O-notasjon og kompleksitet
|
|
|
- Sturla Ellefsen
- 9 år siden
- Visninger:
Transkript
1 1 TDT4105 Informasjonsteknologi, grunnkurs Matlab: Sortering og søking Kunnskap for en bedre verden Amanuensis Terje Rydland Kontor: ITV-021 i IT-bygget vest (Gløshaugen) Epost: [email protected] Tlf: TDT4105 IT G 1 uke-46-matlab november O-notasjon og kompleksitet Ønsker et mål på hvor lang tid en algoritme bruker på å kjøre som en funksjon av mengde inndata, N Vi teller enkle oppgaver som antall sammenligninger, antall ombyttinger, regneoperasjoner og lignende som en funksjon av N Nøyaktig tid avhenger av programmering, språk og datamaskin Ønsker et estimat for økningen av kjøretid i forhold til problemstørrelse 2 uke-46-matlab november 2015
2 3 Kompleksitet N log(n) N*log(N) log2(n) N*log2(N) N 2 2 N ,26765E ,0715E "Mye" "Mye" E+12 "Mye" E+14 "Mye" E+16 "Mye" ,E+10 1E+18 "Mye" 3 uke-46-matlab november Palindrom? Def: Tekststreng som kan leses likt begge veier Otto, Radar, Agnes i senga, Stopptilfelle: 0 eller 1 tegn er et palindrom Test flanke-tegnene Ulike: Ikke et palindrom Like: Sjekk om teksten uten flanke-tegnene er et palindrom 4 uke-46-matlab november 2015
3 5 Palindrom - iterativt function palindrom = ispalindrome(ord) ordlengde = length(ord); %finner lengden av ordet ord = lower(ord); %gjør om til bare små bokstaver palindrom = false; %intialiserer returvariabelen start = 1; slutt = ordlengde; ferdig = false; %initialiserer stoppkriteriet while ~ferdig if ord(start) ~= ord(slutt) %sammenligner bokstaver ferdig = true; else start = start+1; %hvis bokstavene var like må vi slutt = slutt-1; %plukke ut to nye bokstaver if start > slutt ferdig = true; palindrom = true; end %if end %if end %while end %function 5 uke-46-matlab november palindrom.m function p = palindrom(tekst) % sjekker om tekst er et palindrom (leses likt begge veier) lengde = length(tekst); if lengde < 2 p = true; elseif lower(tekst(1)) == lower(tekst(lengde)) p = palindrom( tekst(2:lengde-1) ); else p = false; end end % function Bruker lower-funksjonen for å gjøre tegnsammenligningene uavhengig av små/store bokstaver, slik at f. eks. RADar blir et palindrom 6 uke-46-matlab november 2015
4 7 Sortering og søking Kanskje det datamaskiner brukes aller mest til eks: Google Ikke forbeholdt datatekniske fag Kommer inn i mange teknologiske og naturvitenskapelige anvendelser Sentrale bygge-klosser å kjenne til. 7 uke-46-matlab november Matlab-boka: 12.3 og 12.5 Stoffet er forholdsvis vanskelig Eksamensrelevant Du må prøve ting selv Pensum Video for å visualisere det som foregår Quiz 8 uke-46-matlab november 2015
5 9 Læringsmål Forstå prinsipper for søking i sorterte vs. tilfeldige (ikke-sortere) datamengder Kunne programmere søking fra grunnen av Kunne skrive et program for sortering ut fra en algoritme eller oppgitt pseudokode Betydningen av en algoritmes kompleksitet og O-notasjon. 9 uke-46-matlab november Sortering Sortering er et stort delområde innen datateknikken Matlab har en innebygd funksjon sort() Skal lære noen enkle sorteringsalgoritmer Se wikipedia.org (sorteringsalgoritmer) for en oversikt over sorteringsalgoritmer og deres egenskaper 10 uke-46-matlab november 2015
6 11 Antall operasjoner for å sortere data En ideell sorteringsalgoritme er O(N). De beste sorteringsalgoritmene basert på å sammenligne to og to elementer er O(N * logn) De enkleste sorteringsalgoritmene er O(N 2 ) Hvorfor vil man ikke bruke O(N 2 )-algoritmer for å sortere store datamengder? n n 2 log(n) n*log(n) log2(n) n*log2(n) 11 uke-46-matlab november Enkle sorteringsalgoritmer Utvelgelsessortering (selection sort) Finner det minste gjenværende elementet i hver runde Boblesortering (bubble sort) Sammenligner nabo-elementer Bytter om ved feil rekkefølge Beveger seg mot sortert rekkefølge, minst ett tall kommer på plass i hver runde. Sortering ved innsetting (insertion sort) Som i kortspill Setter inn i sortert delmengde som begynner med ett element og vokser til alle. 12 uke-46-matlab november 2015
7 13 13 uke-46-matlab november Input: Output: Pseudokode for sortering ved innsetting Ikke-tom liste med tall, L Sortert liste L Foreach index i = 2:lengthof(L) do j = i while (j > 1) og ( L(j-1) > L(j) ) bytt om L(j-1) og L(j) j = j-1 end end 14 uke-46-matlab november 2015
8 15 innsettingssortering.m function liste = innsettingssortering(liste) for i = 2:length(liste) %setter nr. i inn i sortert del j = i; while (j > 1) && (liste(j-1) > liste(j)) % Bytter om elementene tmp = liste(j-1); liste(j-1) = liste(j); liste(j) = tmp; j = j - 1; end %while end %for end %function 15 uke-46-matlab november Merknader Ikke egnet for store datamengder O(N 2 ) Bruker ikke ekstra lagerplass (ekstra tabeller) Hvordan blir det hvis vi ønsker synkende sortering? 16 uke-46-matlab november 2015
9 17 Fletting av sorterte lister To sorterte lister kan enkelt flettes til en sortert liste Plukker det minste gjenværende elementet i hvert trinn Når en liste er tom, er det bare å legge til det som er igjen av den andre. 17 uke-46-matlab november flettlister.m function l = flettlister(a,b) %Fletter 2 sorterte lister a_lengde = length(a); b_lengde = length(b); a_neste = 1; % indekser til neste element i listene b_neste = 1; l_neste = 1; while (a_neste <= a_lengde) && (b_neste <= b_lengde) if a(a_neste) <= b(b_neste) % henter fra a l(l_neste) = a(a_neste); a_neste = a_neste + 1; else % henter fra b l(l_neste) = b(b_neste); b_neste = b_neste + 1; end %if l_neste = l_neste + 1; end %while if a_neste > a_lengde % a er tom. Legg inn resten av b for j = b_neste:b_lengde l(l_neste) = b(j); l_neste = l_neste + 1; end %for else % b er tom. Legg inn resten av a for j = a_neste:a_lengde l(l_neste) = a(j); l_neste = l_neste + 1; end %for end % if end %function 18 uke-46-matlab november 2015
10 19 Sortering ved fletting Deler listen i to, sorterer halvpartene, fletter dem sammen Rekursivt Stopper når en liste har ett element (sortert!) O(NlogN) 19 uke-46-matlab november flettesortering.m function sortert = flettesortering(liste) % Sorterer liste med rekursiv flettesortering lengde = length(liste); if lengde <= 1 sortert = liste; else median = floor(lengde/2); sortert = flettlister(flettesortering(liste(1:median)),... flettesortering(liste(median+1:lengde))); end %if end %function 20 uke-46-matlab november 2015
11 21 Merknader Noen ulemper med rekursjon. Et funksjonskall er relativt kostbart. Går med minne til lokale variabler for hver gang funksjonen kalles. Kan vi gjøre flettesorteringen mer effektiv? Gå over til sortering ved innsetting når listene er korte nok. I tabellen på neste lysark: F/5 flettesortering med overgang når listelengde <= 5 F/100 - <= 100 Osv. 21 uke-46-matlab november Kjøretider 22 uke-46-matlab november 2015
12 23 Søkealgoritmer En søkealgoritme er en algoritme som søker gjennom en datamengde, på jakt etter en bestemt verdi. Vi skal begrense oss til det enkleste, søking i lister Vi skal se på to typer søk: Sekvensielt søk Binærsøk 23 uke-46-matlab november Sekvensielt søk Går gjennom alle dataelementene fra begynnelse til slutt Tidkrevende, må gå gjennom alle elementene Fordringsløs krever ikke noen forhåndsinformasjon om datamengden Eksempel: Finne ut om et telefonnr finnes i telefonkatalogen 24 uke-46-matlab november 2015
13 25 finnestall.m function funnet = finnestall(liste, tall) % Returnerer true hvis tall finnes i liste, false ellers % Sekvensiell søkning funnet = false; for i = 1:length(liste) if liste(i) == tall funnet = true; return end %if end %for end % function 25 uke-46-matlab november Varianter Finne antall forekomster at tallet i listen Finne første indeks (posisjon) til tall i listen Finne alle indeksene til tall i listen Prøv gjerne å programmere disse selv! Sekvensielt søk er så langsomme at man søker alternativer: Sortering og så søking Søketrær (indekser) 26 uke-46-matlab november 2015
14 27 Binærsøking Hvis datamengden er sortert (ordnet) kan søket gjøres mye mer effektivt Sjekker midterste element i datamengden Elementet er der -> ferdig Fortsetter å lete i den relevante halvparten Arbeidsmengde Antall halveringer ca log 2 (N) Sekvensiell søking: ca N. Stor forskjell når N er stor 27 uke-46-matlab november Koding av binærsøk Koder b_finnestall(liste, tall) med binærsøking Forutsetter at liste er sortert stigende Bruker l(ow) og h(igh) for å avgrense et mindre og mindre område der tall kan finnes Regner ut elementet midt i dette området median = floor( (l+h)/2 ) Husk at floor runder nedover til nærmeste heltall 28 uke-46-matlab november 2015
15 29 b_finnestall(liste,tall) function funnet = b_finnestall(liste,tall) % Returnerer true hvis tall finnes i liste, false ellers % Bruke binærsøk, lista antas å være sortert stigende l = 1; % Minste indeks h = length(liste); % Største indeks while l <= h % Finner midtpunkt median = floor((l+h)/2); if liste(median) == tall l = h+1; % Tall er funnet. Dette avslutter løkken elseif liste(median) < tall % Må lete i øvre halvdel l = median + 1; else % Må lete i nedre halvdel h = median - 1; end %if end % while % Setter returverdi funnet = liste(median) == tall; end % function 29 uke-46-matlab november b_finnestall(minliste, 8) - programsporing Steg liste tall l h median funnet 1 [ ] true 30 uke-46-matlab november 2015
16 31 b_finnestall(minliste, 10) - programsporing Steg liste tall l h median funnet 1 [ ] false 31 uke-46-matlab november Binærsøking rekursivt function funnet = binaersoek(liste, verdi, lavindeks, hoyindeks) % Rekursivt binærsøk etter verdi i liste midten = floor((hoyindeks + lavindeks)/2); if lavindeks > hoyindeks funnet = false; elseif verdi == liste(midten) funnet = true; elseif verdi < liste(midten) funnet = binaersoek(liste, verdi, lavindeks, midten - 1); else funnet = binaersoek(liste, verdi, midten + 1, hoyindeks); end % if end % function 32 uke-46-matlab november 2015
17 33 Kompleksitet for søking Sekvensiell søking vokser med N Kjøretiden vil bli k 1 *N + k 0 For stor N dominerer k 1 *N Vi sier at algoritmen er O(N) Vokser N, øker kjøretiden proporsjonalt med N Binærsøking gjør log 2 (N) sammenligninger n Kjøretiden vil bli k 1 *log 2 (N) + k 0 = k*log(n) + k 0 Vokser N, øker kjøretiden proporsjonalt med log(n) Vi sier at algoritmen er O(log(N)) log(n) n*log(n) log2(n) n*log2(n) 33 uke-46-matlab november 2015
Palindrom - iterativt
1 TDT4105 Informasjonsteknologi, grunnkurs Matlab: Sortering og søking Kunnskap for en bedre verden Amanuensis Terje Rydland Kontor: ITV-021 i IT-bygget vest (Gløshaugen) Epost: [email protected] Tlf:
TDT4105 Informasjonsteknologi, grunnkurs
1 TDT4105 Informasjonsteknologi, grunnkurs Matlab: Sortering og søking Anders Christensen ([email protected]) Rune Sætre ([email protected]) TDT4105 IT Grunnkurs 2 Pensum Matlab-boka: 12.3 og 12.5 Stoffet
TDT4105 Informasjonsteknologi, grunnkurs. Mer om funksjoner: - rekursive funksjoner
1 TDT4105 Informasjonsteknologi, grunnkurs Mer om funksjoner: - rekursive funksjoner Pensum: 10.5 i Matlab-boka 10.1-10.4 er orienteringsstoff og ikke aktuelt til eksamen Kunnskap for en bedre verden Amanuensis
TDT4105 Informasjonsteknologi, grunnkurs. Matlab: Søking
1 TDT4105 Informasjonsteknologi, grunnkurs Matlab: Søking Kunnskap for en bedre verden Amanuensis Terje Rydland Kontor: ITV-021 i IT-bygget vest (Gløshaugen) Epost: [email protected] Tlf: 735 91845 TDT4105
TDT4110 Informasjonsteknologi grunnkurs: Tema: Algoritmer i praksis. Professor Alf Inge Wang
1 TDT4110 Informasjonsteknologi grunnkurs: Tema: Algoritmer i praksis Professor Alf Inge Wang 2 Læringsmål og pensum Mål Lære å forstå og kunne programmere algoritmer for søk og sortering. Lære å forstå
Læringsmål og pensum. Algoritmeeffektivitet
1 TDT4110 Informasjonsteknologi grunnkurs: Tema: Algoritmer i praksis Professor Alf Inge Wang 2 Læringsmål og pensum Mål Lære å forstå og kunne programmere algoritmer for søk og sortering. Lære å forstå
Python: Rekursjon (og programmering av algoritmer) Python-bok: Kapittel 12 + teoribok om Algoritmer
Python: Rekursjon (og programmering av algoritmer) Python-bok: Kapittel 12 + teoribok om Algoritmer TDT4110 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål Forstå, og kunne bruke, algoritmer
Hvorfor sortering og søking? Søking og sortering. Binære søketrær. Ordnet innsetting forbereder for mer effektiv søking og sortering INF1010 INF1010
Hvorfor sortering og søking? Man bør ha orden i dataene umulig å leve uten i informasjonssamfunnet vi blir fort lei av å lete poleksempel internett alt er søking og sortering alternativer til sortering
Søkeproblemet. Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke?
Søking Søkeproblemet Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke? Effektiviteten til søkealgoritmer avhenger av: Om datastrukturen
Dictionary er et objekt som lagrer en samling av data. Minner litt om lister men har klare forskjeller:
1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Tema: Algoritmer i praksis Terje Rydland - IDI/NTNU 2 Datastruktur: Dictionaries Kap 9.1 Dictionary er et objekt som lagrer en samling
Dictionary er et objekt som lagrer en samling av data. Minner litt om lister men har klare forskjeller:
1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Tema: Algoritmer i praksis Terje Rydland - IDI/NTNU 2 Datastruktur: Dictionaries Kap 9.1 Dictionary er et objekt som lagrer en samling
INF2220: Time 12 - Sortering
INF0: Time 1 - Sortering Mathias Lohne mathialo Noen algoritmer Vi skal nå se på noen konkrete sorteringsalgoritmer. Gjennomgående i alle eksempler vil vi sortere tall etter tallverdi, men som diskutert
Datastrukturer for rask søking
Søking Søkeproblemet Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke? Effektiviteten til søkealgoritmer avhenger av: Om datastrukturen
Sorteringsproblemet. Gitt en array A med n elementer som kan sammenlignes med hverandre:
Sortering Sorteringsproblemet Gitt en array A med n elementer som kan sammenlignes med hverandre: Finn en ordning (eller permutasjon) av elementene i A slik at de står i stigende (evt. avtagende) rekkefølge
Kap.8 Sortering og søking sist oppdatert 16.03
Kap.8 Sortering og søking sist oppdatert 16.03 Del 1 Søking - lineær søking m/u sorterte elementer - binærsøking - analyse Del 2 Sortering - gamle sorteringsmetoder fra i høst - nye -analyse Copyright
TDT4110 Informasjonsteknologi grunnkurs: Eksempler. Mangekanter
1 TDT4110 Informasjonsteknologi grunnkurs: Eksempler Kunnskap for en bedre verden Amanuensis Terje Rydland Kontor: ITV-021 i IT-bygget vest (Gløshaugen) Epost: [email protected] Tlf: 735 91845 TDT4105
Algoritmer - definisjon
Algoritmeanalyse Algoritmer - definisjon En algoritme er en beskrivelse av hvordan man løser et veldefinert problem med en presist formulert sekvens av et endelig antall enkle, utvetydige og tidsbegrensede
TDT4105 Informasjonsteknologi, grunnkurs. Introduksjon til programmering i Matlab
1 Kunnskap for en bedre verden TDT4105 Informasjonsteknologi, grunnkurs Introduksjon til programmering i Matlab Amanuensis Terje Rydland Kontor: ITV-021 i IT-bygget vest (Gløshaugen) Epost: [email protected]
Algoritmer - definisjon
Algoritmeanalyse Algoritmer - definisjon En algoritme* er en beskrivelse av hvordan man løser et veldefinert problem med en presist formulert sekvens av et endelig antall enkle, utvetydige og tidsbegrensede
Dagens tema. Sortering. Fortsettelse om programmering vha tråder.
Dagens tema Sortering. Fortsettelse om programmering vha tråder. «orden» i dataene vi blir fort lei av å lete poleksempel internett «alt» er søking og sortering alternativer til sortering og søking binære
INF1010 notat: Binærsøking og quicksort
INF1010 notat: Binærsøking og quicksort Ragnhild Kobro Runde Februar 2004 I dette notatet skal vi ta for oss ytterligere to eksempler der rekursjon har en naturlig anvendelse, nemlig binærsøking og quicksort.
Læringsmål og pensum
1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Uke 42 Strenger og strenghåndtering Amanuensis Terje Rydland Kontor: ITV-021 i IT-bygget vest (Gløshaugen) Epost: [email protected]
Ta kontakt i pausen. Viktig at vi kommer i gang med dette arbeidet!
1 Kunnskap for en bedre verden TDT4105 Informasjonsteknologi, grunnkurs Mer om funksjoner. Logiske betingelser og betinget programutførelse (valg). Amanuensis Terje Rydland Kontor: ITV-021 i IT-bygget
Løsningsforslag for utvalgte oppgaver fra kapittel 3
Løsningsforslag for utvalgte oppgaver fra kapittel 3 3.3 1 Demo innsettingssortering..................... 1 3.5 1 Demo velgesortering........................ 2 3.5 2 Velgesortering...........................
Hva er en algoritme? Har allerede sett på mange algoritmer til nå i IT1101. Forholdet mellom en algoritme og et program. Algoritme program prosess
IT1101 Informatikk basisfag, dobbeltime 2/10 Hva er en algoritme? Fremgangsmåte for noe Hittil: Datarepresentasjon Datamanipulasjon Datamaskinarkutektur hvordan maskinen jobber Operativsystem Program som
Filbehandling Tekstfiler
1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Python: Repetisjon tekstfiler rekursjon Terje Rydland - IDI/NTNU 2 Filbehandling Tekstfiler 3 Prosessen for filoperasjoner i Python
Øvingsforelesning 6. Sorteringsalgoritmer. Kristian Veøy
Øvingsforelesning 6 Sorteringsalgoritmer Kristian Veøy [email protected] 26.09.08 1 Spørsmål fra øvingsgruppene Må jeg kunne python på eksamen? (Nei) Er det lurt å gjøre alle programmeringsøvingene? (Ikke
Heap* En heap er et komplett binært tre: En heap er også et monotont binært tre:
Heap Heap* En heap er et komplett binært tre: Alle nivåene i treet, unntatt (muligens) det nederste, er alltid helt fylt opp med noder Alle noder på nederste nivå ligger til venstre En heap er også et
Algoritmer og Datastrukturer IAI 21899
Eksamen i Algoritmer og Datastrukturer IAI 21899 Høgskolen i Østfold Avdeling for informatikk og automatisering Torsdag 30. november 2000, kl. 09.00-14.00 LØSNINGSFORSLAG 1 Del 1, Binære søketrær Totalt
Dagens temaer. Sortering: 4 metoder Søking: binærsøk Rekursjon: Hanois tårn
Dagens temaer Sortering: 4 metoder Hvorfor sortering (og søking) er viktig i programmering Sortering når objektene som skal sorteres er i et array 1. Sorterering ved bruk av binærtre som «mellomlager»
Norsk informatikkolympiade runde
Norsk informatikkolympiade 2017 2018 1. runde Sponset av Uke 46, 2017 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.
Noen innebygde funksjoner - Vektorisering
1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Uke 41: «Matlab programs» (kapittel 6) Amanuensis Terje Rydland Kontor: ITV-021 i IT-bygget vest (Gløshaugen) Epost: [email protected]
Pensum: Starting out with Python
1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Python: Repetisjon Matriser (2D-lister) try except rekursjon skrive pent til skjerm Terje Rydland - IDI/NTNU 2 Læringsmål og pensum
Noen innebygde funksjoner - Vektorisering
1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Uke 41: «Matlab programs» (kapittel 6) Amanuensis Terje Rydland Kontor: ITV-021 i IT-bygget vest (Gløshaugen) Epost: [email protected]
Logaritmiske sorteringsalgoritmer
Logaritmiske sorteringsalgoritmer Logaritmisk sortering Rekursive og splitt og hersk metoder: Deler verdiene i arrayen i to (helst) omtrent like store deler i henhold til et eller annet delingskriterium
TDT4105 Informasjonsteknologi grunnkurs: Uke 42 Strenger og strenghåndtering
1 TDT4105 Informasjonsteknologi grunnkurs: Uke 42 Strenger og strenghåndtering Anders Christensen [email protected] Rune Sætre [email protected] 2 Læringsmål og pensum Læringsmål Skal kunne forstå og
TDT4105 Informasjonsteknologi, grunnkurs. Matlab 5: Løkker (FOR og WHILE) Matlab 6: Problemløsning / Algoritmer
1 TDT4105 Informasjonsteknologi, grunnkurs Matlab 5: Løkker (FOR og WHILE) Matlab 6: Problemløsning / Algoritmer Rune Sætre ([email protected]) Anders Christensen ([email protected]) TDT4105 IT Grunnkurs
Rekursjon. Binærsøk. Hanois tårn.
Rekursjon Binærsøk. Hanois tårn. Hvorfor sortering (og søking) er viktig i programmering «orden» i dataene vi blir fort lei av å lete poleksempel internett «alt» er søking og sortering alternativer til
Største primtallsfaktor i tall
1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Uke 40: Gjør ferdig problemløsning (faktorisering) Vektorisering Amanuensis Terje Rydland Kontor: ITV-021 i IT-bygget vest (Gløshaugen)
Introduksjon til Algoritmeanalyse
Introduksjon til Algoritmeanalyse 26. August, 2019 Institutt for Informatikk 1 Hvordan skal vi tenke i IN2010? Effektive løsninger Hvordan skalérer problemet og løsningen? 2 Terminologi Betegnelse Problem
Algoritmer og Datastrukturer
Eksamen i Algoritmer og Datastrukturer IAI 21899 Høgskolen i Østfold Avdeling for informatikk og automatisering Torsdag 3. november 2, kl. 9. - 14. Hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.
Først litt praktisk info. Sorteringsmetoder. Nordisk mesterskap i programmering (NCPC) Agenda
Først litt praktisk info Sorteringsmetoder Gruppeøvinger har startet http://selje.idi.ntnu.no:1234/tdt4120/gru ppeoving.php De som ikke har fått gruppe må velge en av de 4 gruppende og sende mail til [email protected]
TDT4105 Informasjonsteknologi, grunnkurs. Matlab 5: Løkker (FOR og WHILE) Matlab 6: Problemløsning / Algoritmer
1 TDT4105 Informasjonsteknologi, grunnkurs Matlab 5: Løkker (FOR og WHILE) Matlab 6: Problemløsning / Algoritmer Rune Sætre ([email protected]) Anders Christensen ([email protected]) TDT4105 IT Grunnkurs
Kapittel 9: Sortering og søking Kort versjon
Kapittel 9: Sortering og søking Kort versjon Redigert av: Khalid Azim Mughal ([email protected]) Kilde: Java som første programmeringsspråk (3. utgave) Khalid Azim Mughal, Torill Hamre, Rolf W. Rasmussen
HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring - AITeL
HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring - AITeL Kandidatnr: Eksamensdato:. desember 00 Varighet: timer (9:00 1:00) Fagnummer: LO117D Fagnavn: Algoritmiske metoder Klasse(r): DA DB
MAT1030 Plenumsregning 1
MAT1030 Plenumsregning 1 Kapittel 1 Mathias Barra - 16. januar 2009 (Sist oppdatert: 2009-02-02 14:21) Plenumsregning 1 Velkommen til plenumsregning for MAT1030 Fredager 12:15 14:00 Vi vil gjennomgå utvalgte
Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.3
Delkapittel 1.3 Ordnede tabeller Side 1 av 74 Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.3 1.3 Ordnede tabeller 1.3.1 Permutasjoner En samling verdier kan settes opp i en rekkefølge. Hver
En implementasjon av binærtre. Dagens tema. Klassestruktur hovedstruktur abstract class BTnode {}
En implementasjon av binærtre Dagens tema Eksempel på binærtreimplementasjon Rekursjon: Tårnet i Hanoi Søking Lineær søking Klassestruktur hovedstruktur abstract class { class Person extends { class Binaertre
Quicksort. Fra idé til algoritme.
Quicksort Fra idé til algoritme. Quicksortalgoritme algoritmeidé 1. Del arrayen i to deler, slik at alle elementer i den ene delen er mindre enn alle elementer i den andre delen. Q U I C K S O R T A L
Divide-and-Conquer. Lars Vidar Magnusson 13.1.2015
Divide-and-Conquer Lars Vidar Magnusson 13.1.2015 Kapittel 4 Maximum sub-array problemet Matrix multiplikasjon Analyse av divide-and-conquer algoritmer ved hjelp av substitusjonsmetoden Divide-and-Conquer
Oppsummering fra sist
1 av 34 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Tema: Løkker/Sløyfer Utgave 3: Kap. 4 Terje Rydland - IDI/NTNU 2 av 34 Oppsummering fra sist Betingelser i Python: ,
TDT4102 Prosedyreog objektorientert programmering Vår 2016
Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap TDT4102 Prosedyreog objektorientert programmering Vår 2016 Øving 4 Frist: 2016-02-12 Mål for denne øvingen:
EKSAMEN. Dato: 9. mai 2016 Eksamenstid: 09:00 13:00
EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 9. mai 2016 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet består
NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013
NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 20 ette løsningsforslaget er til tider mer detaljert enn det man vil forvente av en eksamensbesvarelse. et er altså ikke et eksempel
MAT1030 Diskret Matematikk
MAT1030 Diskret Matematikk Plenumsregning 1: Kapittel 1 Mathias Barra Matematisk institutt, Universitetet i Oslo 16. januar 2009 (Sist oppdatert: 2009-02-02 14:21) Plenumsregning 1 MAT1030 Diskret Matematikk
Mål. Pensum. TDT4110 Informasjonsteknologi grunnkurs: Tema: Unntak (exceptions) (Kap 6) Dictionaries (Kap. 9) Terje Rydland - IDI/NTNU
1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Tema: Unntak (exceptions) (Kap 6) Dictionaries (Kap. 9) Terje Rydland - IDI/NTNU 2 Læringsmål og pensum Mål Lære å bruke unntak (Exceptions)
Algoritmeanalyse. (og litt om datastrukturer)
Algoritmeanalyse (og litt om datastrukturer) Datastrukturer definisjon En datastruktur er den måten en samling data er organisert på. Datastrukturen kan være ordnet (sortert på en eller annen måte) eller
Datastrukturer (kap. 8)
1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Datastrukturer (kap. 8) Amanuensis Terje Rydland Kontor: ITV-021 i IT-bygget vest (Gløshaugen) Epost: [email protected] Tlf: 735
Python: Løkker. TDT4110 IT Grunnkurs Professor Guttorm Sindre
Python: Løkker TDT4110 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål Forstå hvorfor vi trenger løkker i programmering Ha kjennskap to ulike typer løkker (while-løkke, for-løkke) Og vite
Øvingsforelesning 7 i Python (TDT4110)
Øvingsforelesning 7 i Python (TDT4110) Lister, Strenger, Funksjoner Vegard Hellem Oversikt Praktisk Info Gjennomgang av Øving 5 Programmering til Øving 7 2 Praktisk info Kollokviegrupper Snakk med studassen
Øvingsforelesning 6. Sorteringsalgoritmer. Martin Kirkholt Melhus Basert på foiler av Kristian Veøy 30/09/14 1
Øvingsforelesning 6 Sorteringsalgoritmer Martin Kirkholt Melhus [email protected] Basert på foiler av Kristian Veøy 30/09/14 1 Agenda l Spørsmål fra øving 4 l Sortering l Presentasjon av øving 6 30/09/14
Innhold. Innledning 1
Innhold Innledning 1 1 Kompleksitetsanalyse 7 1.1 Innledning.............................. 8 1.2 Hva vi beregner........................... 8 1.2.1 Enkle operasjoner...................... 8 1.2.2 Kompleksitet........................
Norsk informatikkolympiade runde. Sponset av. Uke 46, 2017
Norsk informatikkolympiade 2017 2018 1. runde Sponset av Uke 46, 2017 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.
Binær heap. En heap er et komplett binært tre:
Heap Binær heap En heap er et komplett binært tre: Alle nivåene i treet, unntatt (muligens) det nederste, er alltid helt fylt opp med noder Alle noder på nederste nivå ligger så langt til venstre som mulig
NIO 1. runde eksempeloppgaver
NIO 1. runde eksempeloppgaver Oppgave 1 (dersom du ikke klarer en oppgave, bare gå videre vanskelighetsgraden er varierende) Hva må til for at hele det følgende uttrykket skal bli sant? NOT(a OR (b AND
TDT4110 IT Grunnkurs Høst 2012
TDT4110 IT Grunnkurs Høst 2012 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Auditorieøving 2 Navn: Linje: Brukernavn: Oppgavesettet inneholder 5 oppgaver.
Algoritmer Teoribok: Algorithms Kap 5 fra Brookshear & Brylow: Computer Science: An Overview
Algoritmer Teoribok: Algorithms Kap 5 fra Brookshear & Brylow: Computer Science: An Overview TDT 4105 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål Lære om Algoritme som konsept Representasjon
Ny/utsatt EKSAMEN. Dato: 6. januar 2017 Eksamenstid: 09:00 13:00
Ny/utsatt EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 6. januar 2017 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet
EKSAMEN. Dato: 18. mai 2017 Eksamenstid: 09:00 13:00
EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 18. mai 2017 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Kalkulator Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet
Med løkke: Læringsmål og pensum. TDT4110 Informasjonsteknologi grunnkurs: Tema: Løkker/Sløyfer Utgave 3: Kap. 4 Utgave 2: Kap. 5. Mål.
1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Tema: Løkker/Sløyfer Utgave 3: Kap. 4 Utgave 2: Kap. 5 Terje Rydland - IDI/NTNU 2 Læringsmål og pensum Mål Lære om begrepet løkker
TDT4105 Informasjonsteknologi, grunnkurs
1 TDT4105 Informasjonsteknologi, grunnkurs For BMAT, MTEL, MTENERG, MTING, MTIØT, MTMART og MTPROD Førsteamanuensis Roger Midtstraum Kontor: 206 i IT-bygget (Gløshaugen) Epost: [email protected] Tlf: 735
Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.3
Delkapittel 1.3 Ordnede tabeller Side 1 av 70 Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.3 1.3 Ordnede tabeller 1.3.1 Permutasjoner En samling verdier kan settes opp i en rekkefølge. Hver
MAT1030 Diskret matematikk
Oppgave 1.1 MAT1030 Diskret matematikk Plenumsregning 2: Ukeoppgaver fra kapittel 1 & 2 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 24. januar 2008 Modifiser algoritmen fra 1.2.1 slik at
Eksamensoppgave i TDT4120 Algoritmer og datastrukturer
Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT0 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Telefon 98 5 99 Eksamensdato 7. desember, 06 Eksamenstid
Rekursiv programmering
Rekursiv programmering Babushka-dukker En russisk Babushkadukke er en sekvens av like dukker inne i hverandre, som kan åpnes Hver gang en dukke åpnes er det en mindre utgave av dukken inni, inntil man
Plenumsregning 1. MAT1030 Diskret Matematikk. Repetisjon: Algoritmer og pseudokode. Velkommen til plenumsregning for MAT1030
MAT1030 Diskret Matematikk Plenumsregning 1: Kapittel 1 Mathias Barra Matematisk institutt, Universitetet i Oslo Plenumsregning 1 16. januar 2009 (Sist oppdatert: 2009-02-02 14:21) MAT1030 Diskret Matematikk
MAT1030 Diskret matematikk
MAT1030 Diskret matematikk Plenumsregning 2: Ukeoppgaver fra kapittel 1 & 2 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 24. januar 2008 Oppgave 1.1 Modifiser algoritmen fra 1.2.1 slik at
Oppgave 1 a. INF1020 Algoritmer og datastrukturer. Oppgave 1 b
Oppgave 1 1 a INF1020 Algoritmer og datastrukturer Forelesning 14: Gjennomgang av eksamen vår 2001 oppgave 1,2,4 Arild Waaler Institutt for informatikk, Universitetet i Oslo Oppgave 1 a Programmer en ikke-rekursiv
Læringsmål og pensum. Oversikt
1 2 Læringsmål og pensum TDT4105 Informasjonsteknologi grunnkurs: Uke 39 Betingede løkker og vektorisering Læringsmål Skal kunne forstå og programmere betingede løkker med while Skal kunne utnytte plassallokering
Plenumsregning 1. Kapittel 1. Roger Antonsen januar Velkommen til plenumsregning for MAT1030. Repetisjon: Algoritmer og pseudokode
Plenumsregning 1 Kapittel 1 Roger Antonsen - 17. januar 2008 Velkommen til plenumsregning for MAT1030 Torsdager 10:15 12:00 Gjennomgang av ukeoppgaver Gjennomgang av eksempler fra boka Litt repetisjon
Øvingsforelesning 3: Splitt og hersk. Daniel Solberg
Øvingsforelesning 3: Splitt og hersk Daniel Solberg Plan for dagen Vi går raskt gjennom øving 2 Splitt og hersk Algoritmer: Mergesort Quicksort Binærsøk Rekurrenser, masse rekurrenser 2 Splitt og hersk
Grunnleggende Grafteori
Grunnleggende Grafteori 2. September, 2019 Institutt for Informatikk 1 Dagens plan Terminologi og definisjoner Hvordan representere grafer i datamaskinen Traversering Dybde-først-søk Bredde-først-søk Topologisk
EKSAMEN med løsningsforslag
EKSAMEN med løsningsforslag Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2009 kl 09.00 til kl 13.00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Kalkulator Faglærer:
Løsningsforslag for eksamen i fag TDT4120 Algoritmer og datastrukturer Tirsdag 9. desember 2003, kl
TDT4120 2003-12-09 Stud.-nr: Antall sider: 1/7 Løsningsforslag for eksamen i fag TDT4120 Algoritmer og datastrukturer Tirsdag 9. desember 2003, kl. 0900 1500 Faglig kontakt under eksamen: Arne Halaas,
TDT4105 Informasjonsteknologi, grunnkurs
1 TDT4105 Informasjonsteknologi, grunnkurs MatLab: Filbehandling Anders Christensen ([email protected]) Rune Sætre ([email protected]) TDT4105 IT Grunnkurs 2 Læringsmål/pensum Filbehandling Mål: Forstå
Definisjon av binært søketre
Binære søketrær Definisjon av binært søketre For alle nodene i et binært søketre gjelder: Alle verdiene i nodens venstre subtre er mindre enn verdien i noden Alle verdiene i nodens høyre subtre er større
Øvingsforelesning TDT4105 Matlab
Øvingsforelesning TDT4105 Matlab Pensum fra øving 2 og 3: if, switch, for, matriser. Benjamin A. Bjørnseth 14. september 2015 2 Innhold If-setninger Switch For-løkker Diverse 3 Oversikt If-setninger Switch
Python: Løkker. TDT4110 IT Grunnkurs Professor Guttorm Sindre
Python: Løkker TDT4110 IT Grunnkurs Professor Guttorm Sindre Denne uka Vi trenger å Støttes av Hente data fra bruker Vise data til bruker Lagre data i minnet for bruk videre i programmet Fra tastatur:
