alternativer til sortering og søking binære trær søketrær Ikke-rekursiv algoritme som løser Hanois tårn med n plater

Størrelse: px
Begynne med side:

Download "alternativer til sortering og søking binære trær søketrær Ikke-rekursiv algoritme som løser Hanois tårn med n plater"

Transkript

1 Dagens temaer Sortering: 4 metoder Hvorfor sortering (og søking) er viktig i programmering Sortering når objektene som skal sorteres er i et array 1. Sorterering ved bruk av binærtre som «mellomlager» Søking: binærsøk Binærsøk i et sortert heltallsarray Iterativ metode for binærsøk Rekursiv metode for binærsøk Rekursjon: Hanois tårn Noen milepæler i utviklingen av programmet Forstå spillet/problemet Om tårnet i Hanoi eller Hanois tårn Lage en plan for hva programmet skal gjøre (med ord) Ikke-rekursiv algoritme som løser Hanois tårn med n plater bottom-up programutvikling Rekursiv metode som kan flytte n plater Utvide programmet stegvis og teste for hvert steg Sortering når objektene som skal sorteres er i et array Forutsetter at vi kan rangere elementene. Gitt to elementer, programmet må kunne teste om det ene elementet er lik, mindre enn eller større enn det andre, jf. grensesnittet Comparable med metoden compareto... I eksemplene sorterer vi ofte enkle «objekter» som heltall, tegn eller strenger. Ikke vanskeligere å sortere komplekse objekter så lenge de er «sammenlignbare». Litt mer formaliteter: Med en sortert array mener vi en array (A) der A[0] A[1] A[2] A[3] A[n 2] A[n 1] Hvorfor sortering (og søking) er viktig i programmering «orden» i dataene vi blir fort lei av å lete poleksempel internett «alt» er søking og sortering alternativer til sortering og søking binære trær søketrær 1. Sorterering ved bruk av binærtre som «mellomlager» Programmeringsidé: Sett objektene inn i et binært søketre. Etter at alle er satt inn, ta dem ut i sortert orden (hvordan?) og sett dem inn i arrayet i sortert orden. Jasmina Imran Nikita Objekter som har navn som kommer alfabetisk foran (mindre enn) "Imran" Objekter hvor navn er større enn "Nikita"

2 1. Sorterering ved bruk av binærtre som «mellomlager» Henrik Andreas Christian Gry Darjan Eirik Gunnar Elisabeth Helge Henrik Jørgen Andreas Susanne Gunnar Nikita Jim Vivi Pål Elisabeth Christian Jørgen Darjan Eirik Jan Torjus Tor Gry Simen Stian Imran Nguyen Helge Philip Siv Imran Jan Jørgen Jim Susanne Nguyen Nikita Pål Philip Tor Simen Torjus Stian Vivi Slik blir treet hvis navnene kommer slik lista over er (fra øverst og nedover) Siv 2. Boblesortering Idé: Gå igjennom arrayet og for hver gang man finner to elementer ved siden av hverandre som ligger feil i forhold til sorteringskriteriet, bytt dem. Gjenta gjennomgangen til ingen bytter blir gjort. Påstand: Hvis det ikke finnes to elementer ved siden av hverandre som ikke oppfyller sorteringsregelen, må hele arrayen være sortert. Oppgave til plenumsøvelsen: implementer algoritmen. 1. Sorterering ved bruk av binærtre som «mellomlager» Andreas Christian Darjan Eirik Elisabeth Gry Gunnar Helge Henrik Imran Jan Jim Jørgen Nguyen Nikita Philip Pål Simen Siv Stian Susanne Tor Torjus Vivi Fra sortert liste (øverst) til binært søketre Jørgen Gunnar Stian Eirik Jan Pål Torjus Christian Elisabeth Henrik Jim Nikita Siv Susanne Vivi Andreas Darjan Gry Helge Imran Nguyen Philip Simen Tor 3. Flettesortering Algoritmeidé: Del arrayen opp i delarrayer, slik at hver delarray er sortert (et array med ett element er sortert). Flett sammen to og to arrayer til større sorterte delarrayer til det er et array igjen Oppgave til plenumsøvelsen: implementer algoritmen.

3 4. Innstikksortering Generell idé: Plukk ett og ett element fra listen og sett det inn på rett plass (sortert) i en ny liste. 1. Finn første element fra venstre som er mindre enn det til venstre for seg ta dette ut. 2. Elementene til venstre for dette skyves mot høyre inntil det uttatte elementet passer inn. 3. Gjenta 1 2 inntil det siste elementet (helt til høyre) er behandlet. Invariant:A[0 :k] er sortert forksom løper fra 0 til lengden ava 1. Innstikksortering: variant Generell idé: Plukk ut det minste elementet og sett det inn bakerst (FIFO) i en ny liste/array. 1. Finn det minste elementet i arrayen ta dette ut. 2. Sett det uttatte elementet i fifo-orden inn i et nytt array. 3. Gjenta 1 2 inntil det siste elementet i det første arrayet er tatt ut. Invariant? Oppgave til plenumsøvelsen: implementer algoritmen. I programeksemplet nedenfor sorteres et array av tegn, char[] a. 1 void innstikksortering( char [ ] a) { 2 for ( int k = 0; k < a. length 1; k++) { 3 if (a[k + 1] < a[k ] ) { 4 // a[k + 1] står på f e i l plass 5 char tmp = a[k + 1]; 6 int i = k; 7 while ( i >= 0 && a[ i ] > tmp) { 8 // a[ i ] > tmp, flytt t i l høyre 9 a[ i + 1] = a[ i ] ; 10 i ; 11 } 12 // sett tmp på rett plass 13 a[ i +1] = tmp; 14 } 15 } 16 } Binærsøk i et sortert heltallsarray Effektiv søking i en sortert array I et heltallsarraya[]mednelementer skal vi finne en indeks (objektet) hvor verdien erk.a[]er sortert slik at A[i 1] A[i], mao. i stigende orden fra 0 og oppover: A[0] A[1] A[2] A[3] A[n 2] A[n 1] Hva bør vi gjøre hvis k < A[0] eller k > A[n 1]? Hvis A[0] k A[n 1] har vi følgende idé for algoritme: Sjekk omker større enn, mindre enn, eller lik elementet midt i arrayen. Hvis ikke lik, «kast» den halvdelen som k ikke kan være i.

4 Iterativ metode for binærsøk Iterativ metode som leter etter talletk. Returnererks indeks hvis funnet, 1 ellers. 1 int binarsok ( int [ ] a, int fra, int til, int k) { 2 int midten; boolean funnet = false ; 3 while ( funnet == false ) { 4 if ( fra > t i l ) { 5 return 1; 6 } else { 7 midten = ( fra + t i l ) / 2; 8 if (k == a[midten ] ) { 9 return midten; 10 } else if (k < a[midten ] ) 11 t i l = midten 1; 12 else fra = midten+1; 13 } 14 } 15 } Noen milepæler i utviklingen av programmet Løsning av Hanois tårn. Milepeler Forstå spillet Bestemme/skjønne hvordan spillet løses Lage en plan for hva programmet skal gjøre (med ord) Lage en programskisse (tegning og kvasikode) Dele opp problemet i deler som kan gjøres for seg Kompilere og test første del Utvide programmet stegvis og teste for hvert steg Rekursiv metode for binærsøk Rekursiv metode som leter etter talletk. Returnererks indeks hvis funnet, 1 ellers. 1 int binarsok ( int [ ] a, int fra, int til, int k) { 2 int midten; 3 if ( fra > t i l ) { 4 return 1; 5 } else { 6 midten = ( fra + t i l ) / 2; 7 if (k == a[midten ] ) { 8 return midten; 9 } else if (k < a[midten ] ) { 10 return binarsok ( a, fra, midten 1, k ) ; 11 } else { // k > a[midten ] 12 return binarsok (a, midten+1, til, k ) ; 13 } 14 } 15 } Forstå spillet/problemet Illustrasjonen er hentet fra Bare en plate kan flyttes om gangen Platen som flyttes må flyttes til en av de andre pinnene En plate kan ikke legges over en mindre plate

5 Om tårnet i Hanoi eller Hanois tårn Legenden Hindutempel med 3 påler, 64 gullplater med hull i midten Når alle 64 plater er flyttet til en annen påle vil templet og verden gå under Minst enkeltflyttinger Edouard Lucas 1883 Spillet Det finnes flere algoritmer Lage en plan for hva programmet skal gjøre (med ord) Metoden som kan flytte tre plater lages slik: Vha metoden som kan flytte 2 plater flytter vi disse til pinne 2 (via). Så flytter vi den største plata (nr 3) fra pinne 1 (fra) til pinne 3 (til). Til sist flytter vi de 2 platene fra pinne 2 (via) til pinne 3 (til) vha metoden som kan flytte 2. Så lager vi en ny metode som kan flytte 4 plater. Denne bruker metoden vi nettopp laget som kan flytte 3 plater. Slik fortsetter vi, til vi har laget metoden som flytter så mange plater som vi ønsker. I følge legenden 64. Først ser vi på en alternativ løsning fra nettet: Lage en plan for hva programmet skal gjøre (med ord) Løsningen av spillet er en liste av trekk eller enkeltflytninger. Et trekk er entydig bestemt hvis det angis fra hvilken pinne det flyttes til hvilken pinne, siden det bare er lov å flytte platen som ligger øverst. Hvis de tre pinnene heter 1 (fra), 2 (via), og 3 (til). Og spillet går ut på å flytte to plater fra pinne 1 til pinne 3, er løsningen denne lista med 3 enkeltflytninger: Flytt en plate fra 1 til 2 Flytt en plate fra 1 til 3 Flytt en plate fra 2 til 3 Lag først en metode som kan flytte en plate. Lag så en som kan flytte to plater vha den første. Så en som kan flytte tre plater. Ikke-rekursiv algoritme som løser Hanois tårn med n plater Definerer en positiv retning: P1 P2 P3 P1 hvis antall plater er et ulikt tall P1 P3 P2 P1 hvis antall plater er et partall Algoritme: Gå i løkke: 1. Flytt den minste platen en pinne i postiv retning 2. Gjør det eneste andre lovlige trekket (enkeltflytt) som ikke involverer den minste platen. Avslutt løkka hvis 2 ikke var mulig, hvis 2 kunne gjøres, fortsett slutt

6 Ikke-rekursiv algoritme som løser Hanois tårn med n plater I kvasikode: while (!ferdig ) { 1. Flytt den minste platen en pinne i postiv retning 2. Hvis mulig, gjør det lovlige trekket mellom de to andre p (ikke pinnen med den minste platen) Hvis trekk 2 ikke var mulig { ferdig = true } } Det er lett å lage en datamodell og et javaprogram som utfører algoritmen ved å angi hvilke enkeltflytt som skal gjøres. Det er derimot vanskelig å skjønne at dette programmet løser Hanois tårn mednplater. (Beviset for det går langt utover det vi skal lære i INF1010. Interesserte kan finne bevis på nettet, f.eks. andy/courses/3101/lecture-notes/ln0.html) 1 public static void flytt64 ( int fra, int t i l, int via ) { 2 flytt63 ( fra, via, t i l ) ; 3 flytt1 ( fra, til, via ) ; 4 flytt63 ( via, til, fra ) ; 5 } 6 7 public static void flytt1 ( int fra, int t i l, int via ) { 8 System. out. println ( Flytter en plate fra : 9 + fra + t i l : + t i l ) ; 10 } public static void flytt63 ( int fra, int t i l, int via ) {... } Først skriver vi et program som løser det legendariske problemet med 64 plater. 64 er mer konkret enn n og lettere å forholde seg til. Vi vet allerede nå at løsningen på oppgaven er en sekvens (liste) av (lovlige) flytt. Lage en metode som kan flytte 64 plater ved hjelp av to andre metoder: 1. en metode som kan flytte en plate 2. en metode som kan flytte 63 plater Hvis flytt63 gjør det den skal vil dette virke. Vi må da programmere flytt63, og gjør det over samme lest: 1 public static void flytt63 ( int fra, int t i l, int via ) { 2 flytt62 ( fra, via, t i l ) ; 3 flytt1 ( fra, til, via ) ; 4 flytt62 ( via, til, fra ) ; 5 } Vi skjønner mønsteret (vi trenger flytt62, flytt61,..., flytt2 også) og hvis vi behersker en teksteditor godt, bruker vi ikke lang tid på å lage programmet:

7 1 public static void flytt64 ( int fra, int t i l, int via ) { 2 flytt63 ( fra, via, t i l ) ; 3 flytt1 ( fra, til, via ) ; 4 flytt63 ( via, til, fra ) ; 5 } 6 7 public static void flytt63 ( int fra, int t i l, int via ) { 8 flytt62 ( fra, via, t i l ) ; 9 flytt1 ( fra, til, via ) ; 10 flytt62 ( via, til, fra ) ; 11 }... Denne måten å utvikle programmet på (vi bruker metoder vi ikke har programmert ennå) kalles top-down, siden vi begynner i den komplekse enden (løser problemet for 64 plater og antar vi har metoder som løser de enklere oppgavene før vi har laget dem). lag først en metode som kan flytte 64 plater (vha flytt63) så en som kan flytte 63 ved hjelp av den som kan flytte 62 så en som kan flytte så en som kan flytte 2 ved hjelp av en som kan flytte 1 tilslutt den som flytter 1 plate 1 2 // 60 metoder utelatt ( flytt62... tilogmed... flytt3 ) ) 3 4 public static void flytt2 ( int fra, int t i l, int via ) { 5 flytt1 ( fra, via, t i l ) ; 6 flytt1 ( fra, til, via ) ; 7 flytt1 ( via, til, fra ) ; 8 } 9 10 public static void flytt1 ( int fra, int t i l, int via ) { 11 System. out. println ( Flytter en plate fra : 12 + fra + t i l : + t i l ) ; 13 } bottom-up programutvikling Vi kan også tenke omvendt. Den utviklingsmetoden kalles bottom-up: lag først en metode som kan flytte 1 plate ved hjelp av den lager vi metoden som kan flytte 2 så en som kan flytte 3 ved hjelp av metoden som flytter 2... så en som kan flytte 63 ved hjelp av den som kan flytte 62 tilslutt en som kan flytte 64 Programmet blir det samme uansett utviklingsmetode.

8 Rekursiv metode som kan flytte n plater Mens vi har laget 64 nesten like metoder, har vi fått ideen om å la antall plater som skal flyttes være en parameter til metoden, la oss kalle antalletn, og de tre pinnene henholdsvis frapinnen, tilpinnen og viapinnen: 1. flyttn 1 plater fra frapinnen til viapinnen 2. flytt 1 plate fra frapinnen til tilpinnen 3. flyttn 1 plater fra viapinnen til tilpinnen Hvis algoritmen klarer å flytten 1 plater riktig, skulle dette fungere fornplater (vi har programmert slik). Vi sørger så for at metoden virker forn=1 (basistilfellet) og metoden vil være korrekt (ved induksjon). Vi skriver algoritmen i java: Utvide programmet stegvis og teste for hvert steg Hva er basistilfellet og er de rekursive kallene nærmere dette? Hvordan representerer vi pinner og plater i programmet (datamodellen)? Vi har her utviklet et program som lager en liste over enkeltflytninger som må gjøres for å løse oppgaven. En naturlig utvidelse (er vi nå bottom-up eller top-down?) er at vi ønsker at vi istedet skal se trekkene bli utført grafisk på skjermen. Til det trenger vi et utsyn som kan tegne opp de tre pålene eller pinnene, med platene på. Da kan det kanskje være hensiktsmessig å ha en modell av situasjonen i spillet. Ved å kalle på en passende metode i utsynet fikk vi så tegnet situasjonen på skjermen. I stedet for å skrive ut enkeltflytningene, kan man lage kommandoer (metodekall) til modellen som foretar den tilsvarende endringen. I dette eksemplet er datamodellen så enkel, at det er lett å klare seg uten en egen modellklasse og la utsynet lese datastrukturen direkte. Rekursiv metode som kan flytte n plater 1 public static void flytt ( int ant, int fra, int til, int via ) { 2 if ( ant == 0) { 3 } else { 4 flytt ( ant 1, fra, via, t i l ) ; 5 flytt1 ( fra, t i l ) ; 6 flytt ( ant 1, via, til, fra ) ; 7 } 8 } 9 10 public static void flytt1 ( int fra, int t i l ) { 11 antallflytt++; 12 System. out. println ( Flytter en plate fra pinne 13 + fra + t i l pinne + t i l ) ; 14 } Utvide programmet stegvis og teste for hvert steg En annen naturlig utvidelse er å la brukeren få velge antall plater i spillet. Vi kan også tenke oss muligheten av at brukeren får spille spillet ved å angi hvilken plate som skal flyttes. Hvis andre har laget en spesifikasjon (eller prekode) er det på dette stadiet (når vi vet vi har løst selve kjernen av problemet) naturlig å se på denne igjen og starte med å innarbeide den til et ferdig program.

Dagens temaer. Sortering: 4 metoder Søking: binærsøk Rekursjon: Hanois tårn

Dagens temaer. Sortering: 4 metoder Søking: binærsøk Rekursjon: Hanois tårn Dagens temaer Sortering: 4 metoder Hvorfor sortering (og søking) er viktig i programmering Sortering når objektene som skal sorteres er i et array 1. Sorterering ved bruk av binærtre som «mellomlager»

Detaljer

Rekursjon. Binærsøk. Hanois tårn.

Rekursjon. Binærsøk. Hanois tårn. Rekursjon Binærsøk. Hanois tårn. Hvorfor sortering (og søking) er viktig i programmering «orden» i dataene vi blir fort lei av å lete poleksempel internett «alt» er søking og sortering alternativer til

Detaljer

Rekursjon. Hanois tårn. Milepeler for å løse problemet

Rekursjon. Hanois tårn. Milepeler for å løse problemet Rekursjon. Hanois tårn. Milepeler for å løse problemet Hanois tårn. Milepeler for å løse problemet Forstå spillet Bestemme/skjønne hvordan spillet løses Lage en plan for hva programmet skal gjøre (med

Detaljer

Dagens tema. Sortering. Fortsettelse om programmering vha tråder.

Dagens tema. Sortering. Fortsettelse om programmering vha tråder. Dagens tema Sortering. Fortsettelse om programmering vha tråder. «orden» i dataene vi blir fort lei av å lete poleksempel internett «alt» er søking og sortering alternativer til sortering og søking binære

Detaljer

Dagens tema. Sortering. Fortsettelse om programmering vha tråder.

Dagens tema. Sortering. Fortsettelse om programmering vha tråder. Dagens tema Sortering. Fortsettelse om programmering vha tråder. «orden» i dataene vi blir fort lei av å lete poleksempel internett «alt» er søking og sortering alternativer til sortering og søking binære

Detaljer

Hvorfor sortering og søking? Søking og sortering. Binære søketrær. Ordnet innsetting forbereder for mer effektiv søking og sortering INF1010 INF1010

Hvorfor sortering og søking? Søking og sortering. Binære søketrær. Ordnet innsetting forbereder for mer effektiv søking og sortering INF1010 INF1010 Hvorfor sortering og søking? Man bør ha orden i dataene umulig å leve uten i informasjonssamfunnet vi blir fort lei av å lete poleksempel internett alt er søking og sortering alternativer til sortering

Detaljer

En implementasjon av binærtre. Dagens tema. Klassestruktur hovedstruktur abstract class BTnode {}

En implementasjon av binærtre. Dagens tema. Klassestruktur hovedstruktur abstract class BTnode {} En implementasjon av binærtre Dagens tema Eksempel på binærtreimplementasjon Rekursjon: Tårnet i Hanoi Søking Lineær søking Klassestruktur hovedstruktur abstract class { class Person extends { class Binaertre

Detaljer

Vanlige datastrukturer. I dette lysarksettet

Vanlige datastrukturer. I dette lysarksettet Vanlige datastrukturer I dette lysarksettet datastrukturer Datastrukturer i Med datastruktur mener vi måten objektene i et program er strukturert på. Særlig blir det aktuelt å snakke om struktur hvis vi

Detaljer

INF1010. Om pensum INF1010 INF1010 INF1010 INF1010. Det vesentlige er å forstå og kunne lage programmer ved hjelp av eksemplene i bøkene.

INF1010. Om pensum INF1010 INF1010 INF1010 INF1010. Det vesentlige er å forstå og kunne lage programmer ved hjelp av eksemplene i bøkene. Om pensum Dagens forelesning handler om (de to datastrukturene) lister og binære trær. Etter forelesningen skal studentene kjenne til datastrukturene lister og binære trær og kunne lage programmer som

Detaljer

Quicksort. Fra idé til algoritme.

Quicksort. Fra idé til algoritme. Quicksort Fra idé til algoritme. Quicksortalgoritme algoritmeidé 1. Del arrayen i to deler, slik at alle elementer i den ene delen er mindre enn alle elementer i den andre delen. Q U I C K S O R T A L

Detaljer

INF1010 notat: Binærsøking og quicksort

INF1010 notat: Binærsøking og quicksort INF1010 notat: Binærsøking og quicksort Ragnhild Kobro Runde Februar 2004 I dette notatet skal vi ta for oss ytterligere to eksempler der rekursjon har en naturlig anvendelse, nemlig binærsøking og quicksort.

Detaljer

INF1010 e-postadresser

INF1010 e-postadresser INF1010 e-postadresser Ikke-faglige spørsmål til studieinfo@ifi.uio.no. Faglige spørsmål til blogen eller til @ifi.uio.no: brukernavn kristoeb josek stianf bendiko bmmender espeak richar daghf

Detaljer

Binære søketrær. Et notat for INF1010 Stein Michael Storleer 16. mai 2013

Binære søketrær. Et notat for INF1010 Stein Michael Storleer 16. mai 2013 Binære søketrær Et notat for INF Stein Michael Storleer 6. mai 3 Dette notatet er nyskrevet og inneholder sikkert feil. Disse vil bli fortløpende rettet og datoen over blir oppdatert samtidig. Hvis du

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1010 Objektorientert programmering Dato: 9. juni 2016 Tid for eksamen: 09.00 15.00 (6 timer) Oppgavesettet er på 7 sider. Vedlegg:

Detaljer

INF1010 Rekursive metoder, binære søketrær. Algoritmer: Mer om rekursive kall mellom objekter Ny datastruktur: binært tre

INF1010 Rekursive metoder, binære søketrær. Algoritmer: Mer om rekursive kall mellom objekter Ny datastruktur: binært tre INF1010 Rekursive metoder, binære søketrær Algoritmer: Mer om rekursive kall mellom objekter Ny datastruktur: binært tre public void skrivutmeg ( ) { System. out. println (navn + " er venn med " + minbestevennheter

Detaljer

EKSAMEN. Dato: 18. mai 2017 Eksamenstid: 09:00 13:00

EKSAMEN. Dato: 18. mai 2017 Eksamenstid: 09:00 13:00 EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 18. mai 2017 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Kalkulator Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet

Detaljer

Finne et personobjekt med et gitt navn. Sette personobjekt inn i treet

Finne et personobjekt med et gitt navn. Sette personobjekt inn i treet INF1010 e-ostadresser Ikke-faglige sørsmål til studieinfo@ifi.uio.no. Faglige sørsmål til blogen eller til @ifi.uio.no: brukernavn navn kristoeb Kristoffer Egil Bonarjee josek Jose Louis Rojas

Detaljer

Algoritmer og datastrukturer Eksamen

Algoritmer og datastrukturer Eksamen Eksamen - Algoritmer og datastrukturer - Høgskolen i Oslo og Akershus - 27.11.2012 Side 1 av 6 Algoritmer og datastrukturer Eksamen 27.11.2012 Eksamensoppgaver Råd og tips: Bruk ikke for lang tid på et

Detaljer

EKSAMEN. Dato: 9. mai 2016 Eksamenstid: 09:00 13:00

EKSAMEN. Dato: 9. mai 2016 Eksamenstid: 09:00 13:00 EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 9. mai 2016 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet består

Detaljer

Lenkelister. Lister og køer. Kopi av utvalgte sider fra forelesningen.

Lenkelister. Lister og køer. Kopi av utvalgte sider fra forelesningen. Lenkelister. Lister og køer. Kopi av utvalgte sider fra forelesningen. "Taher" type: String : type: :... type: : inf1010student null michael@ifi.uio.no INF1010 26. januar 2012 (uke 4) 2 class Eks01 { public

Detaljer

INF1010 siste begreper før oblig 2

INF1010 siste begreper før oblig 2 INF1010 siste begreper før oblig 2 Sammenligning. Mer lenkede lister. Forskjellige listeimplementasjoner. Binære trær. Bittelitt om grensesnitt (interface). Dagens forelesning Flere temaer på grunn av

Detaljer

INF1010 Binære søketrær ++

INF1010 Binære søketrær ++ INF1010 Binære søketrær ++ Programeksempler med insetting, gjenfinning av noder i et binært søketre samt eksempler på hvordan lage en liste av et binærtre. Hva må du kunne om binære søketrær i INF1010

Detaljer

"behrozm" Oppsummering - programskisse for traversering av en graf (dybde først) Forelesning i INF februar 2009

behrozm Oppsummering - programskisse for traversering av en graf (dybde først) Forelesning i INF februar 2009 Rekursiv programmering BTeksempel Datastruktur I klassen Persontre (rotperson==) Rekursjon Noen oppgaver/problemer er rekursive «av natur» Eksempel på en rekursiv definisjon Fakultetsfunksjonen

Detaljer

Studieaktiviteter i INF1010

Studieaktiviteter i INF1010 Innhold i dette lysarksettet Dagens forelesning INF1010 Innhold i dette lysarksettet Hvordan jobbe med INF1010 Datastrukturer Algoritmer og datastrukturer Grafer (lister og trær) Objektorientert programmering

Detaljer

Binære søketrær. En ordnet datastruktur med raske oppslag. Sigmund Hansen

Binære søketrær. En ordnet datastruktur med raske oppslag. Sigmund Hansen Binære søketrær En ordnet datastruktur med raske oppslag Sigmund Hansen Lister og trær Rekke (array): 1 2 3 4 Lenket liste (dobbelt-lenket): 1 2 3 4 Binært søketre: 3 1 4 2 Binære

Detaljer

Rekursiv programmering

Rekursiv programmering Rekursiv programmering Babushka-dukker En russisk Babushkadukke er en sekvens av like dukker inne i hverandre, som kan åpnes Hver gang en dukke åpnes er det en mindre utgave av dukken inni, inntil man

Detaljer

Datastrukturer for rask søking

Datastrukturer for rask søking Søking Søkeproblemet Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke? Effektiviteten til søkealgoritmer avhenger av: Om datastrukturen

Detaljer

Rekursiv programmering

Rekursiv programmering Rekursiv programmering Babushka-dukker En russisk Babushkadukke er en sekvens av like dukker inne i hverandre, som kan åpnes Hver gang en dukke åpnes er det en mindre utgave av dukken inni, inntil man

Detaljer

INF1010 Sortering. Marit Nybakken 1. mars 2004

INF1010 Sortering. Marit Nybakken 1. mars 2004 INF1010 Sortering Marit Nybakken marnybak@ifi.uio.no 1. mars 2004 Dette dokumentet skal tas med en klype salt og forfatter sier fra seg alt ansvar. Dere bør ikke bruke definisjonene i dette dokumentet

Detaljer

Dagens forelesning. INF1010 Datastrukturer Lister og køer Pekerkjedelister Øvelser. Innhold i dette lysarksettet

Dagens forelesning. INF1010 Datastrukturer Lister og køer Pekerkjedelister Øvelser. Innhold i dette lysarksettet Innhold i dette lysarksettet Dagens forelesning INF1010 Innhold i dette lysarksettet Hvordan jobbe med INF1010 Datastrukturer Algoritmer og datastrukturer Grafer (lister og trær) Objektorientert programmering

Detaljer

Oppgavesettet består av 7 sider, inkludert denne forsiden. Kontroll& at oppgaven er komplett før du begynner å besvare spørsmålene.

Oppgavesettet består av 7 sider, inkludert denne forsiden. Kontroll& at oppgaven er komplett før du begynner å besvare spørsmålene. Høgskoleni Østfold EKSAMEN Emnekode: Emnenavn: ITF20006 Algoritmer og datastrukturer Dato: Eksamenstid: 9. mai 2016 9.00 13.00 Hjelpemidler: Faglærer: Alle trykte og skrevne Jan Høiberg Om eksamensoppgaven

Detaljer

INF2220: Time 12 - Sortering

INF2220: Time 12 - Sortering INF0: Time 1 - Sortering Mathias Lohne mathialo Noen algoritmer Vi skal nå se på noen konkrete sorteringsalgoritmer. Gjennomgående i alle eksempler vil vi sortere tall etter tallverdi, men som diskutert

Detaljer

Søkeproblemet. Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke?

Søkeproblemet. Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke? Søking Søkeproblemet Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke? Effektiviteten til søkealgoritmer avhenger av: Om datastrukturen

Detaljer

INF2220: Forelesning 2

INF2220: Forelesning 2 INF2220: Forelesning 2 Mer om analyse av algoritmer Analyse av binære søketrær Balanserte søketrær Rød-svarte trær (kapittel12.2) B-trær (kapittel 4.7) ANALYSE AV ALGORITMER 2 Analyse av tidsforbruk Hvor

Detaljer

Definisjon av binært søketre

Definisjon av binært søketre Binære søketrær Definisjon av binært søketre For alle nodene i et binært søketre gjelder: Alle verdiene i nodens venstre subtre er mindre enn verdien i noden Alle verdiene i nodens høyre subtre er større

Detaljer

Operasjoner på lenkede lister (enkeltlenket) Eksempel på en lenket liste: personliste. INF januar 2010 (uke 3) 2

Operasjoner på lenkede lister (enkeltlenket) Eksempel på en lenket liste: personliste. INF januar 2010 (uke 3) 2 Velkommen til INF1010 Studieaktiviteter i INF1010 Programmering (oppgaveløsning) alene/kollokvier programmeringslab (plenums)øvelser forelesninger gruppe som repeterer stoff fra forelesning, og øvelser

Detaljer

Sorteringsproblemet. Gitt en array A med n elementer som kan sammenlignes med hverandre:

Sorteringsproblemet. Gitt en array A med n elementer som kan sammenlignes med hverandre: Sortering Sorteringsproblemet Gitt en array A med n elementer som kan sammenlignes med hverandre: Finn en ordning (eller permutasjon) av elementene i A slik at de står i stigende (evt. avtagende) rekkefølge

Detaljer

Eks 1: Binærtre Binærtretraversering Eks 2: Binærtre og stakk

Eks 1: Binærtre Binærtretraversering Eks 2: Binærtre og stakk Godkjent oblig 1? Les e-post til din UiO-adresse Svar på e-post fra lablærer Ingen godkjenning før avholdt møte med lablærer Godkjentlistene brukes ikke til å informere om status for obligene Ta vare på

Detaljer

Løsnings forslag i java In115, Våren 1998

Løsnings forslag i java In115, Våren 1998 Løsnings forslag i java In115, Våren 1998 Oppgave 1 // Inne i en eller annen klasse private char S[]; private int pardybde; private int n; public void lagalle(int i) if (i==n) bruks(); else /* Sjekker

Detaljer

Løsnings forslag i java In115, Våren 1996

Løsnings forslag i java In115, Våren 1996 Løsnings forslag i java In115, Våren 1996 Oppgave 1a For å kunne kjøre Warshall-algoritmen, må man ha grafen på nabomatriseform, altså en boolsk matrise B, slik at B[i][j]=true hvis det går en kant fra

Detaljer

Rekursjon som programmeringsteknikk

Rekursjon som programmeringsteknikk Rekursjon Kap.7 Sist oppdatert 15.02.10 Rekursjon som programmeringsteknikk 10-1 Rekursiv tenkning Rekursjon er en programmeringsteknikk der en metode kan kalle seg selv for å løse problemet. En rekursiv

Detaljer

Dagens tema INF1010 INF1010 INF1010 INF1010

Dagens tema INF1010 INF1010 INF1010 INF1010 I eksemplene om lister og binære trær har vi hittil hatt pekerne inne i objektene i strukturen. ( Innbakt struktur ).Eksempel: Dagens tema Implementasjon av strukturer (lister, binære trær) class { ; ;

Detaljer

Kapittel 8: Sortering og søking

Kapittel 8: Sortering og søking Kapittel 8: Sortering og søking Forelesningsnotater for: Java som første programmeringsspråk Khalid Azim Mughal, Torill Hamre, Rolf W. Rasmussen Cappelen Akademisk, 2003. ISBN 82-02-23274-0 http://www.ii.uib.no/~khalid/jfps/

Detaljer

Gjøre noe i hele treet = kalle på samme metode i alle objekten. Java datastruktur Klassestruktur

Gjøre noe i hele treet = kalle på samme metode i alle objekten. Java datastruktur Klassestruktur Godkjent oblig 1? Les e-post til din UiO-adresse Svar på e-post fra lablærer Ingen godkjenning før avholdt møte med lablærer Godkjentlistene brukes ikke til å informere om status for obligene Ta vare på

Detaljer

Hvor raskt klarer vi å sortere?

Hvor raskt klarer vi å sortere? Sortering Sorteringsproblemet Gitt en array med n elementer som kan sammenlignes med hverandre: Finn en ordning (eller permutasjon) av elementene slik at de står i stigende (evt. avtagende) rekkefølge

Detaljer

Velkommen til INF1010

Velkommen til INF1010 Velkommen til INF1010 Dagens forelesning Hvordan jobbe med INF1010 Pensum Datastrukturer Grafer (lister og trær) Objektorientert programmering Lister og køer Hva er en liste? FIFO- og LIFO-lister Lenkede

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF2220 Algoritmer og datastrukturer Eksamensdag: 16. desember 2013 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 8 sider.

Detaljer

Lenkelister. Lister og køer.

Lenkelister. Lister og køer. Lenkelister. Lister og køer. INF1010 Stein Michael Storleer 27. januar 2011 Dagens forelesning Lenkede lister Lenkede lister Eksempel på en lenket liste: personliste Operasjoner på lenkede lister (enkeltlenket)

Detaljer

Ny/utsatt EKSAMEN. Dato: 6. januar 2017 Eksamenstid: 09:00 13:00

Ny/utsatt EKSAMEN. Dato: 6. januar 2017 Eksamenstid: 09:00 13:00 Ny/utsatt EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 6. januar 2017 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet

Detaljer

Kapittel 9: Sortering og søking Kort versjon

Kapittel 9: Sortering og søking Kort versjon Kapittel 9: Sortering og søking Kort versjon Redigert av: Khalid Azim Mughal (khalid@ii.uib.no) Kilde: Java som første programmeringsspråk (3. utgave) Khalid Azim Mughal, Torill Hamre, Rolf W. Rasmussen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1010 Objektorientert programmering Eksamensdag: Onsdag 4. juni 2014 Tid for eksamen: 9:00-15:00 Oppgavesettet er på

Detaljer

EKSAMEN med løsningsforslag

EKSAMEN med løsningsforslag EKSAMEN med løsningsforslag Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2009 kl 09.00 til kl 13.00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Kalkulator Faglærer:

Detaljer

Endret litt som ukeoppgave i INF1010 våren 2004

Endret litt som ukeoppgave i INF1010 våren 2004 Endret litt som ukeoppgave i INF1010 våren 2004!!!" # # $# ##!!%# # &##!'! Kontroller at oppgavesettet er komplett før du begynner å besvare det. Les gjerne gjennom hele oppgavesettet før du begynner med

Detaljer

Definisjon: Et sortert tre

Definisjon: Et sortert tre Binære søketrær Definisjon: Et sortert tre For alle nodene i et binært søketre gjelder: Alle verdiene i nodens venstre subtre er mindre enn verdien i noden Alle verdiene i nodens høyre subtre er større

Detaljer

INF110 Algoritmer og datastrukturer TRÆR. Vi skal i denne forelesningen se litt på ulike typer trær:

INF110 Algoritmer og datastrukturer TRÆR. Vi skal i denne forelesningen se litt på ulike typer trær: TRÆR Vi skal i denne forelesningen se litt på ulike typer trær: Generelle trær (kap. 4.1) Binærtrær (kap. 4.2) Binære søketrær (kap. 4.3) Den siste typen trær vi skal behandle, B-trær (kap. 4.7) kommer

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF 110 Algoritmer og datastrukturer Eksamensdag : Lørdag 8. desember 2001 Tid for eksamen : 09.00-15.00 Oppgavesettet er på

Detaljer

... Når internminnet blir for lite. Dagens plan: Løsning: Utvidbar hashing. hash(x) katalog. O modellen er ikke lenger gyldig ved

... Når internminnet blir for lite. Dagens plan: Løsning: Utvidbar hashing. hash(x) katalog. O modellen er ikke lenger gyldig ved Dagens plan: Utvidbar hashing (kapittel 5.6) B-trær (kap. 4.7) Abstrakte datatyper (kap. 3.1) Stakker (kap. 3.3) Når internminnet blir for lite En lese-/skriveoperasjon på en harddisk (aksesstid 7-12 millisekunder)

Detaljer

Algoritmer og Datastrukturer

Algoritmer og Datastrukturer Eksamen i Algoritmer og Datastrukturer IAI 21899 Høgskolen i Østfold Avdeling for informatikk og automatisering Lørdag 15. desember 2001, kl. 09.00-14.00 Hjelpemidler: Alle trykte og skrevne hjelpemidler.

Detaljer

Kapittel 9: Sortering og søking Kort versjon

Kapittel 9: Sortering og søking Kort versjon Kapittel 9: Sortering og søking Kort versjon Redigert av: Khalid Azim Mughal (khalid@ii.uib.no) Kilde: Java som første programmeringsspråk (3. utgave) Khalid Azim Mughal, Torill Hamre, Rolf W. Rasmussen

Detaljer

Dagens tema. INF Algoritmer og datastrukturer. Binærtrær. Generelle trær

Dagens tema. INF Algoritmer og datastrukturer. Binærtrær. Generelle trær Dagens tema INF2220 - Algoritmer og datastrukturer HØSTEN 2007 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 2: Binærtrær og abstrakte datatyper (ADT) Kort repetisjon Generelle trær

Detaljer

Kap.8 Sortering og søking sist oppdatert 16.03

Kap.8 Sortering og søking sist oppdatert 16.03 Kap.8 Sortering og søking sist oppdatert 16.03 Del 1 Søking - lineær søking m/u sorterte elementer - binærsøking - analyse Del 2 Sortering - gamle sorteringsmetoder fra i høst - nye -analyse Copyright

Detaljer

Algoritmer og datastrukturer Løsningsforslag

Algoritmer og datastrukturer Løsningsforslag 1 Algoritmer og datastrukturer Løsningsforslag Eksamen 29. november 2011 Oppgave 1A Verdien til variabelen m blir lik posisjonen til den «minste»verdien i tabellen, dvs. bokstaven A, og det blir 6. Oppgave

Detaljer

INF2220: Forelesning 1. Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel )

INF2220: Forelesning 1. Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel ) INF2220: Forelesning 1 Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel 4.1-4.3 + 4.6) PRAKTISK INFORMASJON 2 Praktisk informasjon Kursansvarlige Ragnhild Kobro Runde (ragnhilk@ifi.uio.no)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Prøveeksamen i : INF2440 Praktisk parallell programmering Prøveeksamensdag : 26. mai 2014 Tidspunkter: 11.00 Utdeling av prøveeksamen 15:15

Detaljer

EKSAMEN. Algoritmer og datastrukturer

EKSAMEN. Algoritmer og datastrukturer EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2009 kl 09.00 til kl 13.00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Kalkulator Faglærer: Gunnar Misund

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 12. desember 2008 Tid for eksamen: 9.00 12.00 Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: INF2220

Detaljer

Løsningsforslag ukeoppg. 9: 19. - 25. okt (INF1000 - Høst 2011)

Løsningsforslag ukeoppg. 9: 19. - 25. okt (INF1000 - Høst 2011) Løsningsforslag ukeoppg. 9: 19. - 25. okt (INF1000 - Høst 2011) HashMap, innstikksortering, javadoc (kap. 9.1-9.11, m.m. i "Rett på Java" 3. utg.) NB! Legg merke til at disse er løsningsforslag. Løsningene

Detaljer

Rekursjon. (Big Java kapittel 13) Fra Urban dictionary: recursion see recursion. IN1010 uke 8 våren Dag Langmyhr

Rekursjon. (Big Java kapittel 13) Fra Urban dictionary: recursion see recursion. IN1010 uke 8 våren Dag Langmyhr Fakultet Bredde Rekursjon Fibonacci Sjakk Hanois tårn Lister Oppsummering Rekursjon (Big Java kapittel 13) Fra Urban dictionary: recursion see recursion. n! = n x n-1 x n-2 x... x 2 x 1 Å beregne fakultet

Detaljer

Dagens forelesning. Java 13. Rollefordeling (variant 1) Rollefordeling (variant 2) Design av større programmer : fordeling av roller.

Dagens forelesning. Java 13. Rollefordeling (variant 1) Rollefordeling (variant 2) Design av større programmer : fordeling av roller. Dagens forelesning Java 13 Design av større programmer : fordeling av roller INF 101-13. mars 2003 Flere eksempler på bruk av objekter MVC-prinsippet MVC-prinsippet Flere eksempler på programmer med objekter

Detaljer

Algoritmer og datastrukturer Løsningsforslag

Algoritmer og datastrukturer Løsningsforslag Algoritmer og datastrukturer ved Høgskolen i OsloSide 1 av 6 Algoritmer og datastrukturer Løsningsforslag Eksamen 24. februar 2010 Oppgave 1A 1. Komparatoren sammenligner først lengdene til de to strengene.

Detaljer

Kapittel 9: Sortering og søking Kort versjon

Kapittel 9: Sortering og søking Kort versjon Kapittel 9: Sortering og søking Kort versjon Redigert av: Khalid Azim Mughal (khalid@ii.uib.no) Kilde: Java som første programmeringsspråk (3. utgave) Khalid Azim Mughal, Torill Hamre, Rolf W. Rasmussen

Detaljer

Algoritmer og Datastrukturer

Algoritmer og Datastrukturer Eksamen i Algoritmer og Datastrukturer IAI 20102 Høgskolen i Østfold Avdeling for informatikk og automatisering Lødag 5. juni 2004, kl. 09.00-13.00 Hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 115 og IN 110 Algoritmer og datastrukturer Eksamensdag: 14. mai 1996 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 8 sider.

Detaljer

Binære trær: Noen algoritmer og anvendelser

Binære trær: Noen algoritmer og anvendelser Binære trær: Noen algoritmer og anvendelser Algoritmer / anvendelser: Søking i usortert binært tre Telling av antall noder og nivåer i treet Traversering av binære trær Binære uttrykkstrær Kunstig intelligens(?):

Detaljer

Versjon (vil bli endret).

Versjon (vil bli endret). Versjon 24.01.2012 (vil bli endret). Dette dokumentet bør leses før forelesningen 26. januar 2012 og er en del av «pensum». De er også laget med tanke på repetisjon. (Lysarkene som blir brukt egner seg

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO BOKMÅL Det matematisk-naturvitenskapelige fakultet Eksamen i : Eksamensdag : Torsdag 2. desember 2004 Tid for eksamen : 09.00 12.00 Oppgavesettet er på : Vedlegg : Tillatte hjelpemidler

Detaljer

Kapittel 8: Sortering og søking INF100

Kapittel 8: Sortering og søking INF100 Forelesningsnotater for: Kapittel 8: Sortering og søking INF100 Java som første programmeringsspråk Khalid Azim Mughal, Torill Hamre, Rolf W. Rasmussen Cappelen Akademisk, 2003. ISBN 82-02-23274-0 http://www.ii.uib.no/~khalid/jfps/

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamensdag: 14. desember 2015 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 6 sider. Vedlegg: Tillatte hjelpemidler: INF2220

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Prøveksamen i INF1010 Objektorientert programmering Dato: 26. mai 2016 Tid for eksamen: 09.00 15.00 (6 timer) Oppgavesettet er på 6 sider.

Detaljer

Oppgave 1 a. INF1020 Algoritmer og datastrukturer. Oppgave 1 b

Oppgave 1 a. INF1020 Algoritmer og datastrukturer. Oppgave 1 b Oppgave 1 1 a INF1020 Algoritmer og datastrukturer Forelesning 14: Gjennomgang av eksamen vår 2001 oppgave 1,2,4 Arild Waaler Institutt for informatikk, Universitetet i Oslo Oppgave 1 a Programmer en ikke-rekursiv

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1010 Objektorientert programmering Dato: 4. juni 2015 Tid for eksamen: 09.00 15.00 (6 timer) Oppgavesettet er på 6 sider. Vedlegg:

Detaljer

EKSAMEN. Dato: 28. mai 2018 Eksamenstid: 09:00 13:00

EKSAMEN. Dato: 28. mai 2018 Eksamenstid: 09:00 13:00 EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 28. mai 2018 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 4. juni 2005 Tid for eksamen: 0900 1500 Oppgavesettet er på 5 sider. Vedlegg: Tillatte hjelpemidler: INF1010 Objektorientert

Detaljer

Ny/utsatt EKSAMEN. Dato: 5. januar 2018 Eksamenstid: 09:00 13:00

Ny/utsatt EKSAMEN. Dato: 5. januar 2018 Eksamenstid: 09:00 13:00 Ny/utsatt EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 5. januar 2018 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet

Detaljer

Rekursjon. (Big Java kapittel 13) Fra Urban dictionary: recursion see recursion. IN1010 uke 8 våren Dag Langmyhr

Rekursjon. (Big Java kapittel 13) Fra Urban dictionary: recursion see recursion. IN1010 uke 8 våren Dag Langmyhr Fakultet Rekursjon Fibonacci Sjakk Hanois tårn Lister Oppsummering Rekursjon (Big Java kapittel 13) Fra Urban dictionary: recursion see recursion. n! = n x n-1 x n-2 x... x 2 x 1 Å beregne fakultet Den

Detaljer

Algoritmer og Datastrukturer

Algoritmer og Datastrukturer Eksamen i Algoritmer og Datastrukturer IAI 20102 Høgskolen i Østfold Avdeling for informatikk og automatisering Lødag 5. juni 2004, kl. 09.00-13.00 LØSNINGSFORSLAG 1 Del 1 60% Oppgave 1.1-10% Forklar kort

Detaljer

Løsningsforslag ukeoppg. 6: 28. sep - 4. okt (INF1000 - Høst 2011)

Løsningsforslag ukeoppg. 6: 28. sep - 4. okt (INF1000 - Høst 2011) Løsningsforslag ukeoppg. 6: 28. sep - 4. okt (INF1000 - Høst 2011) Løsningsforslag til oppgave 7, 8, og 9 mangler Klasser og objekter (kap. 8.1-8.14 i "Rett på Java" 3. utg.) NB! Legg merke til at disse

Detaljer

INF2220: Forelesning 2

INF2220: Forelesning 2 INF2220: Forelesning 2 Balanserte søketrær Rød-svarte trær (kapittel12.2) B-trær (kapittel 4.7) REPETISJON: BINÆRE SØKETRÆR 2 Binære søketrær 8 4 12 2 7 9 15 6 11 13 16 For enhver node i et binært søketre

Detaljer

Kapittel 8: Sortering og søking INF100

Kapittel 8: Sortering og søking INF100 Forelesningsnotater for: Kapittel 8: Sortering og søking INF100 Java som første programmeringsspråk Khalid Azim Mughal, Torill Hamre, Rolf W. Rasmussen Cappelen Akademisk, 2003. ISBN 82-02-23274-0 http://www.ii.uib.no/~khalid/jfps/

Detaljer

INF2220: Forelesning 2. Balanserte søketrær Rød-svarte trær (kapittel12.2) B-trær (kapittel 4.7)

INF2220: Forelesning 2. Balanserte søketrær Rød-svarte trær (kapittel12.2) B-trær (kapittel 4.7) INF2220: Forelesning 2 Balanserte søketrær Rød-svarte trær (kapittel12.2) B-trær (kapittel 4.7) REPETISJON: BINÆRE SØKETRÆR 2 Binære søketrær 8 4 12 2 7 9 15 6 11 13 16 For enhver node i et binært søketre

Detaljer

INF Uke 10. Løsningsforslag ukesoppgaver oktober 2012

INF Uke 10. Løsningsforslag ukesoppgaver oktober 2012 INF1000 - Uke 10 Løsningsforslag ukesoppgaver 10 24. oktober 2012 Løsningsforlag Oppgave 1 Array vs. HashMap a) Følgende program viser et enkelt banksystem med en array kontoer[], og metoder for å finne

Detaljer

EKSAMEN Løsningsforslag. med forbehold om bugs :-)

EKSAMEN Løsningsforslag. med forbehold om bugs :-) 1 EKSAMEN Løsningsforslag med forbehold om bugs :-) Emnekode: ITF20006 000 Dato: 20. mai 2011 Emne: Algoritmer og datastrukturer Eksamenstid: 09:00 til 13:00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater

Detaljer

Algoritmer og datastrukturer Løsningsforslag

Algoritmer og datastrukturer Løsningsforslag Algoritmer og datastrukturer Løsningsforslag Eksamen 30. november 2010 Oppgave 1A Et turneringstre for en utslagsturnering med n deltagere blir et komplett binærtre med 2n 1 noder. I vårt tilfelle får

Detaljer

Algoritmer og datastrukturer Kapittel 2 - Delkapittel 2.1

Algoritmer og datastrukturer Kapittel 2 - Delkapittel 2.1 Delkapittel 2.1 Plangeometriske algoritmer Side 1 av 7 Algoritmer og datastrukturer Kapittel 2 - Delkapittel 2.1 2.1 Punkter, linjesegmenter og polygoner 2.1.1 Polygoner og internett HTML-sider kan ha

Detaljer

Forelesning inf Java 5

Forelesning inf Java 5 Ole Chr. Lingjærde 1 Forelesning inf1000 - Java 5 Tema: Mer om metoder 2D-arrayer String Ole Christian Lingjærde, 26. september 2013 Ole Chr. Lingjærde Institutt for informatikk, 26. september 2013 1 Strukturen

Detaljer

Repetisjon: Binære. Dagens plan: Rød-svarte trær. Oppgave (N + 1)!

Repetisjon: Binære. Dagens plan: Rød-svarte trær. Oppgave (N + 1)! Repetisjon: Binære søketrær Dagens plan: Rød-svarte trær (kap. 12.2) B-trær (kap. 4.7) bstrakte datatyper (kap. 3.1) takker (kap. 3.3) For enhver node i et binært søketre gjelder: lle verdiene i venstre

Detaljer

Forelesning inf Java 5

Forelesning inf Java 5 Forelesning inf1000 - Java 5 Tema: Mer om metoder 2D-arrayer String Ole Christian Lingjærde, 26. september 2013 Ole Chr. Lingjærde Institutt for informatikk, 26. september 2013 1 Strukturen til et Java-program

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 7

PG4200 Algoritmer og datastrukturer Forelesning 7 PG4200 Algoritmer og datastrukturer Forelesning 7 Lars Sydnes, NITH 19. mars 2014 I. TERMINOLOGI FOR TRÆR TRÆR Lister: Lineære Trær: Hierarkiske Modell / Språk: Bestanddeler: Noder, forbindelser. Forbindelse

Detaljer

Logaritmiske sorteringsalgoritmer

Logaritmiske sorteringsalgoritmer Logaritmiske sorteringsalgoritmer Logaritmisk sortering Rekursive og splitt og hersk metoder: Deler verdiene i arrayen i to (helst) omtrent like store deler i henhold til et eller annet delingskriterium

Detaljer

Lese fra fil. INF1000 : Forelesning 5. Eksempel. De vanligste lesemetodene. Metoder:

Lese fra fil. INF1000 : Forelesning 5. Eksempel. De vanligste lesemetodene. Metoder: Lese fra fil Filbehandling Tekster Ole Christian Lingjærde Gruppen for bioinformatikk Institutt for informatikk Universitetet i Oslo INF1000 : Forelesning 5 Vi må først importere pakken easyio Vi åpner

Detaljer