Visualiseringsdelen - Oppsummering
|
|
|
- Frithjof Berntsen
- 9 år siden
- Visninger:
Transkript
1 Visualiseringsdelen - Oppsummering
2 Fenomen/prosess Visualisering i inf2340 Måling Mat. modell Simulering inf Simuleringsdelen inf Visualiseringsdelen 1.23E E E E E E E E-07 Numerisk datasett "Visualization Grafiske primitiver "Rendering Bilde INF2340 / V05 2
3 Del 1: Introduksjon til VTK 1.23E E E E E E E E-07 Numerisk datasett "Visualization Grafiske primitiver "Rendering Bilde INF2340 / V05 3
4 #include <vtk.h> vtkrenderwindow vtkrenderer vtkactor vtkpolydatamapper main() { vtkrenderer* rdr = vtkrenderer::new(); vtkrenderwindow* rdrwin = vtkrenderwindow::new(); rdrwin->addrenderer(rdr); vtkcubesource* scube = vtkcubesource::new(); vtkpolydatamapper* mcube = vtkpolydatamapper::new(); vtkactor* acube = vtkactor::new(); mcube->setinput(scube->getoutput()); acube->setmapper(mcube); rdr->addactor(acube); vtkcubesource } rdrwin->render(); INF2340 / V05 4
5 vtkrenderwindow vtkrenderer vtkactor vtkactor vtkactor vtkactor vtkmapper vtkmapper vtkmapper vtkmapper INF2340 / V05 5
6 Del 2: Grafisk databehandling 1.23E E E E E E E E-07 Numerisk datasett "Visualization Grafiske primitiver "Rendering Bilde INF2340 / V05 6
7 Lys og farge Øyets oppfattelse av lys og farge Fargemodeller (RGB, HSV) Rastergrafikk Frame buffer og Pixel Skjermoppløsning vs. pixeldybde Grafiske primitiver Rasterisering Antialiasing Objekt- og bilderom Objekt- og bilderekkefølge Transformasjoner i 2D og 3D Translasjon Skalering Rotasjon Projeksjon Parallell Perspektiv z x y z y y x θ x INF2340 / V05 7
8 3D syn Transformer grafisk primitiv fra 3D verdenskoordinater til 3D synskoordinater Klipp mot synsvolum Transformer fra 3D synskoordinater til 2D synskoordinater Rasteriser Skjulte flater Painter s algorithm Z-buffer Belysning Omgivelselys Diffus refleksjon Speilende refleksjon I p L Sjattering θ Flat/konstant Gouraud Phong K s Rendering pipeline θ α V N R INF2340 / V05 8
9 Teksturering Transparens/opasitet Blanding av farger Ray tracing Animasjon Dobbeltbuffer INF2340 / V05 9
10 Del 3: "Visualization 1.23E E E E E E E E-07 Numerisk datasett "Visualization Grafiske primitiver "Rendering Bilde INF2340 / V05 10
11 Prosessobjekter vtksource source filter filter vtkfilter vtkmapper Dataobjekter data data data vtkdataset Dataflyt og sammenkobling av objekter Type-matching Eksekvering og implisitt synkronisering Update Execute Tidsstempling A B C D G E mapper F INF2340 / V05 11
12 Del 4: Datarepresentasjon 1.23E E E E E E E E-07 Numerisk datasett "Visualization Grafiske primitiver "Rendering Bilde INF2340 / V05 12
13 Diskrete data og interpolasjon Punkt og celle Geometri og topologi Data-attributter Skalarer Vektorer Normaler Typer datasett Structured Points Rectilinear Grid Structured Grid Unstructured Grid Polygonal Data Implisitt punkt-geometri vtkstructuredpoints vtkrectilineargrid Node Linje Polylinje Triangel vtkdataset vtkpointset Polygon Tetraeder Hexaeder Eksplisitt punkt-geometri vtkstructuredgrid vtkunstructuredgrid vtkpolydata INF2340 / V05 13
14 Del 5: Visualisering av skalarfelt 1.23E E E E E E E E-07 Numerisk datasett "Visualization Grafiske primitiver "Rendering Bilde INF2340 / V05 14
15 Skalar-til-farge korrespondanse Fargelegging Forskyvning av geometri som funksjon av skalarverdi Konturering Isokurver Marching Squares Isoflater Marching Cubes Tvetydighet Snittflater INF2340 / V05 15
16 Del 6: Visualisering av vektorfelt 1.23E E E E E E E E-07 Numerisk datasett "Visualization Grafiske primitiver "Rendering Bilde INF2340 / V05 16
17 Forskyvning av geometri som funksjon av vektorverdi Piler ( hedgehog ) Trajektorier Euler Runge-Kutta INF2340 / V05 17
18 Del 7: Volumavbildning 1.23E E E E E E E E-07 Numerisk datasett "Visualization Grafiske primitiver "Rendering Bilde INF2340 / V05 18
19 S RGBA funksjoner Blandingsrekkefølge Back to front (BTF) Front to back (FTB) Ray casting Bilde-rekkefølge FTB Belysning vha. Teksturering limb darkening eller tradisjonell belysningsmodell basert på gradienten i feltet Objekt-rekkefølge FTB eller BTF Belysning vha. limb darkening 2D eller 3D tekstur INF2340 / V05 19
20 Prosedurale teksturer Alpha mapping Teksturering R B G α s Limb darkening INF2340 / V05 20
Simulering i IN229. INF2340 Våren 2004 Oversikt over innhold. Del 2: Endelige differanser. Del 1: MyVector. Del 3: ODESolver. Del 4: Bølgeligning
Simulering i IN229 INF2340 Våren 2004 Oversikt over innhold Fysisk problem Ex: Svingende streng Vannbølger Varme i jordskorpen Matematisk modell Ex: ODE Bølgeligning Varmeligning Simulatorkode Proseduralt
Funksjonell (dataflyt-) modell. Del 3 "Visualization Pipeline" Sammenkobling i praksis. Prosess- og data-objekter. Transformasjon. Representasjon (mer
Funksjonell (dataflt-) modell Del 3 "Visualization Pipeline" Transformasjon Konvertere data fra opprinnelig form til grafiske primitiver (tpisk gjennom flere ledd) Representasjon (mer om dette i neste
Skalar-til-farge korrespondanse. Del 5 Visualisering av skalarfelt. Regnbue-skalaen
Skalar-til-farge korrespondanse Del 5 Visualisering av skalarfelt Skalar-intervallet i datasettet korresponderer med en fargeskala s max egnbue ød til Gråtoner s min Sort/hvitt utskrift! INF340/ V04 For
VTK - The Visualization Toolkit. Del 1 Introduksjon til VTK VTK. Objektorientering (OO) i C++ Objekt-orientert bibliotek for visualisering Fordeler:
VTK - The Visualization Toolkit Del Introduksjon til VTK Objekt-orientert bibliotek for visualisering Fordeler: Fritt tilgjengelig Stor brukergruppe Godt designet, testet og dokumentert (se VTK brukermanual
2D Transformasjoner (s. 51 i VTK boken) Translasjon. Del 2 Grafisk databehandling forts. Rotasjon. Skalering. y x = x + d x, y = y + d y.
2D Transformasjoner (s. i VTK boken) Translasjon Del 2 Grafisk databehandling forts. (, ) = + d, = + d På matriseform: d d (, ) P =, P =, T = d d P = P + T 24/2-3 IN229 / V3 / Dag 6 2 Skalering Rotasjon
Teksturering. Mer om Grafisk Databehandling. Et annet eksempel. Eksempel
Teksturering Mer om Grafisk Databehandling Øker detaljgraden uten å øke antall grafiske primitiver. Grafiske primitiver brukes som bærere for bilder (f.eks. fotografier). INF2340 / V04 2 Eksempel Et annet
Besvarelse av obligatorisk oppgave 2 i IN229. Oppgave 1. Oppgaven bestod i å visualisere et vektorfelt g avledet av gradienten f til et
Besvarelse av obligatorisk oppgave 2 i IN229. Oppgaven bestod i å visualisere et vektorfelt g avledet av gradienten f til et skalarfelt f(x, y, z). Oppgaven består av fire deler:. Beregning av gradienten
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF330 Metoder i grafisk databehandling og diskret geometri Eksamensdag: 3. desember 010 Tid for eksamen: 14.30 18.30 Oppgavesettet
Universitetet i Agder Fakultet for teknologi og realfag LØSNINGSFORSLAG. Dato: 11. desember 2008 Varighet: 0900-1300. Antall sider inkl.
Universitetet i Agder Fakultet for teknologi og realfag LØSNINGSFORSLAG Emnekode: Emnenavn: DAT2 Grafisk Databehandling Dato:. desember 28 Varighet: 9 - Antall sider inkl. forside 7 OPPGAVE. (2%) a) b)
TDT4195 Bildeteknikk
TDT495 Bildeteknikk Grafikk Vår 29 Forelesning 5 Jo Skjermo [email protected] Department of Computer And Information Science Jo Skjermo, TDT423 Visualisering 2 TDT495 Forrige gang Attributter til
2D Transformasjoner (kap. 3 i VTK boken) Translasjon. Del 2 Grafisk databehandling forts. Rotasjon. Skalering. x = x + d x, y = y + d y
2D Transformasjoner (kap. 3 i VTK boken) Translasjon Del 2 Grafisk databehandling forts. (, ) = + d, = + d PÂmatriseform: d d (, ) P =, P =, T = d d P = P + T INF234 24 2 Skalering Rotasjon = s, = s =
LØSNINGSANTYDNING EKSAMEN
Universitetet i Agder Fakultet for teknologi og realfag LØSNINGSANTYDNING EKSAMEN Emnekode: Emnenavn: DAT Grafisk Databehandling Dato: 5. desember Varighet: 9 - Antall sider inkl. forside 8 Tillatte hjelpemidler:
E K S A M E N S O P P G A V E
HØGSKOLEN I AGDER Fakultet for teknologi E K S A M E N S O P P G A V E EMNE: FAGLÆRER: DAT 2 Grafisk Databehandling Morgan Konnestad Klasse(r): 2DTM, 2DT, 2 Siving, DT Dato: 8.2.6 Eksamenstid, fra-til:
LØSNINGSFORSLAG. Universitetet i Agder Fakultet for Teknologi og realfag. Dato: 03. desember 2009 Varighet: Antall sider inkl.
Universitetet i Agder Fakultet for Teknologi og realfag LØSNINGSFORSLAG Emnekode: Emnenavn: DAT2 Grafisk Databehandling Dato: 3. desember 29 Varighet: 9-3 Antall sider inkl. forside 8 Tillatte hjelpemidler:
EKSAMEN I EMNE TDT4230 VISUALISERING LØRDAG 10. DESEMBER 2005 KL
NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for fysikk, informatikk og matematikk Institutt for datateknikk og informasjonsvitenskap EKSAMEN I EMNE TDT4230 VISUALISERING LØRDAG 10. DESEMBER
KONTINUASJONSEKSAMEN I EMNE TDT4230 VISUALISERING TIRSDAG 9. AUGUST 2005 KL LØSNINGSFORSLAG
Side 1 av 8 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for fysikk, informatikk og matematikk Institutt for datateknikk og informasjonsvitenskap KONTINUASJONSEKSAMEN I EMNE TDT430 VISUALISERING
EKSAMEN I EMNE TDT4230 VISUALISERING FREDAG 10. DESEMBER 2010 KL LØSNINGSFORSLAG
Side 1 av 11 EKSAMEN I EMNE TDT4230 VISUALISERING FREDAG 10. DESEMBER 2010 KL. 09.00 13.00 LØSNINGSFORSLAG OPPGAVE 1 Kubiske Bézier-kurver og flater a) Sammenhengen mellom vektoren av blandefunksjoner
HØGSKOLEN I BERGEN Avdeling for ingeniørutdanning
HØGSKOLEN I BERGEN Avdeling for ingeniørutdanning Eksamen i SOD 165 Grafiske metoder Klasse : 3D Dato : 15. august 2000 Antall oppgaver : 4 Antall sider : 4 Vedlegg : Utdrag fra OpenGL Reference Manual
LØSNINGSANTYDNING. HØGSKOLEN I AGDER Fakultet for teknologi. DAT 200 Grafisk Databehandling. Ingen. Klasse(r): 2DTM, 2DT, 2 Siving, DT
HØGSKOLEN I AGDER Fakultet for teknologi LØSNINGSANTYDNING EMNE: FAGLÆRER: DAT 2 Grafisk Databehandling Morgan Konnestad Klasse(r): 2DTM, 2DT, 2 Siving, DT Dato: 5.2.5 Eksamenstid, fra-til: 9. - 3. Eksamensoppgaven
Lill - Beate Nymoen s. Semester oppgave: Indianer jente. Tlf : 996 26316 - Email : [email protected] - Blogg : http://ideblogg.
Lill - Beate Nymoen s Semester oppgave: Indianer jente - Planen for Semester oppgaven: Fikk fulgt den ganske nøye. Men jeg kan virkelig si at rendering trenger man mye tid på, med tanke på sjansen for
UNIVERSITETET I OSLO Institutt for informatikk. IN229 Simulering og visualisering. Eksamensrapport. Per-Idar Evensen
UNIVERSITETET I OSLO Institutt for informatikk IN229 Simulering og visualisering Eksamensrapport Per-Idar Evensen ([email protected]) Våren 2001 Simulering I denne oppgaven skulle vi studere den tidsavhengige
1 Introduksjon GeoGebra 2 Speiling, rotasjon og parallellforskyvning 3 Perspektivtegning 4 Symmetriakser
1 Geometri i kunsten: 1 Introduksjon GeoGebra 2 Speiling, rotasjon og parallellforskyvning 3 Perspektivtegning 4 Symmetriakser MKH GeoGebra - Geometri i kunsten Innhold 1 Introduksjon GeoGebra... 1 1.1
EKSAMEN I EMNE TDT4230 VISUALISERING LØRDAG 18. DESEMBER 2004 KL Løsningsforslag
Side 1 av 12 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for fysikk, informatikk og matematikk Institutt for datateknikk og informasjonsvitenskap EKSAMEN I EMNE TDT4230 VISUALISERING LØRDAG
RF5100 Lineær algebra Leksjon 10
RF5100 Lineær algebra Leksjon 10 Lars Sydnes, NITH 11. november 2013 I. LITT OM LYS OG FARGER GRUNNLEGGENDE FORUTSETNINGER Vi ser objekter fordi de reflekterer lys. Lys kan betraktes som bølger / forstyrrelser
a. Hva er de inverse transformasjonene avfølgende tre transformasjoner T, R og S: θ θ sin( ) cos( ) Fasit: 1 s x cos( θ) sin( θ) 0 0 y y z
Kommentar: Svar kort og konsist. Husk at eksamen har tre oppgaver. Poengene for hver (del-) oppgave bør gi en indikasjon på hvor me tid som bør benttes per oppgave. Oppgave 1: Forskjellige emner (40 poeng)
INF 2310 Digital bildebehandling
INF 230 Digital bildebehandling Forelesning 3 Geometriske operasjoner Fritz Albregtsen 05.02.203 INF230 Temaer i dag Geometriske operasjoner Lineære / affine transformer Resampling og interpolasjon Samregistrering
Forelesningsnotater SIF8039/ Grafisk databehandling
Forelesningsnotater SIF839/ Grafisk databehandling Notater til elesninger over: Kapittel 5: Viewing i: Edward Angel: Interactive Computer Graphics Vårsemesteret 22 Torbjørn Hallgren Institutt datateknikk
Voxelbasert 3D visualisering i OpenGL
Voxelbasert 3D visualisering i OpenGL Bjørn Egil Jenssen Universitetet i Oslo 27/4-3 27.4.3 Side 3 Forord Denne rapporten oppsummerer mitt arbeid med Cand. Scient graden i informatikk ved Universitetet
TextureTool med SOSI-parser
TextureTool med SOSI-parser Verktøy for teksturmapping og automatisk generering av 3D-modeller Hovedprosjekt 11E Erlend A. Lorentzen Jørn G. Nyegaard-Larsen 3DSU 2008/2009 Høgskolen i Sør-Trøndelag Avdeling
Fordypningsoppgave. Ola Haldor Voll
Fordypningsoppgave 3D Design, Idefagskolen 2015 Voll +47 416 41 007 [email protected] www.olahaldor.net Oppgaven Oppgaven var å sette compositing i fokus. Materiell måtte anskaffes og produseres. Rambukk
INF 2310 Digital bildebehandling
INF 2310 Digital bildebehandling Forelesning 3 Geometriske operasjoner Fritz Albregtsen 03.02.2014 INF2310 1 Temaer i dag Geometriske operasjoner Lineære / affine transformer Resampling og interpolasjon
RF5100 Lineær algebra Leksjon 1
RF5100 Lineær algebra Leksjon 1 Lars Sydnes, NITH 20.august 2013 I. INFORMASJON FAGLÆRER Kontakt: Lars Sydnes [email protected] 93035685 Bakgrunn: Doktorgrad i Matematikk fra NTNU (2012), Siv.ing. Industriell
KONTINUASJONSEKSAMEN I EMNE TDT4230 VISUALISERING MANDAG 15. AUGUST 2011 KL LØSNINGSFORSLAG
Side 1 av 8 KONTINUASJONSEKSAMEN I EMNE TDT4230 VISUALISERING MANDAG 15. AUGUST 2011 KL. 09.00 13.00 LØSNINGSFORSLAG OPPGAVE 1 Parametriske kurver a) En eksplisitt eller implisitt funksjon i tre variable
www.ir.hiof.no/~eb/viz.htm Side 1 av 12
VIZhtm Side 1 av 12 Innhold Side MÅL 1 OPPGAVE / RESULTAT 1 BESKRIVELSE ØVING 6A 2 BESKRIVELSE ØVING 6B 9 BESKRIVELSE ØVING 6C 12 MÅL Når du har utført denne øvingen, skal du kunne: Benytte et kamera som
Kart og andre umodne objekter
Figur 5-. Ogdens trekant Kart og andre umodne objekter Thoughts of Reference Begreper Person Bil Døgn Gerhard Skagestein David Skogan Fozia Jabeen Arif Shomaila Kausar 8765487 DF 45 9. febr. --9 Symbol
Forelesningsnotater SIF8039/ Grafisk databehandling
Forelesningsnotater SIF8039/ Grafisk databehandling Notater til forelesninger over: Kapittel 1: Graphics Systems and Models i: Edward Angel: Interactive Computer Graphics Vårsemesteret 2002 Torbjørn Hallgren
RF5100 Lineær algebra Leksjon 1
RF5100 Lineær algebra Leksjon 1 Lars Sydnes, NITH 20.august 2013 I. INFORMASJON FAGLÆRER Kontakt: Lars Sydnes [email protected] 93035685 Bakgrunn: Doktorgrad i Matematikk fra NTNU (2012), Siv.ing. Industriell
EKSAMEN I EMNE TDT4230 VISUALISERING TIRSDAG 18. DESEMBER 2007 KL LØSNINGSFORSLAG
Side 1 av 10 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for fysikk, informatikk og matematikk Institutt for datateknikk og informasjonsvitenskap EKSAMEN I EMNE TDT40 VISUALISERING TIRSDAG
Forelesningsnotater SIF8039/ Grafisk databehandling
Forelesningsnotater SIF839/ Grafisk databehandling Notater til forelesninger over: Kapittel 4: Geometric Objects and ransformations i: Edward Angel: Interactive Computer Graphics Vårsemesteret 22 orbjørn
Emne 6. Lineære transformasjoner. Del 1
Emne 6. Lineære transformasjoner. Del 1 Lineære transformasjoner kan sammenliknes med vanlig funksjonslære. X x 1 x 2 x 3 f Y Gitt to tallmengder X og Y. y 1 En funksjon f er her en regel som y 2 knytter
Spillkarakterer-modellering. En introduksjon til å lage spillkarakterer med Maya og ZBrush.
Spillkarakterer-modellering En introduksjon til å lage spillkarakterer med Maya og ZBrush. 1 Vår Maya og Zbrush pipeline Maya: 1. Initialisere et prosjekt 2. Utforme en basemesh 3. Utbretting av UV er
Gråtonehistogrammer. Histogrammer. Hvordan endre kontrasten i et bilde? INF Hovedsakelig fra kap. 6.3 til 6.6
Hvordan endre kontrasten i et bilde? INF 230 Hovedsakelig fra kap. 6.3 til 6.6 Histogrammer Histogramtransformasjoner Histogramutjevning Histogramtilpasning Histogrammer i flere dimensjoner Matematisk
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO De maemaisk-naurvienskapelige fakule Eksamen i INF3320 Meoder i grafisk daabehandling og diskre geomeri Eksamensdag: 2. desember 2009 Tid for eksamen: 14.30 17.30 Oppgavesee er på
Fotorealistisk fremstilling... 3
DDS-CAD 9 Fotorealistisk fremstilling Kapittel 4 1 Innhold Side Kapittel 4 Fotorealistisk fremstilling... 3 Perspektiv... 3 Rendere konturmodell... 4 Rendere sjattert - sanntid... 5 Materialer... 5 Teksturkobling...
Felt i naturen, skalar- og vektorfelt, skalering
Kapittel 1 Felt i naturen, skalar- og vektorfelt, skalering Oppgave 1 To vektorer u og v er parallelle hvis vi kan skrive u = cv, der c er en skalar. 2a 1 6 b = c 1 4 b 3a a2+3c+b 16 14 c = 0. Dette gir
Velkommen til MEK1100
Velkommen til MEK1100 Matematisk institutt, UiO MEK1100 FELTTEORI OG VEKTORANALYSE Våren 2016 Foreleser: Karsten Trulsen Øvingslærere: Susanne Støle Hentschel (2 grupper), Lars Magnus Valnes (2 grupper),
Leksjon 3: Lys og materialer
Lineær algebra med grafiske anvendelser Leksjon 3: Lys og materialer Fjerning av skjulte flater side 2 OpenGL Lysmodellering side 3 Lystyper og tilhørende materialrespons Bakgrunnslys (Ambient light) side
Felt i naturen, skalar- og vektorfelt, skalering
Kapittel 1 Felt i naturen, skalar- og vektorfelt, skalering Oppgave 1 To vektorer u og v er parallelle hvis vi kan skrive u = cv, der c er en skalar. 2a 1 6 b = c 1 4 b 3a a2+3c+b 16 14 c = 0. Dette gir
RF5100 Lineær algebra Leksjon 12
RF5100 Lineær algebra Leksjon 12 Lars Sydnes, NITH 26. november 2013 I. GAUSS-ELIMINASJON 2x + 3y + z = 1 2x + 5y z = 1 4x + 7y + 4z = 3 x + 3/2 y + 1/2 z = 1/2 x + 2z = 2 y z = 1 3z = 2 x + 2z = 2 y z
E K S A M E N. Universitetet i Agder Fakultet for fakultet for Teknologi og realfag. Grafisk Databehandling
Universitetet i Agder Fakultet for fakultet for Teknologi og realfag E K S A M E N Emnekode: Emnenavn: DAT200 Grafisk Databehandling Dato: 23. November 2016 Varighet: 0900-1300 Antall sider inkl. forside
Eksport til maskinstyring. BC-HCE eksport vei og bakgrunnskart til maskinstyring
BC-HCE eksport vei og bakgrunnskart til maskinstyring Dette forutsetter at data er importert i BC-HCE og at riktig koordinatsystem og geoide er valgt. Det er tre modellmetoder som kan eksporteres til maskinstyringen,
Computer Graphics with OpenGL
Computer Graphics with OpenGL 2. Computer Graphics Hardware Plasmapaneler baserer seg på gass som satt under spenning vil emittere lys. LCD-skjermer baserer seg på at lys kan polariseres og at krystaller
Universitetet i Oslo Institutt for informatikk. Hierarkisk modellering og sanntidsvisualisering. skog. Kristian Børresen
Universitetet i Oslo Institutt for informatikk Hierarkisk modellering og sanntidsvisualisering av skog Kristian Børresen 12. november 2003 Denne oppgaven er til tittelen Cand.Scient. ved Institutt for
Oppgave 1 (25 %) - Flervalgsoppgaver
Oppgaver og løsningsforslag for 4t eksamen 10.mai 006 i LO510D Lineær algebra med grafiske anvendelser. Fra og med oppgave skal alle svar begrunnes. Oppgave 1 (5 %) - Flervalgsoppgaver Denne oppgaven består
INF-MAT5370. Grafer og datastrukturer
INF-MAT5370 Grafer og datastrukturer Øyvind Hjelle [email protected], +47 67 82 82 75 Simula Research Laboratory, www.simula.no August 3, 2009 Innhold Kort om grafer Topologiske operatorer og operasjoner,
INF Stikkord over pensum til midtveis 2017 Kristine Baluka Hein
INF2310 - Stikkord over pensum til midtveis 2017 Kristine Baluka Hein 1 Forhold mellom størrelse i bildeplan y og "virkelighet"y y y = s s og 1 s + 1 s = 1 f Rayleigh kriteriet sin θ = 1.22 λ D y s = 1.22
Fargebilder. Lars Vidar Magnusson. March 12, 2018
Fargebilder Lars Vidar Magnusson March 12, 2018 Delkapittel 6.1 Color Fundamentals Delkapittel 6.2 Color Models Delkapittel 6.3 Bildeprosessering med Pseudofarger Delkapittel 6.4 Prosessering av Fargebilder
3D Modellering og Animasjon Velkommen
3D Modellering og Animasjon Velkommen Om meg: Jarl Schjerverud Jobbet med 3D modellering siden 1994 Jobbet i spillindustrien i 14 år (Funcom) Har undervist ved NITH i spilldesign siden 2009 og spilldesign
Uke 6: Analyse i frekvensdomenet
Uke 6: Analyse i frekvensdomenet Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/26 Dagens temaer Fra forrige gang Frekvensrespons funksjonen Fourier rekker og
FEILSØK I AR5 I WINMAP
Veileder fra Skog og landskap FEILSØK I AR5 I WINMAP Versjon 2014-03-26 Jørn Storholt Norsk institutt for skog og landskap, Pb 115, NO-1431 Ås 1 INNHOLD 1. INNLEDNING... 3 1.1. Hvorfor feilsøking i AR5...
Partieltderiverte og gradient
Partieltderiverte og gradient Kap 2 Matematisk Institutt, UiO MEK1100, FELTTEORI OG VEKTORANALYSE våren 2009 Framstilling Kommentarer, relasjon til andre kurs Struktur Mye er repitisjon fra MAT1100, litt
GENERELLE VEKTORROM. Hittil har vi bare snakket om vektorrom av type
Emne 8 GENERELLE VEKTORROM Hittil har vi bare snakket om vektorrom av type og underrom av dette. Vi definerte en mengde V som et underrom av hvis det inneholdt og var lukket under addisjon og skalar multiplikasjon.
Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Geometri i skolen Geometri etter 4.
Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI 15-Apr-07 Geometri i skolen dreier seg blant annet om å analysere egenskaper ved to- og tredimensjonale
Numerisk løsning av PDL
Numerisk løsning av PDL Arne Morten Kvarving Department of Mathematical Sciences Norwegian University of Science and Technology 6. November 2007 Problem og framgangsmåte Fram til nå har vi sett på ordinære
Computers in Technology Education
Computers in Technology Education Beregningsorientert matematikk ved Høgskolen i Oslo Skisse til samlet innhold i MAT1 og MAT2 JOHN HAUGAN Både NTNU og UiO har en god del repetisjon av videregående skoles
Temaer i dag. Mer om romlig oppløsning. Optisk avbildning. INF 2310 Digital bildebehandling
Temaer i dag INF 2310 Digital bildebehandling Forelesning II Sampling og kvantisering Fritz Albregtsen Romlig oppløsning i bilder Sampling av bilder Kvantisering i bilder Avstandsmål i bilder Pensum: Kap.
Sampling av bilder. Romlig oppløsning, eksempler. INF Ukens temaer. Hovedsakelig fra kap. 2.4 i DIP
INF 2310 22.01.2008 Ukens temaer Hovedsakelig fra kap. 2.4 i DIP Romlig oppløsning og sampling av bilder Kvantisering Introduksjon til pikselmanipulasjon i Matlab (i morgen på onsdagstimen) Naturen er
HamboHus 6.4.7 Rev. 1, 3. mail 2010 A. Cordray. Dette skrivet beskriver hvordan man kan gå fram for å lage situasjonskart i HamboHus.
HamboHus Technical Note Nr 13: Situasjonskart HamboHus 6.4.7 Rev. 1, 3. mail 21 A. Cordray Dette skrivet beskriver hvordan man kan gå fram for å lage situasjonskart i HamboHus. Hent kart fra kommunen Situasjonskart
Vi starter straks FME WEBINAR - 11. 9 2015. Sigbjørn Tillerli Herstad [email protected]
Vi starter straks FME WEBINAR - 11. 9 2015 Sigbjørn Tillerli Herstad [email protected] FME Certified Trainer FME Certified Professional Skriv spørsmål i «chatvinduet» i Gotowebinar svarer underveis / til
Oppgaver MAT2500. Fredrik Meyer. 29. august 2014
Oppgaver MAT500 Fredrik Meyer 9. august 04 Oppgave. Bruk cosinus-setningen til å se at definisjonen av vinkel i planet blir riktig. Løsning. Dette er en litt rar oppgave. Husk at cosinus-setningen sier
INF-MAT5370. Trianguleringer i planet (Preliminaries)
INF-MAT5370 Trianguleringer i planet (Preliminaries) Øyvind Hjelle [email protected], +47 67 82 82 75 Simula Research Laboratory, www.simula.no August 23, 2009 Innhold Notasjon og terminologi Graf-egenskaper
Geometri Verktøylinja i GeoGebra Konstruksjon / tegning Konstruksjonsforklaring Normaler, paralleller og vinkler Mangekant, areal og omkrets
2 Geometri Verktøylinja i GeoGebra Konstruksjon / tegning Konstruksjonsforklaring Normaler, paralleller og vinkler Mangekant, areal og omkrets Eksamensoppgaver 0 Innholdsfortegnelse INTRODUKSJON GEOGEBRA...
Eksamensoppgave i TMA4135 Matematikk 4D
Institutt for matematiske fag Eksamensoppgave i TMA4135 Matematikk 4D Faglig kontakt under eksamen: Gunnar Taraldsen Tlf: 46432506 Eksamensdato: 3. desember 2016 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte
Repetisjon av histogrammer
Repetisjon av histogrammer INF 231 Hovedsakelig fra kap. 3.3 i DIP Histogramtransformasjoner Histogramutjevning Histogramtilpasning Standardisering av histogram for billedserier Litt om histogramtransformasjoner
Geometri. Menyene i geometri. - kommer fra det greske ordet geo- jord og metron mål.
Geometri - kommer fra det greske ordet geo- jord og metron mål. Geometri har spilt en viktig rolle i matematikken. Emnet spiller en sentral rolle i skolematematikken. På den tredje internasjonale kongressen
Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger
Institutt for matematiske fag Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Faglig kontakt under eksamen: Anton Evgrafov Tlf: 4503 0163 Eksamensdato: 06. juni 2016 Eksamenstid (fra
Terrengmodeller som basis for 3D visualisering
Terrengmodeller som basis for 3D visualisering Terrengmodeller danner en viktig komponent både i forbindelse med prosjektering og 3D visualisering. Vi ser på hvordan ulike datakilder og terrengmodelltyper
INF 3430/4431. Simuleringsmetodikk
INF 3430/4431 Simuleringsmetodikk Innhold Event driven simulation Simulering av VHDL-modeller Selvtestende testbenker Fil-operasjoner Eksempel på SRAM modell og simulering av lesing fra denne INF3430/4431
Matematisk visualisering
02/01/17 1/5 Matematisk visualisering Matematisk visualisering GLU 1.-7. trinn: Matematisk visualisering og konstruksjon - GeoGebra Innføring i GeoGebra (2 uv-timer) Denne delen er direkte knyttet til
Målet med denne masteroppgaven blir å sette seg inn i kunstnerens problemstillinger og prøve å finne metoder for hvordan ideene hans kan realiseres.
i Sammendrag Terrengmodellering i 3D er i dag en mye brukt måte å fremstille landskap på. Slike modeller kan man se i utallige dataspill, animasjonsfilmer, og geologiske modeller. Den vanligste måten å
INF{3 4}320 - Obligatorisk oppgave 3
INF{3 4}320 - Obligatorisk oppgave 3 Innleveringsfrist: 14. oktober 2003 (Revisjon 25. september 2003) I denne oppgaven skal vi utvide koden som ble laget for oblig2. I stedet for å tegne en enkel kube
Velkommen til MEK1100
Velkommen til MEK1100 Matematisk institutt, UiO MEK1100 FELTTEORI OG VEKTORANALYSE våren 2015 Foreleser: Karsten Trulsen Øvingslærere: Diako Darian og Tormod Landet MEKANIKK = LÆREN OM BEVEGELSE OG KREFTER
1 I mengdeteori er kontinuumshypotesen en antakelse om at det ikke eksisterer en mengde som
Forelesning 12/3 2019 ved Karsten Trulsen Fluid- og kontinuumsmekanikk Som eksempel på anvendelse av vektor feltteori og flervariabel kalkulus, og som illustrasjon av begrepene vi har gått igjennom så
Numerisk løsning av differensiallikninger Eulers metode,eulers m
Numerisk løsning av differensiallikninger Eulers metode, Eulers midtpunktmetode, Runge Kuttas metode, Taylorrekkeutvikling* og Likninger av andre orden MAT-INF1100 Diskretsering Utgangspunkt: differensiallikning
INF 2310 Digital bildebehandling
Temaer i dag INF 310 Digital bildebehandling Forelesning 3 Geometriske operasjoner Fritz Albregtsen Geometriske operasjoner Lineære / aine transormer Resampling og interpolasjon Samregistrering i av bilder
