Quicksort. Fra idé til algoritme.
|
|
- Ellen Siv Ødegård
- 7 år siden
- Visninger:
Transkript
1 Quicksort Fra idé til algoritme.
2 Quicksortalgoritme algoritmeidé 1. Del arrayen i to deler, slik at alle elementer i den ene delen er mindre enn alle elementer i den andre delen. Q U I C K S O R T A L G O R I T M E N E M I C K I G L A N R O O R S T U Q T michael@ifi.uio.no INF april 2010 (uke 17) 2
3 2. Velg en verdi som finnes i arrayen og bytt to og to elementer ved å starte fra de to endene slik at den ene delen inneholder verdiene som er mindre enn den valgte verdien, den andre delen inneholder verdiene som er større. Q U I C K S O R T A L G O R I T M E N michael@ifi.uio.no INF april 2010 (uke 17) 3
4 E M I C K I G L A N R O O R S T U Q T 3. Vi har da tre deler, først en del med elementer mindre enn eller lik den valgte verdi, så ett element med den valgte verdi, til slutt en del med elementer større enn eller lik den valgte verdi. Gjenta 1 3 på de to delene. Hvis de to delene blir sortert, vil da hele arrayen være sortert. michael@ifi.uio.no INF april 2010 (uke 17) 4
5 E M I C K I G L A N R O O R S T U Q T pivot = a [ t i l ] ; boolean ikkeferdig = true ; int i = fra ; int j = t i l 1; michael@ifi.uio.no INF april 2010 (uke 17) 5
6 A C E G I I K L M N R O O R S T U Q T while ( ikkeferdig ) { while ( a [ i ] < pivot ) { i++ ; while ( a [ j ] > pivot ) { j ; i f ( i < j ) { bytt ( a, i, j ) ; i ++; j ; else ikkeferdig = false ; michael@ifi.uio.no INF april 2010 (uke 17) 6
7 Ved å sørge for at begge delarrayer er kortere enn den vi har er vi sikret at de rekursive kallene går mot basistilfellet. Basistilfellet er en array av lengde mindre enn 4. Disse små delarrayene sorteres direkte når de er av lengde 2 eller 3. (Delarrayer av lengde 1 eller 0 er sortert). Vi videreutvikler algoritmen: michael@ifi.uio.no INF april 2010 (uke 17) 7
8 1. Hvis antall elementer som skal sorteres er 0 eller 1, returner. 2. Hvis antall elementer som skal sorteres er 2 eller 3, sorter dem uten rekursive kall og returner. 3. Plukk et («middels stort») element fra mengden som skal sorteres. Dette kalles pivot-elementet. 4. Del resten av elementene i to: De som er mindre enn pivot-elementet. De som er større enn pivot-elementet. 5. Sorter disse delmengdene hver for seg (ved hjelp av quicksort). 6. Returner sorteringen av de små elementene, etterfulgt av pivot-elementet, etterfulgt av sorteringen av de store elementene. michael@ifi.uio.no INF april 2010 (uke 17) 8
9 Algoritmevalg For små arrayer med N 20 er quicksort mindre effektiv enn f.eks. innstikksortering. På grunn av de rekursive kallene vil dette være et vanlig tilfelle! Løsning: Bruk en avskjæring mellom 5 og 20 (vanligvis 10) slik at arraysegmenter mindre enn dette sorteres ved hjelp av en annen sorteringsmetode. michael@ifi.uio.no INF april 2010 (uke 17) 9
10 Partisjoneringsstrategi Hvordan dele arrayen i en «liten» og en «stor» del? 1. Få pivot-elementet «vekk» ved å bytte det med det siste elementet. 2. La i starte på det første elementet, og j på det nest-siste. 3. Så lenge i er til venstre for j: 3.1 Flytt i mot høyre så lenge elementet i peker på er mindre enn pivot-elementet. 3.2 Flytt j mot venstre så lenge a[j] er større enn pivot-elementet. 3.3 i peker nå på et «stort» element og j på et «lite». Hvis i er til venstre for j, byttes disse elementene. 4. Bytt pivot-elementet med elementet i posisjon i. michael@ifi.uio.no INF april 2010 (uke 17) 10
11 Partisjoneringsstrategi utprogrammert boolean ikkeferdig = true ; int i = fra ; int j = t i l 1; while ( ikkeferdig ) { while ( a [ i ] < pivot ) { i++ ; while ( a [ j ] > pivot ) { j ; i f ( i < j ) { bytt ( a, i, j ) ; i ++; j ; else ikkeferdig = false ; michael@ifi.uio.no INF april 2010 (uke 17) 11
12 Hvordan velge pivot-element? Ideelt: Et pivot-element som deler mengden i to like store halvdeler. Best?: Velger pivot-elementet så «tilfeldig» som mulig. I algoritmen nedenfor er siste element valgt som pivot-element. michael@ifi.uio.no INF april 2010 (uke 17) 12
13 void quicksort ( char [ ] a, int fra, int t i l ) { // rekursjonsbunn hvis mindre enn 4 elementer i f ( t i l fra < 3 ) { // sortering utelatt else { // minst 4 elementer char pivot = a [ t i l ] ; // Partisjonerer arrayen ( se over ) // Flytter pivot elementet t i l midten bytt ( a, i, t i l ) ; // Alle elementer : a[ fra, i 1] <= a[ i ] <= a[ i +1, t i l ] quicksort ( a, fra, i 1); // a[ fra, i ] er sortert, alle <= a[ i +1, t i l ] quicksort ( a, i +1, t i l ) ; // a[ fra, t i l ] er sortert michael@ifi.uio.no INF april 2010 (uke 17) 13
14 Programmet effektiviseres best ved å sikre valg av et pivot-element så nær medianen (midterste verdi når sortert) som mulig. I algoritmen nedenfor bruker vi midten-av-tre partisjonering: Se på det første, midterste og siste elementet. Velg det mellomste av disse som pivot. OBS! Metoden vil også sortere disse tre elementene, samt skjule pivot-elementet. michael@ifi.uio.no INF april 2010 (uke 17) 14
15 midtenavtre() i Java char midtenavtre ( char [ ] a, int fra, int t i l ) { int midten = ( fra + t i l ) / 2; i f ( a [ midten ] < a [ fra ] ) { bytt ( a, fra, midten ) ; i f ( a [ t i l ] < a [ fra ] ) { bytt ( a, fra, t i l ) ; i f ( a [ t i l ] < a [ midten ] ) { bytt ( a, midten, t i l ) ; // Skjul pivot elementet nest lengst t i l høyre bytt ( a, midten, t i l 1); return a [ t i l 1]; michael@ifi.uio.no INF april 2010 (uke 17) 15
16 Quicksort med midten-av-tre-partisjonering void quicksort ( char [ ] a, int fra, int t i l ) { /* Hvis fra er nær t i l, sorter direkte /* og returner ( b a s i s t i l f e l l e t ). Hvis ikke : */ int pivotindeks ; char pivot = midtenavtre ( a, fra, t i l ) ; int i = fra ; int j = t i l 1; while ( true ) { while ( a[++ i ] < pivot ) { while ( a[ j ] > pivot ) { i f ( i < j ) bytt ( a, i, j ) ; else break ; pivotindeks = i ; bytt ( a, pivotindeks, t i l 1); quicksort ( a, fra, pivotindeks 1); quicksort ( a, pivotindeks+1, t i l ) ; michael@ifi.uio.no INF april 2010 (uke 17) 16
17 A C E G I I K L M N R O O R S T U Q T while ( ikkeferdig ) { while ( a [ i ] < pivot ) { i++ ; while ( a [ j ] > pivot ) { j ; i f ( i < j ) { bytt ( a, i, j ) ; i ++; j ; else ikkeferdig = false ; michael@ifi.uio.no INF april 2010 (uke 17) 17
18 A C E G I I K L M N O O Q R R S T T U while ( ikkeferdig ) { while ( a [ i ] < pivot ) { i++ ; while ( a [ j ] > pivot ) { j ; i f ( i < j ) { bytt ( a, i, j ) ; i ++; j ; else ikkeferdig = false ; michael@ifi.uio.no INF april 2010 (uke 17) 18
19 Oppgaver til neste fellesøvelse 1. Skriv en metode som sorterer 2 elementer 2. Skriv en metode som sorterer 3 elementer 3. Hvorfor kan vi under partisjoneringen ikke hoppe over elementer som er lik pivotelementet? (De ligger jo i utgangspunktet ikke «feil»). 4. Skriv om partisjoneringen slik at elementer lik pivotelementet ikke blir flyttet. 5. Vis at algoritmen skissert over (ikke den som bruker midten-av-tre) faktisk fungerer for delarrayer med lengde mindre enn 4 også. michael@ifi.uio.no INF april 2010 (uke 17) 19
Hvorfor sortering og søking? Søking og sortering. Binære søketrær. Ordnet innsetting forbereder for mer effektiv søking og sortering INF1010 INF1010
Hvorfor sortering og søking? Man bør ha orden i dataene umulig å leve uten i informasjonssamfunnet vi blir fort lei av å lete poleksempel internett alt er søking og sortering alternativer til sortering
DetaljerEn implementasjon av binærtre. Dagens tema. Klassestruktur hovedstruktur abstract class BTnode {}
En implementasjon av binærtre Dagens tema Eksempel på binærtreimplementasjon Rekursjon: Tårnet i Hanoi Søking Lineær søking Klassestruktur hovedstruktur abstract class { class Person extends { class Binaertre
DetaljerINF1010 notat: Binærsøking og quicksort
INF1010 notat: Binærsøking og quicksort Ragnhild Kobro Runde Februar 2004 I dette notatet skal vi ta for oss ytterligere to eksempler der rekursjon har en naturlig anvendelse, nemlig binærsøking og quicksort.
DetaljerDagens tema. Sortering. Fortsettelse om programmering vha tråder.
Dagens tema Sortering. Fortsettelse om programmering vha tråder. «orden» i dataene vi blir fort lei av å lete poleksempel internett «alt» er søking og sortering alternativer til sortering og søking binære
DetaljerDagens tema. Sortering. Fortsettelse om programmering vha tråder.
Dagens tema Sortering. Fortsettelse om programmering vha tråder. «orden» i dataene vi blir fort lei av å lete poleksempel internett «alt» er søking og sortering alternativer til sortering og søking binære
DetaljerDagens temaer. Sortering: 4 metoder Søking: binærsøk Rekursjon: Hanois tårn
Dagens temaer Sortering: 4 metoder Hvorfor sortering (og søking) er viktig i programmering Sortering når objektene som skal sorteres er i et array 1. Sorterering ved bruk av binærtre som «mellomlager»
Detaljeralternativer til sortering og søking binære trær søketrær Ikke-rekursiv algoritme som løser Hanois tårn med n plater
Dagens temaer Sortering: 4 metoder Hvorfor sortering (og søking) er viktig i programmering Sortering når objektene som skal sorteres er i et array 1. Sorterering ved bruk av binærtre som «mellomlager»
DetaljerLogaritmiske sorteringsalgoritmer
Logaritmiske sorteringsalgoritmer Logaritmisk sortering Rekursive og splitt og hersk metoder: Deler verdiene i arrayen i to (helst) omtrent like store deler i henhold til et eller annet delingskriterium
DetaljerRekursjon. Binærsøk. Hanois tårn.
Rekursjon Binærsøk. Hanois tårn. Hvorfor sortering (og søking) er viktig i programmering «orden» i dataene vi blir fort lei av å lete poleksempel internett «alt» er søking og sortering alternativer til
DetaljerINF1010 Sortering. Marit Nybakken 1. mars 2004
INF1010 Sortering Marit Nybakken marnybak@ifi.uio.no 1. mars 2004 Dette dokumentet skal tas med en klype salt og forfatter sier fra seg alt ansvar. Dere bør ikke bruke definisjonene i dette dokumentet
DetaljerAlgoritmer og datastrukturer Løsningsforslag
Algoritmer og datastrukturer ved Høgskolen i OsloSide 1 av 6 Algoritmer og datastrukturer Løsningsforslag Eksamen 24. februar 2010 Oppgave 1A 1. Komparatoren sammenligner først lengdene til de to strengene.
DetaljerLøsnings forslag i java In115, Våren 1999
Løsnings forslag i java In115, Våren 1999 Oppgave 1a Input sekvensen er: 9, 3, 1, 3, 4, 5, 1, 6, 4, 1, 2 Etter sortering av det første, midterste og siste elementet, har vi følgende: 2, 3, 1, 3, 4, 1,
DetaljerOppgave 1 a. INF1020 Algoritmer og datastrukturer. Oppgave 1 b
Oppgave 1 1 a INF1020 Algoritmer og datastrukturer Forelesning 14: Gjennomgang av eksamen vår 2001 oppgave 1,2,4 Arild Waaler Institutt for informatikk, Universitetet i Oslo Oppgave 1 a Programmer en ikke-rekursiv
DetaljerHvor raskt klarer vi å sortere?
Sortering Sorteringsproblemet Gitt en array med n elementer som kan sammenlignes med hverandre: Finn en ordning (eller permutasjon) av elementene slik at de står i stigende (evt. avtagende) rekkefølge
DetaljerINF2220: Time 12 - Sortering
INF0: Time 1 - Sortering Mathias Lohne mathialo Noen algoritmer Vi skal nå se på noen konkrete sorteringsalgoritmer. Gjennomgående i alle eksempler vil vi sortere tall etter tallverdi, men som diskutert
DetaljerLøsnings forslag i java In115, Våren 1996
Løsnings forslag i java In115, Våren 1996 Oppgave 1a For å kunne kjøre Warshall-algoritmen, må man ha grafen på nabomatriseform, altså en boolsk matrise B, slik at B[i][j]=true hvis det går en kant fra
DetaljerLøsnings forslag i java In115, Våren 1998
Løsnings forslag i java In115, Våren 1998 Oppgave 1 // Inne i en eller annen klasse private char S[]; private int pardybde; private int n; public void lagalle(int i) if (i==n) bruks(); else /* Sjekker
DetaljerFørst litt praktisk info. Sorteringsmetoder. Nordisk mesterskap i programmering (NCPC) Agenda
Først litt praktisk info Sorteringsmetoder Gruppeøvinger har startet http://selje.idi.ntnu.no:1234/tdt4120/gru ppeoving.php De som ikke har fått gruppe må velge en av de 4 gruppende og sende mail til algdat@idi.ntnu.no
DetaljerSorteringsproblemet. Gitt en array A med n elementer som kan sammenlignes med hverandre:
Sortering Sorteringsproblemet Gitt en array A med n elementer som kan sammenlignes med hverandre: Finn en ordning (eller permutasjon) av elementene i A slik at de står i stigende (evt. avtagende) rekkefølge
DetaljerSortering med tråder - Quicksort
Sortering med tråder - Quicksort Skisser til to programmer INF1010 våren 2016 Stein Gjessing Institutt for informatikk Universitetet i Oslo Sortering som tema, slikt som valg av sorteringsmetode, hastigheten
DetaljerNy/utsatt EKSAMEN. Dato: 5. januar 2018 Eksamenstid: 09:00 13:00
Ny/utsatt EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 5. januar 2018 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1010 Objektorientert programmering Dato: 9. juni 2016 Tid for eksamen: 09.00 15.00 (6 timer) Oppgavesettet er på 7 sider. Vedlegg:
DetaljerNITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013
NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 20 ette løsningsforslaget er til tider mer detaljert enn det man vil forvente av en eksamensbesvarelse. et er altså ikke et eksempel
DetaljerAlgoritmer og Datastrukturer
Eksamen i Algoritmer og Datastrukturer IAI 21899 Høgskolen i Østfold Avdeling for informatikk og automatisering Torsdag 3. november 2, kl. 9. - 14. Hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.
Detaljer8NH )RUHOHVQLQJ 'HSDUWPHQWÃRIÃ,QIRUPDWLFVÃ8QLYHUVLW\ÃRIÃ2VORÃ1RUZD\,1) ± $OJRULWKPVÃÉÃ'DWDÃ6WUXFWXUHV
:/ 8NH )RUHOHVQLQJ +86.± +LWWLO«Sortering: Sammenligning-baserte: Baserer seg på sammenligning av elemntene i a[ ] Eksempler: Instikk, boble, utplukk Alle tar kvadratisk tid 1 7(0$6RUWHULQJ )RUWVHWWHUPHG
DetaljerLenkelister. Lister og køer. Kopi av utvalgte sider fra forelesningen.
Lenkelister. Lister og køer. Kopi av utvalgte sider fra forelesningen. "Taher" type: String : type: :... type: : inf1010student null michael@ifi.uio.no INF1010 26. januar 2012 (uke 4) 2 class Eks01 { public
DetaljerEKSAMEN. Dato: 28. mai 2018 Eksamenstid: 09:00 13:00
EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 28. mai 2018 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet
DetaljerKap.8 Sortering og søking sist oppdatert 16.03
Kap.8 Sortering og søking sist oppdatert 16.03 Del 1 Søking - lineær søking m/u sorterte elementer - binærsøking - analyse Del 2 Sortering - gamle sorteringsmetoder fra i høst - nye -analyse Copyright
DetaljerNorsk informatikkolympiade runde
Norsk informatikkolympiade 2017 2018 1. runde Sponset av Uke 46, 2017 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.
DetaljerQuicksort. Lars Vidar Magnusson Kapittel 7 Quicksort Randomisert Quicksort Analyse av Quicksort
Quicksort Lars Vidar Magnusson 29.1.2014 Kapittel 7 Quicksort Randomisert Quicksort Analyse av Quicksort Om Quicksort Quicksort er en svært populær sorteringsalgoritme. Algoritmen har i verstefall en kjøretid
DetaljerØvingsforelesning 3: Splitt og hersk. Daniel Solberg
Øvingsforelesning 3: Splitt og hersk Daniel Solberg Plan for dagen Vi går raskt gjennom øving 2 Splitt og hersk Algoritmer: Mergesort Quicksort Binærsøk Rekurrenser, masse rekurrenser 2 Splitt og hersk
DetaljerAlgoritmer og datastrukturer Eksamen
Eksamen - Algoritmer og datastrukturer - Høgskolen i Oslo og Akershus - 27.11.2012 Side 1 av 6 Algoritmer og datastrukturer Eksamen 27.11.2012 Eksamensoppgaver Råd og tips: Bruk ikke for lang tid på et
DetaljerKapittel 12: Rekursjon
Kapittel 12: Rekursjon Redigert av: Khalid Azim Mughal (khalid@ii.uib.no) Kilde: Java som første programmeringsspråk (3. utgave) Khalid Azim Mughal, Torill Hamre, Rolf W. Rasmussen Cappelen Akademisk Forlag,
DetaljerUNIVERSITETET I OSLO
Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamensdag: 14. desember 2015 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 6 sider. Vedlegg: Tillatte hjelpemidler: INF2220
DetaljerAlgoritmer og Datastrukturer
Eksamen i Algoritmer og Datastrukturer IAI 21899 Høgskolen i Østfold Avdeling for informatikk og automatisering Lørdag 15. desember 2001, kl. 09.00-14.00 Hjelpemidler: Alle trykte og skrevne hjelpemidler.
DetaljerAlgoritmer og datastrukturer Kapittel 1 - Delkapittel 1.3
Delkapittel 1.3 Ordnede tabeller Side 1 av 70 Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.3 1.3 Ordnede tabeller 1.3.1 Permutasjoner En samling verdier kan settes opp i en rekkefølge. Hver
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF2220 Algoritmer og datastrukturer Eksamensdag: 16. desember 2013 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 8 sider.
DetaljerRekursjon. Hanois tårn. Milepeler for å løse problemet
Rekursjon. Hanois tårn. Milepeler for å løse problemet Hanois tårn. Milepeler for å løse problemet Forstå spillet Bestemme/skjønne hvordan spillet løses Lage en plan for hva programmet skal gjøre (med
DetaljerINF2220: Forelesning 7. Kombinatorisk søking
INF2220: Forelesning 7 Kombinatorisk søking Oversikt Rekursjon - oppsummering Generering av permutasjoner Lett: Sekvens-generering Vanskelig: Alle tallene må være forskjellige Eksempel: Finne korteste
DetaljerAlgoritmer og datastrukturer Løsningsforslag
1 Algoritmer og datastrukturer Løsningsforslag Eksamen 29. november 2011 Oppgave 1A Verdien til variabelen m blir lik posisjonen til den «minste»verdien i tabellen, dvs. bokstaven A, og det blir 6. Oppgave
DetaljerUNIVERSITETET I OSLO
1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : IN 115 Eksamensdag : Lørdag 20 mai, 2000 Tid for eksamen : 09.00-15.00 Oppgavesettet er på : 5 sider Vedlegg : Intet. Tillatte
DetaljerAlgoritmer og Datastrukturer
Eksamen i Algoritmer og Datastrukturer IAI 20102 Høgskolen i Østfold Avdeling for informatikk og automatisering Lødag 5. juni 2004, kl. 09.00-13.00 LØSNINGSFORSLAG 1 Del 1 60% Oppgave 1.1-10% Forklar kort
DetaljerLøsningsforslag til eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl
Student nr.: Side 1 av 7 Løsningsforslag til eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler:
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 115 og IN 110 Algoritmer og datastrukturer Eksamensdag: 14. mai 1996 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 8 sider.
Detaljer"behrozm" Oppsummering - programskisse for traversering av en graf (dybde først) Forelesning i INF februar 2009
Rekursiv programmering BTeksempel Datastruktur I klassen Persontre (rotperson==) Rekursjon Noen oppgaver/problemer er rekursive «av natur» Eksempel på en rekursiv definisjon Fakultetsfunksjonen
DetaljerPrøveeksamen INF2440 v Arne Maus PSE, Inst. for informatikk
Prøveeksamen INF2440 v 2016 Arne Maus PSE, Inst. for informatikk 1 Oppgave 1 (10 poeng) Forklar hva som skjer ved en synkronisering: a) Når to tråder synkroniserer på samme synkroniseringsobjekt (f.eks
DetaljerFaglig sosial ettermiddag. Løsningsforslag Eksamen INF1010 Høsten 2006
Faglig sosial ettermiddag Løsningsforslag Eksamen INF1010 Høsten 2006 Oppgaveteksten En apoteker har henvendt seg til deg for at du skal lage et javaprogram som skal hjelpe henne med å holde oversikt over
Detaljer13.09.2012 LITT OM OPPLEGGET. INF1000 EKSTRATILBUD Stoff fra uke 1-3 12. September 2012 Siri Moe Jensen EKSEMPLER
.9.22 LITT OM OPPLEGGET INF EKSTRATILBUD Stoff fra uke - 2. September 22 Siri Moe Jensen Målgruppe: De som mangler forståelse for konseptene gjennomgått så langt. Trening får du ved å jobbe med oppgaver,
DetaljerAlgoritmer og datastrukturer Løsningsforslag
Algoritmer og datastrukturer Løsningsforslag Eksamen 30. november 2010 Oppgave 1A Et turneringstre for en utslagsturnering med n deltagere blir et komplett binærtre med 2n 1 noder. I vårt tilfelle får
DetaljerINF1010 Rekursive metoder, binære søketrær. Algoritmer: Mer om rekursive kall mellom objekter Ny datastruktur: binært tre
INF1010 Rekursive metoder, binære søketrær Algoritmer: Mer om rekursive kall mellom objekter Ny datastruktur: binært tre public void skrivutmeg ( ) { System. out. println (navn + " er venn med " + minbestevennheter
DetaljerEn algoritme for permutasjonsgenerering
Innledning La oss tenke oss at vi har en grunnskole-klasse på 25 elever der enkelte av elever er uvenner med hverandre. Hvis uvenner sitter nær hverandre blir det bråk og slåssing. Er det mulig å plassere
DetaljerObligatorisk oppgave 1 INF1020 h2005
Obligatorisk oppgave 1 INF1020 h2005 Frist: fredag 7. oktober Oppgaven skal løses individuelt, og må være godkjent for å kunne gå opp til eksamen. Før innlevering må retningslinjene Krav til innleverte
DetaljerØvingsforelesning 6. Sorteringsalgoritmer. Kristian Veøy
Øvingsforelesning 6 Sorteringsalgoritmer Kristian Veøy veoy@stud.ntnu.no 26.09.08 1 Spørsmål fra øvingsgruppene Må jeg kunne python på eksamen? (Nei) Er det lurt å gjøre alle programmeringsøvingene? (Ikke
DetaljerAlgoritmer og Datastrukturer
Eksamen i Algoritmer og Datastrukturer IAI 20102 Høgskolen i Østfold Avdeling for informatikk og automatisering Lødag 5. juni 2004, kl. 09.00-13.00 Hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.
DetaljerEKSAMEN med løsningsforslag
EKSAMEN med løsningsforslag Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2009 kl 09.00 til kl 13.00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Kalkulator Faglærer:
DetaljerRepetisjon. INF1000 - gruppe 13
Repetisjon INF1000 - gruppe 13 Lese fra fil Scanner import java.util.*; void lesfrafil() { try { Scanner innfil = new Scanner(new File( fugleobservasjoner.txt )); while (innfil.hasnext()) { String linje
DetaljerLøsningsforslag 2017 eksamen
Løsningsforslag 2017 eksamen Oppgave 1: O-notasjon (maks 8 poeng) 1. (i) O(n) gir 2 poeng, O(100n) gir 1 poeng (ii) O(n^2) gir 1 poeng (iii) O(n log n) gir 2 poeng 2. (i) er mest effektiv i henhold til
DetaljerNorsk informatikkolympiade runde. Sponset av. Uke 46, 2017
Norsk informatikkolympiade 2017 2018 1. runde Sponset av Uke 46, 2017 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.
DetaljerEKSAMEN. Emne: Algoritmer og datastrukturer
1 EKSAMEN Emnekode: ITF20006 000 Dato: 18. mai 2012 Emne: Algoritmer og datastrukturer Eksamenstid: 09:00 til 13:00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Faglærer: Gunnar Misund Oppgavesettet
DetaljerEKSAMEN. Dato: 9. mai 2016 Eksamenstid: 09:00 13:00
EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 9. mai 2016 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet består
DetaljerStudieaktiviteter i INF1010
Innhold i dette lysarksettet Dagens forelesning INF1010 Innhold i dette lysarksettet Hvordan jobbe med INF1010 Datastrukturer Algoritmer og datastrukturer Grafer (lister og trær) Objektorientert programmering
DetaljerAlgoritmer og datastrukturer Kapittel 1 - Delkapittel 1.8
Delkapittel 1.8 Algoritmeanalyse Side 1 av 12 Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.8 1.8 Algoritmeanalyse 1.8.1 En algoritmes arbeidsmengde I Delkapittel 1.1 ble det definert og diskutert
DetaljerAlgoritmer og datastrukturer Kapittel 1 - Delkapittel 1.3
Delkapittel 1.3 Ordnede tabeller Side 1 av 74 Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.3 1.3 Ordnede tabeller 1.3.1 Permutasjoner En samling verdier kan settes opp i en rekkefølge. Hver
DetaljerDagens tema INF1010 INF1010 INF1010 INF1010
I eksemplene om lister og binære trær har vi hittil hatt pekerne inne i objektene i strukturen. ( Innbakt struktur ).Eksempel: Dagens tema Implementasjon av strukturer (lister, binære trær) class { ; ;
DetaljerOppgave 1. INF1000 Uke 13. Oppgave 2. Oppgave 3. Er dette lovlige deklarasjoner (når de foretas inni en metode)? JA NEI
Oppgave 1 INF1000 Uke 13 Gjennomgang av prøveeksamen fra høsten 2004 Er dette lovlige deklarasjoner (når de foretas inni en metode)? JA NEI int i; int k = i; int i, j = 4; int k = j; double[] x = new double[1];
DetaljerDagens forelesning. INF1010 Datastrukturer Lister og køer Pekerkjedelister Øvelser. Innhold i dette lysarksettet
Innhold i dette lysarksettet Dagens forelesning INF1010 Innhold i dette lysarksettet Hvordan jobbe med INF1010 Datastrukturer Algoritmer og datastrukturer Grafer (lister og trær) Objektorientert programmering
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO BOKMÅL Det matematisk-naturvitenskapelige fakultet Eksamen i : Eksamensdag : Torsdag 2. desember 2004 Tid for eksamen : 09.00 12.00 Oppgavesettet er på : Vedlegg : Tillatte hjelpemidler
DetaljerOppgave 3 a. Antagelser i oppgaveteksten. INF1020 Algoritmer og datastrukturer. Oppgave 3. Eksempelgraf
Oppgave 3 3 a IN1020 Algoritmer og datastrukturer orelesning 15: Gjennomgang av eksamen vår 2001 oppgave 3 Arild Waaler Institutt for informatikk, Universitetet i Oslo 11. desember 2006 Oppgave 3 a. Antagelser
DetaljerLøsningsforslag til eksamen i INF1000 våren 2006
Løsningsforslag til eksamen i INF1000 våren 2006 Oppgave 1 a) -1 false 7 b) 30 c) Verdien til j er: 4Verdien til k er: 3Verdien til n er: 7 d) Andre if-test er true Tredje if-test er true e) k = 4 k =
Detaljeri=0 Repetisjon: arrayer Forelesning inf Java 4 Repetisjon: nesting av løkker Repetisjon: nesting av løkker 0*0 0*2 0*3 0*1 0*4
Forelesning inf - Java 4 Repetisjon: arrayer Tema: Løkker Arrayer Metoder Ole Christian Lingjærde,. september Deklarere og opprette array - eksempler: int[] a = new int[]; String[] a = new String[]; I
Detaljer7) Radix-sortering sekvensielt kode og effekten av cache
) Radix-sortering sekvensielt kode og effekten av cache Dels er denne gjennomgangen av vanlig Radix-sortering viktig for å forstå en senere parallell versjon. Dels viser den effekten vi akkurat så tilfeldig
DetaljerForelesning inf Java 4
Forelesning inf1000 - Java 4 Tema: Løkker Arrayer Metoder Ole Christian Lingjærde, 12. september 2012 Ole Chr. Lingjærde Institutt for informatikk, 29. august 2012 1 Repetisjon: arrayer Deklarere og opprette
DetaljerINF 1000 Prøveeksamen. 23. november Ole Christian og Arne. Oppgave 1 (10 poeng) Er disse programsetningene lovlige i Java? Oppgave 2 (10 poeng)
Oppgave 1 (1 poeng) Er disse programsetningene lovlige i Java? INF 1 Prøveeksamen 3. november 6 Ole Christian og Arne x int i, j = i+1; x int j=3, while(j-->) i = j; x int[]int[] int = new int[8]int[9];
DetaljerProgrammering Høst 2017
Programmering Høst 2017 Tommy Abelsen Ingeniørfag - Data Innledning Dette er et dokument med litt informasjon og eksempler om kontrollstrukturer, samt oppgaver til forskjellige kontrollstrukturer. Spør
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Prøveeksamen i: INF2440 Effektiv parallellprogrammering Prøveeksamensdag: 1. juni 2016 Tidspunkter: 09.00 16.00 Oppgavesettet er på: 4 sider
DetaljerOppgave 1 LØSNINGSFORSLAG. Eksamen i INF desember Betrakt følgende vektede, urettede graf:
INF100 Algoritmer og datastrukturer INF100 Algoritmer og datastrukturer Oppgave 1 LØSNINGSFORSLAG Betrakt følgende vektede, urettede graf: V 1 V Eksamen i INF100 1. desember 004 V V 4 V 4 V V Ragnar Normann
DetaljerOppgave 1. Oppgave 2. Oppgave 3. Prøveeksamen i INF1000. Ole Christian og Arne. 23. november 2004
Oppgave 1 Prøveeksamen i INF1000 Ole Christian og Arne 23. november 2004 Er dette lovlige deklarasjoner (når de foretas inni en metode)? JA NEI int i; int k = i; int i, j = 4; int k = j; double[] x = new
DetaljerHva er verdien til variabelen j etter at følgende kode er utført? int i, j; i = 5; j = 10; while ( i < j ) { i = i + 2; j = j - 1; }
Hva er verdien til variabelen j etter at følgende kode er utført? int i, j; i = 5; j = 10; while ( i < j ) { i = i + 2; j = j - 1; Hva skrives ut på skjermen når følgende kode utføres? int [] tallene =
DetaljerPrøveeksamen i INF1000. Ole Christian og Arne. 23. november 2004
Prøveeksamen i INF1000 Ole Christian og Arne 23. november 2004 Oppgave 1 Er dette lovlige deklarasjoner (når de foretas inni en metode)? JA NEI int i; int k = i; int i, j = 4; int k = j; double[] x = new
DetaljerKapittel 8: Sortering og søking
Kapittel 8: Sortering og søking Forelesningsnotater for: Java som første programmeringsspråk Khalid Azim Mughal, Torill Hamre, Rolf W. Rasmussen Cappelen Akademisk, 2003. ISBN 82-02-23274-0 http://www.ii.uib.no/~khalid/jfps/
DetaljerOppgave 1. Oppgave 2. Høgskolen i Østfold Avdeling for informasjonsteknologi
Høgskolen i Østfold Avdeling for informasjonsteknologi Løsningsforslag til ny/utsatt eksamen i ITF20006 Algoritmer og datastrukturer 05.01.2018 Oppgave 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
DetaljerE K S A M E N. Algoritmiske metoder I. EKSAMENSDATO: 11. desember HINDA / 00HINDB / 00HINEA ( 2DA / 2DB / 2EA ) TID:
Høgskolen i Gjøvik Avdeling for Teknologi E K S A M E N FAGNAVN: FAGNUMMER: Algoritmiske metoder I L 189 A EKSAMENSDATO: 11. desember 2001 KLASSE: 00HINDA / 00HINDB / 00HINEA ( 2DA / 2DB / 2EA ) TID: 09.00-14.00
DetaljerINF1010. Sekvensgenerering Alle mulige sekvenser av lengde tre av tallene 0, 1 og 2: Sekvensgenerering. Generalisering. n n n! INF1010 INF1010 INF1010
Sekvensgenerering Alle mulige sekvenser av lengde tre av tallene, og : Kombinatorisk søking Generering av permutasjoner Lett: Sekvensgenerering Vanskelig: Alle tallene må være forskjellige Eksempel: Finne
DetaljerUNIVERSITETET I OSLO
PRØVEEKSAMEN INF1 - H6 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Prøveeksamen i : INF1 Grunnkurs i objektorientert programmering Dato: Torsdag 3. november 6 Tid for prøveeksamen
DetaljerUNIVERSITETET I OSLO
Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamensdag: 15. desember 2010 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler: INF2220
Detaljerløsningsforslag-uke5.txt
INF 1000 LØSNINGSFORSLAG TIL UKEOPPGAVER FOR UKE 5 1) Setningen er kompakt skrivemåte for int[] a; a = new int[50]; hvor den første setningen deklarerer arrayen a, og den andre setningen oppretter et array-objekt
DetaljerHØGSKOLEN I BERGEN Avdeling for ingeniørutdanning
HØGSKOLEN I BERGEN Avdeling for ingeniørutdanning EKSAMEN I KLASSE LVD525 Videregående algoritmer : 3DA og 3DB DATO :. april 2005 ANTALL OPPGAVER : 4 ANTALL SIDER : 4 VEDLEGG : side HJELPEMIDLER : ingen
Detaljer3 emner i dag! INF1000 Uke 5. Objekter og pekere. null. Litt om objekter, pekere og null Filer og easyio Litt mer om tekster
3 emner i dag! INF1000 Uke 5 Litt om objekter, pekere og null Filer og easyio Litt mer om tekster Litt om objekter, filer med easyio, tekst 1 2 Objekter og pekere Vi lager pekere og objekter når vi bruker
DetaljerForelesning inf Java 5
Ole Chr. Lingjærde 1 Forelesning inf1000 - Java 5 Tema: Mer om metoder 2D-arrayer String Ole Christian Lingjærde, 26. september 2013 Ole Chr. Lingjærde Institutt for informatikk, 26. september 2013 1 Strukturen
DetaljerForelesning inf Java 5
Forelesning inf1000 - Java 5 Tema: Mer om metoder 2D-arrayer String Ole Christian Lingjærde, 26. september 2013 Ole Chr. Lingjærde Institutt for informatikk, 26. september 2013 1 Strukturen til et Java-program
DetaljerINF1010 LISTER. Listeelementer og listeoperasjoner. Foran. Bak
LISTER Vanligste datastruktur Mange implementasjonsmåter (objektkjeder, array...) Operasjoner på listen definerer forskjellige typer lister (LIFO, FIFO,...) På norsk bruker vi vanligvis ordet «liste» for
DetaljerBinære søketrær. Et notat for INF1010 Stein Michael Storleer 16. mai 2013
Binære søketrær Et notat for INF Stein Michael Storleer 6. mai 3 Dette notatet er nyskrevet og inneholder sikkert feil. Disse vil bli fortløpende rettet og datoen over blir oppdatert samtidig. Hvis du
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring - AITeL
HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring - AITeL Kandidatnr: Eksamensdato:. desember 00 Varighet: timer (9:00 1:00) Fagnummer: LO117D Fagnavn: Algoritmiske metoder Klasse(r): DA DB
Detaljer< T extends Comparable<T> > Indre klasser mm. «Det du bør ha hørt om før oblig 4»
< T extends Comparable > Indre klasser mm. «Det du bør ha hørt om før oblig 4» Strukturen i oblig 3 null null null null Personbeholder pl null null Person p "Adnan" michael@ifi.uio.no INF1010 21. februar
DetaljerKapittel 9: Sortering og søking Kort versjon
Kapittel 9: Sortering og søking Kort versjon Redigert av: Khalid Azim Mughal (khalid@ii.uib.no) Kilde: Java som første programmeringsspråk (3. utgave) Khalid Azim Mughal, Torill Hamre, Rolf W. Rasmussen
DetaljerOppgave 1 a. INF2220 Algoritmer og datastrukturer. Oppgave 1 b
Oppgave 1 1 a IN2220 Algoritmer og datastrukturer orelesning 13: Gjennomgang av eksamen vår 2001 Arild Waaler Institutt for informatikk, Universitetet i Oslo Oppgave 1 a Programmer en ikke-rekursiv metode
DetaljerOppgavesettet består av 7 sider, inkludert denne forsiden. Kontroll& at oppgaven er komplett før du begynner å besvare spørsmålene.
Høgskoleni Østfold EKSAMEN Emnekode: Emnenavn: ITF20006 Algoritmer og datastrukturer Dato: Eksamenstid: 9. mai 2016 9.00 13.00 Hjelpemidler: Faglærer: Alle trykte og skrevne Jan Høiberg Om eksamensoppgaven
DetaljerOrdliste. Obligatorisk oppgave 1 - Inf 1020
Ordliste. Obligatorisk oppgave 1 - Inf 1020 I denne oppgaven skal vi tenke oss at vi vil holde et register over alle norske ord (med alle bøyninger), og at vi skal lage operasjoner som kan brukes til f.
DetaljerNorsk informatikkolympiade runde
Norsk informatikkolympiade 2016 2017 1. runde Sponset av Uke 46, 2016 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.
DetaljerINF1000 Behandling av tekster
INF1000 Behandling av tekster Marit Nybakken marnybak@ifi.uio.no 23. februar 2004 Tekster Vi kommer nesten aldri utenom å bruke tekststrenger i programmene våre, ikke minst fordi det nesten alltid skal
Detaljer