Hva er en algoritme? Har allerede sett på mange algoritmer til nå i IT1101. Forholdet mellom en algoritme og et program. Algoritme program prosess
|
|
- Astri Enger
- 8 år siden
- Visninger:
Transkript
1 IT1101 Informatikk basisfag, dobbeltime 2/10 Hva er en algoritme? Fremgangsmåte for noe Hittil: Datarepresentasjon Datamanipulasjon Datamaskinarkutektur hvordan maskinen jobber Operativsystem Program som koordinerer slik at flere program (prosesser) kan kjøre samtidig på maskinen Nettverk Prinsipper for kommunikasjon mellom datamaskiner I dag: Algoritmer Algoritme vs program Representasjon av algoritme Pseudokode Problemløsning generelt Algoritmer for søk Kjøretid Det er dumme og lure måter å få utføret samme ting på Bestemt rekkefølge! ouformellt:en algoritme er en mengde av steg som definerer hvordan en oppgave skal utføres. En fremgangsmåte. o Definert formellt som: En algoritme er en ordnet mengde av utvetydige, kjørbare steg, som definerer en avsluttende prosess. Krever ingen kreativitet for å utføres! Skal definere start og slutt Skal være mulig! Har allerede sett på mange algoritmer til nå i IT1101 o Bildeforbedringsalgoritme (øke kontrasten) o Algoritme for å konvertere tall fra 10- tallsystemet til 2-tallsystemet o Algoritmer for addisjon og multiplikasjon i 2-tallssystemet o Algoritme for å dekomprimere data i LZ77 o Algoritme for feilkorrigering i Hammingkode Utvetydig: Vi kan utføre en algoritme uten å forstår hvorfor algoritmen virker Forholdet mellom en algoritme og et program oen algoritme eksisterer uavhengig av et program. oet program blir det først når denne fremgangsmåten er representert på en form som datamaskinen kan kjøre En algoritme kan representeres på mange forskjellige måter Tekstlig påulikespråk Program i forskjellige progspråk Matematisk i matematisk notasjon Grafisk bildeserie, animasjon Eks: Celsius til Fahrenheit Husker fra første forelesning! Matematisk representasjon: F=(9/5)C+32 Tekstlig representasjon: Multipliser temperaturen i celsius med 9/5 og legg så til 32. Representert som program (i programmeringsspråket Java): public double convertfromctof (double tempc) { double F = 1.8 * tempc + 32; return F; } Algoritme program prosess o Algoritme: mengde av steg som definerer hvordan en oppgave skal utføres o Program: en representasjon av algoritmen på en form som kan kjøres av en datamaskin o Prosess: et program under kjøring
2 Å finne en algoritme, problemløsning o Det er av og til mulig å formulere algoritmen direkte i et program (feks i Java) o Men ofte (fordi vi kanskje ikke har oversikt over problemet vi skal løse, og det krever fintenking først) formulerer vi algoritmen mer uformellt først o Slipper å forholde oss til regler i Java o Konsentrere oss om selve løsningen (algoritmen) og ikke begrenses av Java Pseudokode o Når vi skal definere en fremgangsmåte er vanlige måter å formulere seg på: o Hvis sånn så slik, hvis ikke gjør noe annet o Ta vare på resultatet av noe en gjør o Så lenge at det og det er tilfelle gjenta det o Gjenta x ganger o Del opp i mindre problemer som løses hver for seg o Vi er så heldige (ikke tilfeldig) at tilsvarende konstruksjoner finnes i programmeringsspråk o if then else o Variabler o While o For o Funksjoner / prosedyrer / metoder Pseudokode (2) oet kompromiss mellom naturlig språk og programmeringsspråk o I pseudokode: Konsentrerer oss om fremgangsmåten/algoritmen og ikke syntaksen (reglene) for det aktuelle programmeringsspråket o Men ender opp med noe som lett lar seg oversette til et konkret progspråk Enkel algoritme for søking (usortert liste) Anta at følgende artistnavn ligger etter hverandre i en liste: Oppgave: tenk ut en algoritme artistnavn i listen Når vi søker etter noe kan vi få to utfall: Vi finner det vi søker etter (suksess) Vi finner det ikke (fiasko) (Veldig) pseudokode for (veldig) enkel søkealgoritme (usortert liste) Dersom lista er tom så er søket en fiasko, hvis ikke tom så: Ta første element og kall dette testelement Hvis testelement = søkestreng (gjør en sammenligning) erkær søket en suksess, hvis ikke gå til neste element (om et neste element) Gjenta til ingen element igjen. Hvis man er kommet til siste element og ikke funnet element man leter etter erklær søket en fiasko. Enkel algoritme for søking (sortert liste) Anta at følgende artistnavn ligger etter hverandre i en liste: Oppgave: tenk ut en algoritme artistnavn i listen
3 (Veldig) pseudokode for enkel søkealgoritme (sortert liste) Sekvensiellt søk (på sortert liste): pseudokode fra boka Dersom lista er tom så er søket en fiasko, hvis ikke tom så: Ta første element og kall dette testelement Så lenge testelement < søkestreng (gjør en sammenligning) i alfabetet gå til neste element Hvis testelement = søkestreng erklær søket en suksess, hvis ikke erklær det som en fiasko Avansert algoritme for søking (sortert liste) Tenk ut en smartere algoritme artistnavn i listen. Diskuter med sidekvinnen. Tips: hva gjør vi når vi slår opp i telefonkatalogen etter noe? Blar vi fra første side og utover? (Veldig) pseudokode for avansert søkealgoritme (sortert liste) Dersom lista er tom så er søket en fiasko, hvis ikke tom så: Gå til midterste element og kall dette testelement Sammenlign søkestreng og testelement. Tre mulige utfall: Hvis testelement = søkestreng erklær suksess Hvis testelement > søkestreng må det vi søker etter eventuelt ligger over testelementet. Velg midterste element i lista over testelementet som nytt testelement. Gjenta sammenligning (dersom det er elementer over). Hvis testelement < søkestreng må det vi søker etter eventuelt ligger under testelementet. Velg midterste element i lista under testelementet som nytt testelement. Gjenta sammenligning (dersom det er element under) Binært søk: pseudokode Oppgave: kan binærsøk gjøres på usortert liste? Binært søk: illustrasjon Halverer liste hele tiden enten over eller under:
4 Likt antall elementer i en liste (eller en subliste) Feks en liste med 6 elementer Vi må bestemme oss for om vi runder ned eller opp. Oppgave o Hvor mange sammenligninger (i værste fall) må vi gjøre ved søk etter noe som ikke ligger i en liste med 200 elementer o Med sekvensiellt søk? o Usortert o Sortert o Med binært søk? Løsning til sekvensielt søk Sortert: 200 sammenligninger i værste fall. Men kan ofte være mindre enn 200. Usortert: 200 Dersom vi søker etter Åberg vil søk i sortert liste være tilnærmet like treg som i en usortert Løsning til binært søk Binært søk: i værste fall 8 sammenligninger før vi kan være sikre på at elementet ikke finnes i lista. Vi får lister med størrelse: (100 eller 99 avh. av hva vi søker etter - i værste fall 100) 50 (49 eller 50, i værste fall 50) 25 (24 eller 25, i værste fall 25) 12 (12 uansett) 6 (5 eller 6, i værste fall 6) 3 (2 eller 3, i værste fall 3) 1 (1 uansett) Merk at vi må sjekke den siste lista med 1 element før vi kan være sikre på at elementet ikke eksisterer i lista Antall sammenligninger ved binærsøk: Log 2 Rent generellt så kan man ta toer logaritmen til lengden på lista og runde oppover. Toer logaritmen til et tall n er det tallet vi må opphøye 2 i for å få tallet n. Eller sagt på en annen måte: Hvor mange ganger må vi gange 2 med seg selv for å få (minst) n. Eller på en tredje måte: Hvor mange ganger må vi dele n på 2 for å få < =128 og 2 8 =256 Kjøretidskompleksitet o (n=lengde på lista) o Sekvensielt søk: n o Binært søk: log 2 n
5 Eksamensoppg høsten b) 5b) Vil binærsøk alltid være raskere enn sekvensielt søk? Forklar hvorfor/hvorfor ikke. (3 %) (Gitt sortert liste) LF: Dersom det vi søker etter ligger tidlig i lista vil sekvensielt søk være raskere (færre sammenligninger må utføres). Generelt så vil binærsøk være raskere i de aller fleste tilfellene. Binærsøk er relativt sett raskere jo lengre lista er. Oppsummering o I dag: Representasjon av algoritme Algoritme vs program (vs prosess) Problemløsning Pseudokode Algoritmer for søk Kjøretid Mandag: sortering ved innsetting
Algoritmer og Datastrukturer
Eksamen i Algoritmer og Datastrukturer IAI 21899 Høgskolen i Østfold Avdeling for informatikk og automatisering Torsdag 3. november 2, kl. 9. - 14. Hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.
DetaljerTDT4105 Informasjonsteknologi, grunnkurs
1 TDT4105 Informasjonsteknologi, grunnkurs Matlab: Sortering og søking Anders Christensen (anders@idi.ntnu.no) Rune Sætre (satre@idi.ntnu.no) TDT4105 IT Grunnkurs 2 Pensum Matlab-boka: 12.3 og 12.5 Stoffet
DetaljerForelesning 1. Algoritmer, pseudokoder og kontrollstrukturer. Dag Normann - 14. januar 2008. Vi som skal undervise. Hva er diskret matematikk?
Forelesning 1 Algoritmer, pseudokoder og kontrollstrukturer Dag Normann - 14. januar 2008 Vi som skal undervise Dag Normann Roger Antonsen Christian Schaal Robin Bjørnetun Jacobsen http://www.uio.no/studier/emner/matnat/math/mat1030/v08/
DetaljerKapittel 3: Litt om representasjon av tall
MAT1030 Diskret Matematikk Forelesning 3: Litt om representasjon av tall, logikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 3: Litt om representasjon av tall 20. januar 2009
DetaljerMAT1030 Diskret matematikk
MAT1030 Diskret matematikk Plenumsregning 1: Kapittel 1 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 17. januar 2008 Velkommen til plenumsregning for MAT1030 Torsdager 10:15 12:00 Gjennomgang
DetaljerAlgoritmer og datastrukturer Kapittel 1 - Delkapittel 1.3
Delkapittel 1.3 Ordnede tabeller Side 1 av 70 Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.3 1.3 Ordnede tabeller 1.3.1 Permutasjoner En samling verdier kan settes opp i en rekkefølge. Hver
DetaljerAlgoritmer og datastrukturer Kapittel 1 - Delkapittel 1.8
Delkapittel 1.8 Algoritmeanalyse Side 1 av 12 Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.8 1.8 Algoritmeanalyse 1.8.1 En algoritmes arbeidsmengde I Delkapittel 1.1 ble det definert og diskutert
Detaljer13.09.2012 LITT OM OPPLEGGET. INF1000 EKSTRATILBUD Stoff fra uke 1-3 12. September 2012 Siri Moe Jensen EKSEMPLER
.9.22 LITT OM OPPLEGGET INF EKSTRATILBUD Stoff fra uke - 2. September 22 Siri Moe Jensen Målgruppe: De som mangler forståelse for konseptene gjennomgått så langt. Trening får du ved å jobbe med oppgaver,
DetaljerI Kapittel 2 lærte vi om tall i alternative tallsystemer, i hovedsak om binære tall, oktale tall og heksadesimale tall.
Forelesning 4 Tall som data Dag Normann - 23. januar 2008 Valg av kontaktpersoner/tillitsvalgte Før vi tar pause skal vi velge to til fire tillitsvalgte/kontaktpersoner. Kontaktpersonene skal være med
DetaljerKorteste vei i en vektet graf uten negative kanter
Dagens plan: IN - Algoritmer og datastrukturer HØSTEN 7 Institutt for informatikk, Universitetet i Oslo IN, forelesning 7: Grafer II Korteste vei, en-til-alle, for: Vektet rettet graf uten negative kanter
DetaljerValg av kontaktpersoner/tillitsvalgte. MAT1030 Diskret matematikk. Oppsummering av kapittel 2. Representasjon av hele tall
Valg av kontaktpersoner/tillitsvalgte MAT1030 Diskret matematikk Forelesning 4: Tall som data Dag Normann Matematisk Institutt, Universitetet i Oslo 23. januar 2008 Før vi tar pause skal vi velge to til
DetaljerVelkommen til IT1101 Informatikk basisfag. Faglærer og forelesninger. Lærebok. Øvinger. IT1101 Fagstab. Fagets hjemmeside
Velkommen til IT1101 Informatikk basisfag I dag: Praktisk info Lærebok, øvinger, oppmeldingskrav, vurderingsform i emnet, hva skjer fremover Introduksjon til informatikk Informasjon Teknologi Algoritmer
DetaljerMAT1030 Forelesning 28
MAT1030 Forelesning 28 Kompleksitetsteori Roger Antonsen - 12. mai 2009 (Sist oppdatert: 2009-05-13 08:12) Forelesning 28: Kompleksitetsteori Introduksjon Da er vi klare (?) for siste kapittel, om kompleksitetsteori!
DetaljerAlgoritmer - definisjon
Algoritmeanalyse Algoritmer - definisjon En algoritme er en beskrivelse av hvordan man løser et veldefinert problem med en presist formulert sekvens av et endelig antall enkle, utvetydige og tidsbegrensede
DetaljerAlgoritmeanalyse. (og litt om datastrukturer)
Algoritmeanalyse (og litt om datastrukturer) Datastrukturer definisjon En datastruktur er den måten en samling data er organisert på. Datastrukturen kan være ordnet (sortert på en eller annen måte) eller
DetaljerVann i rør Ford Fulkerson method
Vann i rør Ford Fulkerson method Problemet Forestill deg at du har et nettverk av rør som kan transportere vann, og hvor rørene møtes i sammensveisede knytepunkter. Vannet pumpes inn i nettverket ved hjelp
DetaljerI dag. Rep: Oppsummering - variabler. Rep: Datatyper. INF1000 (Uke 3) Mer om uttrykk, terminal I/O, forgreninger
I dag INF1000 (Uke 3) Mer om uttrykk, terminal I/O, forgreninger Grunnkurs i programmering Institutt for Informatikk Universitet i Oslo Litt repetisjon Mer om uttrykk Lesing og skriving til terminal Forgreninger
DetaljerAlgoritmer Teoribok, kapittel 5. Algorithms
Algoritmer Teoribok, kapittel 5. Algorithms TDT 4105 Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål Lære om Algoritme som konsept Representasjon av algoritmer Oppdagelse av algoritmer Iterative
DetaljerMAT1030 Diskret matematikk
MAT1030 Diskret matematikk Forelesning 30: Kompleksitetsteori Dag Normann Matematisk Institutt, Universitetet i Oslo 14. mai 2008 Informasjon Det er lagt ut program for orakeltjenestene i MAT1030 denne
DetaljerNorges Informasjonsteknologiske Høgskole
Oppgavesettet består av 6 (seks) sider. Norges Informasjonsteknologiske Høgskole PG4200 Algoritmer og datastrukturer Side 1 av 6 Tillatte hjelpemidler: Ingen Varighet: 3 timer Dato: 6. august 2014 Fagansvarlig:
DetaljerOppsummering av Uke 3. MAT1030 Diskret matematikk. Binære tall. Oppsummering av Uke 3
Oppsummering av Uke 3 MAT1030 Diskret matematikk Forelesning 3: Mer om representasjon av tall Dag Normann Matematisk Institutt, Universitetet i Oslo 21. januar 2008 Mandag 14.01 og delvis onsdag 16.01
DetaljerMAT1030 Diskret matematikk. Kompleksitetsteori. Forelesning 29: Kompleksitetsteori. Dag Normann KAPITTEL 13: Kompleksitetsteori. 7.
MAT1030 Diskret matematikk Forelesning 29: Dag Normann KAPITTEL 13: Matematisk Institutt, Universitetet i Oslo 7. mai 2008 MAT1030 Diskret matematikk 7. mai 2008 2 Meldinger: Det blir hovedsaklig tavleregning
DetaljerKONTROLLSTRUKTURER. MAT1030 Diskret matematikk. Kontrollstrukturer. Kontrollstrukturer. Eksempel (Ubegrenset while-løkke)
KONTROLLSTRUKTURER MAT1030 Diskret matematikk Forelesning 2: Flere pseudokoder. Representasjoner av tall. Dag Normann Matematisk Institutt, Universitetet i Oslo 16. januar 2008 Mandag innførte vi pseudokoder
DetaljerMAT1030 Forelesning 2
MAT1030 Forelesning 2 Kontrollstrukturer, tallsystemer, basis Dag Normann - 20. januar 2010 (Sist oppdatert: 2010-01-20 12:31) Kapittel 1: Algoritmer (fortsettelse) Kontrollstrukturer I går innførte vi
DetaljerForelesning 2. Flere pseudokoder. Representasjoner av tall. Dag Normann januar 2008 KONTROLLSTRUKTURER. Kontrollstrukturer. Kontrollstrukturer
Forelesning 2 Flere pseudokoder. Representasjoner av tall. Dag Normann - 16. januar 2008 KONTROLLSTRUKTURER Mandag innførte vi pseudokoder og kontrollstrukturer. Vi hadde tre typer grunn-instruksjoner:
DetaljerMAT1030 Diskret Matematikk
MAT1030 Diskret Matematikk Forelesning 2: Kontrollstrukturer, tallsystemer, basis Roger Antonsen Institutt for informatikk, Universitetet i Oslo 14. januar 2009 (Sist oppdatert: 2009-01-14 16:45) Kapittel
DetaljerHusk å registrer deg på emnets hjemmeside!
IT Informatikk basisfag 28/8 Husk å registrer deg på emnets hjemmeside! http://it.idi.ntnu.no Gikk du glipp av øving? Gjør øving og få den godkjent på datasal av din lærass! Forrige gang: HTML Merkelapper
DetaljerINF 4130. 8. oktober 2009. Dagens tema: Uavgjørbarhet. Neste uke: NP-kompletthet
INF 4130 8. oktober 2009 Stein Krogdahl Dagens tema: Uavgjørbarhet Dette har blitt framstilt litt annerledes tidligere år Se Dinos forelesninger fra i fjor. I år: Vi tenker mer i programmer enn i Turing-maskiner
DetaljerForelesning 30. Kompleksitetsteori. Dag Normann mai Informasjon. Oppsummering
Forelesning 30 Kompleksitetsteori Dag Normann - 14. mai 2008 Informasjon Det er lagt ut program for orakeltjenestene i MAT1030 denne våren på semestersiden. Det blir ikke ordinære gruppetimer fra og med
DetaljerMer om representasjon av tall
Forelesning 3 Mer om representasjon av tall Dag Normann - 21. januar 2008 Oppsummering av Uke 3 Mandag 14.01 og delvis onsdag 16.01 diskuterte vi hva som menes med en algoritme, og vi så på pseudokoder
DetaljerLese fra fil. INF1000 : Forelesning 5. Eksempel. De vanligste lesemetodene. Metoder:
Lese fra fil Filbehandling Tekster Ole Christian Lingjærde Gruppen for bioinformatikk Institutt for informatikk Universitetet i Oslo INF1000 : Forelesning 5 Vi må først importere pakken easyio Vi åpner
DetaljerForelesning 28: Kompleksitetsteori
MAT1030 Diskret Matematikk Forelesning 28: Kompleksitetsteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 28: Kompleksitetsteori 12. mai 2009 (Sist oppdatert: 2009-05-13
Detaljer23.09.2015. Introduksjon til objektorientert. programmering. Hva skjedde ~1967? Lokale (og globale) helter. Grunnkurs i objektorientert.
Grunnkurs i objektorientert programmering Introduksjon til objektorientert programmering INF1000 Høst 2015 Siri Moe Jensen INF1000 - Høst 2015 uke 5 1 Siri Moe Jensen INF1000 - Høst 2015 uke 5 2 Kristen
DetaljerAlgoritmer og datastrukturer Kapittel 9 - Delkapittel 9.2
Delkapittel 9.2 Rød-svarte og 2-3-4 trær Side 1 av 16 Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.2 9.2 Rød-svarte og 2-3-4 trær 9.2.1 B-tre av orden 4 eller 2-3-4 tre Et rød-svart tre og et
DetaljerMAT1030 Diskret Matematikk
MAT1030 Diskret Matematikk Forelesning 4: Logikk Dag Normann Matematisk Institutt, Universitetet i Oslo 27. januar 2010 (Sist oppdatert: 2010-01-27 12:47) Kapittel 4: Logikk (fortsettelse) MAT1030 Diskret
DetaljerUtførelse av programmer, metoder og synlighet av variabler i JSP
Utførelse av programmer, metoder og synlighet av variabler i JSP Av Alf Inge Wang 1. Utførelse av programmer Et dataprogram består oftest av en rekke programlinjer som gir instruksjoner til datamaskinen
DetaljerBygg et Hus. Steg 1: Prøv selv først. Sjekkliste. Introduksjon. Prøv selv
Bygg et Hus Introduksjon I denne leksjonen vil vi se litt på hvordan vi kan få en robot til å bygge et hus for oss. Underveis vil vi lære hvordan vi kan bruke løkker og funksjoner for å gjenta ting som
DetaljerKanter, kanter, mange mangekanter
Kanter, kanter, mange mangekanter Nybegynner Processing PDF Introduksjon: Her skal vi se på litt mer avansert opptegning og bevegelse. Vi skal ta utgangspunkt i oppgaven om den sprettende ballen, men bytte
DetaljerLøsningsforslag EKSAMEN
1 Løsningsforslag EKSAMEN Emnekode: ITF20006 000 Dato: 18. mai 2012 Emne: Algoritmer og datastrukturer Eksamenstid: 09:00 til 13:00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Faglærer: Gunnar Misund
DetaljerSpøkelsesjakten. Introduksjon
1 Spøkelsesjakten All Code Clubs must be registered. Registered clubs appear on the map at codeclubworld.org - if your club is not on the map then visit jumpto.cc/ccwreg to register your club. Introduksjon
DetaljerAlgoritmer - definisjon
Algoritmeanalyse Algoritmer - definisjon En algoritme* er en beskrivelse av hvordan man løser et veldefinert problem med en presist formulert sekvens av et endelig antall enkle, utvetydige og tidsbegrensede
DetaljerMAT1030 Forelesning 30
MAT1030 Forelesning 30 Kompleksitetsteori Roger Antonsen - 19. mai 2009 (Sist oppdatert: 2009-05-19 15:04) Forelesning 30: Kompleksitetsteori Oppsummering I dag er siste forelesning med nytt stoff! I morgen
DetaljerMAT1030 Plenumsregning 3
MAT1030 Plenumsregning 3 Ukeoppgaver Mathias Barra - 30. januar 2009 (Sist oppdatert: 2009-02-02 14:26) Plenumsregning 3 Oppgave 2.7 - Horners metode (a) 7216 8 : 7 8+2 58 8+1 465 8+6 3726. Svar: 3726
DetaljerBrukermanual for statistikk på Asset on web: Statistikk salg pr dag, uke eller måned fordelt på alle avdelinger:
Brukermanual for statistikk på Asset on web: Statistikk salg pr dag, uke eller måned fordelt på alle avdelinger: 1. Velg først "Vis avanserte funksjoner" Evt. hvis du ønsker å se på salget i går eller
DetaljerForelesning 9 mandag den 15. september
Forelesning 9 mandag den 15. september 2.6 Største felles divisor Definisjon 2.6.1. La l og n være heltall. Et naturlig tall d er den største felles divisoren til l og n dersom følgende er sanne. (1) Vi
DetaljerVELKOMMEN TIL MAT-INF1100(L) Knut Mørken knutm@ifi.uio.no Rom 1033, Niels Henrik Abels hus
VELKOMMEN TIL MAT-INF1100(L) Knut Mørken knutm@ifi.uio.no Rom 1033, Niels Henrik Abels hus Forelesere Knut Mørken og Martin Reimers, Matematisk institutt, 10. etg i Niels Henrik Abels hus Arbeider med
DetaljerKvikkbilde 8 6. Mål. Gjennomføring. Planleggingsdokument Kvikkbilde 8 6
Kvikkbilde 8 6 Mål Generelt: Sammenligne og diskutere ulike måter å se et antall på. Utfordre elevene på å resonnere omkring tallenes struktur og egenskaper, samt egenskaper ved regneoperasjoner. Spesielt:
DetaljerLøse reelle problemer
Løse reelle problemer Litt mer om løkker, metoder med returverdier og innlesing fra fil INF1000, uke4 Geir Kjetil Sandve Repetisjon fra forrige uke: while Syntaks: while (condition) do1; do2;... Eksempel:
DetaljerHusk at du skal ha to vinduer åpne. Det ene er 'Python Shell' og det andre er for å skrive kode i.
Skilpaddeskolen Steg 1: Flere firkanter Nybegynner Python Åpne IDLE-editoren, og åpne en ny fil ved å trykke File > New File, og la oss begynne. Husk at du skal ha to vinduer åpne. Det ene er 'Python Shell'
DetaljerINF1010 - Seminaroppgaver til uke 3
INF1010 - Seminaroppgaver til uke 3 Oppgave 1 I denne oppgaven skal vi lage et klassehiearki av drikker. Alle klassene i hiearkiet skal implementere følgende grensesnitt p u b l i c i n t e r f a c e Drikkbar
DetaljerTa inn og ut av 2D-array. Java 6. Liste over ulike verdier i 2D-array. Det ferdige programmet. Vi skal lage et program som illustrerer hvordan man
Eksempel med to-dimensjonal array Filbehandling Tekster Ole Christian Lingjærde Gruppen for bioinformatikk Institutt for informatikk Universitetet i Oslo Java 6 Vi skal lage et program som illustrerer
DetaljerMAT1030 Plenumsregning 1
MAT1030 Plenumsregning 1 Kapittel 1 Mathias Barra - 16. januar 2009 (Sist oppdatert: 2009-02-02 14:21) Plenumsregning 1 Velkommen til plenumsregning for MAT1030 Fredager 12:15 14:00 Vi vil gjennomgå utvalgte
DetaljerOppgavene 1, 2, 4, 5, 6, 9, 12 og 13 passer best til å løses ved en datamaskin.
Oppgaver uke 35: Oppgavene 1, 2, 4, 5, 6, 9, 12 og 13 passer best til å løses ved en datamaskin. Oppgave 1. Skriv et C-program som leser mål i tommer og skriver det ut i fot og tommer. (Det er 12 tommer
DetaljerEn oppsummering (og litt som står igjen)
En oppsummering (og litt som står igjen) Pensumoversikt Hovedtanker i kurset Selvmodifiserende kode Overflyt Eksamen En oppsummering Oppsummering Pensum læreboken til og med kapittel 7 forelesningene de
DetaljerKapittel 3: Litt om representasjon av tall
MAT1030 Diskret Matematikk Forelesning 3: Litt om representasjon av tall Dag Normann Matematisk Institutt, Universitetet i Oslo Kapittel 3: Litt om representasjon av tall 26. januar 2010 (Sist oppdatert:
DetaljerVi som skal undervise. MAT1030 Diskret matematikk. Hva er diskret matematikk? Hva er innholdet i MAT1030?
Vi som skal undervise MAT1030 Diskret matematikk Forelesning 1: Algoritmer, pseudokoder og kontrollstrukturer Dag Normann Matematisk Institutt, Universitetet i Oslo 14. januar 2008 Dag Normann Roger Antonsen
DetaljerLeksjon 3. Kontrollstrukturer
6108 Programmering i Java Leksjon 3 Kontrollstrukturer Del 2 Løkker Roy M. Istad 2015 Utførelse av et program Programflyt så langt start setning setning setning setning Sekvensielt Alle setninger utføres,
DetaljerTema. Beskrivelse. Husk!
Dette er ment som en hjelpeoversikt når du bruker boka til å repetisjon. Bruk Sammendrag etter hvert kapittel som hjelp. Verktøykassen fra side 272 i boka er og til stor hjelp for repetisjon til terminprøve.
DetaljerO-notasjon og kompleksitet
1 TDT4105 Informasjonsteknologi, grunnkurs Matlab: Sortering og søking Kunnskap for en bedre verden Amanuensis Terje Rydland Kontor: ITV-021 i IT-bygget vest (Gløshaugen) Epost: terjery@idi.ntnu.no Tlf:
DetaljerForelesningsquiz. Forelesning inf1000 - Java 5. Sett dere to (eller tre) sammen og besvar de fire spørsmålene på utdelt ark. Tid: 15 min.
Forelesning inf1000 - Java 5 Forelesningsquiz Tema: En liten quiz (se utdelt ark) Filbehandling Tekster Ole Christian Lingjærde, 19. september 2012 Sett dere to (eller tre) sammen og besvar de fire spørsmålene
DetaljerMAT1030 Diskret Matematikk
MAT1030 Diskret Matematikk Plenumsregning 1: Kapittel 1 Mathias Barra Matematisk institutt, Universitetet i Oslo 16. januar 2009 (Sist oppdatert: 2009-02-02 14:21) Plenumsregning 1 MAT1030 Diskret Matematikk
DetaljerMAT1030 Diskret Matematikk
MAT1030 Diskret Matematikk Forelesning 1: Algoritmer, pseudokoder, kontrollstrukturer Roger Antonsen Institutt for informatikk, Universitetet i Oslo 13. januar 2009 (Sist oppdatert: 2009-01-14 16:44) Velkommen
DetaljerVelkommen til MAT1030!
MAT1030 Diskret Matematikk Forelesning 1: Algoritmer, pseudokoder, kontrollstrukturer Roger Antonsen Institutt for informatikk, Universitetet i Oslo Velkommen til MAT1030! 13. januar 2009 (Sist oppdatert:
DetaljerSøkeproblemet. Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke?
Søking Søkeproblemet Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke? Effektiviteten til søkealgoritmer avhenger av: Om datastrukturen
DetaljerSteg for steg. Sånn tar du backup av Macen din
Steg for steg Sånn tar du backup av Macen din «Being too busy to worry about backup is like being too busy driving a car to put on a seatbelt.» For de fleste fungerer Macen som et arkiv, fullt av bilder,
DetaljerPlenumsregning 1. Kapittel 1. Roger Antonsen januar Velkommen til plenumsregning for MAT1030. Repetisjon: Algoritmer og pseudokode
Plenumsregning 1 Kapittel 1 Roger Antonsen - 17. januar 2008 Velkommen til plenumsregning for MAT1030 Torsdager 10:15 12:00 Gjennomgang av ukeoppgaver Gjennomgang av eksempler fra boka Litt repetisjon
DetaljerHemmelige koder. Kodeklubb-koden. Steg 1: Alfabetet. Sjekkliste. Introduksjon
Hemmelige koder Nybegynner Python Introduksjon Legg bort skilpaddene dine, i dag skal vi lære hvordan vi kan sende hemmelige beskjeder! Kodeklubb-koden Et chiffer er et system for å gjøre om vanlig tekst
DetaljerGo with the. Niende forelesning. Mye matematikk i boka her ikke så komplisert, men mye å holde styr på.
Go with the Niende forelesning Mye matematikk i boka her ikke så komplisert, men mye å holde styr på. Fokuserer på de viktigste ideene i dagens forelesning, så det forhåpentligvis blir lettere å skjønne
DetaljerTa kontakt i pausen. Viktig at vi kommer i gang med dette arbeidet!
1 Kunnskap for en bedre verden TDT4105 Informasjonsteknologi, grunnkurs Mer om funksjoner. Logiske betingelser og betinget programutførelse (valg). Amanuensis Terje Rydland Kontor: ITV-021 i IT-bygget
DetaljerOverordnet maskinarkitektur. Maskinarkitektur zoomet inn. I CPU: Kontrollenheten (CU) IT1101 Informatikk basisfag, dobbeltime 11/9
IT1101 Informatikk basisfag, dobbeltime 11/9 Hittil: sett på representasjon av informasjon og manipulering av bits i kretser Idag: hever oss til nivået over og ser på hvordan program kjører i maskinen
DetaljerSøking i strenger. Prefiks-søking Naiv algoritme Knuth-Morris-Pratt-algoritmen Suffiks-søking Boyer-Moore-algoritmen Hash-basert Karp-Rabin-algoritmen
Søking i strenger Vanlige søkealgoritmer (on-line-søk) Prefiks-søking Naiv algoritme Knuth-Morris-Pratt-algoritmen Suffiks-søking Boyer-Moore-algoritmen Hash-basert Karp-Rabin-algoritmen Indeksering av
DetaljerMAT1030 Forelesning 3
MAT1030 Forelesning 3 Litt om representasjon av tall Dag Normann - 26. januar 2010 (Sist oppdatert: 2010-01-26 14:22) Kapittel 3: Litt om representasjon av tall Hva vi gjorde forrige uke Vi diskuterte
DetaljerGangemesteren Nybegynner Scratch PDF
Gangemesteren Nybegynner Scratch PDF Introduksjon I dag skal vi lage et nyttig spill, nemlig et spill som hjelper oss å lære andre ting. Vi skal få hjelp til å lære gangetabellen! Steg 1: Læremesteren
DetaljerPalindrom - iterativt
1 TDT4105 Informasjonsteknologi, grunnkurs Matlab: Sortering og søking Kunnskap for en bedre verden Amanuensis Terje Rydland Kontor: ITV-021 i IT-bygget vest (Gløshaugen) Epost: terjery@idi.ntnu.no Tlf:
DetaljerAlgoritmer og Datastrukturer
Eksamen i Algoritmer og Datastrukturer IAI 20102 Høgskolen i Østfold Avdeling for informatikk og automatisering Lødag 5. juni 2004, kl. 09.00-13.00 LØSNINGSFORSLAG 1 Del 1 60% Oppgave 1.1-10% Forklar kort
DetaljerGrunnleggende Grafteori
Grunnleggende Grafteori 2. September, 2019 Institutt for Informatikk 1 Dagens plan Terminologi og definisjoner Hvordan representere grafer i datamaskinen Traversering Dybde-først-søk Bredde-først-søk Topologisk
DetaljerForelesning 14. Rekursjon og induksjon. Dag Normann februar Oppsummering. Oppsummering. Beregnbare funksjoner
Forelesning 14 og induksjon Dag Normann - 27. februar 2008 Oppsummering Mandag repeterte vi en del om relasjoner, da spesielt om ekvivalensrelasjoner og partielle ordninger. Vi snakket videre om funksjoner.
DetaljerPython: Oppslagslister (dictionaries) og mengder 3. utgave: Kapittel 9
Python: Oppslagslister (dictionaries) og mengder 3. utgave: Kapittel 9 TDT4110 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål Forstå prinsippene for, og kunne bruke i praksis Mengder (sets)
DetaljerTuringmaskiner.
Turingmaskiner http://www.youtube.com/watch?v=e3kelemwfhy http://www.youtube.com/watch?v=cyw2ewoo6c4 Søking i strenger Vanlige søkealgoritmer (on-line-søk) Prefiks-søking Naiv algoritme Knuth-Morris-Pratt-algoritmen
Detaljer3 emner i dag! INF1000 Uke 5. Objekter og pekere. null. Litt om objekter, pekere og null Filer og easyio Litt mer om tekster
3 emner i dag! INF1000 Uke 5 Litt om objekter, pekere og null Filer og easyio Litt mer om tekster Litt om objekter, filer med easyio, tekst 1 2 Objekter og pekere Vi lager pekere og objekter når vi bruker
DetaljerMAT1030 Diskret matematikk
MAT1030 Diskret matematikk Forelesning 14: Rekursjon og induksjon Dag Normann Matematisk Institutt, Universitetet i Oslo 27. februar 2008 Oppsummering Mandag repeterte vi en del om relasjoner, da spesielt
DetaljerEKSAMENSOPPGAVE. IAI20102 Algoritmer og datastrukturer
EKSAMENSOPPGAVE Fag: Lærer: IAI00 Algoritmer og datastrukturer André A. Hauge Dato:..005 Tid: 0900-00 Antall oppgavesider: 5 med forside Antall vedleggssider: 0 Hjelpemidler: Alle trykte og skrevne hjelpemidler,
DetaljerNITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013
NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 20 ette løsningsforslaget er til tider mer detaljert enn det man vil forvente av en eksamensbesvarelse. et er altså ikke et eksempel
DetaljerDatastrukturer for rask søking
Søking Søkeproblemet Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke? Effektiviteten til søkealgoritmer avhenger av: Om datastrukturen
Detaljer10.03.2011. Hvorfor får elevene problemer med tekstoppgaver? Hva kan vi gjøre for at elevene skal mestre tekstoppgaver bedre?
Hvorfor får elevene problemer med tekstoppgaver? Hva kan vi gjøre for at elevene skal mestre tekstoppgaver bedre? Mona Røsseland Matematikksenteret (for tiden i studiepermisjon) Lærebokforfatter, MULTI
DetaljerMAT1030 Diskret matematikk
MAT1030 Diskret matematikk Forelesning 33: Repetisjon Dag Normann Matematisk Institutt, Universitetet i Oslo 26. mai 2008 Innledning Onsdag 21/5 gjorde vi oss ferdige med det meste av den systematiske
DetaljerInnledning. MAT1030 Diskret matematikk. Kapittel 11. Kapittel 11. Forelesning 33: Repetisjon
Innledning MAT1030 Diskret matematikk Forelesning 33: Repetisjon Dag Normann Matematisk Institutt, Universitetet i Oslo 26. mai 2008 Onsdag 21/5 gjorde vi oss ferdige med det meste av den systematiske
DetaljerPG4200 Algoritmer og datastrukturer Forelesning 7
PG4200 Algoritmer og datastrukturer Forelesning 7 Lars Sydnes, NITH 19. mars 2014 I. TERMINOLOGI FOR TRÆR TRÆR Lister: Lineære Trær: Hierarkiske Modell / Språk: Bestanddeler: Noder, forbindelser. Forbindelse
DetaljerEKSAMEN med løsningsforslag
EKSAMEN med løsningsforslag Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2009 kl 09.00 til kl 13.00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Kalkulator Faglærer:
DetaljerOppgaver til kodegenerering etc. INF-5110, 12. mai, 2015
Oppgaver til kodegenerering etc. INF-5110, 12. mai, 2015 Oppgave 1: Vi skal se på koden generert av TA-instruksjonene til høyre i figur 9.10 i det utdelte notatet, side 539 a) (repetisjon fra forelesningene)
DetaljerHvorfor sortering og søking? Søking og sortering. Binære søketrær. Ordnet innsetting forbereder for mer effektiv søking og sortering INF1010 INF1010
Hvorfor sortering og søking? Man bør ha orden i dataene umulig å leve uten i informasjonssamfunnet vi blir fort lei av å lete poleksempel internett alt er søking og sortering alternativer til sortering
DetaljerST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen
ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen Bo Lindqvist Institutt for matematiske fag 2 Kap. 6: Normalfordelingen Normalfordelingen regnes som den viktigste statistiske fordelingen!
DetaljerOblig 4 (av 4) INF1000, høsten 2012 Værdata, leveres innen 9. nov. kl. 23.59
Oblig 4 (av 4) INF1000, høsten 2012 Værdata, leveres innen 9. nov. kl. 23.59 Formål Formålet med denne oppgaven er å gi trening i hele pensum og i å lage et større program. Løsningen du lager skal være
DetaljerAlgoritmer og datastrukturer Kapittel 11 - Delkapittel 11.2
Algoritmer og datastrukturer Kapittel 11 - Delkapittel 11.2 11.2 Korteste vei i en graf 11.2.1 Dijkstras metode En graf er et system med noder og kanter mellom noder. Grafen kalles rettet Notasjon Verdien
DetaljerKAPITTEL 3 Litt logikk og noen andre småting
KAPITTEL 3 Litt logikk og noen andre småting Logikk er sentralt både i matematikk og programmering, og en innføring i de enkleste delene av logikken er hovedtema i dette kapitlet I tillegg ser vi litt
DetaljerSkogens røtter og menneskets føtter
Elevhefte Skogens røtter og menneskets føtter Del 1 Frøspiring og vekst NAVN: Skogens røtter og menneskets føtter Frøspiring og vekst Innhold Del 1 Frøspiring og vekst... 1 1. Alle trær har vært et lite
DetaljerPlenumsregning 1. MAT1030 Diskret Matematikk. Repetisjon: Algoritmer og pseudokode. Velkommen til plenumsregning for MAT1030
MAT1030 Diskret Matematikk Plenumsregning 1: Kapittel 1 Mathias Barra Matematisk institutt, Universitetet i Oslo Plenumsregning 1 16. januar 2009 (Sist oppdatert: 2009-02-02 14:21) MAT1030 Diskret Matematikk
Detaljer1.8 Binære tall EKSEMPEL
1.8 Binære tall Når vi regner, bruker vi titallssystemet. Hvordan det virker, finner vi ut ved å se på for eksempel tallet 2347. 2347 = 2 1000 + 3 100 + 4 10 + 7 Hvis vi bruker potenser, får vi 2347 =
DetaljerRekursiv programmering
Rekursiv programmering Babushka-dukker En russisk Babushkadukke er en sekvens av like dukker inne i hverandre, som kan åpnes Hver gang en dukke åpnes er det en mindre utgave av dukken inni, inntil man
DetaljerLøsningsforslag ukeoppg. 9: 19. - 25. okt (INF1000 - Høst 2011)
Løsningsforslag ukeoppg. 9: 19. - 25. okt (INF1000 - Høst 2011) HashMap, innstikksortering, javadoc (kap. 9.1-9.11, m.m. i "Rett på Java" 3. utg.) NB! Legg merke til at disse er løsningsforslag. Løsningene
Detaljer