Teksturering. Mer om Grafisk Databehandling. Et annet eksempel. Eksempel
|
|
- Kathrine Mortensen
- 8 år siden
- Visninger:
Transkript
1 Teksturering Mer om Grafisk Databehandling Øker detaljgraden uten å øke antall grafiske primitiver. Grafiske primitiver brukes som bærere for bilder (f.eks. fotografier). INF2340 / V04 2 Eksempel Et annet eksempel Alternativ Alternativ 2 Bruk ett polygon for hver endring/fasett i bildet. F Ressurskrevende! "Klistre" bildet på kun ett polygon. F Teksturering! INF2340 / V04 3 INF2340 / V04 4
2 Hovedstegene i teksturering Steg ) Definer teksturen. En tekstur er en samling av teksturelementer - kalt texel er - organisert i en matrise som enten er D, 2D, eller 3D. En texel inneholder informasjon om farge og transparens. Steg 2) Angi hvordan teksturen skal påvirke hvert pixel. All farge kommer fra teksturen, eller Teksturfargen blandes med eller påvirker den underliggende fargen (nødvendig for å få med belysning!) Leses typisk inn fra en fil! INF2340 / V04 5 INF2340 / V04 6 Steg 3) Angi teksturkoordinater for noder i geometriske primitiver. Teksturkoordinater typisk normaliserte, dvs. definert i intervallet [0, ]. 0 0 Fordi det er såpass nyttig er teksturering ofte implementert i maskinvare! (0.2, 0.8) (0.36, 0.2) (0.9, 0.87) INF2340 / V04 7 INF2340 / V04 8 2
3 Transparens Skal se på et vanlig spesialtilfelle: (helt eller delvis) gjennomsiktige objekter uten brytning Noen anvendelser: halvgjennomsiktig bilvindu helgjennomsiktig del av tekstur Alfa Transparens representeres vanligvis som en alfaverdi (A, α) som betyr opasitet (ugjennomsiktighet). Alfa varierer fra 0 (helt gjennomsiktig) til (helt ugjennomsiktig). Alfa spesifiseres vanligvis sammen med farge: RGBA (f.eks. polygon-node eller texel (teksturelement)) INF2340 / V04 9 INF2340 / V04 0 Interpolert blanding av farger (vanlig modell) 3 Generelt 2 0 = Global bakgrunn Lysstråle mot øyet Forgrunnsobjekt Farge = I FG Opasitet = α FG Bakgrunnsobjekt Farge = I BG Opasitet = irrelevant! I 3 α 3 I 2 α 2 I α I 0 α 0 = Resultatfarge: I = α FG I FG + ( α FG )I BG Merk: Nye objekter må blandes inn i retning mot øyet ("back-to-front")! (Begynn med det som er lengst vekk, bland inn det som er nest-lengst vekk osv.) I i = α i I i + ( - α i )I i-, i I 0 = I 0 I i = Fargen som er resultatet av å blande objekt 'i' med det som ligger bakenfor, altså I i-. INF2340 / V04 INF2340 / V04 2 3
4 Observasjon Ett enkelt objekt med α = er tilstrekkelig for å skjule alt bakenfor. α = α = 0 skjules! Hvis alle objekter har α < vil alle objekter med α > 0 bidra til den endelige fargen. α = α = 0 vil også bidra! INF2340 / V04 3 Ray Tracing (RT) Mer fotorealistisk sjatteringsalgoritme. Tar bedre hensyn til hvordan også andre objekter (og ikke bare lyskilder) kan påvirke belysningen av et punkt: Refleksjon. Skygger. Kan også modellere transparente objekter. Spesielt egnet for speilende refleksjon (andre metoder er bedre på diffus refleksjon) INF2340 / V04 4 Noen eksempler (laget med PovRay - INF2340 / V04 5 INF2340 / V04 6 4
5 Essensen i RT Hvilke lysstråler treffer øyet, og hvor kommer de fra? Ide : Følg alle lysstråler fra alle lyskilder og ta vare på dem som (direkte eller indirekte) treffer øyet. UMULIG! Ide 2: Ta utgangspunkt i lysstrålene som faktisk treffer øyet. Følg dem bakover til dit de kom fra! INF2340 / V04 7 INF2340 / V04 8 RT - Overordnet algoritme Send ut en stråle fra øyepunktet gjennom hvert pixel og videre innover mot objektene (antar disse allerede er transformert til synskoordinater). Avgjør om en stråle skjærer et objekt, og i såfall hva fargebidraget fra skjæringspunktet blir. ( RT er en bilderekkefølge algoritme!) En del av dette fargebidraget kan evt. regnes ut ved å sende ut nye stråler rekursivt fra et punkt for å modellere speilende refleksjon og brytende transparens. Transparent objekt pixel = primær stråle = reflektert stråle = brutt stråle = skyggestråle = normalvektor INF2340 / V04 9 INF2340 / V
6 RT - Pseudokode for <hvert pixel p> { ray = <strålen fra øyepunktet gjennom p> fargen i p = RT_trace(ray, ) procedure RT_trace(ray, depth) { if <skjæring med et objekt> return RT_shade(..., depth) else return <bakgrunnsfargen> procedure RT_shade(..., depth) { color = omgivelse-lys for <hver lyskilde> { finn ut (vha. skyggestråler) i hvilken grad lyset er blokkert av andre objekter og skalér leddene for diffus og speilende refleksjon tilsvarende før disse adderes til color if depth > maxdepth return color if <objektet er reflekterende> color += RT_trace(<refleksjonsstrålen>, depth + ) if <objektet er transparent> color += RT_trace(<brytningsstrålen>, depth + ) return color INF2340 / V04 2 INF2340 / V04 22 Skjæringsalgoritmer essensielle i RT! Parametrisert uttrykk for stråle gjennom pixel x = x(t), y = y(t), z = z(t), t 0 Kule (x a) 2 + (y b) 2 + (z c) 2 = r 2 Gir 2. gradslikning for t røtter r (a, b, c) Polygon Finn skjæringspunktet (hvis det eksisterer) mellom strålen og planet polygonet ligger i. Projiser skjæringspunktet og polygonet ned på xy-, xzeller yz-planet. Sjekk om punktet er inne i polygonet (2D problem - enklere). y x z INF2340 / V04 23 INF2340 / V
7 Parametriske flater (splines etc.) Ressurskrevende skjæringsalgoritme! Kontrollpunkter RT er ressurskrevende! I prinsippet må vi sjekke skjæring for alle stråler (primære, reflekterte, brutte og skygge-) mot alle objekter. En skjæringsalgoritme kan i seg selv være ressurskrevende. Belysningsmodellen må evalueres i alle skjæringspunkter. INF2340 / V04 25 INF2340 / V04 26 RT-optimalisering Pakk objektene inn i omsluttende volumer ( bounding volumes ) med enklere (billigere) skjæringsalgoritme. Hvis en stråle ikke skjærer et omsluttende volum, vil den heller ikke skjære noen av objektene inne i volumet! 2 2 RT-optimalisering 2 Del bildet opp i n forskjellige utsnitt og la n prosessorer beregne hvert sitt utsnitt i parallell. 2 2 Prosessor Prosessor 2 Prosessor 3 Prosessor 4 INF2340 / V04 27 INF2340 / V
8 Animasjon Å vise en sekvens med bilder etter hverandre i rask rekkefølge. Kino: Chaplin: 6 bilder / sek Moderne filmer: 24 bilder / sek Dataskjerm: bilder / sek To typer animasjon på datamaskin Manuell (f.eks. ved interaktiv endring av kamera) Automatisk (tradisjonell film) INF2340 / V04 29 INF2340 / V04 30 Basisalgoritme for animasjon med 24 bilder / sek for (i = 0; i < n; i++) { <Slett bilde> <Tegn bilde> <Vent til /24 sek har passert> Problem ser kun delvis ferdig bilde S T V tid først her ser vi det ferdige bildet /24 sek Resultat: flimring og blinking! INF2340 / V04 3 INF2340 / V
9 Løsning: Dobbeltbuffer Buffer Buffer 2 RGB-buffer 2 RGB-buffer Z-buffer Buffer vises på skjermen Buffer 2 vises på skjermen Buffer vises på skjermen? Video controller for (i = 0; i < n; i++) { <Slett bilde> <Tegn bilde> <Bytt om på bufferne> <Vent til /24 sek har passert> INF2340 / V04 33 INF2340 / V
Visualiseringsdelen - Oppsummering
Visualiseringsdelen - Oppsummering Fenomen/prosess Visualisering i inf2340 Måling Mat. modell Simulering inf2340 - Simuleringsdelen inf2340 - Visualiseringsdelen 1.23E-08 2.59E-10 3.04E-08 3.87E-09 7.33E-06
DetaljerEKSAMEN I EMNE TDT4230 VISUALISERING LØRDAG 10. DESEMBER 2005 KL
NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for fysikk, informatikk og matematikk Institutt for datateknikk og informasjonsvitenskap EKSAMEN I EMNE TDT4230 VISUALISERING LØRDAG 10. DESEMBER
DetaljerDel 1: Introduksjon til VTK. Visualiseringsdelen - Oppsummering. Del 2: Grafisk databehandling. "Visualization Pipeline" "Rendering Pipeline"
Del 1: Introduksjon til VTK Visualiseringsdelen - Oppsummering INF2340 / V04 2 vtkrenderwindow vtkrenderer Del 2: Grafisk databehandling INF2340 / V04 3 INF2340 / V04 4 1 Lysogfarge ñ ÿ yets oppfattelse
Detaljerd. Utviklingssteg for å utforme animasjonssekvenser:
Oppgave 1: Generelt a. Logisk inndeling av inputdata: Locator En enhet for å spesifisere en koordinatposisjon. Stroke En enhet for å spesifisere et sett med koordinatposisjoner. String En enhet for å spesifisere
DetaljerUniversitetet i Agder Fakultet for teknologi og realfag LØSNINGSFORSLAG. Dato: 11. desember 2008 Varighet: 0900-1300. Antall sider inkl.
Universitetet i Agder Fakultet for teknologi og realfag LØSNINGSFORSLAG Emnekode: Emnenavn: DAT2 Grafisk Databehandling Dato:. desember 28 Varighet: 9 - Antall sider inkl. forside 7 OPPGAVE. (2%) a) b)
DetaljerEKSAMEN I EMNE TDT4230 VISUALISERING FREDAG 10. DESEMBER 2010 KL LØSNINGSFORSLAG
Side 1 av 11 EKSAMEN I EMNE TDT4230 VISUALISERING FREDAG 10. DESEMBER 2010 KL. 09.00 13.00 LØSNINGSFORSLAG OPPGAVE 1 Kubiske Bézier-kurver og flater a) Sammenhengen mellom vektoren av blandefunksjoner
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF330 Metoder i grafisk databehandling og diskret geometri Eksamensdag: 3. desember 010 Tid for eksamen: 14.30 18.30 Oppgavesettet
DetaljerUendelige rekker. Konvergens og konvergenskriterier
Uendelige rekker. Konvergens og konvergenskriterier : Et absolutt nødvendig, men ikke tilstrekkelig vilkår for konvergens er at: lim 0 Konvergens vha. delsummer :,.,,,. I motsatt fall divergerer rekka.
DetaljerLæringsmål og pensum. Utvikling av informasjonssystemer. Oversikt. Systemutvikling Systemutvikling i seks faser Femstegs prosedyre for programmering
1 2 Læringsmål og pensum TDT4110 Informasjonsteknologi grunnkurs: Uke 38 Utvikling av informasjonssystemer Læringsmål Kunne seks faser for systemanalyse og design Kunne femstegs prosedyre for programmering
DetaljerEksamen 1T høsten 2015, løsningsforslag
Eksamen 1T høsten 015, løsningsforslag Del 1, ingen hjelpemidler Oppgave 1 1,8 10 1 0,0005 = 1,8 10 1 5 10 4 = 1,8 5 10 1+( 4) = 9 10 8 Oppgave Velger addisjonsmetoden Legger sammen ligningene: x + y =
DetaljerDEL 1 (Uten hjelpemidler, leveres etter 3 timer) 3(a + 1) 4(1 a) (6a 1) = 3a + 3 4 + 4a 6a + 1
HELDAGSPRØVE I MATEMATIKK 1T HØST DEL 1 (Uten hjelpemidler, leveres etter 3 timer) Oppgave 1. Trekk sammen uttrykkene: a) 3(a + 1) 4(1 a) (6a 1) 3(a + 1) 4(1 a) (6a 1) = 3a + 3 4 + 4a 6a + 1 = a. b) 1
DetaljerForelesning 22 MA0003, Mandag 5/11-2012 Invertible matriser Lay: 2.2
Forelesning 22 M0003, Mandag 5/-202 Invertible matriser Lay: 2.2 Invertible matriser og ligningssystemet x b Ligninger på formen ax b, a 0 kan løses ved å dividere med a på begge sider av ligninger, noe
Detaljer1.8 Digital tegning av vinkler
1.8 Digital tegning av vinkler Det går også an å tegne mangekanter digitalt når vi kjenner noen vinkler og sider. Her tegner vi ABC når A = 50, AB = 6 og AC = 4. I GeoGebra setter vi først av linjestykket
DetaljerForelesningsnotater SIF8039/ Grafisk databehandling
Forelesningsnotater SIF8039/ Grafisk databehandling Notater til forelesninger over: Kapittel 1: Graphics Systems and Models i: Edward Angel: Interactive Computer Graphics Vårsemesteret 2002 Torbjørn Hallgren
DetaljerLinser og avbildning. Brennpunkter
Linser og avildning I dette orienteringsstoffet er det en del matematikk. Du kan ha godt utytte av å lese stoffet selv om du hopper over matematikken. Vi ruker linser i fotografiapparater, kikkerter, luper,
DetaljerE K S A M E N S O P P G A V E
HØGSKOLEN I AGDER Fakultet for teknologi E K S A M E N S O P P G A V E EMNE: FAGLÆRER: DAT 2 Grafisk Databehandling Morgan Konnestad Klasse(r): 2DTM, 2DT, 2 Siving, DT Dato: 8.2.6 Eksamenstid, fra-til:
DetaljerLøsningsforslag for Obligatorisk Oppgave 1. Algoritmer og Datastrukturer ITF20006
Løsningsforslag for Obligatorisk Oppgave 1 Algoritmer og Datastrukturer ITF20006 Lars Vidar Magnusson Frist 310114 Den første obligatoriske oppgaven tar for seg de fem første forelesningene, som i hovedsak
DetaljerForelesning 9 mandag den 15. september
Forelesning 9 mandag den 15. september 2.6 Største felles divisor Definisjon 2.6.1. La l og n være heltall. Et naturlig tall d er den største felles divisoren til l og n dersom følgende er sanne. (1) Vi
DetaljerKONTINUASJONSEKSAMEN I EMNE TDT4230 VISUALISERING TIRSDAG 9. AUGUST 2005 KL LØSNINGSFORSLAG
Side 1 av 8 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for fysikk, informatikk og matematikk Institutt for datateknikk og informasjonsvitenskap KONTINUASJONSEKSAMEN I EMNE TDT430 VISUALISERING
DetaljerUtførelse av programmer, metoder og synlighet av variabler i JSP
Utførelse av programmer, metoder og synlighet av variabler i JSP Av Alf Inge Wang 1. Utførelse av programmer Et dataprogram består oftest av en rekke programlinjer som gir instruksjoner til datamaskinen
DetaljerTerminprøve Sigma 1T Våren 2008 m a t e m a t i k k
Terminprøve Sigma 1T Våren 2008 Prøvetid 5 klokketimer for Del 1 og Del 2 til sammen. Vi anbefaler at du ikke bruker mer enn to klokketimer på Del 1. Du må levere inn Del 1 før du tar fram hjelpemidler.
DetaljerKONTINUASJONSEKSAMEN I EMNE TDT4230 VISUALISERING MANDAG 15. AUGUST 2011 KL LØSNINGSFORSLAG
Side 1 av 8 KONTINUASJONSEKSAMEN I EMNE TDT4230 VISUALISERING MANDAG 15. AUGUST 2011 KL. 09.00 13.00 LØSNINGSFORSLAG OPPGAVE 1 Parametriske kurver a) En eksplisitt eller implisitt funksjon i tre variable
DetaljerGenerell trigonometri
7 Generell trigonometri 7.1 et utvidede vinkelbegrepet Oppgave 7.110 Tegn vinklene i grunnstilling. a) 30 b) 120 c) 210 d) 300 Oppgave 7.111 Tegn vinklene i grunnstilling. a) 45 b) 360 c) 540 d) 720 Oppgave
DetaljerEKSAMEN RF5100, Lineær algebra
Side av 5 Oppgavesettet består av 5 (fem) sider. EKSAMEN RF500, Lineær algebra Tillatte hjelpemidler: Godkjent kalkulator og utdelt formelark Varighet: 3 timer Dato: 4. oktober 04 Emneansvarlig: Lars Sydnes
DetaljerLØSNINGSANTYDNING. HØGSKOLEN I AGDER Fakultet for teknologi. DAT 200 Grafisk Databehandling. Ingen. Klasse(r): 2DTM, 2DT, 2 Siving, DT
HØGSKOLEN I AGDER Fakultet for teknologi LØSNINGSANTYDNING EMNE: FAGLÆRER: DAT 2 Grafisk Databehandling Morgan Konnestad Klasse(r): 2DTM, 2DT, 2 Siving, DT Dato: 5.2.5 Eksamenstid, fra-til: 9. - 3. Eksamensoppgaven
DetaljerLøsningsforslag til underveisvurdering i MAT111 vår 2005
Løsningsforslag til underveisvurdering i MAT111 vår 5 Beregn grenseverdien Oppgave 1 (x 1) ln x x x + 1 Svar: Merk at nevneren er lik (x 1), så vi kan forkorte (x 1) oppe og nede og får (x 1) ln x ln x
DetaljerRekursiv programmering
Rekursiv programmering Babushka-dukker En russisk Babushkadukke er en sekvens av like dukker inne i hverandre, som kan åpnes Hver gang en dukke åpnes er det en mindre utgave av dukken inni, inntil man
Detaljer. 2+cos(x) 0 og alle biter som inngår i uttrykket er kontinuerlige. Da blir g kontinuerlig i hele planet.
MA 1410: Analyse Uke 47, 001 http://home.hia.no/ aasvaldl/ma1410 H01 Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave 11.1: 7. f(x, y) = 1 16 x y. a) Definisjonsområde D: f
DetaljerBildebehandling i Adobe Photoshop
Bildebehandling i Adobe Photoshop 9.1 Opprette et dokument & 9.2 Bildestørrelse Bildebehandling i Adobe Photoshop For å opprette et nytt dokument velger du File > New (Fil > Ny ). Da vil følgende vindu
DetaljerMesteparten av kodingen av Donkey Kong skal du gjøre selv. Underveis vil du lære hvordan du lager et enkelt plattform-spill i Scratch.
Donkey Kong Ekspert Scratch Introduksjon Donkey Kong var det første virkelig plattform-spillet da det ble gitt ut i 1981. I tillegg til Donkey Kong var det også her vi første gang ble kjent med Super Mario
Detaljerkap. 8.6 Computational Geometry Hovedkapittelet (kap. 8) dreier seg generelt om devide-and-conquer eller splitt og hersk :
INF 4130, 17. november 2011 kap. 8.6 Computational Geometry Stein Krogdahl Hovedkapittelet (kap. 8) dreier seg generelt om devide-and-conquer eller splitt og hersk : Splitt problemet opp i mindre problemer.
DetaljerLØSNINGSFORSLAG. Universitetet i Agder Fakultet for Teknologi og realfag. Dato: 03. desember 2009 Varighet: Antall sider inkl.
Universitetet i Agder Fakultet for Teknologi og realfag LØSNINGSFORSLAG Emnekode: Emnenavn: DAT2 Grafisk Databehandling Dato: 3. desember 29 Varighet: 9-3 Antall sider inkl. forside 8 Tillatte hjelpemidler:
DetaljerInstitutt for Samfunnsøkonomi. Utlevering: 29.04.2015 Kl. 09:00 Innlevering: 29.04.2015 Kl. 14:00
SENSORVEILEDNING MET 803 Matematikk Institutt for Samfunnsøkonomi Utlevering: 9.04.05 Kl. 09:00 Innlevering: 9.04.05 Kl. 4:00 For mer informasjon om formalia, se eksamensoppgaven. Oppgave Beregn følgende
DetaljerHva er en algoritme? Har allerede sett på mange algoritmer til nå i IT1101. Forholdet mellom en algoritme og et program. Algoritme program prosess
IT1101 Informatikk basisfag, dobbeltime 2/10 Hva er en algoritme? Fremgangsmåte for noe Hittil: Datarepresentasjon Datamanipulasjon Datamaskinarkutektur hvordan maskinen jobber Operativsystem Program som
DetaljerSkalar-til-farge korrespondanse. Del 5 Visualisering av skalarfelt. Regnbue-skalaen
Skalar-til-farge korrespondanse Del 5 Visualisering av skalarfelt Skalar-intervallet i datasettet korresponderer med en fargeskala s max egnbue ød til Gråtoner s min Sort/hvitt utskrift! INF340/ V04 For
DetaljerObligatorisk oppgave i MAT 1100, H-03 Løsningsforslag
Oppgave : Obligatorisk oppgave i MAT, H- Løsningsforslag a) Vi skal regne ut dx. Substituerer vi u = x, får vi du = x dx. De xex nye grensene er gitt ved u() = = og u() = = 9. Dermed får vi: 9 [ ] 9 xe
DetaljerRegelhefte for: Terninger (-9 til 10)
Regelhefte for: Terninger (-9 til 10) Trening i tallinje I Vanskelighetsnivå: 3. klasse og oppover. Utstyr:En hvit og en rød spesialterning (-9 til 10). Aktivitet: Spillerne kaster terningene annenhver
DetaljerRekursjon. Binærsøk. Hanois tårn.
Rekursjon Binærsøk. Hanois tårn. Hvorfor sortering (og søking) er viktig i programmering «orden» i dataene vi blir fort lei av å lete poleksempel internett «alt» er søking og sortering alternativer til
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2810, Funksjonell Programmering Eksamensdag: Fredag 10. juni 2016 Tid for eksamen: 14.30 Oppgavesettet er på 5 sider (ekskl.
DetaljerVEILEDNING BRUK AV NY LØSNING FOR PERIODISERING AV BUDSJETTER I MACONOMY
VEILEDNING BRUK AV NY LØSNING FOR PERIODISERING AV BUDSJETTER I MACONOMY Bakgrunn Periodisering av budsjetter i Maconomy har blitt oppfattet som tungvint og uoversiktlig. Økonomiavdelingen har nå foretatt
DetaljerForord. Molde, august 2011. Per Kristian Rekdal. Copyright c Høyskolen i Molde, 2011.
1 13. august 011 Forord Høgskolen i Molde gjennomfører forkurs i matematikk for studenter som har svakt grunnlag i dette faget, eller som ønsker å friske opp gamle kunnskaper. Formål: Målet med forkurset
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 12. desember 2003 Tid for eksamen: 09.00 12.00 Oppgavesettet er på 5 sider. Vedlegg: INF3140/4140 Modeller for parallellitet
DetaljerLøsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005. eksamensoppgaver.org
Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet
DetaljerTo geometriske algoritmer, kap. 8.6
INF 4130, 18. november 2010 To geometriske algoritmer, kap. 8.6 Computational Geometry Stein Krogdahl Hovedkapittelet t (kap. 8) dreier seg generelt om devide-and-conquer eller splitt og hersk : Splitt
DetaljerEKSAMEN I EMNE TDT4230 VISUALISERING TIRSDAG 18. DESEMBER 2007 KL LØSNINGSFORSLAG
Side 1 av 10 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for fysikk, informatikk og matematikk Institutt for datateknikk og informasjonsvitenskap EKSAMEN I EMNE TDT40 VISUALISERING TIRSDAG
DetaljerTi egenskaper for å evaluere nettsteders brukskvalitet. Den opplevde kvaliteten til nettstedet
Ti egenskaper for å evaluere nettsteders brukskvalitet Den opplevde kvaliteten til nettstedet Bakgrunnen Det finnes: Ingen begrensninger på hvem som kan presentere informasjon på internett Mange forskjellige
DetaljerHØGSKOLEN I BERGEN Avdeling for ingeniørutdanning
HØGSKOLEN I BERGEN Avdeling for ingeniørutdanning Eksamen i SOD 165 Grafiske metoder Klasse : 3D Dato : 15. august 2000 Antall oppgaver : 4 Antall sider : 4 Vedlegg : Utdrag fra OpenGL Reference Manual
DetaljerNITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013
NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 20 ette løsningsforslaget er til tider mer detaljert enn det man vil forvente av en eksamensbesvarelse. et er altså ikke et eksempel
DetaljerØving 4 Egenverdier og egenvektorer
Øving Egenverdier og egenvektorer En egenvektor til en matrise A er løsning av likningen A.x = Λ x hvor Λ er en konstant. Det betyr at virkningan av å multiplisere en matirse med en vektor gir en ny vektor
DetaljerINF Triangulering. Med sterk støtte fra Petter Kristiansen. Skal først se på et eksempel fra Google Earth
INF 4130 17. november 2011 Triangulering Stein Krogdahl Med sterk støtte fra Petter Kristiansen Skal først se på et eksempel fra Google Earth De bruker en underliggende triangulering av landskapet, men
DetaljerPRIMTALL FRA A TIL Å
PRIMTALL FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til primtall P - 2 2 Grunnleggende om primtall P - 2 3 Hvordan finne et primtall P - 5 Innledning til primtall
DetaljerRF5100 Lineær algebra Leksjon 10
RF5100 Lineær algebra Leksjon 10 Lars Sydnes, NITH 11. november 2013 I. LITT OM LYS OG FARGER GRUNNLEGGENDE FORUTSETNINGER Vi ser objekter fordi de reflekterer lys. Lys kan betraktes som bølger / forstyrrelser
DetaljerEmnekode: LV121A Dato: 03.03.2005. Alle skrevne og trykte hjelpemidler
II ~ høgskolen i oslo Emne: Programmering i C++ Gruppe(r): EksamensoppgavenAntall sider (inkl. består av: forsiden):5 Emnekode: LV121A Dato: 03.03.2005 Antall oppgaver:3 Faglig veileder: Simen Hagen Eksamenstid:
DetaljerLØSNINGSANTYDNING EKSAMEN
Universitetet i Agder Fakultet for teknologi og realfag LØSNINGSANTYDNING EKSAMEN Emnekode: Emnenavn: DAT Grafisk Databehandling Dato: 5. desember Varighet: 9 - Antall sider inkl. forside 8 Tillatte hjelpemidler:
DetaljerEUROPEAN COMPUTER DRIVING LICENCE FAGPLAN Modul 6 Presentasjon, ekspert nivå 1.0
ECDL - Datakortet Bevis på at du kan Fagplann ekspert nivå 1.0 Presentasjon 1 EUROPEAN COMPUTER DRIVING LICENCE FAGPLAN Modul 6 Presentasjon, ekspert nivå 1.0 Copyright 2003 ECDL Foundation Dette dokumentet
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksempel på eksamen i : INF1000 Grunnkurs i objektorientert programmering Gjennomgås på forelesning: Torsdag 14. november 2013 Oppgavesettet
DetaljerTyngdekraft og luftmotstand
Tyngdekraft og luftmotstand Dette undervisningsopplegget synliggjør bruken av regning som grunnleggende ferdighet i naturfag. Her blir regning brukt for å studere masse, tyngdekraft og luftmotstand. Opplegget
DetaljerFarger Introduksjon Processing PDF
Farger Introduksjon Processing PDF Introduksjon På skolen lærer man om farger og hvordan man kan blande dem for å få andre farger. Slik er det med farger i datamaskinen også; vi blander primærfarger og
DetaljerBØK311 Bedriftsøkonomi 2b. Løsningsforslag
BØK311 Bedriftsøkonomi 2b Løsningsforslag Eksamen 31 mai 2012 Oppgave 1 Kjøpe TV på avbetaling Sammenligne kontantstrømmer a) Hvor stor er årlig effektiv rente EKSAMEN I BØK311 BEDRIFTSØKONOMI 2B 31 MAI
DetaljerVTK - The Visualization Toolkit. Del 1 Introduksjon til VTK VTK. Objektorientering (OO) i C++ Objekt-orientert bibliotek for visualisering Fordeler:
VTK - The Visualization Toolkit Del Introduksjon til VTK Objekt-orientert bibliotek for visualisering Fordeler: Fritt tilgjengelig Stor brukergruppe Godt designet, testet og dokumentert (se VTK brukermanual
Detaljer3D Modellering og Animasjon Velkommen
3D Modellering og Animasjon Velkommen Om meg: Jarl Schjerverud Jobbet med 3D modellering siden 1994 Jobbet i spillindustrien i 14 år (Funcom) Har undervist ved NITH i spilldesign siden 2009 og spilldesign
DetaljerTallet 0,04 kaller vi prosentfaktoren til 4 %. Prosentfaktoren til 7 % er 0,07, og prosentfaktoren til 12,5 % er 0,125.
Prosentregning Når vi skal regne ut 4 % av 10 000 kr, kan vi regne slik: 10 000 kr 4 = 400 kr 100 Men det er det samme som å regne slik: 10 000 kr 0,04 = 400 kr Tallet 0,04 kaller vi prosentfaktoren til
DetaljerKlask-en-Muldvarp. Steg 1: Gjøre klart spillbrettet. Sjekkliste. Introduksjon
Klask-en-Muldvarp Introduksjon App Inventor Introduksjon I denne oppgaven skal vi lage et veldig enkelt spill med litt animasjon. Det som skal skje er at en muldvarp hopper rundt på spillbrettet mens du
DetaljerGeoGebra i R2. Grafer. Topp- og bunnpunkter GeoGebra finner eventuelle topp- og bunnpunkter på grafen til en innlagt polynomfunksjon f.
491 Grafer Topp- og bunnpunkter GeoGebra finner eventuelle topp- og bunnpunkter på grafen til en innlagt polynomfunksjon f. Å tegne grafer med argumentet gitt i grader GeoGebra finner eventuelle topp-
DetaljerKjøpsveileder solceller. Hjelp til deg som skal kjøpe solcelleanlegg.
Kjøpsveileder solceller Hjelp til deg som skal kjøpe solcelleanlegg. 1 Solceller I likhet med solfanger, utnytter også solceller energien i solens stråler. Forskjellen er at mens solfanger varmer opp vann,
DetaljerRepetisjon: høydepunkter fra første del av MA1301-tallteori.
Repetisjon: høydepunkter fra første del av MA1301-tallteori. Matematisk induksjon Binomialteoremet Divisjonsalgoritmen Euklids algoritme Lineære diofantiske ligninger Aritmetikkens fundamentalteorem Euklid:
DetaljerMAT1030 Forelesning 30
MAT1030 Forelesning 30 Kompleksitetsteori Roger Antonsen - 19. mai 2009 (Sist oppdatert: 2009-05-19 15:04) Forelesning 30: Kompleksitetsteori Oppsummering I dag er siste forelesning med nytt stoff! I morgen
DetaljerGenerelt om operativsystemer
Generelt om operativsystemer Operativsystemet: Hva og hvorfor Styring av prosessorer (CPU), elektronikk, nettverk og andre ressurser i en datamaskin er komplisert, detaljert og vanskelig. Maskinvare og
DetaljerTo metoder for å tegne en løk
Utdanningsprogram Programfag Trinn Utviklet og gjennomført år KDA - Kunst, design og arkitektur, Kunst og visuelle virkemiddel Vg1 2012 TITTEL To metoder for å tegne en løk. Observasjon er nøkkelen i tegning.
DetaljerNøkkelspørsmål til eller i etterkant av introduksjonsoppgaven:
Areal og omkrets Mange elever forklarer areal ved å si at det er det samme som lengde gange bredde. Disse elevene refererer til en lært formel for areal uten at vi vet om de skjønner at areal er et mål
DetaljerMedian: Det er 20 verdier. Median blir da gjennomsnittet av verdi nr. 10 og nr. 11. Begge disse verdiene er 2, så median er 2.
2P 2013 høst LØSNING DEL EN Oppgave 1 Rangerer verdiene i stigende rekkefølge: 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 7, 11, 28, 32 Median: Det er 20 verdier. Median blir da gjennomsnittet av
DetaljerTOD063 Datastrukturer og algoritmer
TOD063 Datastrukturer og algoritmer Øving : 4 Utlevert : Veke 9 Innleveringsfrist : 19. mars 2010 Klasse : 1 Data og 1 Informasjonsteknologi Ta gjerne 1 og 2 først! Gruppearbeid: 2 personar pr. gruppe
DetaljerLabyrint Introduksjon Scratch Lærerveiledning. Steg 1: Hvordan styre figurer med piltastene
Labyrint Introduksjon Scratch Lærerveiledning Introduksjon I dette spillet vil vi kontrollere en liten utforsker mens hun leter etter skatten gjemt inne i labyrinten. Dessverre er skatten beskyttet av
DetaljerFotorealistisk fremstilling... 3
DDS-CAD 9 Fotorealistisk fremstilling Kapittel 4 1 Innhold Side Kapittel 4 Fotorealistisk fremstilling... 3 Perspektiv... 3 Rendere konturmodell... 4 Rendere sjattert - sanntid... 5 Materialer... 5 Teksturkobling...
DetaljerOrdliste. Obligatorisk oppgave 1 - Inf 1020
Ordliste. Obligatorisk oppgave 1 - Inf 1020 I denne oppgaven skal vi tenke oss at vi vil holde et register over alle norske ord (med alle bøyninger), og at vi skal lage operasjoner som kan brukes til f.
DetaljerSkilpadder hele veien ned
Level 1 Skilpadder hele veien ned All Code Clubs must be registered. Registered clubs appear on the map at codeclubworld.org - if your club is not on the map then visit jumpto.cc/ccwreg to register your
Detaljer2D Transformasjoner (s. 51 i VTK boken) Translasjon. Del 2 Grafisk databehandling forts. Rotasjon. Skalering. y x = x + d x, y = y + d y.
2D Transformasjoner (s. i VTK boken) Translasjon Del 2 Grafisk databehandling forts. (, ) = + d, = + d På matriseform: d d (, ) P =, P =, T = d d P = P + T 24/2-3 IN229 / V3 / Dag 6 2 Skalering Rotasjon
DetaljerRF5100 Lineær algebra Leksjon 12
RF5100 Lineær algebra Leksjon 12 Lars Sydnes, NITH 26. november 2013 I. GAUSS-ELIMINASJON 2x + 3y + z = 1 2x + 5y z = 1 4x + 7y + 4z = 3 x + 3/2 y + 1/2 z = 1/2 x + 2z = 2 y z = 1 3z = 2 x + 2z = 2 y z
DetaljerALGORITMER OG DATASTRUKTURER
Eksamen i ALGORITMER OG DATASTRUKTURER Høgskolen i Østfold Avdeling for Informatikk og Automatisering Onsdag 11.desember, 1996 Kl. 9.00-15.00 Tillatte hjelpemidler: Alle trykte og skrevne. Kalkulator.
DetaljerHemmelige koder. Kodeklubb-koden. Steg 1: Alfabetet. Sjekkliste. Introduksjon
Hemmelige koder Nybegynner Python Introduksjon Legg bort skilpaddene dine, i dag skal vi lære hvordan vi kan sende hemmelige beskjeder! Kodeklubb-koden Et chiffer er et system for å gjøre om vanlig tekst
DetaljerLøsningsforslag til obligatorisk oppgave i MAT 1100, H-04
Løsningsforslag til obligatorisk oppgave i MAT 00, H-04 Oppgave : a) Vi har zw ( + i )( + i) + i + i + i i og + i + i ( ) + i( + ) z w + i + i ( + i )( i) ( + i)( i) i + i i i ( i ) ( + ) + i( + ) + +
DetaljerAlgoritmer og Datastrukturer
Eksamen i Algoritmer og Datastrukturer IAI 21899 Høgskolen i Østfold Avdeling for informatikk og automatisering Torsdag 3. november 2, kl. 9. - 14. Hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.
DetaljerNorges Informasjonsteknologiske Høgskole
Oppgavesettet består av 6 (seks) sider. Norges Informasjonsteknologiske Høgskole PG4200 Algoritmer og datastrukturer Side 1 av 6 Tillatte hjelpemidler: Ingen Varighet: 3 timer Dato: 6. august 2014 Fagansvarlig:
DetaljerTDT4105/TDT4110 Informasjonsteknologi grunnkurs:
1 TDT4105/TDT4110 Informasjonsteknologi grunnkurs: Uke 38 Digital representasjon, del 2 - Representasjon av lyd og bilder - Komprimering av data Rune Sætre satre@idi.ntnu.no 2 Digitalisering av lyd Et
DetaljerRekursjon. Hanois tårn. Milepeler for å løse problemet
Rekursjon. Hanois tårn. Milepeler for å løse problemet Hanois tårn. Milepeler for å løse problemet Forstå spillet Bestemme/skjønne hvordan spillet løses Lage en plan for hva programmet skal gjøre (med
DetaljerGeoGebra U + V (Elevark)
GeoGebra U + V (Elevark) Forberedelser: - Åpne en ny fil i GeoGebra 4.0. - Skjul algebrafelt, inntastingsfelt og akser (fjern hakene under Vis-menyen). - Husk å lese hjelpeteksten på verktøylinja. Oppgave:
DetaljerNorsk informatikkolympiade 2014 2015 1. runde. Sponset av. Uke 46, 2014
Norsk informatikkolympiade 014 015 1. runde Sponset av Uke 46, 014 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.
DetaljerKompleksitetsanalyse
:: Forside Kompleksitetsanalyse Åsmund Eldhuset asmunde *at* stud.ntnu.no folk.ntnu.no/asmunde/algdat/ Først: studietips OpenCourseWare fra MIT Forelesninger tatt opp på video Algoritmekurset foreleses
DetaljerHeuristiske søkemetoder III
Heuristiske søkemetoder III Lars Aurdal Intervensjonssenteret Lars.Aurdal@labmed.uio.no 14. september 2003 Plan Eksempel: Bildebehandling, segmentering: Hva er segmentering? Klassisk metode, terskling.
Detaljer1990 første prognoser og varsler om at det ikke vil være nok IPv4 adresser til alle som ønsker det 1994 første dokumenter som beskriver NAT en
IPv4 vs IPv6 1990 første prognoser og varsler om at det ikke vil være nok IPv4 adresser til alle som ønsker det 1994 første dokumenter som beskriver NAT en mekanisme som kan hjelpe å spare IPv4 adresser
DetaljerHusk at du skal ha to vinduer åpne. Det ene er 'Python Shell' og det andre er for å skrive kode i.
Skilpaddeskolen Steg 1: Flere firkanter Nybegynner Python Åpne IDLE-editoren, og åpne en ny fil ved å trykke File > New File, og la oss begynne. Husk at du skal ha to vinduer åpne. Det ene er 'Python Shell'
DetaljerForord, logg, informasjon og oppgaver
Forord, logg, informasjon og oppgaver Last ned/åpne i word format - klikk her: Forord, logg og oppgaver Forord, logg og undervisningsopplegg til powerpoint om solsystemet. Informasjon til lærere: Dette
Detaljerhttp://inferno.demonoid.com:3389/announce http://www.sladinki007.net:6500/announce http://theatorrentz.org/announce.php http://download.exodusmachine.net/announce.php http://www.parsonstechnology.net/announce.php
DetaljerEn samling eksempelfoto SB-900
En samling eksempelfoto SB-900 Dette heftet inneholder teknikker, eksempelfoto og en oversikt over blitsmulighetene når du fotograferer med SB-900. No Velge passende belysningsmønster SB-900 inneholder
DetaljerRekker, Konvergenstester og Feilestimat
NTNU December 8, 2012 Oversikt 1 2 3 4 5 6 For å forstå, må vi først forstå potensrekker For å forstå potensrekker, må vi først forstå rekker. For å forstå rekker, må vi først forstå følger. Definisjon
DetaljerEKSAMENSOPPGAVE. INF-1100 Innføring i programmering og datamaskiners virkemåte. Ingen. Elektronisk (WiseFlow) Robert Pettersen
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Dato: 20.02.2017 Klokkeslett: 09:00 13:00 INF-1100 Innføring i programmering og datamaskiners virkemåte Sted: Teorifagbygget, Hus 3,
DetaljerAlgoritmer og datastrukturer Kapittel 9 - Delkapittel 9.2
Delkapittel 9.2 Rød-svarte og 2-3-4 trær Side 1 av 16 Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.2 9.2 Rød-svarte og 2-3-4 trær 9.2.1 B-tre av orden 4 eller 2-3-4 tre Et rød-svart tre og et
DetaljerVektorfil og linjeskjuling... 3
DDS-CAD Arkitekt 10 Vektorfil og linjeskjuling Kapittel 11 1 Innhold Side Kapittel 11 Vektorfil og linjeskjuling... 3 Verktøysett for høsting fra modellen... 3 Automatisk generering av vektorfiler... 3
DetaljerOppgave 1 a. INF1020 Algoritmer og datastrukturer. Oppgave 1 b
Oppgave 1 1 a INF1020 Algoritmer og datastrukturer Forelesning 14: Gjennomgang av eksamen vår 2001 oppgave 1,2,4 Arild Waaler Institutt for informatikk, Universitetet i Oslo Oppgave 1 a Programmer en ikke-rekursiv
Detaljer