(θ,φ) er de sfæriske harmoniske. Her bruker vi sfæriske koordinater. x = rsinθcosφ, (2) y = rsinθsinφ, (3) z = rcosθ. (4)

Størrelse: px
Begynne med side:

Download "(θ,φ) er de sfæriske harmoniske. Her bruker vi sfæriske koordinater. x = rsinθcosφ, (2) y = rsinθsinφ, (3) z = rcosθ. (4)"

Transkript

1 Oppgave 1 Hydrogenatom for kjemikere I denne oppgaven ska vi se på hydrogenatomet. Vrien i år er at vi ska skrive øsningen av Schrødingerigningen på en måte som kjemikere iker bedre. Vi ser bort fra spinn i denne oppgaven. Løsningen av den tidsuavhengige Schrødingerigningen for hydrogenatomet er som kjent ψ nm r,θ,φ) = R n r)y m θ,φ), 1) hvor R n r) er øsningene av den tihørende radiaigningen og Y m θ,φ) er de sfæriske harmoniske. Her bruker vi sfæriske koordinater x = rsinθcosφ, ) y = rsinθsinφ, 3) z = rcosθ. 4) Vi gir de ekspisitte uttrykkene for de enkeste av disse funksjonene i Tabe 1. R n r) Y m θ,φ) R 1 r) = Ae r/a Y θ,φ) = B R r) = 1 8 A 1 r ) a e r/a Y1 θ,φ) = 3Bcosθ R 1 r) = 1 4 A r a e r/a Y 1 ±1 3 θ,φ) = Bsinθe±iφ Tabe 1: Oversikt over de enkeste radiafunksjonene for hydrogenatomet, R n, samt de sfæriske harmoniske, Y m. A og B er to normeringskonstanter og a er Bohrradien. Vi begynner med itt generee spørsmå. a) Hva sags verdier kan kvantetaene n, og m ta for hydrogenatomet? [3 poeng] Svar: Kvantetaene kan ta føgende verdier: n = 1,,3,... 5) =,1,...,n 1 6) m =, +1,..., 1,. 7) b) Gi normeringsbetingesen for bøgeunksjonen ψ nm. Vi antar separat normering av R og Y. Vis at normeringsbetingesen for R er gitt ved [4 poeng] Rr) r dr = 1. 8)

2 Svar: Normeringsbetingesen for ψ nm er: ψ nm r) d 3 r = 1, 9) eer i sfæriske koordinater π π ψ nm r,θ,φ) r sinθdrdθdφ = 1. 1) Vi setter inn øsningen ψ nm r,θ,φ) = R n r)y m θ,φ) og får = = π π π π R n r) r dr Dersom Y er separat normert er sik at π π ψ nm r,θ,φ) r sinθdrdθdφ R n r)y m θ,φ) r sinθdrdθdφ π π Y m θ,φ) sinθdθdφ. 11) Y m θ,φ) sinθdθdφ = 1, 1) Rr) r dr = 1. 13) c) Hva er enheten ti Rr)? Gi en begrunnese. [4 poeng] Svar: Fordi den infinitesimae engden dr i normeringsintegraet for R har enhet engde m) må seve integranden ha enhet m 1. r har enhet m, sik at R r) må ha enhet m 3. Dette betyr at Rr) har enhet m 3/. d) Finn normeringskonstantene A og B. Hint: Du kan få bruk for føgende integra [4 poeng] x n e λx dx = n!λ n+1). 14) Svar: Vi bruker normeringsintegraene for å finne A og B. R 1 r) r dr = 3 Ae r/a r dr = A e r/a r dr = A! ) +1) a = A a3 4, 15)

3 som gir A = / a 3. Som en kontro så kan vi se at dette stemmer med svaret i forrige oppgave da Bohrradiusen har dimensjon engde. Vi finner B på samme måte: π π Dette gir B = 1/ 4π. Y θ,φ) sinθdθdφ = π π B sinθdθdφ π = π B sinθdθ = π B [ cosθ] π = 4π B. 16) e) Forkar hva vi mener med degenerasjon. Bestem degenerasjonsgraden ti hydrogen som funksjon av n. Hint: Fra kombinatorikken har vi at se for eksempe Rottmann) [6 poeng] n =1 = nn+1). 17) Svar: Degenerasjon opptrer når vi har mer enn en tistand, med forskjeig kvanteta, som har samme energi. Degenerasjonsgraden d er anta sike tistander. For hydrogenatomet er energien bestemt av hovedkvantetaet n, vi må atså tee ae tistander som har samme n. For hver n har vi n forskjeige verdier for fra ti n 1. For hver av disse har vi +1 vag for m, vi må astå summere +1 for ae muige : n 1 n 1 dn) = +1) = = = n 1 + = 1 = n 1)n +n = n, 18) hvor vi har brukt hintet i oppgaven og at = ikke bidrar ti den første summen. Vi definerer så en ny type funksjonx m θ,φ) som er ineærkombinasjoner av de sfæriske harmoniske: i [Y m 1) m Y m ] hvis m < X m = Y hvis m =. 19) 1 [Y m + 1) m Y m ] hvis m > 4

4 f) Vis at X 11 θ,φ) = 3Bsinθcosφ og X 1, 1 θ,φ) = 3Bsinθsinφ. ) [4 poeng] Svar: Vi bruker at e iφ = cosφ+isinφ. X 11 = 1 [Y1 1 Y1 1 ] [ = 1 ] 3 3 Bsinθe iφ Bsinθeiφ = 1 X 1, 1 = 3Bsinθ [e iφ +e iφ] = 1 3Bsinθ[cosφ isinφ+cosφ+isinφ] = 1 3Bsinθ cosφ = 3Bsinθcosφ. 1) i [Y 1 1 1) 1 Y 1 1 ] = i [Y1 1 +Y1 1 ] [ = i ] 3 3 Bsinθe iφ Bsinθeiφ = i 3Bsinθ [e iφ e iφ] = i 3Bsinθ[cosφ isinφ cosφ isinφ] = i 3Bsinθ[ isinφ] = 3Bsinθsinφ. ) g) Forkar hvorfor R 1 X 11, R 1 X 1 og R 1 X 1, 1 er egentistander ti Hamitonoperatoren ti hydrogenatomet. [3 poeng] Svar: Fordi ae disse tistandende kan skrives som en sum av tistander av typen ψ nm med samme egenverdi for energi. For eksempe er R 1 X 11 = 1 R 1 [Y 1 1 Y 1 1 ] = 1 ψ 1, 1 ψ 11 ), 3) og ψ 1, 1 og ψ 11 er egentistander med energien E de er øsninger av TUSL), sik at summene av disse også må være en egentistand med egenverdi E. 5

5 h) Hva sags verdier for kvadratet av) anguærmomentet, L, kan du få dersom du måer et hydrogenatom i tistanden R 1 X 11? [3 poeng] Svar: Du kan bare få egenverdier for ˆL dersom du måer L. Siden ˆL ψ nm = +1)ψ nm er egenverdiene ti R 1 X 11 gitt som ˆL R 1 X 11 = ˆL 1 ψ 1, 1 ψ 11 ) = 11+1)R 1 X 11 = R 1 X 11. 4) Atså vi du atid få dersom du måer L for et hydrogenatom i tistanden R 1 X 11. Det er sevføgeig ikke nødvendig å regne her, bare å konkudere at begge de to egentistandene som R 1 X 11 består av har samme egenverdi,, for ˆL. i) Er R 1 X 11 en egentistand ti ˆLz? Hva med ˆL x? Begrunn svaret. [4 poeng] Svar: Nei, R 1 X 11 er en ineærkombinasjon av to tistander som har forskjeig egenverdi for ˆL z og kan derfor ikke være en egentistand ti ˆL z : ˆL z R 1 X 11 = ˆL z 1 ψ 1, 1 ψ 11 ) = 1 ψ 1, 1 ψ 11 ) kr 1 X 11. Siden og er X 11 θ,φ) = 3Bsinθcosφ = 3B x r 5) 6) ˆL x = ŷˆp z ẑˆp y = i y z +i z y = i y z z ), 7) y ˆL x R 1 X 11 = ˆL 1 x A r 4 a e r/a 3B x r = ˆL AB x e r/a x 4a = i y z z ) AB e r/a x 4a = i y z y ar z y ar ) AB 4a e r/a x = i y z ar z y ) AB e r/a x ar 4a =. 8) Atså er R 1 X 11 en egentistand ti ˆL x med egenverdi. 6

6 j) Hva er sannsynigheten for at du måer verdien for z-komponenten ti anguærmomentet ti et hydrogenatom som er preparert i tistanden Ψ r,) = R 1 r)x 11 θ,φ)? [ poeng] Svar: Fordi R 1 X 11 = 1 ψ 1, 1 ψ 1, 1 ) og ψ 1, 1 har egenverdien for ˆL z er sannsynigheten gitt ved absouttverdikvadratet av koeffisienten ti ψ 1, 1, c 1, 1 = 1/. Atså er sannsynigheten c 1, 1 = 1/. k) De sfæriske harmoniske kan skrives som Y m θ,φ) = N m P m cosθ)e imφ, 9) hvor N m er normeringskonstanter, og hvor P m x) er de assosierte Legendrepoynomene som er reee funksjoner av x. Vi har også at N m = N m og P m = 1) m P m. Bruk dette ti å vise at dersom man skriver øsningene for hydrogenatomet på formen ψ nm r,θ,φ) = R n r)x m θ,φ), så er bøgefunksjonen atid en ree funksjon. [5 poeng] Svar: Fordi radiadeen av bøgenfunksjonen ti hydrogenatomet atid kan skrives som en ree funksjon, fordi normeringskonstanten N m atid kan veges ree, og fordi de assosierte Legendrepoynomene er ree funksjoner så stammer den eneste muige imaginære komponenten i ψ nm r,θ,φ) = R n r)x m θ,φ) fra e imφ. Imidertid er atid X = Y ree siden m =, og for m < er X m = i [Y m 1) m Y m ] = i [N m P m e imφ 1) m N m P m e imφ ] = i [N m P m e imφ 1) m N m 1) m P m e imφ ] = i N m P m [cosmφ)+isinmφ) cosmφ)+isinmφ)] = i N m P m isinmφ) = N m P m sinmφ), 3) 7

7 som er en ree funksjon. For m > er X m = 1 [Y m + 1) m Y m ] = 1 [N m P m e imφ + 1) m N m P m e imφ ] = 1 [N m 1) m P m e imφ + 1) m N m P m e imφ ] = 1 1) m N m P m [cosmφ) isinmφ)+cosmφ)+isinmφ)] = 1) m N m P m cosmφ). 31) Oppgave Oppruet dimensjon I denne oppgaven ska vi se på kvantemekanikk i to romdimensjoner, men hvor en av de to dimensjonene er en suttet sirke med omkrets L. Vi bruker koordinatene x,u) hvor x R og u [,L]. Vi vi i denne oppgaven bruke et vanig uendeig brønn potensia { dersom < x < a Vx,u) = eers. 3) a) Forkar hvorfor Schrødingerigningen i to dimensjoner da skrives som ) m x + u Ψx,u,t) = i Ψx,u,t). 33) t når < x < a. [3 poeng] Svar: Den tidsavhengige) Schrødingerigningen er: ĤΨ = i t Ψ 34) hvor Ĥ er den tihørende Hamitonoperatoren. I to dimensjoner, med koordinater x,u), er Hamitonoperatoren m +Vx,u) = m x +Vx,u), 35) m u sik at med det oppgitte potensiaet, som har Vx,u) = når < x < a, er Schrødingerigningen ) m x + u Ψx,u,t) = i Ψx,u,t). 36) t 8

8 b) Hva sags grensebetingese må vi bruke for bøgefunksjonen i u-retningen? [ poeng] Svar: I u-retningen må vi kreve kontinuitet for bøgefunksjonen og den deriverte. Spesiet må vi ha ψx, ) = ψx, L). Vi antar nå separasjon av variabe, atså at øsningene ψx, u) av den tidsuavhengige Schrødingerigningen kan skrives som produktet ψx, u) = Xx)Uu). c) Vis at de føgende uttrykkene for funksjonene X og U gir oss øsninger av den tidsuavhengige Schrødingerigningen for < x < a: [4 poeng] Xx) = Asink x x)+bcosk x x) og Uu) = Ce ikuu. 37) Svar: Vi viser ved innsetting. De andrederiverte av den foresåtte øsningen er og xψx,u) = x Xx)Uu) = Uu) d dx Asink xx)+bcosk x x)) = Uu) Ak x sink xx) Bk x cosk xx)) = kx Xx)Uu) = k xψx,u), 38) uψx,u) = u Xx)Uu) = Xx) d du Ceikuu = k uxx)uu) = k uψx,u). 39) Innsatt i den tidsuavhengige Schrødingerigningen får vi )ψx,u) m x + u = m k x +ku)ψx,u). 4) Dette er atså en øsning med energien gitt som E = m k x +k u). 41) 9

9 d) Bruk grensebetingesene for ψx,u) ti å vise at B =, hvor n x = 1,,3..., og k x = πn x a, 4) k u = πn u L, 43) hvor n u =,±1,±,... [6 poeng] Svar: Vi må ha ψ,u) = og ψa,u) = fordi potensiaet bir uendeig i endene av brønnen. x = gir X) = Asin)+Bcos) = B, som betyr at B =. Uu) er atid forskjeig fra nu så enge C.) x = a gir Xa) = Asink x a) som er nu dersom k x a = πn x hvor n x =,±1,±,... Dette betyr at k x = πn x a, 44) hvor vi kan begrense oss ti positive n x fordi negative k x gir de samme øsningene bare med motsatt fortegn for A. n x = gir ikke en normerbar øsning. Atså må n x = 1,,3... Ti sutt krever grensebetingesen for u-retningen at U) = UL), sik at e iku = e ikul, eer e ikul = 1. Dette er oppfyt for k u L = πn u, hvor n u =,±1,±,... Dette gir Her gir ae verdiene av n u forskjeige øsninger. k u = πn u L. 45) e) Vis at energien kan skrives ved hjep av kvantetaene n x og n u som [ E nxn u = π ) ] a ma n x + n u. 46) L [4 poeng] Svar: Vi så fra øsningen av den tidsuavhengige Schrødingerigningen at energien er gitt ved 41). Vi setter inn uttrykkene for k x og k u og får: E = π n x m a + 4π n ) u L = π a ma n x + L ) n u ). 47) 1

10 f) Hva er energien ti grunntistanden i dette potensiaet, og hvor mange eektroner kan befinne seg i den? Hvor mange kan finnes i tistandene) med nest avest energi? Anta at bredden av brønnen er a = 1nm. Massen ti et eektron er m =.511MeV/c. [6 poeng] Svar: Grunntistanden, tistanden med avest energi, er gitt ved n x = 1 og n u =. Denne har energi E 1 = π ) ) a ma 1 + L = π ma = c π mc a nm ev) π =.511 MeV 1 nm) =.376 ev. 48) Fordi eektroner er fermioner kan ikke to eektroner befinne seg i samme tistand, men, om vi tar hensyn ti spinn, er det to eektroner som kan befinne seg i grunntistanden, så enge de har motsatt spinn. For den neste tistanden er svaret avhengig av engden på L. Dersom L < a/ 3 er den neste eksiterte tistanden gitt ved n x = og n u = fordi dette da gir den nest minste energien. Vi kan igjen bare ha to eektroner i tistanden. Dersom L > a/ 3 gir n x = 1 og n u = ±1 den minste energien og vi har to degenererte tistander med forskjeig n u. Vi kan da i at ha fire eektroner med denne energien. g) Bruk normeringskravet ti ψx,u) for å vise at AC = /al sik at den fustendige øsningen bir ψ nxn u x,u) = al sink xx)e ikuu. 49) [4 poeng] Svar: Normeringskravet i to dimensjoner er ψx,u) dudx = 1. 5) 11

11 Integraet gir ψx,u) dudx = = = a Xx) Uu) dudx Xx) dx Asink x x) dx Uu) du a = AC sin k x x)dx Ce ikuu du du kxa = AC sin y) dy [u] L k x = AC L [ 1 k x sinycosy + y ] πnx = AC L [ 1 k x sinπn xcosπn x + πn ] x = AC L k x πn x = AC al 51) hvor vi har brukt fra Rottmann at sin xdx = 1 sinxcosx+ x +C. 5) Når vi veger normeringskonstantene reee gir dette AC = /al. h) Finn forventningsverdien ti p x for tistanden ψ nxn u x,u). [3 poeng] Svar: Forventningsverdien ti p x er gitt ved integraet Med er p x = ψ n xn u x,u)ˆp x ψ n xn u x,u)dudx. 53) ˆp x = i ) = x x, 54) ˆp xψ nxn u x,u) = x al sink xx)e ikuu = kx al sink xx)e ikuu = k x ψ n xn u x,u). 55) 1

12 Atså er ψ nxn u x,u) en egentistand ti ˆp x med egenverdi k x. Forventningsverdien bir da p x = = = k x ψ n xn u x,u)ˆp x ψ n xn u x,u)dudx. ψ n xn u x,u) k xψ nxn u x,u)dudx. ψ nxn u x,u) dudx. = k x, 56) hvor vi har brukt at ψ nxn u x,u) er normert. i) I grensen L a viser igning 46) hva som skjer dersom det eksisterer små ekstra oppruede dimensjoner i verden. Vi minner om at energien for en uendeig brønn i en vanig dimensjon er E nx = π ma n x. 57) Gitt at størresen på denne ekstra dimensjonen er L = 1 3 nm, hvor mye energi trenger jeg for å eksitere et eektron i den nye dimensjonen? [3 poeng] Svar: Det å endre kvantetaet n u fra ti 1 gir en energiforskje på E = E nx1 E nx = π ) a ma n x + 1 ) π L ma n x + = π ) a ma n x + ) π L ma n x = π ma Numerisk er dette ) ) a L ) a = π L ml. 58) E = π ml = c π mc L = nm ev) π.511 MeV 1 3 nm) = ev = 1.5 MeV. 59) 13

13 j) Hvor mye ekstra effektiv masse hvieenergi) ser det ut som et eektron som er eksitert i den ekstra dimensjonen har? Hint: Ta utgangspunkt i Einsteins forme for reativistisk energi i en vanig dimensjon E = p xc +m c 4. [3 poeng] Svar: Siden endringen i energi ved eksitasjonen ikke gir eektronet ekstra bevegesesmengde i den vanige x-dimensjonen hvor vi gjør måinger, tisvarer endringen i energi en direkte endring i massen E) = m) c 4, eer E = mc. Eksitasjonen på 1.5 MeV vi da gi en tisyneatende endring i masse på 1.5 MeV/c for eektronet. Vi har aget det som ofte kaes en Kauza-Kein-eksitasjon av eektronet, en mer massiv utgave av det vanig eektronet. 14

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapeige fakutet Eksamen i: FYS140 Kvantefysikk Eksamensdag: 10. juni Tid for eksamen: 09.00 (4 timer) Oppgavesettet er på fem (5) sider Vedegg: Ingen

Detaljer

a) Bruk de Broglies relasjoner for energi og bevegelsesmengde til å vise at et relativistisk graviton har dispersjonsrelasjonen ω(k) = c λ g

a) Bruk de Broglies relasjoner for energi og bevegelsesmengde til å vise at et relativistisk graviton har dispersjonsrelasjonen ω(k) = c λ g Oppgave Gravitasjonsbøger Gravitasjonsbøger be nyig oppdaget av LIGO-eksperimentet. Vi ska her anta at gravitasjon skydes en partikke, gjerne kat gravitonet, som har en masse m g. Under vi du få bruk for

Detaljer

(θ,φ) er de sfæriske harmoniske. Disse løsningene har energiene 1. = nm, (4) x = rsinθcosφ, (6) y = rsinθsinφ, (7) z = rcosθ, (8) 1 r 2 sinθ

(θ,φ) er de sfæriske harmoniske. Disse løsningene har energiene 1. = nm, (4) x = rsinθcosφ, (6) y = rsinθsinφ, (7) z = rcosθ, (8) 1 r 2 sinθ Oppgave 1 Variasjoner over hydrogen Løsningen av den tidsuavhengige Schrødingerligningen for potensialet til hydrogenatomet Vr) = k ee r, 1) er som kjent ψ nlm r,θ,φ) = R nl r)yl m θ,φ), ) hvor R nl r)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS4 Kvantefysikk Eksamensdag: 8. juni 5 Tid for eksamen: 9. (4 timer) Oppgavesettet er på fem (5) sider Vedlegg: Ingen

Detaljer

Figur 1: Skisse av Franck-Hertz eksperimentet. Hentet fra Wikimedia Commons.

Figur 1: Skisse av Franck-Hertz eksperimentet. Hentet fra Wikimedia Commons. Oppgave 1 Franck-Hertz eksperimentet Med utgangspunkt i skissen i figuren under, gi en konsis beskrivelse av Franck-Hertz eksperimentet, dets resultater og betydning for kvantefysikken. [ poeng] Figur

Detaljer

Løsningsforslag Eksamen 5. august 2009 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 5. august 2009 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY4215 5. august 29 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 5. august 29 TFY4215 Kjemisk fysikk kvantemekanikk a. Med ψ A (x) = C = konstant for x > har vi fra den tidsuavhengige

Detaljer

ψ(x) 2 dx = 1. (3) For det siste integralet har vi brukt fra Rottmann at

ψ(x) 2 dx = 1. (3) For det siste integralet har vi brukt fra Rottmann at Det er mulig å oppnå i alt 80 poeng på denne eksamen. Oppgave er inspirert av en tidligere eksamensoppgaver gitt ved NTNU, laget av Ingjald Øverbø og Jon Andreas Støvneng. Oppgave 1 En-dimensjonal harmonisk

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS40 Kvantefysikk Eksamensdag: 6. august 03 Tid for eksamen: 4.30 (4 timer) Oppgavesettet er på 5 (fem) sider Vedlegg:

Detaljer

EKSAMENSOPPGAVE. Tillatte hjelpemidler: K. Rottmann: Matematisk Formelsamling Lommekalkulator med tomt minne

EKSAMENSOPPGAVE. Tillatte hjelpemidler: K. Rottmann: Matematisk Formelsamling Lommekalkulator med tomt minne EKSAMENSOPPGAVE Eksamen i: FYS-000 Kvantemekanikk Dato: Mandag 6. september 016 Tid: Kl 09:00 1:00 Sted: Auditorium Maximum, Administrasjonsbygget Tillatte hjelpemidler: K. Rottmann: Matematisk Formelsamling

Detaljer

Løsningsforslag Konte-eksamen 2. august 2003 SIF4048 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Konte-eksamen 2. august 2003 SIF4048 Kjemisk fysikk og kvantemekanikk Konte-eksamen SIF448.aug. 3 - løsningsforslag 1 Oppgave 1 a. Hamilton-operatoren er Løsningsforslag Konte-eksamen. august 3 SIF448 Kjemisk fysikk og kvantemekanikk Ĥ = h m x + V (x), og den tidsuavhengige

Detaljer

Løsningsforslag Eksamen 28. mai 2003 SIF4048 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 28. mai 2003 SIF4048 Kjemisk fysikk og kvantemekanikk Eksamen SIF4048 8.05.03 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 8. mai 003 SIF4048 Kjemisk fysikk og kvantemekanikk a. Da sannsynlighetstettheten Ψ(x, 0) = β/π exp( βx ) er symmetrisk med

Detaljer

FYS2140 Kvantefysikk, Løsningsforslag Oblig 7

FYS2140 Kvantefysikk, Løsningsforslag Oblig 7 FYS4 Kvantefysikk, Løsningsforslag Oblig 7 4. mars 8 Her finner dere løsningsforslag for Oblig 7 som bestod av Oppgave.,.45 og.46 fra Griffiths, og et løsningsforslag for Oppgave., som var tilleggsoppgave.

Detaljer

Eksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m

Eksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m Side av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 5 7 Sensurfrist: Fredag 0 juni 008 Eksamen

Detaljer

Løsningsforslag for FYS2140 Kvantemekanikk, Tirsdag 29. mai 2018

Løsningsforslag for FYS2140 Kvantemekanikk, Tirsdag 29. mai 2018 Løsningsforslag for FYS40 Kvantemekanikk, Tirsdag 9. mai 08 Oppgave : Fotoelektrisk effekt Millikan utførte følgende eksperiment: En metallplate ble bestrålt med monokromatisk lys. De utsendte fotoelektronene

Detaljer

TFY4215 Kjemisk fysikk og kvantemekanikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv

TFY4215 Kjemisk fysikk og kvantemekanikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv TFY4215 Kjemisk fysikk og kvantemekanikk - Øving 1 1 Frist for innlevering: mandag 26. januar ØVING 1 En liten briefing om forventningsverdier, usikkerheter osv Eksempel: Terningkast Ved terningkast er

Detaljer

EKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Tirsdag 13. august 2002 kl

EKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Tirsdag 13. august 2002 kl Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 73 55 96 4 Ingjald Øverbø, tel. 73 59 18 67 EKSAMEN I SIF4048 KJEMISK

Detaljer

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Fredag 19. august 2005 kl

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Fredag 19. august 2005 kl NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 97012355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK

Detaljer

Løysingsframlegg øving 1

Løysingsframlegg øving 1 FY6/TFY425 Innføring i kvantefysikk Løysingsframlegg øving Oppgåve Middelverdien er x = x Ω X xp (x) = 2 + 2 = 2. (.) Tilsvarande har vi x 2 = x Ω X x 2 P (x) = 2 2 + 2 2 = 2. (.2) Dette gjev variansen

Detaljer

FY1006/TFY4215 Innføring i kvantefysikk 26. mai 2016 Side 1 av 3

FY1006/TFY4215 Innføring i kvantefysikk 26. mai 2016 Side 1 av 3 FY16/TFY4215 Innføring i kvantefysikk 26. mai 216 Side 1 av 3 FLERVALGSOPPGAVER TRENING TIL EKSAMEN En partikkel med masse m beskrives av den stasjonære tilstanden Ψ(x,t) = ψ(x)e iωt, med e ikx + 1 3i

Detaljer

En samling av mer eller mindre relevante formler (uten nærmere forklaring) er gitt til slutt i oppgavesettet.

En samling av mer eller mindre relevante formler (uten nærmere forklaring) er gitt til slutt i oppgavesettet. Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk Lade EKSAMEN I: MNF FY 44 KVANTEMEKANIKK I DATO: Tirsdag 4. desember 999 TID: 9.00 5.00 Antall vekttall: 4 Antall sider: 3 Sensurdato:

Detaljer

Løsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk

Løsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk Eksamen FY2045 27. mai 2005 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk a. Ifølge den tidsuavhengige Shrödingerligningen, Ĥψ = Eψ, har vi for x < 0 : E = Ĥψ ψ

Detaljer

TFY4215 Innføring i kvantefysikk - Løsning øving 1 1 LØSNING ØVING 1

TFY4215 Innføring i kvantefysikk - Løsning øving 1 1 LØSNING ØVING 1 TFY425 Innføring i kvantefysikk - Løsning øving Løsning oppgave a. LØSNING ØVING Vi merker oss at sannsynlighetstettheten, Ψ(x, t) 2 = A 2 e 2λ x, er symmetrisk med hensyn på origo. For normeringsintegralet

Detaljer

Eksamen FY1006/TFY mai løsningsforslag 1

Eksamen FY1006/TFY mai løsningsforslag 1 Eksamen FY1006/TFY415 7. mai 009 - løsningsforslag 1 Løsningsforslag, Eksamen 7. mai 009 FY1006 Innføring i kvantefysikk/tfy415 Kjemisk fysikk og kvantemekanikk Oppgave 1 a. For E > V 0 har vi for store

Detaljer

FY1006/TFY4215 Innføring i kvantefysikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv

FY1006/TFY4215 Innføring i kvantefysikk - Øving 1 1 ØVING 1. En liten briefing om forventningsverdier, usikkerheter osv FY16/TFY4215 Innføring i kvantefysikk - Øving 1 1 Frist for innlevering: mandag 28. januar (jf Åre) ØVING 1 En liten briefing om forventningsverdier, usikkerheter osv Eksempel: Terningkast Ved terningkast

Detaljer

A.5 Stasjonære og ikke-stasjonære tilstander

A.5 Stasjonære og ikke-stasjonære tilstander TFY4250/FY2045 Tillegg 4 - Stasjonære og ikke-stasjonære tilstander 1 Tillegg 4: A.5 Stasjonære og ikke-stasjonære tilstander a. Stasjonære tilstander (Hemmer p 26, Griffiths p 21) Vi har i TFY4215 (se

Detaljer

Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller

Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK

Detaljer

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK onsdag 5. august 2009 kl

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK onsdag 5. august 2009 kl BOKMÅL Side 1 av NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I TFY4215 KJEMISK FYSIKK

Detaljer

Eksamen FY8104 Symmetri i fysikken Fredag 7. desember 2007 Løsninger

Eksamen FY8104 Symmetri i fysikken Fredag 7. desember 2007 Løsninger Eksamen FY8104 Symmetri i fysikken Fredag 7. desember 007 Løsninger 1a En konjugasjonskasse i SO(3 består av ae rotasjoner med en gitt rotasjonsvinke α og vikårig rotasjonsakse. En konjugasjonskasse i

Detaljer

Løsningsforslag Eksamen 1.juni 2004 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 1.juni 2004 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY45. juni 004 - løsningsforslag Oppgave Løsningsforslag Eksamen.juni 004 TFY45 Kjemisk fysikk og kvantemekanikk a. Bundne energiegentilstander i et éndimensjonalt potensial er ikke-degenererte

Detaljer

Ein par(kkel i 3 dimensjonar

Ein par(kkel i 3 dimensjonar Ein par(kkel i 3 dimensjonar Kvantemekanisk beskrivelse av ein par0kkel som kan bevege seg i 3 dimensjonar Bølgjefunksjon: Ψ(x, y, z, t) =Ψ(r, t) Ψ(x, y, z, t) dx dy dz Tolking: er sannsynlegheiten for,

Detaljer

Oppgave 1. NORSK TEKST Side 1 av 4. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk

Oppgave 1. NORSK TEKST Side 1 av 4. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 7 55 96 4 Ingjald Øverbø, tel. 7 59 18 67 EKSAMEN I TFY415

Detaljer

Oppgave 2 Vi ser på et éndimensjonalt system hvor en av de stasjonære tilstandene ψ(x) er gitt som { 0 for x < 0, ψ(x) = Ne ax (1 e ax (1)

Oppgave 2 Vi ser på et éndimensjonalt system hvor en av de stasjonære tilstandene ψ(x) er gitt som { 0 for x < 0, ψ(x) = Ne ax (1 e ax (1) Oppgave Gjør kort rede for hva den fotoelektriske effekt er, hva slags konklusjoner man kunne trekke fra observasjoner av denne i kvantefysikkens fødsel, og beskriv et eksperiment som kan observere og

Detaljer

Løsningsforslag Eksamen 26. mai 2006 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 26. mai 2006 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY415 6. mai 006 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 6. mai 006 TFY415 Kjemisk fysikk og kvantemekanikk a. For bundne tilstander i én dimensjon er degenerasjonsgraden lik 1;

Detaljer

Oppgaver MAT2500. Fredrik Meyer. 10. september 2014

Oppgaver MAT2500. Fredrik Meyer. 10. september 2014 Oppgaver MAT500 Fredrik Meyer 0. september 04 Oppgave. Bruk forrige oppgave ti å vise at hvis m er orienteringsreverserende, så er m en transasjon. (merk: forrige oppgave sa at ae isometrier er på formen

Detaljer

EKSAMENSOPPGAVE. Eksamen i: Fys-2000 Kvantemekanikk Dato: 5. juni 2013 Tid: Kl Sted: Åsgårdveien 9. og fysikk, lommekalkulator

EKSAMENSOPPGAVE. Eksamen i: Fys-2000 Kvantemekanikk Dato: 5. juni 2013 Tid: Kl Sted: Åsgårdveien 9. og fysikk, lommekalkulator FAKUTET FOR NATURVITENSKAP OG TEKNOOGI EKSAMENSOPPGAVE Eksamen i: Fys-2000 Kvantemekanikk Dato: 5. juni 2013 Tid: Kl 09.00-13.00 Sted: Åsgårdveien 9 Tillatte hjelpemidler: Formelsamlinger i matematikk

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS14, Kvantefysikk Eksamensdag: 17. august 17 4 timer Lovlige hjelpemidler: Rottmann: Matematisk formelsamling, Øgrim og Lian:

Detaljer

Obligatorisk oppgave nr 4 FYS Lars Kristian Henriksen UiO

Obligatorisk oppgave nr 4 FYS Lars Kristian Henriksen UiO Obligatorisk oppgave nr 4 FYS-13 Lars Kristian Henriksen UiO. februar 15 Oppgave 1 Vi betrakter bølgefunksjonen Ψ(x, t) Ae λ x e iωt hvor A, λ og ω er positive reelle konstanter. a) Finn normaliseringen

Detaljer

EKSAMEN I FY2045 KVANTEFYSIKK Onsdag 30. mai 2007 kl

EKSAMEN I FY2045 KVANTEFYSIKK Onsdag 30. mai 2007 kl NORSK TEKST Side av 3 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 97355 EKSAMEN I FY45 KVANTEFYSIKK Onsdag 3.

Detaljer

Løsningsforslag Eksamen 12. august 2004 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 12. august 2004 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY4215 12. august 2004 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 12. august 2004 TFY4215 Kjemisk fysikk og kvantemekanikk a. Den tidsuavhengige Schrödingerligningen, Ĥψ = Eψ, tar for

Detaljer

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Lørdag 8. august 2009 kl

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Lørdag 8. august 2009 kl NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK

Detaljer

Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY4215 7. august 2006 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk a. Bundne tilstander i et symmetrisk éndimensjonalt potensial

Detaljer

A.3.e: Ortogonale egenfunksjonssett

A.3.e: Ortogonale egenfunksjonssett TFY4250/FY2045 Tillegg 2 1 Tillegg 2: A.3.e: Ortogonale egenfunksjonssett Ikke-degenererte egenverdier La oss først anta at en operator ˆF har et diskret og ikke-degeneret spektrum. Det siste betyr at

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS240 Kvantefysikk Eksamensdag: 3. juni 206 Tid for eksamen: 09.00 4 timer) Oppgavesettet er på fem 5) sider Vedlegg: Ingen

Detaljer

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Torsdag 12. august 2004 kl

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Torsdag 12. august 2004 kl NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 7 55 96 4 Ingjald Øverbø, tel. 7 59 18 67, eller 970155 EKSAMEN

Detaljer

TFY Løsning øving 4 1 LØSNING ØVING 4. Vibrerende to-partikkelsystem

TFY Løsning øving 4 1 LØSNING ØVING 4. Vibrerende to-partikkelsystem TFY45 - Løsning øving 4 Løsning oppgave 3 LØSNING ØVING 4 Vibrerende to-partikkelsystem a. Vi kontrollerer først at kreftene på de to massene kommer ut som annonsert: F V V k(x l) og F V V k(x l), som

Detaljer

Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2014

Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2014 NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Fasit TFY45/FY6 Innføring i kvantefysikk Vår 4 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Mandag 6. mai 4 kl. 9.-3.

Detaljer

FY1006/TFY Løsning øving 8 1 LØSNING ØVING 8. a. (a1): Ved kontroll av egenverdiene kan vi se bort fra normeringsfaktorene.

FY1006/TFY Løsning øving 8 1 LØSNING ØVING 8. a. (a1): Ved kontroll av egenverdiene kan vi se bort fra normeringsfaktorene. FY16/TFY415 - Løsning øving 8 1 Løsning oppgave 3 Vinkelfunksjoner, radialfunksjoner og orbitaler for hydrogenlignende system LØSNING ØVING 8 a. (a1: Ved kontroll av egenverdiene kan vi se bort fra normeringsfaktorene.

Detaljer

NORSK TEKST Side 1 av 5

NORSK TEKST Side 1 av 5 NORSK TEKST Side av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 7 59 8 67, eller 97 0 55 Jon Andreas Støvneng, tel. 7 59 6 6,

Detaljer

FYS2140 Kvantefysikk, Oblig 11. Sindre Rannem Bilden og Gruppe 4

FYS2140 Kvantefysikk, Oblig 11. Sindre Rannem Bilden og Gruppe 4 FYS2140 Kvantefysikk, Oblig 11 Sindre Rannem Bilden og Gruppe 4 30. april 2015 Obliger i FYS2140 merkes med navn og gruppenummer! Denne obligen er satt sammen av den første delen av eksamen våren 2010

Detaljer

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Onsdag 11. august 2010 kl

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Onsdag 11. august 2010 kl NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I FY1006 INNFØRING

Detaljer

Oppgave 1 (Deloppgavene a, b, c og d teller henholdsvis 6%, 6%, 9% og 9%) NORSK TEKST Side 1 av 7

Oppgave 1 (Deloppgavene a, b, c og d teller henholdsvis 6%, 6%, 9% og 9%) NORSK TEKST Side 1 av 7 NORSK TEKST Side 1 av 7 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97012355 Jon Andreas Støvneng, tel. 73

Detaljer

En partikkel med masse m befinner seg i et éndimensjonalt, asymmetrisk brønnpotensial

En partikkel med masse m befinner seg i et éndimensjonalt, asymmetrisk brønnpotensial NORSK TEKST Side av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 7 59 8 67, eller 9755 EKSAMEN I TFY45 ATOM- OG MOLEKYLFYSIKK

Detaljer

Eksamen TFY4215/FY1006 Innføring i kvantemekanikk Vår 2013

Eksamen TFY4215/FY1006 Innføring i kvantemekanikk Vår 2013 NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Eksamen TFY45/FY006 Innføring i kvantemekanikk Vår 03 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon: 735933 Onsdag.

Detaljer

Løsningsforslag til eksamen i klassisk mekanikk våren e N. R ρ m

Løsningsforslag til eksamen i klassisk mekanikk våren e N. R ρ m Løsningsforsag ti eksamen i kassisk mekanikk våren 010 Oppgave 1 ω v e T θ R ρ m e N Figure 1: a Lagrangefunksjonen er gitt ved: L = T V der T V er den kinetiske potensiee energien ti systemet. Finner

Detaljer

FY2045 Kvantefysikk Løsningsforslag Eksamen 2. juni 2008

FY2045 Kvantefysikk Løsningsforslag Eksamen 2. juni 2008 Eksamen FY045. juni 008 - løsningsforslag Oppgave FY045 Kvantefysikk øsningsforslag Eksamen. juni 008 a. Fra den tidsuavhengige Schrödingerligningen, [ h ] m x + V x ψx Eψx, finner vi at den relative krumningen

Detaljer

Løsningsforslag Eksamen 8. august 2011 FY2045/TFY4250 Kvantemekanikk I

Løsningsforslag Eksamen 8. august 2011 FY2045/TFY4250 Kvantemekanikk I Eksamen FY45/TFY45 8. august - løsningsforslag Oppgave Løsningsforslag Eksamen 8. august FY45/TFY45 Kvantemekanikk I a. For E < V blir området x > klassisk forbudt, og den tidsuavhengige Schrödingerligningen

Detaljer

Løsningsforslag Eksamen 27. mai 2011 FY1006/TFY4215 Innføring i kvantefysikk

Løsningsforslag Eksamen 27. mai 2011 FY1006/TFY4215 Innføring i kvantefysikk Eksamen FY1006/TFY4215 27. mai 2011 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 27. mai 2011 FY1006/TFY4215 Innføring i kvantefysikk a. For en energiegenfunksjon med energi E V 1 følger det fra

Detaljer

Løsningsforslag til eksamen i SIF4022 Fysikk 2 Tirsdag 3. desember 2002

Løsningsforslag til eksamen i SIF4022 Fysikk 2 Tirsdag 3. desember 2002 NTNU Side 1 av 6 Institutt for fysikk Fakultet for naturvitenskap og teknologi Løsningsforslag til eksamen i SIF40 Fysikk Tirsdag 3. desember 00 Dette løsningsforslaget er på 6 sider. Oppgave 1. a) Amplituden

Detaljer

EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Tirsdag 10. august 2010 kl

EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Tirsdag 10. august 2010 kl NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Tirsdag 10. august 2010 kl. 09.00-13.00 Tillatte

Detaljer

Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015

Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015 Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Mandag 27. mai 2015 kl.

Detaljer

Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I

Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I Eksamen FY2045/TFY4250 14. desember 2011 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I a. For E < 3V 0 /4 er området x > a klassisk forbudt, og

Detaljer

Løsningsforslag til eksamen i TFY4170 Fysikk 2 Tirsdag 9. desember 2003

Løsningsforslag til eksamen i TFY4170 Fysikk 2 Tirsdag 9. desember 2003 NTNU Side 1av7 Institutt for fysikk Fakultet for naturvitenskap og teknologi Dette løsningsforslaget er på 7 sider. Løsningsforslag til eksamen i TFY4170 Fysikk Tirsdag 9. desember 003 Oppgave 1. a) Amplituden

Detaljer

Løsningsforslag Eksamen 19. august 2005 TFY4250 Atom- og molekylfysikk

Løsningsforslag Eksamen 19. august 2005 TFY4250 Atom- og molekylfysikk Eksmen TFY450 19. ugust 005 - løsningsforslg 1 Oppgve 1 Løsningsforslg Eksmen 19. ugust 005 TFY450 Atom- og molekylfysikk. For det oppgitte, symmetriske brønnpotensilet er bundne energiegentilstnder enten

Detaljer

FYS2140 Kvantefysikk, Oblig 8. Sindre Rannem Bilden, Gruppe 4

FYS2140 Kvantefysikk, Oblig 8. Sindre Rannem Bilden, Gruppe 4 FYS240 Kvantefysikk, Oblig 8 Sindre Rannem Bilden, Gruppe 4 9. april 205 Obliger i FYS240 merkes med navn og gruppenummer! Denne obligen dreier seg om partikkel i en endelig brønn. Dere får bruk for Python

Detaljer

Oppgave 1 (Teller 34 %) BOKMÅL Side 1 av 5. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk

Oppgave 1 (Teller 34 %) BOKMÅL Side 1 av 5. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk BOKMÅL Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 23 55 Jon Andreas Støvneng, tel. 73 59

Detaljer

Løsningsforslag Konte-eksamen 13. august 2002 SIF4048 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Konte-eksamen 13. august 2002 SIF4048 Kjemisk fysikk og kvantemekanikk ppgave Løsningsforslag Konte-eksamen 3. august SIF8 Kjemisk fysikk og kvantemekanikk a. Da sannsynlighetstettheten Ψ(x, ) mω/π h exp( mωx / h) er symmetrisk med hensyn på origo, er forventningsverdien

Detaljer

Løsning til øving 8 for FY1004, høsten 2007

Løsning til øving 8 for FY1004, høsten 2007 øsning til øving 8 for FY4, høsten 7 Vi tar for oss en partikkel med masse m i en endimensjonal boks med lengde For < x < gjelder den stasjonære Schrödingerligningen h m d ψ Eψ, ( dx der E er energien

Detaljer

FY2045/TFY4250 Kvantemekanikk I, øving 5 1 LØSNING ØVING 5. Kvantekraft. L x. L 2 x. = A sin n xπx. sin n yπy. 2 y + 2.

FY2045/TFY4250 Kvantemekanikk I, øving 5 1 LØSNING ØVING 5. Kvantekraft. L x. L 2 x. = A sin n xπx. sin n yπy. 2 y + 2. FY045/TFY450 Kvantemekanikk I, øving 5 1 øsning oppgave 5 1 a Med finner vi energien til egenfunksjonen ØSNING ØVING 5 Kvantekraft nπx sin = n xπ x x x ψ nx,n y,n z = A sin n xπx x sin nπx x, sin n yπy

Detaljer

Eksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid:

Eksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid: Side 1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 51 72) Sensurfrist: Tirsdag 12. juni 2007

Detaljer

Musikkens fysikk. Johannes Skaar, NTNU. 9. januar 2010

Musikkens fysikk. Johannes Skaar, NTNU. 9. januar 2010 Musikkens fysikk Johannes Skaar, NTNU 9. januar 2010 I aboppgavene i TFE40 Eektromagnetisme ager du en eektrisk gitar, der den vibrerende strengen setter i gang vibrasjoner på en magnet, som videre induserer

Detaljer

B.1 Generelle egenskaper til energiegenfunksjoner

B.1 Generelle egenskaper til energiegenfunksjoner TFY4250/FY2045 Tillegg 6 - Generelle egenskaper til energiegenfunksjoner 1 Tillegg 6: Noe av stoffet i dette Tillegget er repetisjon fra Tillegg 3 i TFY4215. B.1 Generelle egenskaper til energiegenfunksjoner

Detaljer

MEK Stabilitet og knekning av konstruksjoner. Høst Prosjektoppgave: Forslag til løsning (skisse)

MEK Stabilitet og knekning av konstruksjoner. Høst Prosjektoppgave: Forslag til løsning (skisse) EK 50 tabiitet og knekning a konstruksjoner Høst 005 Prosjektoppgae: Forsag ti øsning (skisse). Hayman 0..005 - - Innedning Dette er kun en skisse ikke en fustendig rapport. Inndeingen i asnitt er bare

Detaljer

TMA4210 Numerisk løsning av part. diff.lign. med differansemetoder Vår 2005

TMA4210 Numerisk løsning av part. diff.lign. med differansemetoder Vår 2005 Norges teknisk naturvitenskapeige universitet Institutt for matematiske fag TMA420 Numerisk øsning av part diffign med differansemetoder Vår 2005 3 Crank Nicoson er en famiie metoder som fremkommer ved

Detaljer

Løsningsforslag Eksamen 16. august 2008 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 16. august 2008 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY415 16. august 008 - løsningsforslag 1 Oppgave 1 (Teller 34 %) Løsningsforslag Eksamen 16. august 008 TFY415 Kjemisk fysikk og kvantemekanikk a. Siden potensialet V () er symmetrisk, er grunntilstanden

Detaljer

FY2045/TFY4250 Kvantemekanikk I, løsning øving 14 1 LØSNING ØVING 14. ψ 210 z ψ 100 d 3 r a.

FY2045/TFY4250 Kvantemekanikk I, løsning øving 14 1 LØSNING ØVING 14. ψ 210 z ψ 100 d 3 r a. FY45/TFY45 Kvantemekanikk I, løsning øving 14 1 LØSNING ØVING 14 Løsning Oppgave 14 1 Fra oppg 3, eksamen august 1 a. Med Y = 1/ 4π og zy = ry 1 / 3 kan vi skrive matrise-elementene av z på formen (z)

Detaljer

EKSAMEN I FY2045 KVANTEFYSIKK Mandag 2. juni 2008 kl

EKSAMEN I FY2045 KVANTEFYSIKK Mandag 2. juni 2008 kl NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I FY2045 KVANTEFYSIKK Mandag

Detaljer

Løsningsforslag Matematisk fysikk, 28. mai 2001

Løsningsforslag Matematisk fysikk, 28. mai 2001 Løsningsforslag Matematisk fysikk, 8. mai Oppgave a) Det er trykkfeil i oppgaven. Riktig uttrykk er Vi har sin n θ = π cosx sin θ) = π π = n= n= n= = J x). π n n!). ) n x sin θ) n n= ) n x n ) n x n )

Detaljer

Løsningsforslag Eksamen 20. desember 2012 FY2045/TFY4250 Kvantemekanikk I

Løsningsforslag Eksamen 20. desember 2012 FY2045/TFY4250 Kvantemekanikk I Eksamen FY045/TFY450 0. desember 0 - løsningsforslag Oppgave Løsningsforslag Eksamen 0. desember 0 FY045/TFY450 Kvantemekanikk I a. For x < 0 er potensialet lik null. (i) For E > 0 er da ψ E = (m e E/

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturitenskapeige fakutet Eksamen i: FYS1120 Eektromagnetisme Eksamensdag: 4. desember 2017 Tid for eksamen: 14.30 18.30 Oppgaesettet er på 9 sider. Vedegg: Tiatte hjepemider:

Detaljer

Løsningsforslag for FYS2140 Kvantefysikk, Mandag 3. juni 2019

Løsningsforslag for FYS2140 Kvantefysikk, Mandag 3. juni 2019 Løsningsforslag for FYS210 Kvantefysikk, Mandag 3. juni 201 Oppgave 1: Stern-Gerlach-eksperimentet og atomet Stern-Gerlach-eksperimentet fra 122 var ment å teste Bohrs atommodell om at angulærmomentet

Detaljer

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK 26. mai 2006 kl

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK 26. mai 2006 kl NORSK TEKST Side 1 av 7 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97012355 EKSAMEN I TFY4215 KJEMISK FYSIKK

Detaljer

Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015

Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015 Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Mandag 27. mai 2015 kl.

Detaljer

FY2045/TFY4250 Kvantemekanikk I, øving 5 1 ØVING 5

FY2045/TFY4250 Kvantemekanikk I, øving 5 1 ØVING 5 FY045/TFY450 Kvantemekanikk I, 0 - øving 5 ØVING 5 Oppgave 0 α-desintegrasjon α-sdesintegrasjon er en prosess hvor en radioaktiv opphavs -kjerne (parent nucleus) desintegrerer (henfaller) til en datter

Detaljer

FY1006/TFY4215 Innføring i kvantefysikk Eksamen 2. juni 2016 Side 1 av 8

FY1006/TFY4215 Innføring i kvantefysikk Eksamen 2. juni 2016 Side 1 av 8 FY1006/TFY4215 Innføring i kvantefysikk Eksamen 2. juni 2016 Side 1 av 8 I. FLERVALGSOPPGAVER (Teller 2.5% 30 = 75%) En fri partikkel med masse m befinner seg i det konstante potensialet V = 0 og beskrives

Detaljer

NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg prøveeksamen TFY4215/FY1006 Innføring i Kvantemekanikk

NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg prøveeksamen TFY4215/FY1006 Innføring i Kvantemekanikk NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk øysingsframlegg prøveeksamen TFY4215/FY1006 Innføring i Kvantemekanikk Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon:

Detaljer

LØSNING ØVING 2. Løsning oppgave 5. TFY4215 Innføring i kvantefysikk - Løsning øving 2 1

LØSNING ØVING 2. Løsning oppgave 5. TFY4215 Innføring i kvantefysikk - Løsning øving 2 1 TFY4215 Innføring i kvantefysikk - Løsning øving 2 1 Løsning oppgave 5 LØSNING ØVING 2 Krumningsegenskaper for endimensjonale energiegenfunksjoner a. For oscillator-grunntilstanden i oppgave 3b har vi

Detaljer

TFY Løsning øving 5 1 LØSNING ØVING 5. Krumning og stykkevis konstante potensialer

TFY Løsning øving 5 1 LØSNING ØVING 5. Krumning og stykkevis konstante potensialer TFY4215 - Løsning øving 5 1 Løsning oppgave 16 LØSNING ØVING 5 Krumning og stykkevis konstante potensialer a. I et område hvor V er konstant (lik V 1 ), og E V 1 er positiv (slik at området er klassisk

Detaljer

Fasit Kontekesamen TFY4215/FY1006 Innføring i kvantefysikk 2015

Fasit Kontekesamen TFY4215/FY1006 Innføring i kvantefysikk 2015 Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Fasit Kontekesamen TFY415/FY16 Innføring i kvantefysikk 15 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU August 15 kl. 9.-13.

Detaljer

EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Torsdag 20. desember 2012 kl

EKSAMEN I FY2045 KVANTEMEKANIKK I/ TFY4250 KVANTEMEKANIKK I Torsdag 20. desember 2012 kl NORSK TEKST Side av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 972355 EKSAMEN I FY245 KVANTEMEKANIKK I/ TFY425

Detaljer

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK FY2045 KVANTEFYSIKK Tirsdag 1. desember 2009 kl

EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK FY2045 KVANTEFYSIKK Tirsdag 1. desember 2009 kl NORSK TEKST Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 97012355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK

Detaljer

FY1006/TFY Løsning øving 3 1 LØSNING ØVING 3. Ikke-stasjonær bokstilstand

FY1006/TFY Løsning øving 3 1 LØSNING ØVING 3. Ikke-stasjonær bokstilstand FY006/TFY45 - Løsning øving 3 Løsning oppgave 8 LØSNING ØVING 3 Ikke-stasjonær bokstilstand a. For 0 < x < L er potensialet i boksen lik null, slik at Hamilton-operatoren har formen Ĥ = K + V (x) = ( h

Detaljer

Løsningsforslag for FYS2140 Kvantemekanikk, Torsdag 16. august 2018

Løsningsforslag for FYS2140 Kvantemekanikk, Torsdag 16. august 2018 Løsningsforslag for FYS140 Kvantemekanikk, Torsdag 16. august 018 Oppgave 1: Materiens bølgeegenskaper a) De Broglie fikk Nobelprisen i 199 for sin hypotese. Beskriv med noen setninger hva den går ut på.

Detaljer

Løysingsframlegg eksamen TFY4215/FY1006 Innføring i Kvantemekanikk vår 2013

Løysingsframlegg eksamen TFY4215/FY1006 Innføring i Kvantemekanikk vår 2013 NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg eksamen TFY45/FY6 Innføring i Kvantemekanikk vår 3 Oppgåve Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU

Detaljer

2. Postulatene og et enkelt eksempel

2. Postulatene og et enkelt eksempel FY619 Moderne fysikk 1 Dette notatet kan leses parallelt med deler av kapitlene 2 og 3 i Hemmer; fortrinnsvis delkapitlene 3.1, 3.2 og 2.1. NOTAT 2 2. Postulatene og et enkelt eksempel I kapittel 2 i Hemmer

Detaljer

Løsningsforslag til eksamen i TFY4170 Fysikk 2 Fysikk 2 Lørdag 8. august 2005

Løsningsforslag til eksamen i TFY4170 Fysikk 2 Fysikk 2 Lørdag 8. august 2005 NTNU Side 1 av 5 Institutt for fysikk Fakultet for naturvitenskap og teknologi Løsningsforslag til eksamen i TFY4170 Fysikk Fysikk Lørdag 8. august 005 Merk: Hver del-oppgave teller like mye. Dette løsningsforslaget

Detaljer

3.9 Symmetri GEOMETRI

3.9 Symmetri GEOMETRI rektange der den ene siden er ik radius og den andre siden ik have omkretsen av sirkeen. Areaet kan da finnes ved å mutipisere sidekantene, noe som gir: A = r πr = πr 2. Oppgave 3.41 a) Konstruer en trekant

Detaljer

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Mandag 23. mai 2005 kl

EKSAMEN I TFY4215 KJEMISK FYSIKK OG KVANTEMEKANIKK Mandag 23. mai 2005 kl NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 7 55 96 42 Ingjald Øverbø, tel. 7 59 18 67, eller 9701255

Detaljer