EKSAMENSOPPGAVE. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA Hvis JA: ca. kl.10:00 og 12:00

Størrelse: px
Begynne med side:

Download "EKSAMENSOPPGAVE. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA Hvis JA: ca. kl.10:00 og 12:00"

Transkript

1 Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: MAT-1003 Kalkulus 3 Dato: Tirsdag Klokkeslett: 09:00-13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Pedersen et al.: Teknisk formelsamling med tabeller, Rottmanns formelsamling, A4 ark med egne notater (fire sider). Kalkulator er ikke tillatt. Type innføringsark (rute/linje): Antall sider inkl. forside: Kontaktperson under eksamen: Telefon/mobil: Ruter 3 Kristoffer Rypdal Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA Hvis JA: ca. kl.10:00 og 1:00 NB! Det er ikke tillatt å levere inn kladdepapir som del av eksamensbesvarelsen. Hvis det likevel leveres inn, vil kladdepapiret bli holdt tilbake og ikke bli sendt til sensur. Postboks 6050 Langnes, N-9037 Tromsø / / / uit.no

2 Bokmål Skriv ellipsen Oppgave 1 x a + y b = 1 (1) som en parametrisert kurve X(t) = (x(t), y(t)). I resten av oppgavesettet skal vi kalle denne kurven C. Betrakt et skalarfelt Oppgave f(x, y, z) = x a + y b + z c, der a, b, c er positive, reelle konstanter. Et område V i R 3 består av punktene (x, y, z) som tilfredsstiller ulikheten f(x, y, z) 1. Randen til V (dvs. flaten f(x, y, z) = 1) er en lukket flate S som kalles en ellipsoide. Forklar hvorfor ellipsen C fra Oppgave 1 er randen til projeksjonen (skyggen) av ellipsoiden ned på xy-planet. Oppgave 3 Forklar hvorfor volumet av området V kan uttrykkes som det itererte integralet volum V = 1 b 1 x /a c 1 x /a y /b 1 b 1 x /a dz dy dx. c 1 x /a y /b Underbygg forklaringen med en eller flere figurer. Beregning av dette integralet krever mye arbeid, så dette skal vi heller gjøre på en enklere måte i Oppgave 5. Oppgave 4 Innfør et nytt sett av variable (r, s, t) definert slik at x a = r sin s cos t, y b = r sin s sin t, z c = r cos s. () Vis at hvis vi setter r = 1 og lar s og t være parametre som varierer over rektanglet R = {(s, t) 0 s π, 0 t < π}, så beskriver likning () ellipsoiden f(x, y, z) = 1. 1

3 Oppgave 5 Bruk teoremet for variabelskifte i trippelintegral og likning () til beregne volum V. Oppgave 6 Beregn f på ellipsoideflaten S som funksjon av parametrene s og t, og beregn tangenten T s og T t til flaten. Vis at f står vinkelrett på tangentene. Oppgave 7 Vis at standardnormalen til flaten S kan skrives på formen, ( x N = abc sin s a, y b, z ), c og beregn flateintegralet F ds av vektorfeltet F(x, y, z) = xi + yj + zk. S Oppgave 8 Beregn F og integralet F dv. Hvordan kunne vi ha funnet dette integralet V fra resultatet i Oppgave 7 uten regning? Oppgave 9 Betrakt vektorfeltet G(x, y, z) = yi + xj. Beregn G og integralet S + G ds, der S + er den delen av flaten S som ligger over xy-planet (z > 0). Oppgave 10 Finn linjeintegralet G ds langs ellipsen C definert i likning (1). Hvordan kunne vi ha C funnet dette integralet fra resultatene i Oppgave 9 uten regning?

4 Fakultet for naturvitenskap og teknologi EKSAMENSOPPGÅVE Eksamen i: MAT-1003 Kalkulus 3 Dato: Tirsdag Klokkeslett: 09:00-13:00 Stad: Åsgårdvegen 9 Lovlege hjelpemiddel: Pedersen et al.: Teknisk formelsamling med tabeller, Rottmanns formelsamling, A4 ark med eigne notat (fire sider). Kalkulator er ikkje tillete. Type innføringsark (rute/linje): Antall sider inkl. forside: Ruter 3 Kontaktperson under eksamen: Telefon/mobil: Skal det gåast trøysterunde i eksamenslokalet? Svar: JA Hvis JA: kl.10:00 og 1:00 NB! Det er ikkje lov å levere inn kladd saman med svaret. Om det likevel leverast inn, vil kladden bli heldt tilbake og ikkje sendt til sensur. Postboks 6050 Langnes, N-9037 Tromsø / / / uit.no

5 Nynorsk Skriv ellipsen Oppgåve 1 x a + y b = 1 (1) som ei parametrisert kurve X(t) = (x(t), y(t)). I resten av oppgåvesettet skal vi kalla denne kurva C. Sjå på eit skalarfelt Oppgåve f(x, y, z) = x a + y b + z c, der a, b, c er positive, reelle konstantar. Eit område V i R 3 omfattar punktane (x, y, z) som tilfredsstiller ulikheten f(x, y, z) 1. Randen til V (dvs. flata f(x, y, z) = 1) er ei lukka flate S som kallas en ellipsoide. Forklar kvifor ellipsen C frå Oppgåve 1 er randen til projeksjonen (skugga) av ellipsoiden ned på xy-planet. Oppgåve 3 Forklar kvifor volumet av området V kan skrivast som det itererte integralet volum V = 1 b 1 x /a c 1 x /a y /b 1 b 1 x /a dz dy dx. c 1 x /a y /b Underbygg forklaringa med ein eller fleire figurar. Utrekning av dette integralet krevjer mykje arbeid, så dette skal vi heller gjera på enklare vis i Oppgåve 5. Oppgåve 4 Innfør eit nytt sett av variablar (r, s, t) definert slik at x a = r sin s cos t, y b = r sin s sin t, z c = r cos s. () Vis at viss vi set r = 1 og let s og t vera parametrar som varierer over rektanglet R = {(s, t) 0 s π, 0 t < π}, så skildrar likning () ellipsoiden f(x, y, z) = 1. 1

6 Oppgave 5 Bruk teoremet for variabelskifte i trippelintegral og likning () til rekne ut volum V. Oppgåve 6 Rekn ut f på ellipsoideflata S som funksjon av parametrane s og t, og rekn ut tangenten T s og T t til flata. Vis at f står vinkelrett på tangentane. Oppgåve 7 Vis at standardnormalen til flata S kan skrivast på forma, ( x N = abc sin s a, y b, z ), c og rekn ut flateintegralet F ds av vektorfeltet F(x, y, z) = xi + yj + zk. S Oppgåve 8 Rekn ut F og integralet F dv. Korleis kunne vi ha funnet dette integralet V fra resultatet i Oppgåve 7 utan rekning? Oppgåve 9 Sjå på vektorfeltet G(x, y, z) = yi + xj. Rekn ut G og integralet S + G ds, der S + er den delen av flata S som ligg over xy-planet (z > 0). Oppgåve 10 Finn linjeintegralet G ds langs med ellipsen C definert i likning (1). Korleis kunne C vi ha funne dette integralet fra resultata i Oppgåve 9 utan rekning?

EKSAMENSOPPGAVE. KRAFT I og II Hall del 2 Kraft sportssenter Ingen

EKSAMENSOPPGAVE. KRAFT I og II Hall del 2 Kraft sportssenter Ingen Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: MAT-1003 Kalkulus 3 Dato: 11.12.2018 Klokkeslett: 09.00-13.00 Sted: Tillatte hjelpemidler: KRAFT I og II Hall del 2 Kraft sportssenter

Detaljer

EKSAMENSOPPGAVE. Eksamen i: MAT-1003 Dato: Tirsdag 15. desember 2015 Tid: Kl 15:00 19:00 Sted: Åsgårdvegen 9

EKSAMENSOPPGAVE. Eksamen i: MAT-1003 Dato: Tirsdag 15. desember 2015 Tid: Kl 15:00 19:00 Sted: Åsgårdvegen 9 EKSAMENSOPPGAVE Eksamen i: MAT-13 Dato: Tirsdag 15. desember 215 Tid: Kl 15: 19: Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Pedersen et al.: Teknisk formelsamling med tabeller, Rottmanns formelsamling,

Detaljer

EKSAMENSOPPGÅVE. Kalkulator, Rottmanns tabellar og 2 A4 ark med eigne notater (4 sider).

EKSAMENSOPPGÅVE. Kalkulator, Rottmanns tabellar og 2 A4 ark med eigne notater (4 sider). Fakultet for naturvitenskap og teknologi EKSAMENSOPPGÅVE Eksamen i: Mat-2, Kalkulus 2 Dato: 2. mai 28 Klokkeslett: 9.-. Stad: Asgårdvegen 9 Lovlege hjelpemiddel: Kalkulator, Rottmanns tabellar og 2 A4

Detaljer

EKSAMENSOPPGAVE. Alle skrevne og trykte. Godkjent kalkulator.

EKSAMENSOPPGAVE. Alle skrevne og trykte. Godkjent kalkulator. Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: MAT-0001 Brukerkurs i Matematikk Dato: 28.11.2017 Klokkeslett: 15:00-19:00 Sted: Åsgårdvegen 9, Teorifagb. hus 1 plan Tillatte hjelpemidler:

Detaljer

EKSAMENSOPPGÅVE. Kalkulator, 2 ark (4 sider) med eigne notater og Rottmanns tabeller. Ragnar Soleng

EKSAMENSOPPGÅVE. Kalkulator, 2 ark (4 sider) med eigne notater og Rottmanns tabeller. Ragnar Soleng Fakultet for naturvitenskap og teknologi EKSAMENSOPPGÅVE Eksamen i: Mat-1005, diskret matematikk Dato: 1. desember 017 Klokkeslett: 15.00-19.00 Stad: Åsgårdvegen 9 Lovlege hjelpemiddel: Kalkulator, ark

Detaljer

EKSAMENSOPPGÅVE. Tilletne hjelpemiddel: Godkjend kalkulator og formelsamling og 2 eigne A4-ark (4 sider totalt)

EKSAMENSOPPGÅVE. Tilletne hjelpemiddel: Godkjend kalkulator og formelsamling og 2 eigne A4-ark (4 sider totalt) EKSAMENSOPPGÅVE/EKSAMENSOPPGAVE EKSAMENSOPPGÅVE Eksamen i: MAT-1003 Kalkulus 3 Dato: Tirsdag 17. 1.013 Tid: Kl 09:00 13:00 Stad: Åsgårdveien 9 Tilletne hjelpemiddel: Godkjend kalkulator og formelsamling

Detaljer

EKSAMENSOPPGAVE. 4 (1+3) Det er 12 deloppgaver (1abc, 2abcd, 3abc, 4ab) Andrei Prasolov

EKSAMENSOPPGAVE. 4 (1+3) Det er 12 deloppgaver (1abc, 2abcd, 3abc, 4ab) Andrei Prasolov Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Mat-004 Lineær algebra Dato: Torsdag. juni 207 Klokkeslett: 09.00-3.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Godkjent kalkulator,

Detaljer

EKSAMENSOPPGAVE. Godkjent kalkulator; Rottmanns tabeller; To A4 ark egne notater (håndskrevne, trykte, eller blandede).

EKSAMENSOPPGAVE. Godkjent kalkulator; Rottmanns tabeller; To A4 ark egne notater (håndskrevne, trykte, eller blandede). Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: MAT-1005 Diskret matematikk Dato: 30.11.2018 Klokkeslett: 09:00-13:00 Sted: Teorifagbygget hus 1, Plan 2 og Plan 3 Tillatte hjelpemidler:

Detaljer

EKSAMENSOPPGÅVE. Mat-1005, Diskret matematikk. Godkjent kalkulator, Rottmanns tabellar og 2 A4 ark med eigne notater (4 sider).

EKSAMENSOPPGÅVE. Mat-1005, Diskret matematikk. Godkjent kalkulator, Rottmanns tabellar og 2 A4 ark med eigne notater (4 sider). Fakultet for naturvitenskap og teknologi EKSAMENSOPPGÅVE Eksamen i: Mat-1005, Diskret matematikk Dato:. desember 016 Klokkeslett: 90.00-13.00 Stad: Åsgårdvegen 9 Lovlege hjelpemiddel: Godkjent kalkulator,

Detaljer

EKSAMENSOPPGAVE. «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark/ 4 sider med egne notater. Godkjent kalkulator.

EKSAMENSOPPGAVE. «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark/ 4 sider med egne notater. Godkjent kalkulator. Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-1001. Dato: Mandag 9. mai 017. Klokkeslett: 09 13. Sted: Åsgårdvegen 9. Tillatte hjelpemidler: «Tabeller og formler i statistikk»

Detaljer

EKSAMENSOPPGAVE. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA / NEI Hvis JA: ca. kl. 10:30

EKSAMENSOPPGAVE. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA / NEI Hvis JA: ca. kl. 10:30 Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: INF-1100 Innf. i progr. og datam. virkem. Dato: 05.12.2018 Klokkeslett: 09:00 13:00 Sted: Kraft I og II Hall del 3 Tillatte hjelpemidler:

Detaljer

Randkurva C til flata S orienteres positivt sett ovenfra, og kan parametriseres ved: r (t) = [ sin t, cos t, sin t] dt, 0 t 2π.

Randkurva C til flata S orienteres positivt sett ovenfra, og kan parametriseres ved: r (t) = [ sin t, cos t, sin t] dt, 0 t 2π. Ma - Løsningsforslag til uke 17 i 7 Eks. mai 1999 oppgave 4 ylinderen x + y = 1 skjærer ut ei flate av planet z = x + 1 dvs. x + z = 1 med enhetsnormal i positiv z-retning lik n= 1 [ 1 1]. Flata blir en

Detaljer

EKSAMEN I FAG SIF5005 MATEMATIKK 2

EKSAMEN I FAG SIF5005 MATEMATIKK 2 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 3 Faglig kontakt under eksamen: Trond Digernes 7359357 Berner Larsen 73 59 35 5 Lisa Lorentzen 73 59 35 48 Vigdis Petersen

Detaljer

EKSAMENSOPPGAVE. GEO-2010 Marine geofag

EKSAMENSOPPGAVE. GEO-2010 Marine geofag Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: GEO-2010 Marine geofag Dato: 25. mai 2018 Klokkeslett: 09:00 13:00 Sted: Tillatte hjelpemidler: Åsgård Ingen Type innføringsark (rute/linje):

Detaljer

EKSAMENSOPPGAVE. INF-1100 Innføring i programmering og datamaskiners virkemåte. Teorifagb, hus 3, og og Adm.bygget, Aud.max og B.

EKSAMENSOPPGAVE. INF-1100 Innføring i programmering og datamaskiners virkemåte. Teorifagb, hus 3, og og Adm.bygget, Aud.max og B. Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Dato: 06.12.2016 Klokkeslett: 09:00 13:00 INF-1100 Innføring i programmering og datamaskiners virkemåte Sted: Tillatte hjelpemidler:

Detaljer

EKSAMENSOPPGAVE STA «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark/ 4 sider med egne notater. Godkjent kalkulator. Rute.

EKSAMENSOPPGAVE STA «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark/ 4 sider med egne notater. Godkjent kalkulator. Rute. Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-1001. Dato: Tirsdag 26. september 2017. Klokkeslett: 09 13. Sted: Åsgårdvegen 9. Tillatte hjelpemidler: «Tabeller og formler i statistikk»

Detaljer

EKSAMENSOPPGAVE. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute

EKSAMENSOPPGAVE. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: FYS-1002 Dato: 26. september 2017 Klokkeslett: 09.00-13.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: ü Kalkulator med tomt dataminne

Detaljer

EKSAMENSOPPGAVE. Ingen. Robert Pettersen. Eksamen i: INF Innf. i progr. og datam. virkem. Dato: Tirsdag 5. desember 2017

EKSAMENSOPPGAVE. Ingen. Robert Pettersen. Eksamen i: INF Innf. i progr. og datam. virkem. Dato: Tirsdag 5. desember 2017 Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: INF-1100 - Innf. i progr. og datam. virkem. Dato: Tirsdag 5. desember 2017 Klokkeslett: 09:00-13:00 Sted: Teorifagb., hus 3, 3218 og

Detaljer

EKSAMENSOPPGAVE. To dobbeltsidige ark med notater. Stian Normann Anfinsen

EKSAMENSOPPGAVE. To dobbeltsidige ark med notater. Stian Normann Anfinsen Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: 30. november 2017 Klokkeslett: 09:00 13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: To dobbeltsidige ark med

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: Eksamensdag: Fredag 1. april 2011 Tid for eksamen: 15.00 17.00 Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Fredag. mars Tid for eksamen: 5. 7. Oppgavesettet er på 8 sider. Vedlegg: Tillatte

Detaljer

EKSAMENSOPPGAVE. Adm.bygget, rom K1.04 og B154 Ingen. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA / NEI Hvis JA: ca. kl.

EKSAMENSOPPGAVE. Adm.bygget, rom K1.04 og B154 Ingen. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA / NEI Hvis JA: ca. kl. Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Dato: 22 mai 2018 Klokkeslett: 09-13 Sted: Tillatte hjelpemidler: Adm.bygget, rom K1.04 og B154 Ingen Type innføringsark (rute/linje):

Detaljer

EKSAMENSOPPGAVE. To dobbeltsidige ark med notater. Stian Normann Anfinsen

EKSAMENSOPPGAVE. To dobbeltsidige ark med notater. Stian Normann Anfinsen Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: Onsdag 28. februar 2018 Klokkeslett: 09:00 13:00 Sted: Administrasjonsbygget, 1. etg., rom B.154 Tillatte hjelpemidler:

Detaljer

EKSAMENSOPPGAVE. Fys-1002 Elektromagnetisme. Adm.bygget B154 Kalkulator med tomt dataminne, Rottmann: Matematisk formelsamling

EKSAMENSOPPGAVE. Fys-1002 Elektromagnetisme. Adm.bygget B154 Kalkulator med tomt dataminne, Rottmann: Matematisk formelsamling Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: Fys-1002 Elektromagnetisme Dato: Onsdag 26. september 2018 Klokkeslett: Kl. 9:00-13:00 Sted: Tillatte hjelpemidler: Adm.bygget B154 Kalkulator

Detaljer

EKSAMENSOPPGAVE / EKSAMENSOPPGÅVE

EKSAMENSOPPGAVE / EKSAMENSOPPGÅVE Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE / EKSAMENSOPPGÅVE Eksamen i: Inf-1049, Introduksjon til beregningsorientert programmering Dato: 15. desember 017 Klokkeslett: 09.00 13.00 Sted /

Detaljer

EKSAMENSOPPGAVE. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: NEI

EKSAMENSOPPGAVE. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: NEI Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Dato: 25 september 2018 Klokkeslett: 09.00-13.00 Sted: Adm. Bygget K1.04 Tillatte hjelpemidler: Ingen Type innføringsark (rute/linje):

Detaljer

EKSAMENSOPPGAVE. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA / NEI Hvis JA: ca. Kl 10.00

EKSAMENSOPPGAVE. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA / NEI Hvis JA: ca. Kl 10.00 Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-2003 Tidsrekker Dato: 29/5-2018 Klokkeslett: 09.00-13.00 Sted: TEO H1, PLAN 3 Tillatte hjelpemidler: "Tabeller og formler i statistikk"

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 14 1.4.5: Vi skal finne fluksen ut overflaten til den solide ballen B med sentrum = (2,, 3) og radius r = 3, av vektorfeltet F = x 2 i + y 2

Detaljer

EKSAMENSOPPGAVE. Adm.bygget, rom B154 2 ark med egne notater (4 sider) Godkjent kalkulator Rottman. Matematisk formelsamling

EKSAMENSOPPGAVE. Adm.bygget, rom B154 2 ark med egne notater (4 sider) Godkjent kalkulator Rottman. Matematisk formelsamling Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Dato: 5.12.2018 FYS-1001 Mekanikk Klokkeslett: 09:00-13:00 Sted: Tillatte hjelpemidler: Adm.bygget, rom B154 2 ark med egne notater (4

Detaljer

= (2 6y) da. = πa 2 3

= (2 6y) da. = πa 2 3 TMA45 Matematikk Vår 7 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving Alle oppgavenummer referer til 8. utgave av Adams & Essex alculus: A omplete ourse.

Detaljer

EKSAMENSOPPGAVE Bjarte Aarmo Lund

EKSAMENSOPPGAVE Bjarte Aarmo Lund Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: KJE-6003 Analytisk kjemi og org.kjemi for lærere Dato: 11.12.2017 Klokkeslett: 09.00-13.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler:

Detaljer

Eksamensoppgave i MA1103 Flerdimensjonal analyse

Eksamensoppgave i MA1103 Flerdimensjonal analyse Institutt for matematiske fag Eksamensoppgave i MA1103 Flerdimensjonal analyse Faglig kontakt under eksamen: Mats Ehrnstrøm Tlf: 735 917 44 Eksamensdato: 22. mai 2018 Eksamenstid (fra til): 09:00 13:00

Detaljer

EKSAMENSOPPGAVE. MNF-6002 Videreutdanning i naturfag for lærere, Naturfag trinn 2. Kalkulator Rom Stoff Tid: Fysikktabeller (utskrift)

EKSAMENSOPPGAVE. MNF-6002 Videreutdanning i naturfag for lærere, Naturfag trinn 2. Kalkulator Rom Stoff Tid: Fysikktabeller (utskrift) Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: MNF-6002 Videreutdanning i naturfag for lærere, Naturfag trinn 2 Dato: Mandag 28. mai 2018 Klokkeslett: Kl. 09:00-13:00 Sted: TEO-H1

Detaljer

EKSAMENSOPPGAVE. INF-1101 Datastrukturer og algoritmer. Adm.bygget, rom K1.04 og B154 Ingen

EKSAMENSOPPGAVE. INF-1101 Datastrukturer og algoritmer. Adm.bygget, rom K1.04 og B154 Ingen Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Dato: 15.mai 2018 Klokkeslett: 09:00 13:00 Sted: Tillatte hjelpemidler: Adm.bygget, rom K1.04 og B154 Ingen Type innføringsark (rute/linje):

Detaljer

Eksamensoppgave i MA1103 Flerdimensjonal analyse

Eksamensoppgave i MA1103 Flerdimensjonal analyse Institutt for matematiske fag Eksamensoppgave i MA113 Flerdimensjonal analyse Faglig kontakt under eksamen: Tlf: Eksamensdato: 5. Juni 19 Eksamenstid (fra til): 9: 13: Hjelpemiddelkode/Tillatte hjelpemidler:

Detaljer

Navn/kursparallell skrives her (ved gruppearbeid er det viktig at alle fyller ut):

Navn/kursparallell skrives her (ved gruppearbeid er det viktig at alle fyller ut): MA1103 vår 2008 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Øving 10M Navn/kursparallell skrives her (ved gruppearbeid er det viktig at alle fyller ut): 1. 2. 3. 4. 5.

Detaljer

EKSAMENSOPPGAVE Njål Gulbrandsen / Ole Meyer /

EKSAMENSOPPGAVE Njål Gulbrandsen / Ole Meyer / Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: 21.2.2017 Klokkeslett: 09:00 13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Fire A4-sider (to dobbeltsidige

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT111 Prøveeksamen Eksamensdag: 5. juni 21. Tid for eksamen: 1. 13.3. Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

EKSAMENSOPPGAVE. Kalkulator «Huskelapp» -A4 ark med skrift på begge sider. Enkel norsk-engelsk/engelsk-norsk ordbok

EKSAMENSOPPGAVE. Kalkulator «Huskelapp» -A4 ark med skrift på begge sider. Enkel norsk-engelsk/engelsk-norsk ordbok Fakultet for naturvitenskap og teknologi EKSAMESOPPGAVE Eksamen i: KJE-1001 Introduksjon til kjemi og kjemisk biologi Dato: Fredag 16.desember 2016 Klokkeslett: 09:00-15:00 Sted: Teorifagbygget hus 1,

Detaljer

EKSAMENSOPPGAVE. INF-1100 Innføring i programmering og datamaskiners virkemåte. Ingen. Elektronisk (WiseFlow) Robert Pettersen

EKSAMENSOPPGAVE. INF-1100 Innføring i programmering og datamaskiners virkemåte. Ingen. Elektronisk (WiseFlow) Robert Pettersen Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Dato: 20.02.2017 Klokkeslett: 09:00 13:00 INF-1100 Innføring i programmering og datamaskiners virkemåte Sted: Teorifagbygget, Hus 3,

Detaljer

Løsningsforslag til eksamen i TMA4105 matematikk 2,

Løsningsforslag til eksamen i TMA4105 matematikk 2, Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av Løsningsforslag til eksamen i TMA45 matematikk, 9.5.4 Oppgave La fx, y, z) xy + arctanxz). La P være punktet,, ). a)

Detaljer

EKSAMENSOPPGAVE Georg Elvebakk NB! Det er ikke tillatt å levere inn kladd sammen med besvarelsen

EKSAMENSOPPGAVE Georg Elvebakk NB! Det er ikke tillatt å levere inn kladd sammen med besvarelsen Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-1001. Dato: 30.mai 2016. Klokkeslett: 09 13. Sted: Tillatte hjelpemidler: Teorifagbygget, «Tabeller og formler i statistikk» av Kvaløy

Detaljer

EKSAMENSOPPGAVE STA-1001.

EKSAMENSOPPGAVE STA-1001. Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-1001. Dato: Mandag 28. mai 2018. Klokkeslett: 09-13. Sted: Tillatte hjelpemidler: Administrasjonsbygget B154/AUDMAX. «Tabeller og

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Onsdag 9 mai 9 Tid for eksamen: 4:3 8:3 Oppgavesettet er på 7 sider Vedlegg: Tillatte

Detaljer

EKSAMENSOPPGAVE. Adm.bygget, Aud.max. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute

EKSAMENSOPPGAVE. Adm.bygget, Aud.max. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: Fys-1002 Dato: 30. september 2016 Klokkeslett: 09.00-13.00 Sted: Tillatte hjelpemidler: Adm.bygget, Aud.max ü Kalkulator med tomt dataminne

Detaljer

(t) = [ 2 cos t, 2 sin t, 0] = 4. Da z = 2(1 + t) blir kurva C en helix/ei skruelinje på denne flata (se fig side 392).

(t) = [ 2 cos t, 2 sin t, 0] = 4. Da z = 2(1 + t) blir kurva C en helix/ei skruelinje på denne flata (se fig side 392). Ma - Løsningsforslag til uke 5 i 7 Eks. mai 994 oppgave Romkurva er parametrisert for t [, π] ved r (t) = [ + cos t, + sin t, + t ] Hastighets- og akselerasjonsvektorene blir v = r (t) = [ sin t, cos t,

Detaljer

EKSAMENSOPPGAVE. 7 (6 sider med oppgaver + 1 side med formler)

EKSAMENSOPPGAVE. 7 (6 sider med oppgaver + 1 side med formler) Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: FYS-1002 (elektromagnetisme) Dato: 9. juni 2017 Klokkeslett: 09.00-13.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: ü Kalkulator med tomt

Detaljer

EKSAMENSOPPGAVE. FYS 2000, Kvantemekanikk Dato: 7. Juni 2017 Klokkeslett: 9:00-13:00 Sted: Tillatte hjelpemidler: rute.

EKSAMENSOPPGAVE. FYS 2000, Kvantemekanikk Dato: 7. Juni 2017 Klokkeslett: 9:00-13:00 Sted: Tillatte hjelpemidler: rute. EKSAMENSOPPGAVE Eksamen i: FYS 2000, Kvantemekanikk Dato: 7. Juni 2017 Klokkeslett: 9:00-13:00 Sted: Tillatte hjelpemidler: ett handskrevet A4-ark(2 sider med egne notater, samt K. Rottmann: Matematisk

Detaljer

Oppgaver og fasit til seksjon

Oppgaver og fasit til seksjon 1 Oppgaver og fasit til seksjon 3.4-3.6 Oppgaver til seksjon 3.4 1. Anta at f(x, y) = x 2 y 3 og r(t) = t 2 i + 3t j. Regn ut g (t) når g(t) = f(r(t)). 2. Anta at f(x, y) = x 2 e xy2 og r(t) = sin t i+cos

Detaljer

EKSAMENSOPPGAVE. Professor Anders Schomacker

EKSAMENSOPPGAVE. Professor Anders Schomacker Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Dato: 25.11.2016 Klokkeslett: 15.00-19.00 Kvartærgeologi GEO-2003 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Ingen Type innføringsark

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i Eksamensdag: 9. april,. Tid for eksamen: : :. Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler: MAT Kalkulus og

Detaljer

EKSAMENSOPPGAVE. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA / NEI Hvis JA: ca. kl. 10

EKSAMENSOPPGAVE. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA / NEI Hvis JA: ca. kl. 10 Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Dato: 28 september 2017 Klokkeslett: 09-13 Sted: Teo-H3, 3218 Tillatte hjelpemidler: Type innføringsark (rute/linje): Antall sider inkl.

Detaljer

Integraler. John Rognes. 15. mars 2011

Integraler. John Rognes. 15. mars 2011 15. mars 2011 forener geometrisk målbare områder Ω og skalarfelt f : Ω R definert på disse områdene. Vi danner produktet f (Ω) Ω av verdien f (Ω) av funksjonen og størrelsen Ω av området. Mer presist deler

Detaljer

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål Eksamen 3.05.0 REA304 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : 5 timar: Del skal leverast inn etter timar. Del skal leverast inn

Detaljer

EKSAMENSOPPGAVE. Kalkulator Rom Stoff Tid: Fysikktabeller (Bok/utskrift fra bok)

EKSAMENSOPPGAVE. Kalkulator Rom Stoff Tid: Fysikktabeller (Bok/utskrift fra bok) Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: MNF-6002 Videreutdanning i naturfag for lærere, Naturfag trinn 2 Dato: Mandag 29. mai 2017 Klokkeslett: Kl 09:00 13:00 Sted: Åsgårdvegen

Detaljer

F = x F 1 + y F 2 + z F 3 = y 2 z 2 + x 2. i j k F = xy 2 yz 2 zx 2 = i(0 ( 2yz)) j(2xz 0) + k(0 2xy) = 2yzi 2xzj 2xyk.

F = x F 1 + y F 2 + z F 3 = y 2 z 2 + x 2. i j k F = xy 2 yz 2 zx 2 = i(0 ( 2yz)) j(2xz 0) + k(0 2xy) = 2yzi 2xzj 2xyk. TMA415 Matematikk 2 Vår 215 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 12 Alle oppgavenummer referer til 8. utgave av Adams & Essex alculus: A omplete

Detaljer

Eksamensoppgave i MA1103 Flerdimensjonal analyse

Eksamensoppgave i MA1103 Flerdimensjonal analyse Institutt for matematiske fag Eksamensoppgave i MA3 Flerdimensjonal analyse Faglig kontakt under eksamen: Mats Ehrnstrøm Tlf: 735 97 44 Eksamensdato: 22. mai 28 Eksamenstid (fra til): 9: 3: Hjelpemiddelkode/Tillatte

Detaljer

Obligatorisk oppgåve 1

Obligatorisk oppgåve 1 FYS112 Elektromagnetisme 214 Obligatorisk oppgåve 1 Innleveringsfrist 19. september kl. 23.59 Lars Kristian Henriksen 21. oktober 214 Obligar i FYS112 leverast elektronisk på Devilry http://devilry.ifi.uio.no/.

Detaljer

EKSAMENSOPPGAVE. Kalkulator, transportør (vinkelmåler), linjaler, fargeblyanter. Millimeterpapir deles ut.

EKSAMENSOPPGAVE. Kalkulator, transportør (vinkelmåler), linjaler, fargeblyanter. Millimeterpapir deles ut. Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Geo-2002 Dato: 30. mai 2017 Klokkeslett: 9:00-13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Kalkulator, transportør (vinkelmåler),

Detaljer

EKSAMENSOPPGAVE. NB! Det er ikke tillatt å levere inn kladd sammen med besvarelsen

EKSAMENSOPPGAVE. NB! Det er ikke tillatt å levere inn kladd sammen med besvarelsen Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: INF-1101 Datastrukturer og algoritmer Dato: 18.05.2016 Klokkeslett: 09:00 13:00 Sted: Teorifagbygget, hus 3, 3.218 Tillatte hjelpemidler:

Detaljer

EKSAMEN i MATEMATIKK 30

EKSAMEN i MATEMATIKK 30 Eksamen i Matematikk 3 1. desember 1999 1 Høgskolen i Gjøvik Avdeling for teknologi EKAMEN i MATEMATIKK 3 1 desember 1999 kl. 9 14 Fagnummer: V139A Faglærer: Hans Petter Hornæs Tillatte hjelpemidler: Godkjent

Detaljer

EKSAMENSOPPGAVE. Linjal, kalkulator (hva som helst typ)

EKSAMENSOPPGAVE. Linjal, kalkulator (hva som helst typ) Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: GEO-2001 Dato: Tirsdag 26. september 2017 Klokkeslett: 09.00-13.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Linjal, kalkulator (hva

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 7 15.1.3: Siden vektorfeltet er gitt ved F(x, y) = yi + xj må feltlinjene tilfredstille differensiallikningen eller y = x y, ( ) 1 2 y2 = x.

Detaljer

EKSAMENSOPPGAVE STA-2004.

EKSAMENSOPPGAVE STA-2004. Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-2004. Dato: Torsdag 28. september 2017. Klokkeslett: 09 13. Sted: Tillatte hjelpemidler: Teorifagsbygget. «Tabeller og formler i

Detaljer

The full and long title of the presentation

The full and long title of the presentation The full and long title of the presentation Subtitle if you want Øistein Søvik Mai 207 Ø. Søvik Short title Mai 207 / 4 Innholdsfortegnelse Introduksjon Nyttige tips før eksamen Nyttige tips under eksamen

Detaljer

EKSAMENSOPPGAVE. Kalkulator «Huskelapp» -A4 ark med skrift på begge sider Enkel norsk-engelsk/engelsk-norsk ordbok

EKSAMENSOPPGAVE. Kalkulator «Huskelapp» -A4 ark med skrift på begge sider Enkel norsk-engelsk/engelsk-norsk ordbok Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: KJE-1001 Introduksjon til kjemi og kjemisk biologi Dato: 22.02.2017 Klokkeslett: 09:00-15:00 Sted: Åsgårdveien 9 Tillatte hjelpemidler:

Detaljer

EKSAMENSOPPGAVE. B154 «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark (4 sider) med egne notater. Godkjent kalkulator.

EKSAMENSOPPGAVE. B154 «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark (4 sider) med egne notater. Godkjent kalkulator. Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-2004 Dato: 29.september 2016 Klokkeslett: 09 13 Sted: Tillatte hjelpemidler: B154 «Tabeller og formler i statistikk» av Kvaløy og

Detaljer

EKSAMENSOPPGAVE. to A4 ark egne notater og Rottmanns tabeller. Kontaktperson under eksamen: Professor Andrei Prasolov. Telefon:

EKSAMENSOPPGAVE. to A4 ark egne notater og Rottmanns tabeller. Kontaktperson under eksamen: Professor Andrei Prasolov. Telefon: EKSAMENSOPPGAVE Eksamen i: Mat 4 Lineær algebra Dato: Torsdag 4 juni 25 Tid: Kl 9: 3: Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Godkjent kalkulator, to A4 ark egne notater og Rottmanns tabeller Oppgavesettet

Detaljer

dx = 1 1 )dx = 3 y= x . Tangentplanet til hyperboloiden i (2, 1, 3) er derfor gitt ved x 2, y 1, z 3 = 0 x 2 + 2(y 1) 2 (z 3) = 0 x + 2y 2z 3 = 2

dx = 1 1 )dx = 3 y= x . Tangentplanet til hyperboloiden i (2, 1, 3) er derfor gitt ved x 2, y 1, z 3 = 0 x 2 + 2(y 1) 2 (z 3) = 0 x + 2y 2z 3 = 2 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA415 Matematikk vår 9 øsningsforslag til eksamen 15. august 9 1 Treghetsmoment med hensyn på x-aksen er gitt ved x [ ] y I

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MEK 11 Feltteori og vektoranalyse. Eksamensdag: Torsdag 1 desember 29. Tid for eksamen: 14:3 17:3. Oppgavesettet er på 7 sider.

Detaljer

EKSAMEN I FAG SIF5005 MATEMATIKK 2

EKSAMEN I FAG SIF5005 MATEMATIKK 2 Norges teknisk naturvitenskapelige universitet Trond Digernes 75957 Berner Larsen 7 59 5 5 Lisa Lorenten 7 59 5 8 Vigdis Petersen 75965 ide av Vedlegg: Formelliste IF55 Matematikk ide av Oppgave Et plant

Detaljer

EKSAMENSOPPGAVE. INF-1400 Objektorientert Programmering. Dato: Tirsdag 23. mai Klokkeslett: Kl 17:00-21:00. Adm. bygget, Aud.

EKSAMENSOPPGAVE. INF-1400 Objektorientert Programmering. Dato: Tirsdag 23. mai Klokkeslett: Kl 17:00-21:00. Adm. bygget, Aud. Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: INF-1400 Objektorientert Programmering Dato: Tirsdag 23. mai 2017 Klokkeslett: Kl 17:00-21:00 Sted: Tillatte hjelpemidler: Type innføringsark

Detaljer

IR Matematikk 1. Utsatt Eksamen 8. juni 2012 Eksamenstid 4 timer

IR Matematikk 1. Utsatt Eksamen 8. juni 2012 Eksamenstid 4 timer Utsatt Eksamen 8. juni 212 Eksamenstid 4 timer IR1185 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del 2 uten bruk av hjelpemidler. Du kan bare

Detaljer

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1 EKSAMEN BOKMÅL DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember 15 9:-13: FAGKODE: FAGNAVN: IR151 Matematikk 1 HJELPEMIDLER: Del 1: kl 9.-11. Ingen Del : kl 11.-13. Lommeregner Lærebok etter fritt valg Matematisk

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA45 Matematikk Anbefalte oppgaver - Løsningsforslag Uke 5.5.: Kulen er grafen til rφ, θ) asinφ) cosθ)i + sin φ sinθ)j + cosφ)k), φ π, θ < π. Vi har slik at φ θ acosφ) cosθ)i + sinφ) sinθ)j + cosφ)k)

Detaljer

Oppgavesettet har 10 punkter 1, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen.

Oppgavesettet har 10 punkter 1, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen. NTNU Institutt for matematiske fag SIF55 Matematikk 2 4. mai 999 Løsningsforslag Oppgavesettet har punkter, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen. i alternativ (3, ii alternativ (2. 2 a For

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 11. juni 21. Tid for eksamen: 14.3 17.3. Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: MAT111 Kalkulus

Detaljer

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål Eksamen 30..00 REA304 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del skal leverast inn etter timar. Del skal

Detaljer

EKSAMENSOPPGAVE. KJE-1001 Introduksjon til kjemi og kjemisk biologi

EKSAMENSOPPGAVE. KJE-1001 Introduksjon til kjemi og kjemisk biologi Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: KJE-1001 Introduksjon til kjemi og kjemisk biologi Dato: Onsdag 28. februar 2018 Klokkeslett: 09:00-15:00 Sted: Tillatte hjelpemidler:

Detaljer

EKSAMENSOPPGAVE. linjal, kalkulator (hva som helst typ)

EKSAMENSOPPGAVE. linjal, kalkulator (hva som helst typ) Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: GEO-2004 Dato: 9. juni 2017 Klokkeslett: 9:00 13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: linjal, kalkulator (hva som helst typ)

Detaljer

MAT mars mars mars 2010 MAT Våren 2010

MAT mars mars mars 2010 MAT Våren 2010 MAT 1012 Våren 2010 Mandag Forelesning Vi har tidligere integrert funksjoner langs x-aksen, og vi har integrert funksjoner i flere variable over begrensede områder i xy-planet. I denne forelesningen skal

Detaljer

Oppgavesettet er på 3 sider eks. forside, og inneholder 12 deloppgaver: 1abc, 2, 3, 4abc, 5ab, 6ab.

Oppgavesettet er på 3 sider eks. forside, og inneholder 12 deloppgaver: 1abc, 2, 3, 4abc, 5ab, 6ab. EKSAMENSOPPGAVE MAT-0001 (BOKMÅL) Eksamen i : Mat-0001 Brukerkurs i matematikk. Dato : tirsdag 4. desember 2012. Tid : 09.00-13.00. Sted: : Åsgårdvegen 9. Tillatte hjelpemidler : Alle trykte og skrevne.

Detaljer

EKSAMENSOPPGAVE. linjal. Jiri Konopasek

EKSAMENSOPPGAVE. linjal. Jiri Konopasek Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: GEO 2001 Dato: Tirsdag 6. juni 2017 Klokkeslett: 09.00 13.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: linjal Type innføringsark (rute/linje):

Detaljer

Løsning til eksamen i ingeniørmatematikk

Løsning til eksamen i ingeniørmatematikk Løsning til eksamen i ingeniørmatematikk 3 78 Oppgave Vektorfeltet har komponenter og er funksjon av variable Jacobimatrisen er av type ( xy) ( xy) x y ( yx) ( yx) xy x y xy Innsatt finner vi JF ( x, y)

Detaljer

EKSAMENSOPPGAVE / EKSAMENSOPPGÅVE

EKSAMENSOPPGAVE / EKSAMENSOPPGÅVE Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE / EKSAMENSOPPGÅVE Eksamen i: Inf-1049, Introduksjon til beregningsorientert programmering Dato: 14. desember 2018 Klokkeslett: 09.00 13.00 Sted

Detaljer

Vi regner først ut de nødvendige partiellderiverte for å se om vektorfeltet er konservativt. z = 2z, F 2 F 2 z = 2y, F 3. x = 2x, F 3.

Vi regner først ut de nødvendige partiellderiverte for å se om vektorfeltet er konservativt. z = 2z, F 2 F 2 z = 2y, F 3. x = 2x, F 3. TMA415 Matematikk Vår 15 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 7 Alle oppgavenummer refererer til 8. utgave av Adams & Essex alculus: A omplete

Detaljer

Oppgaver og fasit til kapittel 6

Oppgaver og fasit til kapittel 6 1 Oppgaver og fasit til kapittel 6 Mange av oppgavene i dette kapitlet brukes for første gang, og det er sannsynligvis flere fasitfeil enn normalt. Finner du en feil, så send en melding til lindstro@math.uio.no.

Detaljer

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger

Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Institutt for matematiske fag Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Faglig kontakt under eksamen: Anton Evgrafov Tlf: 4503 0163 Eksamensdato: 30. mai 2017 Eksamenstid (fra

Detaljer

SIF5005 Matematikk 2, 13. mai 2002 Løsningsforslag

SIF5005 Matematikk 2, 13. mai 2002 Løsningsforslag SIF55 Matematikk, 3. mai Oppgave Alternativ : At de to ligningene skjærer hverandre vil si at det finnes parameterverdier u og v som, innsatt i de to parametriseringene, gir samme punkt: Vi løser hver

Detaljer

y = x y, y 2 x 2 = c,

y = x y, y 2 x 2 = c, TMA415 Matematikk Vår 17 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 9 Alle oppgavenummer referer til 8. utgave av Adams & Essex alculus: A omplete

Detaljer

EKSAMENSOPPGAVE. linjal, kalkulator (hva som helst typ)

EKSAMENSOPPGAVE. linjal, kalkulator (hva som helst typ) Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: GEO-2004 Dato: 8. juni 2018 Klokkeslett: 9:00 13:00 Sted: Teorifagbygget, hus 1, plan 4 Tillatte hjelpemidler: linjal, kalkulator (hva

Detaljer

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, 8.juni 2010

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, 8.juni 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Løsningsforslag, eksamen MA11 Flerdimensjonal analyse, 8.juni 21 Oppgave 1 a) Finn og klassifiser alle kritiske

Detaljer

Kurve-, flate- og volumintegraler, beregning av trykkraft

Kurve-, flate- og volumintegraler, beregning av trykkraft Kapittel 6 Kurve-, flate- og volumintegraler, beregning av trykkraft Oppgave 1 Vi skal regne ut kurveintegralet λ v dr langs kurven λ: y x3 når 1 x 2 og v xyi+x 2 j. Vi kan parametrisere med x som parameter,

Detaljer

EKSAMENSOPPGAVE. linjal, kalkulator (hva som helst typ) Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA Hvis JA: ca. kl.

EKSAMENSOPPGAVE. linjal, kalkulator (hva som helst typ) Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA Hvis JA: ca. kl. EKSAMENSOPPGAVE Eksamen i: GEO-2001 Dato: 26. september 2018 Klokkeslett: 9:00 13:00 Sted: Tillatte hjelpemidler: Adm.bygget B154 linjal, kalkulator (hva som helst typ) Type innføringsark (rute/linje):

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT1100 Kalkulus. Eksamensdag: Fredag 9. desember 011. Tid for eksamen: 09.00 1.00. Oppgavesettet er på 5 sider. Vedlegg: Tillatte

Detaljer

LØSNINGSFORSLAG TIL ØVING 11, TMA4105, V2008. x = r cos θ, y = r sin θ, z = 2r for 0 θ 2π, 2 2r 6. i j k. 5 r dr dθ = 8

LØSNINGSFORSLAG TIL ØVING 11, TMA4105, V2008. x = r cos θ, y = r sin θ, z = 2r for 0 θ 2π, 2 2r 6. i j k. 5 r dr dθ = 8 LØNINGFORLAG TIL ØVING, TMA45, V8 Oppgave 4.5.9. Parametrisering: x = r cos θ, y = r sin θ, z = r for θ π, r 6. r(r, θ) = r cos θ, r sin θ, r. N = r r r θ = cos θ sin θ = r cos θ, r sin θ, r. r sin θ r

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MEK 1100 Feltteori og vektoranalyse. Eksamensdag: Torsdag 11 desember 2008. Tid for eksamen: 14:30 17:30. Oppgavesettet er på

Detaljer

Tillegg om flateintegraler

Tillegg om flateintegraler Kapittel 6 Tillegg om flateintegraler 6.1 Litt ekstra om flateintegraler I kompendiet har vi definert flateintegraler som grenseoverganger for diskretiseringer. Har vi en flate kan vi representere den

Detaljer

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Eksamen i MAT111 Grunnkurs i matematikk I Løsningsforslag

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Eksamen i MAT111 Grunnkurs i matematikk I Løsningsforslag UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i MAT Grunnkurs i matematikk I Løsningsforslag Onsdag 9. mai, kl. 9. 4. Bokmål Oppgave a) La R være området mellom kurvene Finn

Detaljer

Kurve-, flate- og volumintegraler, beregning av trykkraft

Kurve-, flate- og volumintegraler, beregning av trykkraft Kapittel 6 Kurve-, flate- og volumintegraler, beregning av trykkraft Oppgave 1 Vi skal regne ut kurveintegralet λ v dr langs kurven λ: y x3 når 1 x 2 og v xyi+x 2 j. Vi kan parametrisere med x som parameter,

Detaljer