Skalar-til-farge korrespondanse. Del 5 Visualisering av skalarfelt. Regnbue-skalaen
|
|
- Johanna Jenssen
- 8 år siden
- Visninger:
Transkript
1 Skalar-til-farge korrespondanse Del 5 Visualisering av skalarfelt Skalar-intervallet i datasettet korresponderer med en fargeskala s max egnbue ød til Gråtoner s min Sort/hvitt utskrift! INF340/ V04 For en gitt fargemodell kan vi uttrykke dette vha. en funksjon for hver av komponentene G egnbue-skalaen G farge G HSV fiolett lyse grønn gul rød S, V Gr Gul skalarverdi H L fiolett lyse grønn gul rød F INF340/ V04 3 INF340/ V04 4
2 lå-til-rød-skalaen, G lå-til-rød-skalaen, HSV G mørk fiolett! rød S, V Gr Gul H L G fiolett rød F fiolett rød INF340/ V04 5 INF340/ V04 6 lå-til-gul-skalaen, G lå-til-gul-skalaen, HSV, G H S V grå! gul grå! gul, G V H S hvit! rød hvit! gul INF340/ V04 7 INF340/ V04 8
3 Fargelegging Et punkt P i objektrommet kan assosieres med: En skalarverdi S fra et underliggende datasett. En farge F(S). Et grafisk primitiv som inneholder P vil kunne fargelegges med F(S) i P. F(S 3 ) Tilfelle Skalarverdien i det ene hjørnet brukes til fargelegging av alle hjørner (jmf. flat sjattering!) F(S ) INF340/ V04 9 F(S ) INF340/ V04 0 Tilfelle Fargevariasjon internt i det grafiske primitivet (jmf. Gouraud sjattering!) INF340/ V04 INF340/ V04 3
4 INF340/ V04 3 INF340/ V04 4 Forskyvning av geometri som funksjon av skalarverdi Skalar = m.o.h. Forskyvningsretning = (0, 0, ) Konturering : Isokurver Datasettet er en flate (topologisk D, trenger ikke ligge i et plan!). Isokurver er kurver som passerer gjennom punkter med (tilnærmet) lik skalarverdi. Eksempler: isobarer og isotermer på værkart høydekurver på orienteringskart kystkonturer på en globus INF340/ V04 5 INF340/ V04 6 4
5 En konturerings-algoritme må essensielt trekke linjestykker mellom sidekantene på cellene i gitteret. Hver skalarverdi er enten over eller under terskelverdien (isoverdien) for konturen. De eksakte skjæringspunktene beregnes ved interpolasjon. Her er terskelverdien 5: Algoritme Følg hver enkelt konturkurve fra celle til celle inntil den ) havner utenfor gitteret, eller ) biter seg selv i halen. Ta vare på linjestykkene underveis. Utfordringer: Hvordan finne passelige startpunkter for de ulike kurvene? Hvordan holde de ulike kurvene fra hverandre? INF340/ V04 7 INF340/ V04 8 Algoritme : Marching Squares Trekanter vs. firkanter Identifiser de topologisk ulike måtene kurver kan passere gjennom en (firkant-) celle på: = på den ene siden av terskelverdien (over eller under) = på den andre siden av terskelverdien (under eller over) "Marsjer" systematisk gjennom alle cellene. ruk den topologiske klassifikasjonen til å regne ut hvilke linjestykker hver enkelt celle bidrar med. terskelverdi =.5 INF340/ V04 9 INF340/ V04 0 5
6 Fargelegging vs. isokurver (på flater) Fargelegging gir en "røff" visualisering av fordelingen av hele skalarfeltet. Isokurver gir en presis visualisering av et endelig antall skalarverdier. De to metodene kan med fordel kombineres! For volumetriske (3D) datasett korresponderer fargelegging med direkte volumavbilding (senere!) isokurver med isoflater (neste side!) Konturering : Isoflater Datasettet er et volum (topologisk 3D). Isoflater er flater som passerer gjennom punkter med (tilnærmet) lik skalarverdi. Eksempel: isoflater INF340/ V04 INF340/ V04 Algoritme : Marching Cubes Kontur-tvetydighet på flater 3D generalisering av Marching Squares. Avgjør hvilke trekanter som skjærer hver (kubiske) celle. Likeverdige! INF340/ V04 3 INF340/ V04 4 6
7 Kontur-tvetydighet i volum Kan gi hull i isoflaten! Kan løses med litt omtanke! Snittflater Datasettet er et volum (topologisk 3D). Skalarverdiene på en snittflate hentes fra volumet og visualiseres som farger og/eller isokurver. Eksempel: "snittflater" med konstant skalarverdi! snittflater med varierende skalarverdi INF340/ V04 5 INF340/ V04 6 Forskyvning av geometri som funksjon av vektorverdi Del 6 Visualisering av vektorfelt Vektor = (0, 0, m.o.h.) INF340/ V04 8 7
8 Piler ("hedgehog") Vektorene vises eksplisitt som piler etc. Trajektorier Vektorfeltet visualiseres implisitt i form av kurver som tenkte, masseløse partikler vil flyte (sveve) langs. Fordel: Eksakt gjengivelse av vektorene i underliggende datasett. Ulemper: Ser ikke alle vektorer like bra hvis forskjellen mellom min. og maks. lengde er stor. Ofte uegnet i 3D (virvar!). Fordel: Gir en god kvalitativ forståelse. Færre grafiske primitiver. Ulempe: Kan lure oss (hvis vi ikke er forsiktige!) INF340/ V04 9 INF340/ V04 30 Strømning i blodårer INF340/ V04 3 INF340/ V04 3 8
9 Flyt av væske i rør med virvel i starten (men hvor er virvelen?!) INF340/ V04 33 INF340/ V04 34 En trajektorie beregnes som en sekvens av punkter: Visualisering : Trekk linjestykker mellom nabopunkter. Visualisering : Flytt et lite objekt ("partikkel") gradvis fra punkt til punkt ( animasjon!). Spørsmål: Hvordan kan vi visualisere endring i partikkelhastighet med den første metoden? INF340/ V04 35 INF340/ V
10 Hvordan beregne neste punkt i sekvensen? P i dt dy P i+ =? dx dt = P i P i+ V = vektoren i P i (beregnes om nødvendig ved interpolasjon!) Da har vi: dx = Vdt (Egentlig: dx = V x dt, dy = V y dt) Observasjon: Desto mindre dt er desto mindre feil risikerer vi! Observasjon Posisjonen ved tid t kan skrives som et integral (sum av "uendelig små" vektorer): x(t) = Vdt t Kan løses numerisk (sum av et endelig antall vektorer): x i+ = x + W j t Σj = i W t x W t W i t x i+ OK! Ikke OK! INF340/ V04 37 W i t = mer eller mindre god tilnærming til vektoren vi burde flytte oss langs i posisjon 'i'! INF340/ V04 38 Generell formel: x 0 = vilkårlig startpunkt x i+ = x i + W i t, i 0 Metode, Euler: W i t = V i t xi+ V i V i+ x i t = Metode, unge-kutta: Eu W i t = ½(V i + V i+ ) t Eu x i+ V i Eu V i+ x i+ edre tilnærming! x i t = INF340/ V
Visualiseringsdelen - Oppsummering
Visualiseringsdelen - Oppsummering Fenomen/prosess Visualisering i inf2340 Måling Mat. modell Simulering inf2340 - Simuleringsdelen inf2340 - Visualiseringsdelen 1.23E-08 2.59E-10 3.04E-08 3.87E-09 7.33E-06
DetaljerDel 1: Introduksjon til VTK. Visualiseringsdelen - Oppsummering. Del 2: Grafisk databehandling. "Visualization Pipeline" "Rendering Pipeline"
Del 1: Introduksjon til VTK Visualiseringsdelen - Oppsummering INF2340 / V04 2 vtkrenderwindow vtkrenderer Del 2: Grafisk databehandling INF2340 / V04 3 INF2340 / V04 4 1 Lysogfarge ñ ÿ yets oppfattelse
DetaljerFunksjonell (dataflyt-) modell. Del 3 "Visualization Pipeline" Sammenkobling i praksis. Prosess- og data-objekter. Transformasjon. Representasjon (mer
Funksjonell (dataflt-) modell Del 3 "Visualization Pipeline" Transformasjon Konvertere data fra opprinnelig form til grafiske primitiver (tpisk gjennom flere ledd) Representasjon (mer om dette i neste
DetaljerSimulering i IN229. INF2340 Våren 2004 Oversikt over innhold. Del 2: Endelige differanser. Del 1: MyVector. Del 3: ODESolver. Del 4: Bølgeligning
Simulering i IN229 INF2340 Våren 2004 Oversikt over innhold Fysisk problem Ex: Svingende streng Vannbølger Varme i jordskorpen Matematisk modell Ex: ODE Bølgeligning Varmeligning Simulatorkode Proseduralt
DetaljerPartieltderiverte og gradient
Partieltderiverte og gradient Kap 2 Matematisk Institutt, UiO MEK1100, FELTTEORI OG VEKTORANALYSE våren 2009 Framstilling Kommentarer, relasjon til andre kurs Struktur Mye er repitisjon fra MAT1100, litt
DetaljerEKSAMEN I NUMERISK MATEMATIKK(TMA4215) Lørdag 20. desember 2003 Tid: 09:00 14:00, Sensur:
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Navn: Brynjulf Owren (9264) EKSAMEN I NUMERISK MATEMATIKK(TMA425) Lørdag 2. desember
DetaljerIntegraler. John Rognes. 15. mars 2011
15. mars 2011 forener geometrisk målbare områder Ω og skalarfelt f : Ω R definert på disse områdene. Vi danner produktet f (Ω) Ω av verdien f (Ω) av funksjonen og størrelsen Ω av området. Mer presist deler
DetaljerBesvarelse av obligatorisk oppgave 2 i IN229. Oppgave 1. Oppgaven bestod i å visualisere et vektorfelt g avledet av gradienten f til et
Besvarelse av obligatorisk oppgave 2 i IN229. Oppgaven bestod i å visualisere et vektorfelt g avledet av gradienten f til et skalarfelt f(x, y, z). Oppgaven består av fire deler:. Beregning av gradienten
DetaljerMA0003-8. forelesning
Implisitt derivasjon og 31. august 2009 Outline Implisitt derivasjon 1 Implisitt derivasjon 2 Outline Implisitt derivasjon 1 Implisitt derivasjon 2 Outline Implisitt derivasjon 1 Implisitt derivasjon 2
DetaljerKart og andre umodne objekter
Figur 5-. Ogdens trekant Kart og andre umodne objekter Thoughts of Reference Begreper Person Bil Døgn Gerhard Skagestein David Skogan Fozia Jabeen Arif Shomaila Kausar 8765487 DF 45 9. febr. --9 Symbol
DetaljerHvordan lage et sammensatt buevindu med sprosser?
Hvordan lage et sammensatt buevindu med sprosser? I flere tilfeller er et vindu som ikke er standard ønskelig. I dette tilfellet skal vinduet under lages. Prinsippene er de samme for andre sammensatte
DetaljerOppgaver og fasit til seksjon
1 Oppgaver og fasit til seksjon 3.1-3.3 Oppgaver til seksjon 3.1 1. Regn ut a b når a) a = ( 1, 3, 2) b = ( 2, 1, 7) b) a = (4, 3, 1) b = ( 6, 1, 0) 2. Finn arealet til parallellogrammet utspent av a =
DetaljerRandkurva C til flata S orienteres positivt sett ovenfra, og kan parametriseres ved: r (t) = [ sin t, cos t, sin t] dt, 0 t 2π.
Ma - Løsningsforslag til uke 17 i 7 Eks. mai 1999 oppgave 4 ylinderen x + y = 1 skjærer ut ei flate av planet z = x + 1 dvs. x + z = 1 med enhetsnormal i positiv z-retning lik n= 1 [ 1 1]. Flata blir en
Detaljer(t) = [ 2 cos t, 2 sin t, 0] = 4. Da z = 2(1 + t) blir kurva C en helix/ei skruelinje på denne flata (se fig side 392).
Ma - Løsningsforslag til uke 5 i 7 Eks. mai 994 oppgave Romkurva er parametrisert for t [, π] ved r (t) = [ + cos t, + sin t, + t ] Hastighets- og akselerasjonsvektorene blir v = r (t) = [ sin t, cos t,
DetaljerMAT1140: Kort sammendrag av grafteorien
MAT1140: Kort sammendrag av grafteorien Dette notatet gir en kort oversikt over den delen av grafteorien som er gjennomgått i MAT1140 høsten 2013. Vekten er på den logiske oppbygningen, og jeg har utelatt
DetaljerEKSAMENSOPPGÅVE. Tilletne hjelpemiddel: Godkjend kalkulator og formelsamling og 2 eigne A4-ark (4 sider totalt)
EKSAMENSOPPGÅVE/EKSAMENSOPPGAVE EKSAMENSOPPGÅVE Eksamen i: MAT-1003 Kalkulus 3 Dato: Tirsdag 17. 1.013 Tid: Kl 09:00 13:00 Stad: Åsgårdveien 9 Tilletne hjelpemiddel: Godkjend kalkulator og formelsamling
DetaljerFjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd med dempningskoeffisient b til en harmonisk oscillator.
Oppgave 1 a) Ei ideell fjær har fjærkonstant k = 2.60 10 3 [N/m]. Finn hvilken kraft en må bruke for å trykke sammen denne fjæra 0.15 [m]. Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd
DetaljerAnbefalte oppgaver - Løsningsforslag
TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 7 15.1.3: Siden vektorfeltet er gitt ved F(x, y) = yi + xj må feltlinjene tilfredstille differensiallikningen eller y = x y, ( ) 1 2 y2 = x.
DetaljerTillegg om flateintegraler
Kapittel 6 Tillegg om flateintegraler 6.1 Litt ekstra om flateintegraler I kompendiet har vi definert flateintegraler som grenseoverganger for diskretiseringer. Har vi en flate kan vi representere den
DetaljerEksamen, høsten 13 i Matematikk 3 Løsningsforslag
Eksamen, høsten 3 i Matematikk 3 Løsningsforslag Oppgave. a) Fra ligningen x 5 + y 3 kan vi lese ut store og lille halvakse a 5 og b 3. Fokus til senter avstanden er da gitt ved c a b 5 3 5 9 6 4. ermed
DetaljerVi regner først ut de nødvendige partiellderiverte for å se om vektorfeltet er konservativt. z = 2z, F 2 F 2 z = 2y, F 3. x = 2x, F 3.
TMA415 Matematikk Vår 15 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 7 Alle oppgavenummer refererer til 8. utgave av Adams & Essex alculus: A omplete
DetaljerEksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger
Institutt for matematiske fag Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Faglig kontakt under eksamen: Anton Evgrafov Tlf: 4503 0163 Eksamensdato: 06. juni 2016 Eksamenstid (fra
DetaljerEKSAMENSOPPGAVE. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA Hvis JA: ca. kl.10:00 og 12:00
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: MAT-1003 Kalkulus 3 Dato: Tirsdag 1.1.017 Klokkeslett: 09:00-13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Pedersen et al.: Teknisk
DetaljerNewtons lover i én dimensjon
Newtons lover i én dimensjon.01.014 Interessert å være studentrepresentant for YS-MEK kurset? ta kontakt med meg. YS-MEK 1110.01.014 1 Bok på bordet Gravitasjon virker på boken om den ligger på bordet
DetaljerLøsningsforslag. Prøve i Matematikk 1000 BYFE DAFE 1000 Dato: 29. mai 2017 Hjelpemiddel: Kalkulator og formelark. Oppgave 1 Gitt matrisene.
Prøve i Matematikk BYFE DAFE Dato: 29. mai 27 Hjelpemiddel: Kalkulator og formelark Løsningsforslag Oppgave Gitt matrisene A = 2 2 B = [ 2 3 4 ] og C = Regn ut, om mulig, summene A + B, A + B T og A +
DetaljerKul geometri - volum og overflate av kulen
Kul geometri - volum og overflate av kulen Helmer Aslaksen Institutt for lærerutdanning og skoleforskning/matematisk institutt Universitetet i Oslo helmer.aslaksen@gmail.com www.math.nus.edu.sg/aslaksen/
DetaljerLøsningsforslag til eksamen i TMA4105 matematikk 2,
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av Løsningsforslag til eksamen i TMA45 matematikk, 9.5.4 Oppgave La fx, y, z) xy + arctanxz). La P være punktet,, ). a)
DetaljerObligatorisk oppgåve 1
FYS112 Elektromagnetisme 214 Obligatorisk oppgåve 1 Innleveringsfrist 19. september kl. 23.59 Lars Kristian Henriksen 21. oktober 214 Obligar i FYS112 leverast elektronisk på Devilry http://devilry.ifi.uio.no/.
Detaljer2 n+2 er konvergent eller divergent. Observer først at; 2n+2 2 n+2 = n=1. n=1. 2 n > for alle n N. Denne summen er.
MA2 Vår 28 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag 9.2.9 Ønsker å finne ut om 3+ 2 n+2 er konvergent eller divergent. Observer først at; 3 + 2 n 2 n+2 = ( 3 ) + +2
DetaljerVelkommen til MEK1100
Velkommen til MEK1100 Matematisk institutt, UiO MEK1100 FELTTEORI OG VEKTORANALYSE Våren 2016 Foreleser: Karsten Trulsen Øvingslærere: Susanne Støle Hentschel (2 grupper), Lars Magnus Valnes (2 grupper),
DetaljerArne B. Sletsjøe. Oppgaver, MAT 1012
Arne B. Sletsjøe Oppgaver, MAT 101 1 En-variabel kalkulus 1.1 I de følgende oppgavene, i) finn alle kritiske punkter til f(x), ii) beskriv monotoniegenskapene til funksjonene ved å se på fortegnet til
Detaljer. 2+cos(x) 0 og alle biter som inngår i uttrykket er kontinuerlige. Da blir g kontinuerlig i hele planet.
MA 1410: Analyse Uke 47, 001 http://home.hia.no/ aasvaldl/ma1410 H01 Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave 11.1: 7. f(x, y) = 1 16 x y. a) Definisjonsområde D: f
DetaljerObligatorisk oppgave MAT-INF Lars Kristian Henriksen UiO
Obligatorisk oppgave MAT-INF 1100 Lars Kristian Henriksen UiO November 6, 013 Oppgave 1 a) Den generelle tilnærmingen med sekantmetoden: I vårt tilfelle, der a(t) = v (t) får vi f (t) f(t + ) f(t) v (t)
DetaljerNewtons lover i én dimensjon
Newtons lover i én dimensjon 3.01.018 snuble-gruppe i dag, kl.16:15-18:00, Origo FYS-MEK 1110 3.01.018 1 Hva er kraft? Vi har en intuitivt idé om hva kraft er. Vi kan kvantifisere en kraft med elongasjon
DetaljerLøsning IM3 15.06.2011.
Løsning IM 15611 1 Oppgave 1 Innsetting viser at både teller og nevner er i origo, så uttrykket er ubestemt Siden det ikke er noen umiddelbar omskriving som forenkler uttrykket satser vi på å vise at grensen
DetaljerMAT feb feb feb MAT Våren 2010
Våren 2010 Mandag 15. februar 2010 Forelesning Vi begynner med et eksempel på bruk av partiell derivasjon for å gjøre såkalt lineær regresjon, eller minste kvadraters metode. Dette er en anvendelse av
DetaljerNewtons lover i én dimensjon
Newtons lover i én dimensjon 6.01.017 YS-MEK 1110 6.01.017 1 Hva er kraft? Vi har en intuitivt idé om hva kraft er. Vi kan kvantifisere en kraft med elongasjon av en fjær. YS-MEK 1110 6.01.017 Bok på bordet
DetaljerDel 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerOm plotting. Knut Mørken. 31. oktober 2003
Om plotting Knut Mørken 31. oktober 2003 1 Innledning Dette lille notatet tar for seg primitiv plotting av funksjoner og visualisering av Newtons metode ved hjelp av Java-klassen PlotDisplayer. Merk at
DetaljerMAT 1110: Obligatorisk oppgave 1, V-07: Løsningsforslag
1 MAT 111: Obligatorisk oppgave 1, V-7: Løsningsforslag Oppgave 1. a) Vi deriverer på vanlig måte: ( e (sinh x) x e x ) = = ex + e x = cosh x, ( e (cosh x) x + e x ) = = ex e x = sinh x Enkel algebra gir
DetaljerFYS1120 Elektromagnetisme
Det matematisk-naturvitenskapelige fakultet Universitetet i Oslo FY112 Elektromagnetisme Løsningsforslag til ukesoppgave 1 Oppgave 1 a i Her er alternativ 1 riktig. Hvis massetettheten er F, vil et linjestykke
DetaljerMål og innhold i Matte 1
Mål og innhold i Institutt for matematiske fag 15. november 2013 på Målet med denne oversikten er at vi skal se hvor vi er i pensum, og at du skal kunne finne hva du kan/ikke kan. Jeg vil i tillegg vise
DetaljerUNIVERSITETET I BERGEN
LØSNINGSFORSLAG UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. H.007. Eksamen i emnet MAT131 - Differensialligninger I 8. september 007 kl. 0900-100 Tillatte hjelpemidler: Ingen (heller
DetaljerMAT1100 - Grublegruppen Uke 36
MAT - Grublegruppen Uke 36 Jørgen O. Lye Partiell derivasjon Hvis f : R 2 R er en kontinuerlig funksjon, så kaller man følgende dens partiellderiverte (gitt at de finnes!) f f(x + h, y) f(x, y) (x, y)
DetaljerAlgoritmer og datastrukturer A.1 Filbehandling på bit-nivå
Vedlegg A.1 Filbehandling på bit-nivå Side 1 av 9 Algoritmer og datastrukturer A.1 Filbehandling på bit-nivå A.1 Filbehandling på bit-nivå A.1.1 Sammendrag Klassen BitInputStream gjør det mulig å lese
DetaljerAlternativ II: Dersom vi ikke liker å stirre kan vi gå forsiktigere til verks. Først ser vi på komponentlikninga i x-retning
Forelesning / 8 Finne skalarfunksjon når gradienten er kjent. Se GF kap..3.4. Ta som eksempel β = yi + xj + k. Vi vet at β = x i + j + z k og følgelig ser vi at vi må løse et system av tre likninger som
DetaljerStøvsuger 1600 watt. Bruksanvisning
Støvsuger 1600 watt Bruksanvisning Introduksjon Støvsugerposer er den største utgiftsposten når det gjelder støvsugere. Denne støvsugeren brukes uten støvsugerpose. Luft og støv skilles av en syklon og
DetaljerTillegg om strømfunksjon og potensialstrøm
Kapittel 9 Tillegg om strømfunksjon og potensialstrøm 9.1 Divergensfri strøm 9.1.1 Strømfunksjonen I kompendiet, kap. 4.6 og kap. 9, er det påstått at dersom et todimensjonalt strømfelt v(x y) = v x (x
Detaljer03.10.2013 Manual til. GeoGebra. Ungdomstrinnet. Ressurs til. Grunntall 8 10. Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS
03.10.2013 Manual til GeoGebra Ungdomstrinnet Ressurs til Grunntall 8 10 Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS Innhold Verktøy... 4 Hva vinduet i GeoGebra består av...
Detaljery = x y, y 2 x 2 = c,
TMA415 Matematikk Vår 17 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 9 Alle oppgavenummer referer til 8. utgave av Adams & Essex alculus: A omplete
DetaljerEKSAMEN I EMNE TDT4230 VISUALISERING FREDAG 10. DESEMBER 2010 KL LØSNINGSFORSLAG
Side 1 av 11 EKSAMEN I EMNE TDT4230 VISUALISERING FREDAG 10. DESEMBER 2010 KL. 09.00 13.00 LØSNINGSFORSLAG OPPGAVE 1 Kubiske Bézier-kurver og flater a) Sammenhengen mellom vektoren av blandefunksjoner
DetaljerPopulærvitenskapelig kilde: Robin Wilson, Four Colours Suffice/How the Map Problem was Solved, Penguin Books 2003, ISBN 0-141-00908-X.
Om Fargelegging av Kart og Grafer i Planet Populærvitenskapelig kilde: Robin Wilson, Four Colours Suffice/How the Map Problem was Solved, Penguin Books 2003, ISBN 0-141-00908-X. 1. Firefargeteoremet Et
DetaljerEKSAMEN I EMNE TDT4230 VISUALISERING LØRDAG 18. DESEMBER 2004 KL Løsningsforslag
Side 1 av 12 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for fysikk, informatikk og matematikk Institutt for datateknikk og informasjonsvitenskap EKSAMEN I EMNE TDT4230 VISUALISERING LØRDAG
DetaljerMAT Prøveeksamen 29. mai - Løsningsforslag
MAT0 - Prøveeksamen 9 mai - Løsningsforslag Oppgave Sett A = 4 4 0 x 0, x = x, b =, x 0 og la v, v, v betegne kolonnevektorene til A a) Skriv A x = y som en vektorlikning x Svar : Siden A x = [v v v ]
DetaljerVelkommen til Eksamenskurs matematikk 2
Velkommen til Eksamenskurs matematikk 2 Haakon C. Bakka Institutt for matematiske fag 12.-13. mai 2010 Introduksjon Begin with the end in mind - The 7 Habits of Highly Effective People (Stephen R. Covey)
DetaljerFargelegging av sort-hvitt bilder. Pass på at valgene i toppmenyen ser slik ut
Fargelegging av sort-hvitt bilder 1 Åpne dokumentet Mann. Fra Verktøyspaletten din velger du Pen Tool. 2 Pass på at valgene i toppmenyen ser slik ut 3 Marker med små punkter rundt hele skjorten hans. Zoom
DetaljerOppgaver og fasit til seksjon
1 Oppgaver og fasit til seksjon 3.4-3.6 Oppgaver til seksjon 3.4 1. Anta at f(x, y) = x 2 y 3 og r(t) = t 2 i + 3t j. Regn ut g (t) når g(t) = f(r(t)). 2. Anta at f(x, y) = x 2 e xy2 og r(t) = sin t i+cos
DetaljerINF-MAT5370. Trianguleringer i planet (Preliminaries)
INF-MAT5370 Trianguleringer i planet (Preliminaries) Øyvind Hjelle oyvindhj@simula.no, +47 67 82 82 75 Simula Research Laboratory, www.simula.no August 23, 2009 Innhold Notasjon og terminologi Graf-egenskaper
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MEK4550 Elementmetoden i faststoffmekanikk I. Eksamensdag: Mandag 17. desember 2007. Tid for eksamen: 14.0 17.0. Oppgavesettet
DetaljerEksamensoppgave i MA1103 Flerdimensjonal analyse
Institutt for matematiske fag Eksamensoppgave i MA1103 Flerdimensjonal analyse Faglig kontakt under eksamen: Mats Ehrnstrøm Tlf: 735 917 44 Eksamensdato: 22. mai 2018 Eksamenstid (fra til): 09:00 13:00
DetaljerMenylinje og de vanligste funksjonene. Her gjør du de tilpasningene du trenger.
GeoGebra GeoGebra 1 GeoGebra er et dynamisk geometriprogram. Ved hjelp av dette programmet kan du framstille forskjellige geometriske figurer, forskjellige likninger (likningssett) og ulike funksjonsuttrykk,
DetaljerEksamen IRF30014, høsten 15 i Matematikk 3 Løsningsforslag
Oppgave 1. Eksamen IRF314, høsten 15 i Matematikk 3 øsningsforslag I denne oppgaven er det to løsningsforslag. Ett med asymptotene som gitt i oppgaveteksten. I dette første tilfellet blir tallene litt
DetaljerAreal mellom kurver Volum Forelesning i Matematikk 1 TMA4100
Areal mellom kurver Volum Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 27. september 20 Kapittel 5.6. Substitusjon og arealet mellom kurver 3 Areal mellom kurver Problem
DetaljerTerrengmodeller som basis for 3D visualisering
Terrengmodeller som basis for 3D visualisering Terrengmodeller danner en viktig komponent både i forbindelse med prosjektering og 3D visualisering. Vi ser på hvordan ulike datakilder og terrengmodelltyper
DetaljerObligatorisk oppgave 1
Obligatorisk oppgave Oppgave a) Vi kan finne divergens og virvling av det todimensjonale hastighetsfeltet ved å finne v og v. Gitt at v = ui + vj, hvor u = cos x sin y og v = sin x cos y, får vi følgende:
DetaljerKapittel: 9. MEK4550 Elementmetoden i faststoffmekanikk I. (E-post:ges@math.uio.no) Universitetet i Oslo. Avdeling for Mekanikk Geir Skeie
Kapittel: 9 MEK4550 Elementmetoden i faststoffmekanikk I (21. november 2007) Foreleser: (E-post:ges@math.uio.no) Page 1 of 31 Innhold 9 Geometrisk avbilding og numerisk integrasjon 3 9.1 Skjeve elementer
DetaljerKurve-, flate- og volumintegraler, beregning av trykkraft
Kapittel 6 Kurve-, flate- og volumintegraler, beregning av trykkraft Oppgave 1 Vi skal regne ut kurveintegralet λ v dr langs kurven λ: y x3 når 1 x 2 og v xyi+x 2 j. Vi kan parametrisere med x som parameter,
DetaljerFagdag Plan: Instruks: Innledning: Hva mener man med "numerisk matematikk"? Fd 4 - Numeriske metoder
Fagdag 4 8..07 Plan: Innledning om numeriske metoder Areidsoppgaver med numeriske metoder Instruks: Areid 3 og 3 i grupper. Velg en gruppeleder til å styre tidsruken. Gruppen skal areide seg gjennom alle
DetaljerLøsningsforslag til problemløsningsoppgaver i MA-132 Geometri høsten 2008.
Løsningsforslag til problemløsningsoppgaver i M-12 Geometri høsten 2008. Oppgave 1 a. Vi starter med å utføre abri-versjoner av standardkontruksjoner for de oppgitte vinklene. (t problem med abri er at
DetaljerOppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener.
NTNU Institutt for matematiske fag TMA45 Matematikk, øving, vår Løsningsforslag Notasjon og merknader Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener. Oppgaver fra kapittel
DetaljerRepitisjon av Diverse Emner
NTNU December 15, 2012 Oversikt 1 2 3 4 5 Å substituere x med en trigonometrisk funksjon, gjør det mulig å evaluere integral av typen I = dx a 2 +x 2 I = dx a 2 +x 2 I = dx a 2 x 2 der a er en positiv
DetaljerUDIRs eksempeloppgave høsten 2008
UDIRs eksempeloppgave høsten 008 Løsningsskisser Del Oppgave f x cos3x x sin3x 3 cos3x 6x sin3x fx 3u, u e 4x (Produktregel og kjerneregel på cos3x.) u e 4x 4 (Kjerneregel enda en gang...) d) f x 6uu 6u4e
DetaljerAnbefalte oppgaver - Løsningsforslag
TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 14 1.4.5: Vi skal finne fluksen ut overflaten til den solide ballen B med sentrum = (2,, 3) og radius r = 3, av vektorfeltet F = x 2 i + y 2
DetaljerVelkommen til MEK1100
Velkommen til MEK1100 Seksjon for Mekanikk, Matematisk institutt, UiO MEK1100 FELTTEORI OG VEKTORANALYSE Vår 2017 Foreleser: Karsten Trulsen Gruppelærere: Susanne Støle Hentschel, Lars Magnus Valnes, Diako
DetaljerEKSAMEN. TILLATTE HJELPEMIDLER: John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning)
KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk FAGNUMMER: REA4 EKSAMENSDATO: 6. desember 24 SENSURFRIST: 6. januar 25 KLASSE:. klassene, ingenørutdanning. TID: kl. 9. 3.. FAGLÆRER: Hans Petter Hornæs ANTALL
Detaljer1 Mandag 15. februar 2010
1 Mandag 15. februar 2010 Vi begynner med et eksempel på bruk av partiell derivasjon for å gjøre såkalt lineær regresjon, eller minste kvadraters metode. Dette er en anvendelse av teorien vi har gjennomgått
DetaljerØving 4. a) Verifiser at en transversal bølge som forplanter seg langs x-aksen med utsving D med komponentene
FY100/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 010. Veiledning: Tirsdag 1. og onsdag. september. Innleveringsfrist: Mandag 7. september kl 1:00. Øving 4 Oppgave 1 a) Verifiser at en transversal
DetaljerVelkommen til MEK1100
Velkommen til MEK1100 Matematisk institutt, UiO MEK1100 FELTTEORI OG VEKTORANALYSE våren 2015 Foreleser: Karsten Trulsen Øvingslærere: Diako Darian og Tormod Landet MEKANIKK = LÆREN OM BEVEGELSE OG KREFTER
DetaljerLøsningsskisser - Kapittel 6 - Differensialligninger
Løsningsskisser - Kapittel 6 - Differensialligninger Vi bruker det vi har lært i 6.3 om løsning av separable differensialligninger også i noen av oppgavene fra 6.1 og 6.2 for å knytte denne løsningsteknikken
DetaljerOverbygning/Bygging/Helsveist spor/vedlegg/arbeidsanvisning for sveisekontroll
Overbygning/Bygging/Helsveist spor/vedlegg/arbeidsanvisning for sveisekontroll Fra Teknisk regelverk utgitt 1. februar 2016 < Overbygning Bygging Helsveist spor Innhold 1 Hensikt og omfang 1.1 Kontrollutrustning
DetaljerLengdemål, areal og volum
Lengdemål, areal og volum Lengdemål Elever bør tidlig få erfaring med å vurdere ulike avstander og lengdemål. De kommer ofte opp i situasjoner i hverdagen hvor det er en stor ulempe å ikke ha begrep om
DetaljerMål og innhold i Matte 1
Mål og innhold i Institutt for matematiske fag 1. november 2013 Målet med denne oversikten er at vi skal se hvor vi er i pensum, og at du skal kunne finne hva du kan/ikke kan. Jeg vil i tillegg vise hva
DetaljerR2 eksamen våren 2018 løsningsforslag
R eksamen våren 08 løsningsforslag DEL Uten hjelpemidler Oppgave ( poeng) Deriver funksjonene a) f ( x) = cos ( x ) f ( x) = sin( x ) = sin( x ) b) g ( x) = x sin x g ( x) = sin x + x cos x = sin x + x
DetaljerKurve-, flate- og volumintegraler, beregning av trykkraft
Kapittel 6 Kurve-, flate- og volumintegraler, beregning av trykkraft Oppgave 1 Vi skal regne ut kurveintegralet λ v dr langs kurven λ: y x3 når 1 x 2 og v xyi+x 2 j. Vi kan parametrisere med x som parameter,
DetaljerNTNU. MA1103 Flerdimensjonal Analyse våren Maple-øving 2. Viktig informasjon. Institutt for matematiske fag. maple02 28.
NTNU Institutt for matematiske fag MA1103 Flerdimensjonal Analyse våren 2011 Maple-øving 2 Fyll inn studieprogram: Fyll inn navn: 1. 2. 3. 4. Viktig informasjon Besvarelsen kan leveres som gruppearbeid
DetaljerEksamen IRF30014, våren 16 i Matematikk 3 Løsningsforslag
Oppgave 1. Eksamen IRF314, våren 16 i Matematikk 3 Løsningsforslag Ellipsen vil skal finne er på standardform x a + y b 1 der a > b for styrelinjene er vertikale linjer. Formelen for styrelinjene er x
DetaljerVektorfluks og sirkulasjon, divergens, virvling, strømfunksjonen
Kapittel 4 Vektorfluks og sirkulasjon, divergens, virvling, strømfunksjonen Oppgave Gitt et vektorfelt v = ui + vj + wk. Divergensen til v er definert som v = u + v + w z og virvlingen er gitt ved determinanten
DetaljerEn periode er fra et punkt på en kurve og til der hvor kurven begynner å gjenta seg selv.
6.1 BEGREPER L SNSKRVE 1 6.1 BEGREPER L SNSKRVE il sinuskurven i figur 6.1.1 er det noen definisjoner som blir brukt i vekselstrømmen. Figur 6.1.1 (V) mid t (s) min Halvperiode Periode PERODE (s) En periode
DetaljerDel 1 - Uten hjelpemidler
Del 1 - Uten hjelpemidler Oppgaveteksten til del 1 ligger i: http://www.ulven.biz/r1/heldag/r1_hd_100516.docx (Oppgaveteksten til del er inkludert i dette dokumentet.) Oppgave 1 f x 3x 1 x 1 x (Husk: x
DetaljerVegg/gulv. Kapittel 2 - Vegg/gulv... 3
20.10.2009 Kapittel 2... 1 Kapittel Innhold... Side Kapittel 2 -... 3 Yttervegg... 3 Gulv... 8 Innervegg... 11 Hvordan ser veggene ut?... 17 Referansepunkt i vegg på venstre/høyre side... 23 Start fra
DetaljerLær å bruke GeoGebra 4.0
Lær å bruke GeoGebra 4.0 av Sigbjørn Hals Innhold: Generelt om GeoGebra... 2 Innstillinger... 2 Likninger og ulikheter... 5 Implisitte likninger... 5 Ulikheter... 9 Statistikkberegninger i regnearket...
DetaljerTFY4115: Løsningsforslag til oppgaver gitt
Institutt for fysikk, NTNU. Høsten. TFY45: Løsningsforslag til oppgaver gitt 6.8.9. OPPGAVER 6.8. Vi skal estemme Taylorrekkene til noen kjente funksjoner: a c d sin x sin + x cos x sin 3 x3 cos +... x
DetaljerEksamen AA6524 Matematikk 3MX Elevar/Elever AA6526 Matematikk 3MX Privatistar/Privatister. Nynorsk/Bokmål
Eksamen 05.12.2007 AA6524 Matematikk 3MX Elevar/Elever AA6526 Matematikk 3MX Privatistar/Privatister Nynorsk/Bokmål Oppgave 1 a) Deriver funksjonen: f x 2 ( ) = cos( x + 1) b) Løs likningen og oppgi svaret
DetaljerTMA4100 Matematikk 1, 4. august 2014 Side 1 av 12. x 2 3x +2. x 2
TMA4 Matematikk, 4. august 24 Side av 2 Oppgave Den rasjonale funksjonen p er definert som p(x) x2 3x +2 3x 2 5x +2. Finn de tre grenseverdiene lim xæ p(x), lim xæ p(x) og lim xæœ p(x). Løsning: x 2 3x
DetaljerViktig informasjon. Taylorrekker
Viktig informasjon Fredag 15 desember 2017 Kl09:00-13:00 (4 timer) Tillatte hjelpemiddel: Formelsamling (deles ut på eksamen), Gyldig kalkulator I dette oppgavesettet har du mulighet til å svare med digital
DetaljerMAT-INF 1100: Obligatorisk oppgave 2
MAT-INF 1100: Obligatorisk oppgave 2 Innleveringsfrist: torsdag 8. november 2018 kl. 14:30 Obligatoriske oppgaver («obliger») er en sentral del av MAT-INF1100 og er utmerket trening i å besvare en matematisk
DetaljerAlle svar skal grunngis. Alle deloppgaver har lik vekt.
Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom
DetaljerProsjekt 2 - Introduksjon til Vitenskapelige Beregninger
Prosjekt - Introduksjon til Vitenskapelige Beregninger Studentnr: 755, 759 og 7577 Mars 6 Oppgave Feltlinjene for en kvadrupol med positive punktladninger Q lang x-aksen i x = ±r og negative punktladninger
DetaljerTMA4100 Matematikk 1 Høst 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 4 Løsningsforslag Øving 5.7.4 Vi observerer at både y = cos πx 4 og y = x er like funksjoner. Det vil si
DetaljerR2 - kapittel 5 EF og 6 ABCD
R2 - kapittel 5 EF og 6 ABCD Løsningsskisser Oppgave Løs differensialligningene: a) y x cosx b) y yx x c) y y x a) Eksakt DL, løses direkte: y cosx x y cosx x dx sin x 2 x2 C b) Lineær: y xy x (Kan løse
Detaljer