PG4200 Algoritmer og datastrukturer Forelesning 7
|
|
- Mette Ludvigsen
- 9 år siden
- Visninger:
Transkript
1 PG4200 Algoritmer og datastrukturer Forelesning 7 Lars Sydnes, NITH 19. mars 2014
2 I. TERMINOLOGI FOR TRÆR
3 TRÆR Lister: Lineære Trær: Hierarkiske Modell / Språk: Bestanddeler: Noder, forbindelser. Forbindelse går fra foreldrenode til barnenode. Én Rot: Den eneste foreldreløse noden. Ett eller flere blader (leafs): Noder uten barn.
4 TRÆR: TERMINOLOGI R (rot) Nivå 0 A (indre) B (indre) C (blad) Nivå 1 D (indre) E (blad) F (indre) G (blad) Nivå 2 I (blad) J(blad) Nivå 3 D er barn av A Følger som R,A,D,I og R,B,F,J kalles veier i treet (paths) Veien R,A,D,I har lengde 3 A er forgjenger til både D,E og I (ancestor) D,E og I kalles etterfølgere til A (descendants) Dette treet har høyde 3
5 KLASSIFISERING AV TRÆR Høyde: Største veilengde i treet. Orden: Det maksimale antallet barnenoder pr. node. Binære trær: Trær av orden 2. Balanserte trær: Alle bladene befinner seg på de to nederste nivåene. Komplette trær: Balanserte trær der alle bladene i nest nederste nivå befinner seg til venstre. Fulle trær: Alle noder har maksimalt antall barn, alle blader på ett nivå.
6 BALANSERTE TRÆR: Ikke balansert: Balansert:
7 KOMPLETTE TRÆR: Ikke komplett: Komplett:
8 FULLE TRÆR Ikke fullt: Fullt:
9 II. HVOR MØTER VI TRÆR?
10 VI MØTER TRÆR OVER ALT Eksplisitt: Søketrær Heaps Eksempler som ExpressionTree (i læreboka) Implisitt / Tilnærmelsesvis Programmering, Arv: Rot = Object, Foreldre-barn-relasjon = arv mellom klasser Sammensatte grafiske brukergrensesnitt: Hovedvindu = rot, interaksjonsdetaljer = blader Andre sammensatte objekter: Computer-algebra / Syntaktiske trær. Abstrakt: QueenSolver: Valgmulighetene kan organiseres i et tre. Valgtrær
11 KONKRETE TRÆR: J A V A.U T I L.TR E EMA P... class TreeMap<K,V>... {... Entry<K,V> root;... static class Entry<K,V>.. { // DATA: K key; V value; } // STRUCTURE: Entry<K,V> left = null; Entry<K,V> right = null; Entry<K,V> parent; }...
12 TREEMAP: TreeMap som oversikt over antallet lenker inn i domene: facebook = 44 aften = 32 nith = 65 msn = 56 Hvorfor sprer vi dataene utover i et tre?
13 OPPGAVE: KARTLEGGING AV TREEMAP Kan vi måle treets høyde? høyde under node = 1 + maks(høyde under barnenoder) Andre målinger: Antall blader Antall indre noder Kode-eksempel
14 EKSEMPEL PÅ ENKEL ALGEBRAPAKKE Symbol x = symbol("x"); Symbol y = symbol("y"); Symbol z = symbol("z"); Expression expr1 = new Product(y, new Constant(2)); Expression expr2 = new Product(z,x); Expression expr3 = new Sum(expr1, new Sin(expr2)); Sum Prod y 2 Sin Prod x z expr3 = 2y + sin(xz)
15 MANIPULERING AV TRÆR MANIPULERING AV SYNTAKS Prod Sum a Sum Prod Prod b c a b a c a*(b+c) a*b+a*c Evaluering av uttrykk: Evaluér venstre undertre Evaluér høyre undertre Kombinér resultatet
16 TRÆR I J A V A.CO L L E C T I O N S TreeSet: Beholder Mengde -> ingen dubletter Søketre -> Effektiv lagring og søk. TreeMap Avbildining -> (key,value)-par Søketre -> Effektiv lagring og søk. PriorityQueue Prioritetskø -> viktige objekter sniker Heap -> Effektiv innsetting, Effektiv fjerning av minste element.
17 III. TRAVERSERING AV TRÆR
18 Å BESØKE ALLE NODENE I ET TRE R A B C D E F G I J Bredde eller dybde først? (Jfr. WebCrawler) Depth first Level-order (bredde først) Foreldre eller barn først? Preorder: node, venstre, høyre Inorder: venstre, node, høyre Postorder venstre, høyre, node
19 ITERATORER: ITERATOR, ITERABLE package java.util; public interface Iterator<E> { boolean hasnext(); E next(); void remove(); } package java.lang; import java.util.iterator; public interface Iterable<E> { Iterator<T> iterator(); }
20 TO IMPLEMENTASJONER AV I T E R A T O R() Hjelpeliste: Legg treets elementer inn i en liste. Returnér listens iterator. Tips: Bruk rekursive funksjoner Egen iterator-klasse: La iteratoren ha direkte tilgang til nodene. Mer om dette i Lab 7.
21 IV. SØKETRÆR
22 SØKETRÆR Struktur for lagring og søk etter data som kan ordnes. Eksempler: tall, strenger Objekter som er Comparable. Krav a b = a < b eller a > b Java: Dette betyr at equals skal kunne implementeres omtrent slik: public boolean equals(other){ return this.compareto(other) == 0 }
23 BINÆRT SØK VS. SØKETRÆR Binært søk: Besøk det midterste elementet. Gå til høyre eller venstre Gjenta prosedyren med høyre eller venstre halvdel Søketre: left < node <= right Besøk roten. Gå til høyre eller venstre. Gjenta prosedyren med høyre eller venstre undertre
24 BINÆRT SØK VS SØKETRÆR Binært søk: 1,4,5,7,8,9,12,16,19,24,27,35,45 1,4,5,7,8,9 16,19,24,27,35,45 1,4,5 8,9 16,19,24 35, Søketre:
25 SØKETRÆR: INNSETTING
26 SØKETRÆR: INNSETTING
27 SØKETRÆR: INNSETTING
28 SØKETRÆR: INNSETTING
29 SØKETRÆR: INNSETTING def add(newnode,rootnode): if (newnode > rootnode) if (rootnode.right = None) rootnode.right = newnode else add(newnode,rootnode.right) else if (rootnode.left = None) rootnode.left = newnode else add(newnode,rootnode.left)
30 SØKETRÆR: FJERN ELEMENT Hvis vi skal fjerne node 27 fra følgende tre, må vi erstatte den med en node med verdi mellom 19 og Velg ut det minste elementet som er større enn 19, altså replacement-metoden tar jobben med å finne erstatningen.
31 V. IMPLEMENTASJON
32 TABELLIMPLEMENTASJON. Bruk en array som underliggende datastruktur Roten har indeks 0, og de tilhørende barna har indeks 1 og 2. Barna til noden med indeks n ligger i indeks 2n + 1 og 2n ,7,27,4,9,19,45,1,5,8,null,16,24,35,null 7,4,9,1,5,8,null 27,19,45,16,24,35,null 4,1,5 9,8,null 19,16,24 45,35,null OBS: Det er bare tabellen 12,7,27,4,9,19,45,1,5,8,null,16,24,35,null som er lagret i datamaskinens minne.
33 TABELLIMPLEMENTASJON Tallet 45 ligger i posisjon 6, og barna ligger i posisjon og , altså posisjonene 13 og 14. Verdiene er 35 og null. left 12,7,27,4,9,19,45,1,5,8,null,16,24,35,null right Problem: Det kan bli mange tomme plasser i listen.
34 KOMPLETT TABELLER Ikke komplett: ,7,35,4,9,19,45,1,5,8,null,16,24,null Hull!. Komplett: ,7,35,4,9,19,45,1,5,8,null,null Null hull!
35 LENKET IMPLEMENTASJON LinkedBinarySearchTree.java
36 VI. ANALYSE
37 HØYDEN I TRÆR Algoritmisk effektivitet avhenger av høyden h (antall nivåer). I et tre med høyde h og n elementer er n < 2 h+1 og h < n, så log 2 (n) 1 < h < n. Se på tre med høyde h: add: Vi starter å lete i roten, må besøke inntil h noder før vi finner riktig plass. remove: Vi må gå fra roten til den aktuelle noden: Inntil h steg. Leting etter replacement-node: Inntil h steg.
38 BEREGNINGSKOMPLEKSITET: Operasjon binært tre Ordnet lenket liste add O(h) O(n) removefirst O(h) O(1) removelast O(h) O(n) remove O(h) O(n) contains O(h) O(n)
39 MEN AKK: LENKEDE LISTER ER OGSÅ TRÆR For å få best mulig Worst-case-oppførsel ønsker vi gjerne at h er så liten som mulig.
40 ER DET ALLTID SLIK AT VI ØNSKER BALANSE? Neste uke: - Mer om balansering - B-trær - Heaps
PG4200 Algoritmer og datastrukturer Forelesning 5 Implementasjon av lister
PG4200 Algoritmer og datastrukturer Forelesning 5 Implementasjon av lister Lars Sydnes, NITH 5. februar 2014 I. Implementasjoner Tabell-implementasjon av Stakk Tabellen er den lettest tilgjengelige datastrukturen
DetaljerBinære trær: Noen algoritmer og anvendelser
Binære trær: Noen algoritmer og anvendelser Algoritmer / anvendelser: Søking i usortert binært tre Telling av antall noder og nivåer i treet Traversering av binære trær Binære uttrykkstrær Kunstig intelligens(?):
DetaljerFra Kap.10 Binære søketre (BS-tre) Sist oppdatert 20.03.10 Definere en abstrakt datastruktur binært søketre. Vise hvordan binær søketre kan brukes
Fra Kap.10 Binære søketre (BS-tre) Sist oppdatert 20.03.10 Definere en abstrakt datastruktur binært søketre. Vise hvordan binær søketre kan brukes til å løse problemer. Undersøke ulike implementasjoner
DetaljerNy/utsatt EKSAMEN. Dato: 5. januar 2018 Eksamenstid: 09:00 13:00
Ny/utsatt EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 5. januar 2018 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet
DetaljerKap 9 Tre Sist oppdatert 15.03
Kap 9 Tre Sist oppdatert 15.03 Definere et tre som en datastruktur. Definere begreper knyttet til tre. Diskutere mulige implementasjoner av tre Analysere implementasjoner av tre som samlinger. Diskutere
DetaljerDefinisjon. I et binært tre har hver node enten 0, 1 eller 2 barn
Binære trær Definisjon I et binært tre har hver node enten 0, 1 eller 2 barn Rekursiv definisjon: Et binært tre er enten tomt, eller: Består av en rotnode og to binære trær som kalles venstre subtre og
DetaljerEKSAMEN. Dato: 28. mai 2018 Eksamenstid: 09:00 13:00
EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 28. mai 2018 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet
DetaljerBinære søketrær. En ordnet datastruktur med raske oppslag. Sigmund Hansen
Binære søketrær En ordnet datastruktur med raske oppslag Sigmund Hansen Lister og trær Rekke (array): 1 2 3 4 Lenket liste (dobbelt-lenket): 1 2 3 4 Binært søketre: 3 1 4 2 Binære
DetaljerListe som abstrakt konsept/datatype
Lister Liste som abstrakt konsept/datatype Listen er en lineær struktur (men kan allikevel implementeres ikke-lineært bak kulissene ) Hvert element har en forgjenger, unntatt første element i listen Hvert
DetaljerPG4200 Algoritmer og datastrukturer Forelesning 10
PG4200 Algoritmer og datastrukturer Forelesning 10 Lars Sydnes, NITH 9. april 2014 NOE Å STUSSE PÅ? Quadratic probing i Hash-tabell: ( ) 2 i + 1 p = p + ( 1) i+1 2 Underforstått forutsetning: Heltallsaritmetikk
DetaljerLøsningsforslag. Oppgave 1.1. Oppgave 1.2
Løsningsforslag Oppgave 1.1 7 4 10 2 5 9 12 1 3 6 8 11 14 13 Oppgave 1.2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 Oppgave 1.3 Rekursiv løsning: public Node settinn(person ny, Node rot) if (rot == null) return
DetaljerDefinisjon av binært søketre
Binære søketrær Definisjon av binært søketre For alle nodene i et binært søketre gjelder: Alle verdiene i nodens venstre subtre er mindre enn verdien i noden Alle verdiene i nodens høyre subtre er større
DetaljerEt eksempel: Åtterspillet
Trær Et eksempel: Åtterspillet To spillere som «trekker» annenhver gang I hvert trekk velges et av tallene 1, 2, 3, men ikke tallet som motspiller valgte i forrige trekk Valgte tall summeres fortløpende
DetaljerAlgoritmer og datastrukturer Kapittel 3 - Delkapittel 3.1
Delkapittel 3.1 Grensesnittet Liste Side 1 av 11 Algoritmer og datastrukturer Kapittel 3 - Delkapittel 3.1 3.1 En beholder 3.1.1 En beholder En pappeske er en beholder En beholder er noe vi kan legge ting
DetaljerEt eksempel: Åtterspillet
Trær Et eksempel: Åtterspillet To spillere som «trekker» annenhver gang I hvert trekk velges et av tallene 1, 2, 3, men ikke tallet som motspiller valgte i forrige trekk Valgte tall summeres fortløpende
DetaljerINF2220: Forelesning 1. Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel )
INF2220: Forelesning 1 Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel 4.1-4.3 + 4.6) PRAKTISK INFORMASJON 2 Praktisk informasjon Kursansvarlige Ragnhild Kobro Runde (ragnhilk@ifi.uio.no)
DetaljerHeap og prioritetskø. Marjory the Trash Heap fra Fraggle Rock
Heap og prioritetskø Marjory the Trash Heap fra Fraggle Rock Binær heap En heap er et komplett binært tre: Alle nivåene i treet, unntatt (muligens) det nederste, er alltid helt fylt opp med noder Alle
DetaljerObject [] element. array. int [] tall
Datastrukturer Object [] int [] tall array element 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 40 55 63 17 22 68 89 97 89 graf lenkeliste graf Object data Node neste Node neste Node neste Node neste Node Node neste
DetaljerDefinisjon: Et sortert tre
Binære søketrær Definisjon: Et sortert tre For alle nodene i et binært søketre gjelder: Alle verdiene i nodens venstre subtre er mindre enn verdien i noden Alle verdiene i nodens høyre subtre er større
DetaljerSøkeproblemet. Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke?
Søking Søkeproblemet Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke? Effektiviteten til søkealgoritmer avhenger av: Om datastrukturen
DetaljerHva er en liste? Hvert element har en forgjenger, unntatt første element i listen. Hvert element har en etterfølger, unntatt siste element i listen
Lister Hva er en liste? Listen er en lineær datastruktur Hvert element har en forgjenger, unntatt første element i listen Hvert element har en etterfølger, unntatt siste element i listen I motsetning til
DetaljerHva er en liste? Hvert element har en forgjenger, unntatt første element i listen. Hvert element har en etterfølger, unntatt siste element i listen
Lister Hva er en liste? Listen er en lineær datastruktur Hvert element har en forgjenger, unntatt første element i listen Hvert element har en etterfølger, unntatt siste element i listen I motsetning til
DetaljerDatastrukturer for rask søking
Søking Søkeproblemet Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke? Effektiviteten til søkealgoritmer avhenger av: Om datastrukturen
DetaljerINF110 Algoritmer og datastrukturer TRÆR. Vi skal i denne forelesningen se litt på ulike typer trær:
TRÆR Vi skal i denne forelesningen se litt på ulike typer trær: Generelle trær (kap. 4.1) Binærtrær (kap. 4.2) Binære søketrær (kap. 4.3) Den siste typen trær vi skal behandle, B-trær (kap. 4.7) kommer
DetaljerTrær. En datastruktur (og abstrakt datatype ADT)
Trær Trær En datastruktur (og abstrakt datatype ADT) Trær En datastruktur (og abstrakt datatype ADT) En graf som 8lfredss8ller bestemte krav Object [] int [] tall array element 0 1 2 3 4 5 0 1 2 3 4 5
DetaljerEnkle datastrukturer. Lars Greger Nordland Hagen. Introduksjon til øvingsopplegget og gjennomgang av python
1 Enkle datastrukturer Lars Greger Nordland Hagen algdat@idi.ntnu.no Introduksjon til øvingsopplegget og gjennomgang av python 2 I dag Stack Kø (queue) Lenkede lister (linked list) Trær Binære søketrær
DetaljerNORGES INFORMASJONSTEKNOLOGISKE HØGSKOLE PG4200 Algoritmer og datastrukturer
Oppgavesettet består av 7 (syv) sider. NORGES INFORMASJONSTEKNOLOGISKE HØGSKOLE PG4200 Algoritmer og datastrukturer Tillatte hjelpemidler: Ingen Side av 7 Varighet: 3 timer Dato:.august 203 Fagansvarlig:
DetaljerEKSAMEN. Dato: 18. mai 2017 Eksamenstid: 09:00 13:00
EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 18. mai 2017 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Kalkulator Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet
DetaljerDagens plan: INF2220 - Algoritmer og datastrukturer. Repetisjon: Binære søketrær. Repetisjon: Binære søketrær
Dagens plan: INF2220 - lgoritmer og datastrukturer HØTEN 2007 Institutt for informatikk, Universitetet i Oslo (kap. 4.7) (kap. 12.2) Interface ollection og Iterator (kap. 3.3) et og maps (kap. 4.8) INF2220,
DetaljerLars Vidar Magnusson
Binære Søketrær Lars Vidar Magnusson 14.2.2014 Kapittel 12 Binære Søketrær Søking Insetting Sletting Søketrær Søketrær er datastrukturer som støtter mange dynamiske sett operasjoner. Kan bli brukt både
DetaljerBalanserte binære søketrær
Balanserte trær Balanserte binære søketrær Balanserte binære søketrær høyden (l treet er O(log 2 n) AVL trær rød-svarte trær svake AVL trær splaytrær heaps AVL trær rød-svarte trær svake AVL trær splaytrær
DetaljerTrær. Består av sammenkoblede noder Hver node har 0 eller flere barne-noder. Må være asyklisk. Et tre med n noder har n-1 kanter.
Generelle trær: Trær Består av sammenkoblede noder Hver node har 0 eller flere barne-noder. Må være asyklisk. Et tre med n noder har n-1 kanter. løvnoder kant rotnode sub-tre 1 Generelle trær: Oppbygging
DetaljerRepetisjon: Binære. Dagens plan: Rød-svarte trær. Oppgave (N + 1)!
Repetisjon: Binære søketrær Dagens plan: Rød-svarte trær (kap. 12.2) B-trær (kap. 4.7) bstrakte datatyper (kap. 3.1) takker (kap. 3.3) For enhver node i et binært søketre gjelder: lle verdiene i venstre
DetaljerKap.12. Flervegssøketre. Studerer 2-3 og 2-4 trær. Sist oppdatert
Kap.12 Flervegssøketre Sist oppdatert 12.04.10 Studerer 2-3 og 2-4 trær Motivasjon n maks = antall elementer i et fullt binært tre med nivåer 0 k ; (en node har ett element) n maks = 2 0 + 2 1 + + 2 k
DetaljerEKSAMEN med løsningsforslag
EKSAMEN med løsningsforslag Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2009 kl 09.00 til kl 13.00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Kalkulator Faglærer:
DetaljerPG 4200 Algoritmer og datastrukturer Innlevering 2
PG 4200 Algoritmer og datastrukturer Innlevering 2 Frist: Mandag 21.april 2014 kl 23.55 Utdelt materiale: Se zip-filen innlevering2.zip. Innlevering: Lever en zip-fil som inneholder følgende: PG4200_innlevering_2.pdf:
Detaljer1- og 2-veis Innkapsling Java Stabel Kø Prio-kø Iterator. Enveis- og toveislister Innkapsling («boxing») (Big Java 6.8.5)
Dagens tema Litt mer om vanlige lister Enveis- og toveislister Innkapsling («boxing») (Big Java 6.8.5) Nyttige varianter av lister: Stabler («stacks») (Big Java 15.5.1) Køer («queues») (Big Java 15.5.2)
DetaljerBinær heap. En heap er et komplett binært tre:
Heap Binær heap En heap er et komplett binært tre: Alle nivåene i treet, unntatt (muligens) det nederste, er alltid helt fylt opp med noder Alle noder på nederste nivå ligger så langt til venstre som mulig
DetaljerFlerveis søketrær og B-trær
Flerveis søketrær og B-trær Flerveis (multi-way, n-ært) søketre Generalisering av binært søketre Binært søketre: Hver node har maksimalt 2 barn og 1 nøkkelverdi. Barna ligger sortert på verdi i forhold
Detaljer... Når internminnet blir for lite. Dagens plan: Løsning: Utvidbar hashing. hash(x) katalog. O modellen er ikke lenger gyldig ved
Dagens plan: Utvidbar hashing (kapittel 5.6) B-trær (kap. 4.7) Abstrakte datatyper (kap. 3.1) Stakker (kap. 3.3) Når internminnet blir for lite En lese-/skriveoperasjon på en harddisk (aksesstid 7-12 millisekunder)
Detaljer1- og 2-veis Innkapsling Java Stabel Kø Prio-kø Iterator. Enveis- og toveislister Innkapsling («boxing») (Big Java 6.8.5)
Dagens tema Litt mer om vanlige lister Enveis- og toveislister Innkapsling («boxing») (Big Java 6.8.5) Nyttige varianter av lister: Stabler («stacks») (Big Java 15.5.1) Køer («queues») (Big Java 15.5.2)
DetaljerAlgoritmer og datastrukturer Løsningsforslag
1 Algoritmer og datastrukturer Løsningsforslag Eksamen 29. november 2011 Oppgave 1A Verdien til variabelen m blir lik posisjonen til den «minste»verdien i tabellen, dvs. bokstaven A, og det blir 6. Oppgave
DetaljerEKSAMEN. Dato: 9. mai 2016 Eksamenstid: 09:00 13:00
EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 9. mai 2016 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet består
DetaljerINF2220: Forelesning 2
INF2220: Forelesning 2 Balanserte søketrær Rød-svarte trær (kapittel12.2) B-trær (kapittel 4.7) REPETISJON: BINÆRE SØKETRÆR 2 Binære søketrær 8 4 12 2 7 9 15 6 11 13 16 For enhver node i et binært søketre
DetaljerINF2220: Forelesning 2. Balanserte søketrær Rød-svarte trær (kapittel12.2) B-trær (kapittel 4.7)
INF2220: Forelesning 2 Balanserte søketrær Rød-svarte trær (kapittel12.2) B-trær (kapittel 4.7) REPETISJON: BINÆRE SØKETRÆR 2 Binære søketrær 8 4 12 2 7 9 15 6 11 13 16 For enhver node i et binært søketre
DetaljerLenkelister, iteratorer, indre klasser. Repetisjonskurs våren 2018 kristijb
Lenkelister, iteratorer, indre klasser Repetisjonskurs våren 2018 kristijb Lenket liste av objekter Vi lager en lenke ved at objekter refererer til hverandre. Vanlige er ofte å ha Node-objekter som har
DetaljerLøsningsforslag for Obligatorisk Oppgave 3. Algoritmer og Datastrukturer ITF20006
Løsningsforslag for Obligatorisk Oppgave 3 Algoritmer og Datastrukturer ITF20006 Lars Vidar Magnusson Frist 28.03.14 Den tredje obligatoriske oppgaven tar for seg forelesning 9 til 13, som dreier seg om
DetaljerEKSAMEN. Algoritmer og datastrukturer
EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2009 kl 09.00 til kl 13.00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Kalkulator Faglærer: Gunnar Misund
DetaljerINF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2009 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 5: Prioritetskø og Heap Bjarne Holen (Ifi, UiO) INF2220 H2009, forelesning 5 1 /
DetaljerINF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2015 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2015, forelesning
DetaljerNITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013
NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 20 ette løsningsforslaget er til tider mer detaljert enn det man vil forvente av en eksamensbesvarelse. et er altså ikke et eksempel
DetaljerINF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2015 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2015, forelesning
DetaljerHva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først
Køer Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først Et nytt element legges alltid til sist i køen Skal vi ta ut et element, tar vi alltid
DetaljerINF1010, 21. februar Om å gå gjennom egne beholdere (iteratorer) Stein Gjessing Inst. for Informatikk Universitetet i Oslo
INF1010, 21. februar 2013 Om å gå gjennom egne beholdere (iteratorer) Stein Gjessing Inst. for Informatikk Universitetet i Oslo Ikke noe nytt her From the Java language specification (version 6): 14.14.2
DetaljerPQ: HEAP. Heap. Er disse heap er? Hvordan implementere heap:
PQ: HEAP Ingen sammenheng med memory heap Definisjon og data-invarianter for heap InsertKey og RemoveMin for heap Kompleksitet for operasjoner: O(log n) Prioritetskø impl vha Heap Heap En heap er et binært
DetaljerINF2220: Forelesning 1
INF2220: Forelesning 1 Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel 4.1-4.3 + 4.6) Praktisk informasjon 2 Praktisk informasjon Kursansvarlige Ingrid Chieh Yu de Vibe (ingridcy@ifi.uio.no)
DetaljerHeap* En heap er et komplett binært tre: En heap er også et monotont binært tre:
Heap Heap* En heap er et komplett binært tre: Alle nivåene i treet, unntatt (muligens) det nederste, er alltid helt fylt opp med noder Alle noder på nederste nivå ligger til venstre En heap er også et
DetaljerINF2220: Forelesning 2
INF2220: Forelesning 2 Mer om analyse av algoritmer Analyse av binære søketrær Balanserte søketrær Rød-svarte trær (kapittel12.2) B-trær (kapittel 4.7) ANALYSE AV ALGORITMER 2 Analyse av tidsforbruk Hvor
DetaljerINF2220: Gruppe me 2. Mathias Lohne Høsten 2017
INF0: Gruppe me Mathias Lohne Høsten 0 1 Rød-svarte trær Vanlige binære søketrær blir fort veldig ubalanserte. røv å sett inn 1,,, 4, 5,, 7,... (i den rekkefølgen) i et binært søketre. Da vil vi i praksis
DetaljerAlgoritmer og Datastrukturer
Eksamen i Algoritmer og Datastrukturer IAI 20102 Høgskolen i Østfold Avdeling for informatikk og automatisering Lødag 5. juni 2004, kl. 09.00-13.00 LØSNINGSFORSLAG 1 Del 1 60% Oppgave 1.1-10% Forklar kort
DetaljerLøsningsforslag til eksamen i PG4200 Algoritmer og datastrukturer 10. desember 2014
Løsningsforslag Dette er et utbygd løsningsforslag. D.v.s at det kan forekomme feil og at løsningene er mer omfattende enn det som kreves av studentene på eksamen. Oppgavesettet består av 5 (fem) sider.
DetaljerLøsnings forslag i java In115, Våren 1998
Løsnings forslag i java In115, Våren 1998 Oppgave 1 // Inne i en eller annen klasse private char S[]; private int pardybde; private int n; public void lagalle(int i) if (i==n) bruks(); else /* Sjekker
DetaljerINF1010 Rekursive metoder, binære søketrær. Algoritmer: Mer om rekursive kall mellom objekter Ny datastruktur: binært tre
INF1010 Rekursive metoder, binære søketrær Algoritmer: Mer om rekursive kall mellom objekter Ny datastruktur: binært tre public void skrivutmeg ( ) { System. out. println (navn + " er venn med " + minbestevennheter
DetaljerBinære søketrær. Et notat for INF1010 Stein Michael Storleer 16. mai 2013
Binære søketrær Et notat for INF Stein Michael Storleer 6. mai 3 Dette notatet er nyskrevet og inneholder sikkert feil. Disse vil bli fortløpende rettet og datoen over blir oppdatert samtidig. Hvis du
DetaljerPensum: fra boken (H-03)+ forelesninger
Pensum: fra boken (H-03)+ forelesninger unntatt kursorisk tema KAP. 1 KAP. 2 KAP. 3 JAVA I-110 (ikke gjennomgått) OO + ABSTRAKSJON /GENERISK PROGRAMMERING REKURSJON ALGORITME-TIDSANALYSE; O-NOTASJON KAP.
DetaljerNorges Informasjonsteknologiske Høgskole
Oppgavesettet består av 6 (seks) sider. Norges Informasjonsteknologiske Høgskole PG4200 Algoritmer og datastrukturer Side 1 av 6 Tillatte hjelpemidler: Ingen Varighet: 3 timer Dato: 6. august 2014 Fagansvarlig:
DetaljerNorges Informasjonsteknologiske Høgskole
Oppgavesettet består av 6 (seks) sider. Norges Informasjonsteknologiske Høgskole PG4200 Algoritmer og datastrukturer Side 1 av 6 Tillatte hjelpemidler: Ingen Varighet: 3 timer Dato: 4. juni 2014 Fagansvarlig:
DetaljerMED TIDESTIMATER Løsningsforslag
Oppgavesettet består av 12 (mange) sider. Norges Informasjonsteknologiske Høgskole PG4200 Algoritmer og datastrukturer Side 1 av 12 Tillatte hjelpemidler: Ingen Varighet: 3 timer Dato: 6. august 2014 Fagansvarlig:
DetaljerUNIVERSITETET I OSLO
Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamensdag: 13. desember 2011 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 7 sider. Vedlegg: INF2220 lgoritmer og datastrukturer
DetaljerINF2220: Forelesning 1
INF2220: Forelesning 1 Praktisk informasjon Analyse av algoritmer (kapittel 2) Rekursjon (kapittel 1.3) (Binær)trær (kapittel 4.1-4.3 + 4.6) Praktisk informasjon 2 Praktisk informasjon Kursansvarlige Ingrid
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1020 Algoritmer og datastrukturer Eksamensdag: 15. desember 2004 Tid for eksamen: 14.30 17.30 Oppgavesettet er på 6 sider.
DetaljerPensum: fra boken (H-03)+ forelesninger
Pensum: fra boken (H-03)+ forelesninger unntatt kursorisk tema KAP. 1 KAP. 2 KAP. 3 JAVA I-110 (ikke gjennomgått) OO + ABSTRAKSJON /GENERISK PROGRAMMERING REKURSJON ALGORITME-TIDSANALYSE; O-NOTASJON KAP.
DetaljerAlgoritmer og Datastrukturer IAI 21899
Eksamen i Algoritmer og Datastrukturer IAI 21899 Høgskolen i Østfold Avdeling for informatikk og automatisering Torsdag 30. november 2000, kl. 09.00-14.00 LØSNINGSFORSLAG 1 Del 1, Binære søketrær Totalt
DetaljerNORGES INFORMASJONSTEKNOLOGISKE HØGSKOLE PG4200 Algoritmer og datastrukturer
Oppgavesettet består av 8 (åtte) sider. NORGES INFORMASJONSTEKNOLOGISKE HØGSKOLE PG4200 Algoritmer og datastrukturer Tillatte hjelpemidler: Ingen Side 1 av 8 Varighet: 3 timer Dato: 4.juni 2013 Fagansvarlig:
DetaljerOppgavesettet består av 7 sider, inkludert denne forsiden. Kontroll& at oppgaven er komplett før du begynner å besvare spørsmålene.
Høgskoleni Østfold EKSAMEN Emnekode: Emnenavn: ITF20006 Algoritmer og datastrukturer Dato: Eksamenstid: 9. mai 2016 9.00 13.00 Hjelpemidler: Faglærer: Alle trykte og skrevne Jan Høiberg Om eksamensoppgaven
DetaljerINF1010 siste begreper før oblig 2
INF1010 siste begreper før oblig 2 Sammenligning. Mer lenkede lister. Forskjellige listeimplementasjoner. Binære trær. Bittelitt om grensesnitt (interface). Dagens forelesning Flere temaer på grunn av
DetaljerHva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først
Køer Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først Et nytt element legges alltid til sist i køen Skal vi ta ut et element, tar vi alltid
DetaljerUNIVERSITETET I OSLO
Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamensdag: 15. desember 2010 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler: INF2220
DetaljerINF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2016, forelesning
DetaljerAlgoritmer og datastrukturer Løsningsforslag
Algoritmer og datastrukturer Løsningsforslag Eksamen 30. november 2010 Oppgave 1A Et turneringstre for en utslagsturnering med n deltagere blir et komplett binærtre med 2n 1 noder. I vårt tilfelle får
DetaljerNITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013
NITH PG00 Algoritmer og datastrukturer Løsningsforslag Eksamen.juni 0 Dette løsningsforslaget er til tider mer detaljert enn det man vil forvente av en eksamensbesvarelse. Det er altså ikke et eksempel
DetaljerEKSAMEN Løsningsforslag. med forbehold om bugs :-)
1 EKSAMEN Løsningsforslag med forbehold om bugs :-) Emnekode: ITF20006 000 Dato: 20. mai 2011 Emne: Algoritmer og datastrukturer Eksamenstid: 09:00 til 13:00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater
DetaljerOppgave 1 LØSNINGSFORSLAG. Eksamen i INF desember Betrakt følgende vektede, urettede graf:
INF100 Algoritmer og datastrukturer INF100 Algoritmer og datastrukturer Oppgave 1 LØSNINGSFORSLAG Betrakt følgende vektede, urettede graf: V 1 V Eksamen i INF100 1. desember 004 V V 4 V 4 V V Ragnar Normann
DetaljerOppgave 1. Sekvenser (20%)
Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I BERGEN Eksamen i emnet I 20 - Algoritmer, datastrukturer og programmering Mandag 2.Mai 200, kl. 09-5. Ingen hjelpemidler tillatt. Oppgavesettet
DetaljerNotater til INF2220 Eksamen
Notater til INF2220 Eksamen Lars Bjørlykke Kristiansen December 13, 2011 Stor O notasjon Funksjon Navn 1 Konstant log n Logaritmisk n Lineær n log n n 2 Kvadratisk n 3 Kubisk 2 n Eksponensiell n! Trær
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 12. desember 2008 Tid for eksamen: 9.00 12.00 Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: INF2220
DetaljerStack. En enkel, lineær datastruktur
Stack En enkel, lineær datastruktur Hva er en stack? En datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn sist Et nytt element legges alltid på toppen av stakken Skal vi
DetaljerOppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Eksempel
MAT1030 Diskret matematikk Forelesning 26: Trær Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk bruk av slike. rot Dag Normann Matematisk Institutt, Universitetet i Oslo barn barn
DetaljerHva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først
Køer Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først Et nytt element legges alltid til sist i køen Skal vi ta ut et element, tar vi alltid
DetaljerIN Algoritmer og datastrukturer
IN2010 - Algoritmer og datastrukturer HØSTEN 2018 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 3: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2010 H2018, forelesning
DetaljerAlgoritmer og datastrukturer Eksamen
Algoritmer og datastrukturer Eksamen 24.02.2010 Eksamenstid: 5 timer Hjelpemidler: Alle trykte og skrevne + håndholdt kalkulator som ikke kommuniserer. Faglærer: Ulf Uttersrud Råd og tips: Bruk ikke for
DetaljerINF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2017 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2017, forelesning
DetaljerDagens tema. INF Algoritmer og datastrukturer. Binærtrær. Generelle trær
Dagens tema INF2220 - Algoritmer og datastrukturer HØSTEN 2007 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 2: Binærtrær og abstrakte datatyper (ADT) Kort repetisjon Generelle trær
DetaljerEt eksempel: Åtterspillet
Trær Et eksempel: Åtterspillet To spillere som «trekker» annenhver gang I hvert trekk velges et av tallene 1, 2, 3, men ikke tallet som motspiller valgte i forrige trekk Valgte tall summeres fortløpende
Detaljer1. Krav til klasseparametre 2. Om å gå gjennom egne beholdere (iteratorer) Stein Gjessing Inst. for Informatikk Universitetet i Oslo
INF1010, 26. februar 2014 1. Krav til klasseparametre 2. Om å gå gjennom egne beholdere (iteratorer) Stein Gjessing Inst. for Informatikk Universitetet i Oslo Vi tar utgangspunkt i dette programmet for
DetaljerPG4200 Algoritmer og datastrukturer Forelesning 12
PG4200 Algoritmer og datastrukturer Forelesning 12 Lars Sydnes, NITH 30. april 2014 I. SIST: NOTAT OM HARDE PROBLEMER INNHOLD Håndterlige problemer: Problemer med kjente algoritmer med polynomisk kjøretid
DetaljerAlgoritmer og datastrukturer Eksamen
Eksamensoppgave i Algoritmer og datastrukturer ved Høgskolen i Oslo Side 1 av 5 Algoritmer og datastrukturer Eksamen 30.11.2010 Eksamenstid: 5 timer Hjelpemidler: Alle trykte og skrevne + håndholdt kalkulator
DetaljerAlgoritmer og Datastrukturer
Eksamen i Algoritmer og Datastrukturer IAI 20102 Høgskolen i Østfold Avdeling for informatikk og automatisering Lødag 5. juni 2004, kl. 09.00-13.00 Hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.
DetaljerNy/utsatt EKSAMEN. Dato: 6. januar 2017 Eksamenstid: 09:00 13:00
Ny/utsatt EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 6. januar 2017 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet
DetaljerHva er en algoritme? INF HØSTEN 2006 INF1020. Kursansvarlige Ragnar Normann E-post: Dagens tema
va er en algoritme? Vanlig sammenligning: Oppskrift. nput lgoritme NF1020 - ØSTEN 2006 Kursansvarlige Ragnar Normann E-post: ragnarn@ifi.uio.no Output Knuth : tillegg til å være et endelig sett med regler
Detaljer