EKSAMEN I EMNE TDT4230 VISUALISERING FREDAG 10. DESEMBER 2010 KL LØSNINGSFORSLAG
|
|
- Stefan Viken
- 7 år siden
- Visninger:
Transkript
1 Side 1 av 11 EKSAMEN I EMNE TDT4230 VISUALISERING FREDAG 10. DESEMBER 2010 KL LØSNINGSFORSLAG OPPGAVE 1 Kubiske Bézier-kurver og flater a) Sammenhengen mellom vektoren av blandefunksjoner Bu ( ) Bu ( ) T u 3u 3u1 3u 6u 3u 3u 3u 3 u og basismatrisen M er gitt ved relasjonen: Bu ( ) U M der U er parametervektoren: U u u u 1 Dette gir basismatrisen: M
2 Side 2 av 11 b) Den geometriske konsekvensen av at konvekst skallegenskapen er oppfylt, er at kurvesegmentet i sin helhet ligger inne i skallet. Det samme gjelder for en følge av kurvesegmenter som i sin helhet vil ligge inne i skallet spent ut av samtlige kontrollpunkt. For at konvekst skallegenskapen skal være oppfylt, kreves at: 1. Summen av blandefunksjonene er 1 uavhengig av parameteren u. 2. Ingen av blandefunksjonene skal gi negativ verdi i parameterintervallet for kurvesegmentet. Vi har: B ( u) B ( u) B ( u) B ( u) u 3u 3u1 3u 6u 3u 3u 3u 3 u 1 Det første kravet er altså oppfylt. Av: B ( u) (1 u) 0 B ( u) 3 u(1 u) 1 B u u u 2 2( ) 3 (1 ) B ( u) u ser vi at også at hver av blandefunksjonene er ikke-negative i hele parameterintervallet u 01. Vilkårene for konvekst skallegenskapen er altså oppfylt.
3 Side 3 av 11 c) Et punkt på en Bézier-kurve kan fastlegges ved hjelp av Casteljau-konstruksjon: Linjestykkene mellom kontrollpunktene deles i samme forhold (eventuelt gitt av verdien av parameteren u). Linjestykkene mellom delingspunktene deles i samme forhold. For en kubisk Bézierkurve vil delingspunktet på linjen mellom de to sist bestemte punktene være et punkt på kurven. d) For et kubisk kurvesegment har en fire frihetsgrader som kan brukes til å forme kurven. For Bézierkurven brukes to av disse som endepunkter for kurvesegmentet. Dersom vi tenker oss at vi bruker de to resterende frihetsgradene til sikre C 2 -kontinuitet i det ene endepunktet ved å bestemme den parametrisk førstederiverte og den parametrisk andrederiverte, ville vi ikke ha noe igjen til å forme kurven ved det andre endepunktet. Derfor kan vi i skjøten mellom to Bézier-kurvesegmenter maksimalt sikre C 1 som parametrisk kontinuitet. e) Et uttrykk for en kubisk biparametrisk Bézier-flatelapp er: T Quv (, ) UMPM V der U og V er parametervektorene: T U u u u V v v v 1 1 P er matrisen av kontrollpunkt: p p p p p p p p P p p p p p p p p og M basismatrisen
4 Side 4 av 11 OPPGAVE 2 Strålesporingsmodellen a) Strålesporingsmodellens ide er å finne opprinnelsen til en stråle fra scenen som etter å ha passert gjennom en piksel, treffer øyet. Fargen til dette objektpunktet beregnes ved bruk av Phongs refleksjonsmodell. Men omgivelsene gir også bidrag til denne fargen. Derfor reflekteres den opprinnelige strålen videre inn i scenen. Fargen til det nye objektpunktet, som igjen beregnes ved bruk av Phongs refleksjonsmodell, blir reflektert tilbake. Denne prosessen gjentas rekursivt inntil et stoppekriterium er oppfylt. Dette kan modelleres med tillegget ksir ktit i Phongs refleksjonsmodell: Si I k ( ) ( ) 2 dii d li n k sii s hi n k aii a i a bdi cd i k I k I k I s r t t a a I r er intensiteten av lyset reflektert inn på objektpunkt og I t intensiteten av transmittert lys i tilfelle at objektet er transparent. k s og k t er henholdsvis refleksjons- og transmisjonskoeffisienter. Modellen tar bare hensyn til refleksjon i flater som har en grad av glans. Diffus spredning av lys mellom matte flater blir ikke tatt hensyn til. b) En lysbuffer realiseres ved å legge en akseorientert kube rundt en lyskilde med lyskilden midt i kuben. Kubens sideflater deles inn i et regulert mønster av kvadratiske ruter. Polygonene i scenen projiseres inn på kuben. For hver kvadratisk rute holdes en liste av overlappende polygoner. Hensikten med lysbufferen er å effektivisere behandlingen av skyggestråler ved å avgrense antall polygoner som må undersøkes for treff. For hver rute holdes listen av overlappende polygoner sortert etter økende avstand fra lyskilden. Når en skyggestråle skytes fra et objektpunkt mot lyskilden, finner en ruten som strålen treffer. Treff med polygonene undersøkes inntil en konstaterer skjæring eller inntil resten av polygonene ligger bak objektpunktet. Dersom skjæring er konstatert, ligger objektpunktet i skyggen av vedkommende lyskilde. c) Ved topass strålesporing oppnår en å få tatt hensyn til at speilende flater reflekterer lyset fra lyskilder ut over omgivelsene. En oppnår også å få bildet av lyskilder ( caustics ) slik det blir etter at lyset har gått gjennom brytende transparente legemer (for eksempel linser). Metoden består i: Pass 1: Lyskildene skyter stråler mot speilende flater og mot transparente objekter Lyskart dannes på diffust spredende flater Pass 2: Normal strålesporing gjennomføres Legger til informasjonen fra lyskartet
5 Side 5 av 11 d) Distribuert strålesporing gir økt realisme ved: Ikke perfekte refleksjoner Ikke perfekt transmisjon Begrenset dybdeskarphet Bevegelsesuskarphet Som tilleggsgevinst får en: Antialiasing Halvskygger Metoden er: Deler inn pikselen i 4x4 ruter Skyter en stråle på tilfeldig plass i hver rute Hver stråle merkes Merket avgjør: Hvor strålen går gjennom linsa Hvordan strålen passerer gjennom refleksjons- og transmisjonslobene
6 Side 6 av 11 Strålens merke avgjør tabelloppslaget for refleksjonslobene. Tilsvarende gjelder for transmisjonslobene og for linsa. OPPGAVE 3 Fargemodeller Figur 1 Figur 2
7 Side 7 av 11 a) Vi beregner de tre fargekoordinatene X, Y og Z ved hjelp av den målte spektrale fordelingen I( ) slik: X k I( ) f d Y k I( ) f d Z k I( ) f d y z x Integrasjonen utføres numerisk ved hjelp av de tabulerte funksjonene for de tre standard CIE primærfargene: Koordinatene X, Y og Z er entydige uttrykk for den målte fargen. (Likevel er det slik at flere spektrale fordelinger I( ) kan gi samme koordinatverdier.) b) Mengden av alle mulige farger representeres av et volum spent ut av koordinatene X, Y og Z i et kartesisk koordinatsystem: Volumet defineres av en romkurve som kommer i stand ved å plotte samhørende verdier av f x, f y og f z for varierende bølgelengder. Kurven lukkes med purpurlinjen. Volumet dannes ved å sveipe og samtidig skalere kurven langs direktriser gjennom origo. Planet X Y Z 1 skjærer volumet. Projeksjonen av snittet inn i planet Z 0 er kjent som CIE kromasitetsdiagram. Koordinatene i kromasitetsdiagrammet er normaliserte X og Y koordinater: X x X Y Z Y y X Y Z
8 Side 8 av 11 c) Svarene er: En mulig posisjon for hvitt er det punktet i kromasitetsdiagrammet som er merket C. Det er slik at hvitt defineres på forskjellige måter med referanse til forskjellige standard lyskilder. De forskjellige hvitverdiene ligger i nærheten av punktet C. Om en trekker en rett linje gjennom punktet som velges som hvitt og et annet punkt i kromasitetsdiagrammet som svarer til en bestemt farge, er komplementærfargen den fargen som ligger på den samme linjen på motsatt side av hvitt og som er slik at de to fargene blandes til hvitt. De to fargene ligger i samme relative avstand fra diagrammets kant i forhold til hvitt.
9 Side 9 av 11 Vi ser på en spektral fordeling. Dominat bølgelengde er bølgelengden til den spektrallinjen som svarer til det fargeinntrykket som fordelingen gir. En spektral fordeling har fargekoordinater X, Y og Z. De normaliserte kromasitetsverdiene er x og y. Dette er et punkt i kromasitetsdiagrammet. Den dominante bølgelengden er bølgelengden der en linje gjennom punktet for hvitt og punktet ( x, y ) skjærer kromasitetsdiagrammets kantlinje. C s er den dominerende bølgelengden for fargen C 1. C sp er den dominerende bølgelengden for fargen C 2. Fargemetning er et uttrykk for fargens renhet i forhold til den spektrale fargen som representeres på kromasitetsdiagrammets kantlinje. Med referanse til figuren over er fargemetningen for fargene C 1 og C 2 henholdsvis: CC CC og 1 2 s CC C C p
10 Side 10 av 11 d) Tristimulifargene R, G og B spenner ut en trekant i kromasitetsdiagrammet. Denne trekanten kalles en fargegamut. De fargene som kan representeres på monitoren, er de fargene som ligger inne i denne trekanten. Tristimulifargene R, G og B vil være noe forskjellige fra monitortype til monitortype og fra fabrikat til fabrikat. Derfor vil ikke fargegamutene helt overlappe. Farger som ikke felles for gamutene, kan ikke transformeres fra den ene til den andre monitoren. OPPGAVE 4 Synlige flater a) Painters algoritme går ut på å sortere polygonene som skal avbildes etter største avstand fra bildeplanet slik den polygonen som ligger bakerst blir tegnet først og de øvrige polygonene blir tegnet over i sortert rekkefølge. Bildelageret er på forhånd fylt med bakgrunnsfarge. I noen, ikke helt uvanlige tilfelle gir dette feil resultat. Nedenstående skisser er eksempler:
11 Side 11 av 11 b) Overlappsproblemet løses slik: 1. P er den polygonen som for øyeblikket er først i listen over sorterte polygoner 2. Før P eventuelt kan tegnes, må den testes mot hver av de øvrige polygonene som følger etter i listen 3. For polygon Q avbrytes testen så snart det kan svares ja på ett av de følgende spørsmålene: a. Er det fritt for overlapp av koordinater i z-retningen? b. Er det fritt for overlapp av koordinater i x-retningen? c. Er det fritt for overlapp av koordinater i y-retningen? d. Er P i sin helhet bak det planet som inneholder Q? Se figur 1. e. Er Q i sin helhet foran det planet som inneholder P? Se figur 2 f. Er projeksjonene av P og Q uten overlapp med hverandre? 4. Dersom ett av spørsmålene i punkt 3 ble besvart med ja, beholder P og Q sine relative posisjoner og P testes mot neste polygon i listen ved å starte på punkt 3 igjen. 5. Dersom ingen av spørsmålene i punkt 3 ble besvart med ja, kan det hende at P helt eller delvis blokkerer Q. Derfor stilles følgende to spørsmål. Dersom svaret på ett av dem er ja, sette Q inn som den første polygonen i listene over gjenværende polygon og ny testing startes med punkt 2 a. Er Q i sin helhet bak planet som inneholder P? Se figur 3. b. Er P i sin helhet foran det planet som inneholder Q? Se figur Dersom overlappsproblemet fortsatt ikke er løst, må en av polygonene splittes i mindre deler og testen fortsettes med de nye polygonene på rett plass i den sorterte listen. P er i sin helhet bak planet som Q ligger i Q ligger i sin helhet foran planet som inneholder P Q P Q P z Figur 1 x z Figur 2 x Q er i sin helhet bak planet som inneholder P P er i sin helhet foran planet som inneholder Q P Q P Q z Figur 3 x z Figur 4 x
EKSAMEN I EMNE TDT4230 VISUALISERING LØRDAG 18. DESEMBER 2004 KL Løsningsforslag
Side 1 av 12 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for fysikk, informatikk og matematikk Institutt for datateknikk og informasjonsvitenskap EKSAMEN I EMNE TDT4230 VISUALISERING LØRDAG
DetaljerKONTINUASJONSEKSAMEN I EMNE TDT4230 VISUALISERING TIRSDAG 9. AUGUST 2005 KL LØSNINGSFORSLAG
Side 1 av 8 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for fysikk, informatikk og matematikk Institutt for datateknikk og informasjonsvitenskap KONTINUASJONSEKSAMEN I EMNE TDT430 VISUALISERING
DetaljerKONTINUASJONSEKSAMEN I EMNE TDT4230 VISUALISERING MANDAG 15. AUGUST 2011 KL LØSNINGSFORSLAG
Side 1 av 8 KONTINUASJONSEKSAMEN I EMNE TDT4230 VISUALISERING MANDAG 15. AUGUST 2011 KL. 09.00 13.00 LØSNINGSFORSLAG OPPGAVE 1 Parametriske kurver a) En eksplisitt eller implisitt funksjon i tre variable
DetaljerEKSAMEN I EMNE TDT4230 VISUALISERING MANDAG 12. DESEMBER 2011 KL LØSNINGSFORSLAG
Side 1 av 7 EKSAMEN I EMNE TDT4230 VISUALISERING MANDAG 12. DESEMBER 2011 KL. 09.00 13.00 LØSNINGSFORSLAG OPPGAVE 1 Diverse om objektrepresentasjoner a) Likningen er: ( x y r ) z r (1) 2 2 2 2 2 axial
DetaljerEKSAMEN I EMNE TDT4230 VISUALISERING TIRSDAG 18. DESEMBER 2007 KL LØSNINGSFORSLAG
Side 1 av 10 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for fysikk, informatikk og matematikk Institutt for datateknikk og informasjonsvitenskap EKSAMEN I EMNE TDT40 VISUALISERING TIRSDAG
Detaljerd. Utviklingssteg for å utforme animasjonssekvenser:
Oppgave 1: Generelt a. Logisk inndeling av inputdata: Locator En enhet for å spesifisere en koordinatposisjon. Stroke En enhet for å spesifisere et sett med koordinatposisjoner. String En enhet for å spesifisere
DetaljerEKSAMEN I EMNE TDT4230 VISUALISERING TORSDAG 14. DESEMBER 2006 KL LØSNINGSFORSLAG
Side 1 av 12 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for fysikk, informatikk og matematikk Institutt for datateknikk og informasjonsvitenskap EKSAMEN I EMNE TDT4230 VISUALISERING TORSDAG
DetaljerLØSNINGSFORSLAG. Universitetet i Agder Fakultet for Teknologi og realfag. Dato: 03. desember 2009 Varighet: Antall sider inkl.
Universitetet i Agder Fakultet for Teknologi og realfag LØSNINGSFORSLAG Emnekode: Emnenavn: DAT2 Grafisk Databehandling Dato: 3. desember 29 Varighet: 9-3 Antall sider inkl. forside 8 Tillatte hjelpemidler:
DetaljerKONTINUASJONSEKSAMEN I EMNE TDT4230 VISUALISERING MANDAG 7. AUGUST 2006 KL LØSNINGSFORSLAG
Side 1 av 5 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for fysikk, informatikk og matematikk Institutt for datateknikk og informasjonsvitenskap KONTINUASJONSEKSAMEN I EMNE TDT4230 VISUALISERING
DetaljerEKSAMEN I EMNE TDT4230 VISUALISERING LØRDAG 10. DESEMBER 2005 KL
NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for fysikk, informatikk og matematikk Institutt for datateknikk og informasjonsvitenskap EKSAMEN I EMNE TDT4230 VISUALISERING LØRDAG 10. DESEMBER
DetaljerUniversitetet i Agder Fakultet for teknologi og realfag LØSNINGSFORSLAG. Dato: 11. desember 2008 Varighet: 0900-1300. Antall sider inkl.
Universitetet i Agder Fakultet for teknologi og realfag LØSNINGSFORSLAG Emnekode: Emnenavn: DAT2 Grafisk Databehandling Dato:. desember 28 Varighet: 9 - Antall sider inkl. forside 7 OPPGAVE. (2%) a) b)
DetaljerE K S A M E N S O P P G A V E
HØGSKOLEN I AGDER Fakultet for teknologi E K S A M E N S O P P G A V E EMNE: FAGLÆRER: DAT 2 Grafisk Databehandling Morgan Konnestad Klasse(r): 2DTM, 2DT, 2 Siving, DT Dato: 8.2.6 Eksamenstid, fra-til:
DetaljerLØSNINGSANTYDNING EKSAMEN
Universitetet i Agder Fakultet for teknologi og realfag LØSNINGSANTYDNING EKSAMEN Emnekode: Emnenavn: DAT Grafisk Databehandling Dato: 5. desember Varighet: 9 - Antall sider inkl. forside 8 Tillatte hjelpemidler:
DetaljerTDT4195 Bildeteknikk
TDT495 Bildeteknikk Grafikk Vår 29 Forelesning 5 Jo Skjermo Jo.skjermo@idi.ntnu.no Department of Computer And Information Science Jo Skjermo, TDT423 Visualisering 2 TDT495 Forrige gang Attributter til
DetaljerLØSNINGSANTYDNING. HØGSKOLEN I AGDER Fakultet for teknologi. DAT 200 Grafisk Databehandling. Ingen. Klasse(r): 2DTM, 2DT, 2 Siving, DT
HØGSKOLEN I AGDER Fakultet for teknologi LØSNINGSANTYDNING EMNE: FAGLÆRER: DAT 2 Grafisk Databehandling Morgan Konnestad Klasse(r): 2DTM, 2DT, 2 Siving, DT Dato: 5.2.5 Eksamenstid, fra-til: 9. - 3. Eksamensoppgaven
DetaljerComputer Graphics with OpenGL
Computer Graphics with OpenGL 2. Computer Graphics Hardware Plasmapaneler baserer seg på gass som satt under spenning vil emittere lys. LCD-skjermer baserer seg på at lys kan polariseres og at krystaller
DetaljerLøsningsforslag eksamen STE 6038 Geometrisk modellering 9/8 1995
Løsningsforslag eksamen STE 638 Geometrisk modellering 9/8 995. a) Vi skal bestemme hvilke av avbildningene/transformasjonene som er homeomorfier. f 4 6 Determinanten til matrisen er lik, dvs at den har
DetaljerKurs. Kapittel 2. Bokmål
Kurs 8 Kapittel 2 Bokmål D.8.2.1 1 av 4 Introduksjon til dynamisk geometri med GeoGebra Med et dynamisk geometriprogram kan du tegne og konstruere figurer som du kan trekke og dra i. I noen slike programmer
DetaljerEKSAMEN I EMNE TDT4195 BILDETEKNIKK TORSDAG 9. JUNI 2011 KL
Side av 5 EKSAMEN I EMNE TDT495 BILDETEKNIKK TORSDAG 9. JUNI 0 KL. 09.00 3.00 Oppgavestillere: Richard Blake Torbjørn Hallgren Kontakt under eksamen: Richard Blake tlf. 93683/96 0 905 Torbjørn Hallgren
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF3 Digital bildebehandling Eksamensdag : Onsdag. juni Tid for eksamen : 4:3 8:3 Oppgavesettet er på : 5 sider Vedlegg : Ingen
DetaljerRF5100 Lineær algebra Leksjon 10
RF5100 Lineær algebra Leksjon 10 Lars Sydnes, NITH 11. november 2013 I. LITT OM LYS OG FARGER GRUNNLEGGENDE FORUTSETNINGER Vi ser objekter fordi de reflekterer lys. Lys kan betraktes som bølger / forstyrrelser
Detaljera. Hva er de inverse transformasjonene avfølgende tre transformasjoner T, R og S: θ θ sin( ) cos( ) Fasit: 1 s x cos( θ) sin( θ) 0 0 y y z
Kommentar: Svar kort og konsist. Husk at eksamen har tre oppgaver. Poengene for hver (del-) oppgave bør gi en indikasjon på hvor me tid som bør benttes per oppgave. Oppgave 1: Forskjellige emner (40 poeng)
DetaljerForelesningsnotater SIF8039/ Grafisk databehandling
Forelesningsnotater SIF8039/ Grafisk databehandling Notater til forelesninger over: Kapittel 7: Implementation of a Renderer i: Edward Angel: Interactive Computer Graphics Vårsemesteret 00 Torbjørn Hallgren
DetaljerKONTINUASJONSEKSAMEN I EMNE TDT4230 VISUALISERING TIRSDAG 7. AUGUST 2007 KL LØSNINGSFORSLAG
Side av 7 NTNU Norges tenis-naturvitensapelige universitet Faultet for fysi, inforati og ateati Institutt for datateni og inforasjonsvitensap KONTINUASJONSEKSAMEN I EMNE TT23 VISUALISERING TIRSAG 7. AUGUST
DetaljerEksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt Antall oppgaver 6. Tillatte hjelpemidler Godkjent kalkulator
Oppgave 1 Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt 09.00-14.00 Antall oppgaver 6 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag a) Likningen
DetaljerTegning av tredimensjonale figurer parallell sentral perspektiv Parallell-projeksjoner grunnlinje horisontalprojeksjon vertikalprojeksjon
Tegning av tredimensjonale figurer Å tegne en tredimensjonal figur på et papirark byr på fundamentale prinsipielle problemer: Papiret er todimensjonalt, mens gjenstandene som skal avbildes, er tredimensjonal.
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 25. mars 2014 Tid for eksamen : 15:00 19:00 Oppgavesettett er på : 6 sider
DetaljerHØGSKOLEN I BERGEN Avdeling for ingeniørutdanning
HØGSKOLEN I BERGEN Avdeling for ingeniørutdanning Eksamen i SOD 165 Grafiske metoder Klasse : 3D Dato : 15. august 2000 Antall oppgaver : 4 Antall sider : 4 Vedlegg : Utdrag fra OpenGL Reference Manual
DetaljerE K S A M E N. Universitetet i Agder Fakultet for fakultet for Teknologi og realfag. Grafisk Databehandling
Universitetet i Agder Fakultet for fakultet for Teknologi og realfag E K S A M E N Emnekode: Emnenavn: DAT200 Grafisk Databehandling Dato: 23. November 2016 Varighet: 0900-1300 Antall sider inkl. forside
DetaljerFORSØK I OPTIKK. Forsøk 1: Bestemmelse av brytningsindeks
FORSØK I OPTIKK Forsøk 1: Bestemmelse av brytningsindeks Hensikt I dette forsøket skal brytningsindeksen bestemmes for en sylindrisk linse ut fra måling av brytningsvinkler og bruk av Snells lov. Teori
DetaljerInteraksjon mellom farger, lys og materialer
Interaksjon mellom farger, lys og materialer Etterutdanningskurs 2015. Lys, syn og farger - Kine Angelo Fakultet for arkitektur og billedkunst. Institutt for byggekunst, form og farge. Vi ser på grunn
DetaljerLøsningsforslag til øving 9
NTNU Institutt for Fysikk Løsningsforslag til øving 9 FY0001 Brukerkurs i fysikk Oppgave 1 a) Etter første refleksjon blir vinklene (i forhold til positiv x-retning) henholdsvis 135 og 157, 5, og etter
DetaljerEKSAMEN I FAG SIF8052 VISUALISERING MANDAG 21. MAI 2001 KL LØSNINGSFORSLAG
Sde 1 av 5 NTNU Norges teknsk-naturvtenskapelge unverstet Fakultet for fyskk, nformatkk og matematkk Insttutt for datateknkk og nformasjonsvtenskap EKSAMEN I FAG SIF8052 VISUALISERING MANDAG 21. MAI 2001
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF330 Metoder i grafisk databehandling og diskret geometri Eksamensdag: 3. desember 010 Tid for eksamen: 14.30 18.30 Oppgavesettet
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 28. mars 2007 Tid for eksamen : 13:30 16:30 Oppgavesettet er på : 4 sider
DetaljerTeksturering. Mer om Grafisk Databehandling. Et annet eksempel. Eksempel
Teksturering Mer om Grafisk Databehandling Øker detaljgraden uten å øke antall grafiske primitiver. Grafiske primitiver brukes som bærere for bilder (f.eks. fotografier). INF2340 / V04 2 Eksempel Et annet
DetaljerINF-MAT5370. Trianguleringer i planet (Preliminaries)
INF-MAT5370 Trianguleringer i planet (Preliminaries) Øyvind Hjelle oyvindhj@simula.no, +47 67 82 82 75 Simula Research Laboratory, www.simula.no August 23, 2009 Innhold Notasjon og terminologi Graf-egenskaper
DetaljerTo geometriske algoritmer, kap. 8.6
INF 4130, 18. november 2010 To geometriske algoritmer, kap. 8.6 Computational Geometry Stein Krogdahl Hovedkapittelet t (kap. 8) dreier seg generelt om devide-and-conquer eller splitt og hersk : Splitt
DetaljerEksamen i Geometrisk Modellering
Eksamen i Geometrisk Modellering STE6038 Sivilingeniørutdanningen ved Høgskolen i Narvik, Produktutformingsteknologi (1. PUT), 9. august 1995 Til denne eksamenen er alle skrevne hjelpemidler samt alle
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 4. juni 2008 Tid for eksamen : 14:30 17:30 (3 timer) Oppgavesettet er på
Detaljerkap. 8.6 Computational Geometry Hovedkapittelet (kap. 8) dreier seg generelt om devide-and-conquer eller splitt og hersk :
INF 4130, 17. november 2011 kap. 8.6 Computational Geometry Stein Krogdahl Hovedkapittelet (kap. 8) dreier seg generelt om devide-and-conquer eller splitt og hersk : Splitt problemet opp i mindre problemer.
DetaljerUNIVERSITETET I OSLO. Dette er et løsningsforslag
Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF231 Digital bildebehandling Eksamensdag : Onsdag 3. juni 29 Tid for eksamen : 14:3 17:3 Løsningsforslaget er på :
DetaljerDel 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerGeometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Geometri i skolen Geometri etter 4.
Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI 15-Apr-07 Geometri i skolen dreier seg blant annet om å analysere egenskaper ved to- og tredimensjonale
DetaljerEksamen i Geometrisk Modellering
Eksamen i Geometrisk Modellering STE6081 Sivilingeniørutdanningen ved Høgskolen i Narvik, Data/IT og Ingeniørdesign, 10.mars 2000 Til denne eksamenen er godkjente formelsamlinger samt alle typer kalkulatorer
DetaljerLøsningsforslag nr.1 - GEF2200
Løsningsforslag nr.1 - GEF2200 i.h.h.karset@geo.uio.no Oppgave 1: Bølgelengder og bølgetall a) Jo større bølgelengde, jo lavere bølgetall. b) ν = 1 λ Tabell 1: Oversikt over hvor skillene går mellom ulike
DetaljerTDT4225 Lagring og behandling av store datamengder
Eksamensoppgave i TDT4225 Lagring og behandling av store datamengder Fredag 2. desember 2011, kl. 0900-1300 Oppgaven er utarbeidet av faglærer Kjell Bratbergsengen og kvalitetssikrer Svein-Olaf Hvasshovd
DetaljerLinjegeometri. Kristian Ranestad. 3. Januar 2006
3. Januar 2006 Konveksitet Hva er en konveks mengde med punkter? En punktmengde er konveks dersom alle linjestykkene med endepunkter i mengden er helt inneholdt i mengden. Eksempler: Et linjestykke (den
Detaljer1. En tynn stav med lengde L har uniform ladning λ per lengdeenhet. Hvor mye ladning dq er det på en liten lengde dx av staven?
Ladet stav 1 En tynn stav med lengde L har uniform ladning per lengdeenhet Hvor mye ladning d er det på en liten lengde d av staven? A /d B d C 2 d D d/ E L d Løsning: Med linjeladning (dvs ladning per
DetaljerGeoGebraøvelser i geometri
GeoGebraøvelser i geometri av Peer Andersen Peer Andersen 2014 Innhold Innledning... 3 Øvelse 1. Figurer i GeoGebra... 4 Øvelse 2. Noen funksjoner i GeoGebra... 8 Øvelse 3. Omskrevet sirkelen til en trekant...
DetaljerMidtveiseksamen Løsningsforslag
INSTITUTT FOR INFORMATIKK, UNIVERSITETET I OSLO Midtveiseksamen Løsningsforslag INF2310 - Digital Bildebehandling Eksamen i: INF2310 - Digital Bildebehandling Eksamensdag: Tirsdag 21. mars 2017 Tidspunkt
DetaljerTMA4100 Matematikk1 Høst 2008
TMA400 Matematikk Høst 008 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 4 4..3 Vi skal finne absolutt maksimum og absolutt minimum verdiene for funksjonen
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Fredag 29. mars 2019 Tid for eksamen : 14:30 18:30 (4 timer) Oppgavesettet er
DetaljerEKSAMEN I EMNE TDT4195 BILDETEKNIKK ONSDAG 3. JUNI 2009 KL. 09.00 13.00
Side 1 av 5 EKSAMEN I EMNE TDT4195 BILDETEKNIKK ONSDAG 3. JUNI 2009 KL. 09.00 13.00 Oppgavestillere: Kvalitetskontroll: Richard Blake Jo Skjermo Torbjørn Hallgren Kontakt under eksamen: Richard Blake tlf.
DetaljerEksamen R2, Våren 2011 Løsning
R Eksamen, Våren 0 Løsning Eksamen R, Våren 0 Løsning Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (8 poeng) a) Deriver funksjonene
DetaljerINNHOLD SAMMENDRAG GEOMETRI
INNHOLD GEOMETRI... 3 LINJE, STRÅLE OG LINJESTYKKE... 3 VINKEL... 3 STUMP, SPISS OG RETT VINKEL... 3 TOPPVINKLER... 4 NABOVINKLER... 4 SAMSVARENDE VINKLER... 4 OPPREISE EN NORMAL FRA ET PUNKT PÅ EN LINJE...
DetaljerGeoGebra for Sinus 2T
GeoGebra for Sinus 2T Innhold Vektorer med GeoGebra Skalarproduktet med GeoGebra Parameterframstilling med GeoGebra Ordnede utvalg eksempelet på side 89 med GeoGebra Uordnede utvalg eksempelet på side
DetaljerLøsningsforslag Eksamen 1MY - VG mai 2007
Løsningsforslag Eksamen 1MY - VG1341-4. mai 2007 eksamensoppgaver.org September 15, 2008 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 1MY er gratis, og det er lastet ned på eksamensoppgaver.org.
DetaljerEksamen MA-104 Geometri, 22. mai 2006
Eksamen M-0 Geometri,. mai 006 Oppgave På svarark er tegnet en figur sett ovenfra og fra siden. Figuren består av en trekant som ligger i grunnplanet, samt et rett linjestykke DE ( flaggstang ) som står
DetaljerEKSAMEN I EMNE TDT4195/SIF8043 BILDETEKNIKK ONSDAG 19. MAI 2004 KL
Side 1 av 5 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap EKSAMEN I EMNE TDT4195/SIF8043
DetaljerEksamen AA6524 Matematikk 3MX Elevar/Elever AA6526 Matematikk 3MX Privatistar/Privatister. Nynorsk/Bokmål
Eksamen 05.12.2007 AA6524 Matematikk 3MX Elevar/Elever AA6526 Matematikk 3MX Privatistar/Privatister Nynorsk/Bokmål Oppgave 1 a) Deriver funksjonen: f x 2 ( ) = cos( x + 1) b) Løs likningen og oppgi svaret
Detaljer1 Introduksjon GeoGebra 2 Speiling, rotasjon og parallellforskyvning 3 Perspektivtegning 4 Symmetriakser
1 Geometri i kunsten: 1 Introduksjon GeoGebra 2 Speiling, rotasjon og parallellforskyvning 3 Perspektivtegning 4 Symmetriakser MKH GeoGebra - Geometri i kunsten Innhold 1 Introduksjon GeoGebra... 1 1.1
DetaljerEksamen MAT1013 Matematikk 1T Va ren 2014
Eksamen MAT1013 Matematikk 1T Va ren 014 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform,5 10 3,0 10 15 5 15 ( 5) 10,5 3,0 10 7,5 10 Oppgave ( poeng) Regn ut og skriv svaret så enkelt som mulig
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MEK4550 Elementmetoden i faststoffmekanikk I. Eksamensdag: Mandag 17. desember 2007. Tid for eksamen: 14.0 17.0. Oppgavesettet
DetaljerEksamen R2, Høsten 2015, løsning
Eksamen R, Høsten 05, løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) Deriver funksjonene a) f( ) 5cos( ) f 5 sin 0sin
DetaljerFargebilder. Lars Vidar Magnusson. March 12, 2018
Fargebilder Lars Vidar Magnusson March 12, 2018 Delkapittel 6.1 Color Fundamentals Delkapittel 6.2 Color Models Delkapittel 6.3 Bildeprosessering med Pseudofarger Delkapittel 6.4 Prosessering av Fargebilder
DetaljerPlangeometri Romgeometri Høyere dimensjoner. Vinkler. Arne B. Sletsjøe. Universitetet i Oslo. Faglig-pedagogisk dag, 1.
Universitetet i Oslo Faglig-pedagogisk dag, 1. november 2012 Plangeometri Vinkelsummen i en plan trekant er 180 grader eller π. Vinkelsummen i en firkant er 2π. Proposisjon For en mangekant med vinkler
DetaljerStatistikk for språk- og musikkvitere 1
Statistikk for språk- og musikkvitere 1 Mitt navn: Åsne Haaland, Vitenskapelig databehandling USIT Ikke nøl, avbryt med spørsmål! Hva oppnår en med statistikk? Få oversikt over data: typisk verdi, spredning,
Detaljer2D Transformasjoner (s. 51 i VTK boken) Translasjon. Del 2 Grafisk databehandling forts. Rotasjon. Skalering. y x = x + d x, y = y + d y.
2D Transformasjoner (s. i VTK boken) Translasjon Del 2 Grafisk databehandling forts. (, ) = + d, = + d På matriseform: d d (, ) P =, P =, T = d d P = P + T 24/2-3 IN229 / V3 / Dag 6 2 Skalering Rotasjon
DetaljerR2 eksamen høsten 2017 løsningsforslag
R eksamen høsten 017 løsningsforslag DEL 1 Uten hjelpemidler Oppgave 1 (5 poeng) Deriver funksjonene a) f x sin3x f x cos3x 3 6cos3x sin x x sin x x sin x x x cos x sin x g x x x b) gx h x x cos x c) h
DetaljerLøsningsforslag til ukeoppgave 13
Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 13 Oppgave 14.01 3 er innfallsvinkelen og 2 er refleksjonsvinkelen. b) Innfallsplanet er planet som den innfallende strålen og innfallsloddet
DetaljerINF 1040 høsten 2008: Oppgavesett 11 Farger (kapittel 15)
INF 1040 høsten 2008: Oppgavesett 11 Farger (kapittel 15) Fasitoppgaver Denne seksjonen inneholder innledende oppgaver hvor det finnes en enkel fasit bakerst i oppgavesettet. Det er ikke nødvendigvis meningen
DetaljerOppgaver MAT2500 høst 2011
Oppgaver MAT2500 høst 2011 31. oktober 2011 Oppgaver avsnitt 1 Oppgave 1. Bruk cosinussetningen til å se at definisjonen av vinkel i planet blir riktig. Oppgave 2. Vis at d(x, y) = 0 hvis og bare hvis
DetaljerMATEMATIKK FOR REALFAG PROGRAMFAG I STUDIESPESIALISERENDE UTDANNINGSPROGRAM
MATEMATIKK FOR REALFAG PROGRAMFAG I STUDIESPESIALISERENDE UTDANNINGSPROGRAM Fastsatt som forskrift av Utdanningsdirektoratet 27. mars 2006 etter delegasjon i brev 26. september 2005 fra Utdannings- og
DetaljerEKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014
EKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014 Matematikk R2 Oversikt over hovedområdene: Programfag Hovedområder Matematikk R1 Geometri Algebra Funksjoner Matematikk R2 Geometri Algebra Funksjoner
DetaljerSkalar-til-farge korrespondanse. Del 5 Visualisering av skalarfelt. Regnbue-skalaen
Skalar-til-farge korrespondanse Del 5 Visualisering av skalarfelt Skalar-intervallet i datasettet korresponderer med en fargeskala s max egnbue ød til Gråtoner s min Sort/hvitt utskrift! INF340/ V04 For
DetaljerKarakterer. Kapittel Homomorfier av grupper. 8.2 Representasjoner
Kapittel 8 Karakterer 8. Homomorfier av grupper I forrige kapittel definerte vi begrepet abstrakt gruppe, som en abstrakt versjon av begrepet symmetrigruppe. For å studere forbindelsen mellom abstrakte
DetaljerDEL 1. Uten hjelpemidler. er a2 4 og a5 13. a) Bestem den generelle løsningen av differensiallikningen.
DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Deriver funksjonene a) f( x) cos( x ) b) g( x) x sin x Oppgave (5 poeng) Bestem integralene a) b) c) (4 3 ) d x x x 4 ln d 1 0 x x x x dx 4 x Oppgave 3 (3 poeng)
DetaljerEksempeloppgåve/ Eksempeloppgave Desember 2007
Eksempeloppgåve/ Eksempeloppgave Desember 007 REA30 Matematikk R Programfag Nynorsk/Bokmål Del Oppgave a) Deriver funksjonene ) ln ) g x f x x x 3e x b) Bestem følgende grenseverdi, dersom den eksisterer:
DetaljerOppgavesett. Kapittel Oppgavesett 1
Kapittel 9 Oppgavesett Dette kapitlet består av fire oppgavesett med oppgaver fra alle deler av kompendiet. 9. Oppgavesett Oppgave. Et dynamisk system er gitt ved x n+ = M x n der M er -matrisen.6.. M
DetaljerR2 eksamen våren 2017 løsningsforslag
R eksamen våren 07 løsningsforslag DEL Uten hjelpemidler Oppgave (5 poeng) Deriver funksjonene a) f 3sin cos f 3cos sin 3cos sin b) g cos uv uv uv der u og v cos Vi bruker produktregelen for derivasjon
DetaljerFamiliematematikk MATTEPAKKE 6. Trinn
Familiematematikk MATTEPAKKE 6. Trinn May Renate Settemsdal og Ingvill Merete Stedøy Aktiviteter Multisjablong Denne plata inneholder maler til mangekanter, alt fra tre- til tolv-kanter. Malen legges
DetaljerInnlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 2014 kl. 14 Antall oppgaver: 13
Innlevering FO99A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 014 kl. 14 Antall oppgaver: 13 Løsningsforslag 1 Finn volumet til tetraederet med hjørner O(0,
Detaljer4 Matriser TMA4110 høsten 2018
Matriser TMA høsten 8 Nå har vi fått erfaring med å bruke matriser i et par forskjellige sammenhenger Vi har lært å løse et lineært likningssystem ved å sette opp totalmatrisen til systemet og gausseliminere
DetaljerAnalytisk geometri med dynamiske geometriverktøy
Henning Bueie Analytisk geometri med dynamiske geometriverktøy Dynamiske geometriverktøy er en samlebetegnelse på digitale konstruksjonsverktøy som har den egenskapen at du i etterkant av å ha plassert
DetaljerFørst litt repetisjon
Først litt repetisjon En relasjon er en mengde av verdipar, der første koordinaten a er fra mengden A og andrekoordinaten b er fra mengden B. Verdiparet beskriver en forbindelse (en relasjon) fra a til
DetaljerMAT 1110: Obligatorisk oppgave 1, V-07: Løsningsforslag
1 MAT 111: Obligatorisk oppgave 1, V-7: Løsningsforslag Oppgave 1. a) Vi deriverer på vanlig måte: ( e (sinh x) x e x ) = = ex + e x = cosh x, ( e (cosh x) x + e x ) = = ex e x = sinh x Enkel algebra gir
DetaljerForelesningsnotater SIF8039/ Grafisk databehandling
Forelesningsnotater SIF839/ Grafisk databehandling Notater til forelesninger over: Kapittel 4: Geometric Objects and ransformations i: Edward Angel: Interactive Computer Graphics Vårsemesteret 22 orbjørn
DetaljerTrianguleringer i planet.
Trianguleringer i planet. Preliminaries Notasjon og teminologi Graf-egenskaper med trianguleringer i planet Enkle trianguleringsalgoritmer 1 Punkter og domener. Vi starter med et sett punkter i planet
DetaljerInnlevering i FORK Matematikk forkurs OsloMet Obligatorisk innlevering 3 Innleveringsfrist Onsdag 14.november 2018 kl. 10:30 Antall oppgaver: 13
Innlevering i FORK00 - Matematikk forkurs OsloMet Obligatorisk innlevering Innleveringsfrist Onsdag 4.november 08 kl. 0:0 Antall oppgaver: Bestem vinkelen mellom vektorene u = [, 7] og v = [4, 5]. Hva
DetaljerTMA4105 Matematikk 2 vår 2013
TMA4105 Matematikk vår 013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving Alle oppgavene er fra læreboka Merk: I løsningene til alle oppgavene fra seksjon
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF230 Digital bildebehandling Eksamensdag : Onsdag 6. juni 202 Tid for eksamen : 09:00 3:00 Oppgavesettet er på : 6 sider Vedlegg
DetaljerDelprøve 1. 1) Finn eventuelle topp-, bunn- og terrassepunkter på grafen til g. 2) Finn eventuelle vendepunkter på grafen til g. Tegn grafen.
Delprøve OPPGAVE a) Deriver funksjonen ( ) = x f x e x b) Gitt funksjonen 4 3 ( ) = 4 g x x x ) Finn eventuelle topp-, bunn- og terrassepunkter på grafen til g. ) Finn eventuelle vendepunkter på grafen
DetaljerR2 eksamen våren 2018 løsningsforslag
R eksamen våren 08 løsningsforslag DEL Uten hjelpemidler Oppgave ( poeng) Deriver funksjonene a) f ( x) = cos ( x ) f ( x) = sin( x ) = sin( x ) b) g ( x) = x sin x g ( x) = sin x + x cos x = sin x + x
DetaljerVisualiseringsdelen - Oppsummering
Visualiseringsdelen - Oppsummering Fenomen/prosess Visualisering i inf2340 Måling Mat. modell Simulering inf2340 - Simuleringsdelen inf2340 - Visualiseringsdelen 1.23E-08 2.59E-10 3.04E-08 3.87E-09 7.33E-06
DetaljerKurshefte GeoGebra. Barnetrinnet
Kurshefte GeoGebra Barnetrinnet GeoGebra Geometri og algebra Dynamisk geometriverktøy Algebraisk verktøy Gratis Brukes på alle nivåer i utdanningssystemet Finnes på både bokmål og nynorsk Kan lastes ned
Detaljer3D modul for syntetisk kalkulator
av Geir Borgi Glenn Ole Haugen Dag Asle Johansen Masteroppgave i informasjons og kommunikasjonsteknologi Høgskolen i Agder Fakultet for teknologi Grimstad mai 2006 SAMMENDRAG ActionScript er et språk som
DetaljerGeogebra er viktig i dette kapitlet, samt passer, linjal, blyant og viskelær! Tommy og Tigern:
Tempoplan: Etter dette kapitlet repetisjon og karaktergivende prøver! 7: Geometri Kunnskapsløftet de nye læreplanene legger vekt på konstruksjon av figurer! I utgangspunktet kan det høres ganske greit
DetaljerSnu rundt. Snu rundt og gjenta stegene 1-6.
1 av 5 Tetraederet Tetraederet har fire trekantede flater og er det minste platonske legemet. Det har 7 symmetriakser. Platon trodde det representerte elementet ild. Mange molekyler har atomene sine ordnet
DetaljerNiels Henrik Abels matematikkonkurranse Løsninger
Niels Henrik Abels matematikkonkurranse 20 202 Løsninger Finale 8 mars 202 Oppgave a (i) Om Berit veksler to femkroner og en tjuekrone til tre tikroner, og så to femkroner og tre tikroner til to tjuekroner,
Detaljer