 Løsningsforslag Oppgave Vi kaller strømmene gjennom de to batteriene I og I og strømmen gjennom den ytre motstanden I = I + I. Da må vi ha at U = R I + RI U = R I + RI.
DetaljerMidtsemesterprøve fredag 23. mars 2007 kl
Institutt for fysikk, NTNU FY1003 Elektrisitet og mgnetisme I TFY4155 Elektromgnetisme Vår 2007 Midtsemesterprøve fredg 23. mrs 2007 kl 1415 1615. Løsningsforslg 1) I et område er det elektriske feltet
DetaljerVår TMA4105 Matematikk 2. Løsningsforslag Øving 2. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag
TMA415 Matematikk 2 Vår 217 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 2 11.1.9: Den aktuelle kurven er gitt ved r(t) (3 cos t, 4 cos t, 5 sin t).
Detaljerdy ycos 2 y = dx. Ved å integrere på begge sider av likhetstegnet får man ved å substituere u = y,du = dy dy ycos 2 y = 2du cos 2 u = x.
NTNU Institutt for mtemtiske fg TMA Mtemtikk høsten 2 Løsningsforslg - Øving 7 Avsnitt 6.5 ) En hr t y = e, så 2y +y = 2e +e = e. b) En hr t y = e 2 e (/2), så 2y +y = 2e e (/2) +e +e (/2) = e. c) En hr
DetaljerBioberegninger - notat 3: Anvendelser av Newton s metode
Bioberegninger - nott 3: Anvendelser v Newton s metode 20. februr 2004 1 Euler-Lotk ligningen L oss tenke oss en populsjon bestående v individer v ulik lder. L n være mksiml lder. L m i være ntll vkom
DetaljerSchöck Isokorb type W
Øvre del Midtre del Schöck Isokorb type Nedre del Innhold Side Elementplssering/Tverrsnitt 122 Produktbeskrivelse/Kpsitetstbeller 123 eregningseksempel 124 Monteringsnvisning 125 126 Sjekkliste 127 rnnvern
DetaljerTema 2: Stokastiske variabler og sannsynlighetsfordelinger Kapittel 3 ST :44 (Gunnar Taraldsen)
Tem 2: Stokstiske vribler og snnsynlighetsfordelinger Kpittel 3 ST1101 2019-01-13 12:44 (Gunnr Trldsen) Det nts i nottet t S er et utfllsrom utstyrt med en snnsynlighet P (A) for enhver hendelse A F. F
DetaljerKONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
NTNU Norges teknisk-naturvitenskapelige universitet ide 1 av 7 Fakultet for informatikk, matematikk og elektroteknikk Institutt for elektronikk og telekommunikasjon Bokmål/Nynorsk Faglig/fagleg kontakt
Detaljerlindab prisliste rektangulært Prisliste Rektangulære kanaler og detaljer
ind prisist rktnguært Prisist Rktnguær knr og dtjr Gydig fr 1. pri 2015 Sgs- og vringstingsr n i prisistn r produsrt i nod ti d spsifiksjonr som finns i Linds Vntisjonsktog. Prisistn innodr t utvg v vårt
DetaljerUNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FY 5 - Svingninger og bølger Eksamensdag: 5. januar 4 Tid for eksamen: Kl. 9-5 Tillatte hjelpemidler: Øgrim og Lian: Størrelser
DetaljerMA2501 Numeriske metoder
MA251 Numeriske metoder Løsningsforslag, Øving 3 Oppgave 1 a) Start med å tegne en skisse av funksjonen f(x) = x.99(e x 1). Vi oppdager fort at α må ligge svært nær, faktisk rundt.2. Newtons metode anvendt
DetaljerFASIT, tips og kommentarer
FASIT, tips og kommentrer JULEKALENDER 8.- 10- trinn Nivå 1 og Nivå 2. Tips til orgnisering: Kn jobbes med i gruppe, to og to eller individuelt. Spre rbeidet med klenderen i mttetimene i desember, eller
Detaljer1b) Beregn den elektriske ladningstettheten inni kjernen og finn hvor stor den totale ladningen er.
FYS112 H-211: Løsningsforslg for vsluttende eksmen Oppgve 1 I en modell for en kuleformet tomkjerne med rdius R vrierer det elektriske feltet inne i kjernen som E(r) = Cr(xe x + ye y + ze z ). Her er C
DetaljerLøsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 5
Løsning av utvalgte øvingsoppgaver til Sigma R kapittel 5 5.5 Ce kx y = kce kx Vi setter inn i y + ky og ser om vi får 0: 5.5 ax + a y = ax Vi setter inn i y 5.54 kce kx + k Ce kx = 0 x x + y: ax x(ax
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 8. a = e m E
TFY414 Fysikk. Institutt for fysikk, NTNU. Høsten 16. Løsningsforslg til øving 8. Oppgve 1. ) C F = E = m Newtons. lov. Her er = e, så elektronets kselersjon blir = e m E ltså mot venstre. b) C Totlt elektrisk
DetaljerLØSNINGSFORSLAG TIL ØVING NR. 5, HØST 2009
NTNU Nrges teknisknturvitenskpelige universitet kultet fr nturvitenskp g teknlgi Institutt fr mterilteknlgi TMT11 JEMI LØSNINGSORSLAG TIL ØVING NR. 5, HØST 009 OPPGAVE 1 ) Hg(OH) (s) = Hg + + OH sp,hg
DetaljerEksamen høsten 2016 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 1: 5x y : x y 9 Fr likning : y x+ 9 Innstt i likning 1 gir det 5x (x+ 9) 5x 4x 18 9x 18 x
DetaljerFasit. Grunnbok. Kapittel 1. Bokmål
Fsit 9 Grunnbok Kpittel Bokmål Kpittel Prosent. = 0,5 = 50 % 2 b 0,333 = 33,3 % 3 c = 0,25 = 25 % 4 d = 0,2 = 20 % 5 e = 0,25 = 2,5 % 8.2 4 b 20 c 20 d 4 = 25 % e 20 = 5 % f 20 = 5 %.3 2 5 b 37,5% 3 c
Detaljer2-komplements representasjon. Binær addisjon. 2-komplements representasjon (forts.) Dagens temaer
2 Dgens temer Dgens temer hentes fr kpittel 3 i Computer Orgnistion nd Architecture Kort repetisjon 2-komplements form Binær ddisjon/sutrksjon Aritmetisk-logisk enhet (ALU) Sekvensiell logikk RS-ltch 2-komplements
DetaljerC14 FASADEFORBINDELSER 323
C14 FASADEFORBINDELSER 323 Elementet Når mellomlegget har tilnærmet samme bredde som bærende elementvange i et veggelement, blir spaltestrekk på tvers av elementet ubetydelig. Spaltestrekk i lengderetningen
DetaljerK j æ r e b e b o e r!
1 K e y s e r l ø k k a Ø s t B o r e t t s l a g K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d
DetaljerINNKALLING TIL ORDINÆRT SAMEIERMØTE 2009
INNKALLING TIL ORDINÆRT SAMEIERMØTE 2009 O r d i n æ r t s am e i e rm øt e i R u d s h ø g d a V B / S, a v h o l d e s m a n d a g 1 6. m a r s k l. 1 8 : 0 0 p å L o f s r u d s k o l e, L i l l e a
DetaljerBINGO - Kapittel 11. Kokepunktet for vann (100 grader celsius) Tiltrekningskraft mellom legemer (gravitasjonskraft)
BINGO - Kapitte 11 Bingo-oppgaven anbefaes so repetisjon etter at kapitte 11 er gjennogått. Kipp opp tabeen (nedenfor) i 24 apper. Gjør det kart for eevene o det er en saenhengende rekke vannrett, oddrett,
DetaljerD l Kundenummer: Epost: Rehabilitering av boligblokk. All eksisterende installasjon er demontert, nytt anlegg.
NE Fo ~ EsikkmHETsde>kuMENTASje>N Samsvarserkæring Samsvarserkæring med garanti EIEkmoiNSTAIIArøR Firma/Navn: Kontaktperson: EkamAS Roger Skjønhaug Adresse: Kaerudsvingen 13 Postnr/Sted: 2816 Gjøvik Teefon:
DetaljerLØSNINGSFORSLAG TIL SIGNALBEHANDLING 1 JUNI 2010
LØSNINGSFORSLAG TIL SIGNALBEHANDLING JUNI Løsningsforslag til eksamen i Signalbehandling, mai Side av 5 Oppgave a) Inngangssignalet x(t) er gitt som x( t) = 5cos(π t) + 8cos(π 4 t). Bruker Eulers formel
DetaljerTMA4100 Matematikk 1 Høst 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 4 Løsningsforslag Øving 5.7.4 Vi observerer at både y = cos πx 4 og y = x er like funksjoner. Det vil si
DetaljerLøsning til KONTROLLOPPGAVER Sinus S2 1 Rekker Uten hjelpemidler OPPGAVE 1 a) 1) b) 1) c) d)
Løsning til KONTROLLOPPGAVER Sinus S Rekker Uten hjelpemidler OPPGAVE ) ) Når følgen er ritmetisk, er 3 d 8 = + d 8 = d 6 d 8 d 8 0 ) Når følgen er geometrisk, er k 3 8 = k k = 8 = 9 k = 3 eller k = 3
DetaljerS1 kapittel 4 Logaritmer Løsninger til oppgavene i boka
Løsninger til oppgvene i ok S kpittel 4 Logritmer Løsninger til oppgvene i ok 4. Vi leser v fr tllet 4 på y-ksen og ser t vi får den tilhørende verdien,6 på -ksen. lg 4,6 Vi leser v fr tllet,5 på y-ksen
Detaljer! Dekoder: En av 2 n output linjer er høy, avhengig av verdien på n inputlinjer. ! Positive tall: Som før
Dgens temer Enkoder! Dgens temer hentes fr kpittel 3 i Computer Orgnistion nd Architecture! Dekoder: En v 2 n output linjer er høy, vhengig v verdien på n inputlinjer! Enkoder/demultiplekser (vslutte fr
Detaljer1 Mandag 8. mars 2010
1 Mndg 8. mrs 21 Vi hr tidligere integrert funksjoner lngs x-ksen, og vi hr integrert funksjoner i flere vrible over begrensede områder i xy-plnet. I denne forelesningen skl vi integrere funksjoner lngs
DetaljerBinomisk fordeling. Hypergeometrisk fordeling. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi har følgende situasjon: = = 2
MAT0100V Sannsynlighetsregning og kobinatorikk Oppgaver o Binoisk og hypergeoetrisk fordeling Forventning varians og standardavvik Tilnæring av binoiske sannsynligheter Konfidensintervall Ørnulf Borgan
DetaljerNewtons lover i én dimensjon
Newtons lover i én dimensjon 3.01.018 snuble-gruppe i dag, kl.16:15-18:00, Origo FYS-MEK 1110 3.01.018 1 Hva er kraft? Vi har en intuitivt idé om hva kraft er. Vi kan kvantifisere en kraft med elongasjon
DetaljerSINTEF Byggforsk bekrefter at. Willa Nordic Ytterveggselementer
SINTEF Byggforsk bekrefter at Willa Nordic seleenter SINTEF Certification Nr. 2553 Utstedt første gang: 22.01.2009 Revidert: 09.01.2015 Korrigert: 13.09.2018 Gyldig til: 01.04.2020 Forutsatt publisert
DetaljerØving 13. Induksjon. Forskyvningsstrøm. Vekselstrømskretser.
Inst for fysikk 2017 FY1003 Elektr & magnetisme Øving 13 Induksjon Forskyvningsstrøm Vekselstrømskretser Denne siste øvingen innholder ganske mye, for å få dekket opp siste del av pensum Den godkjennes
Detaljer