E K S A M E N S O P P G A V E

Størrelse: px
Begynne med side:

Download "E K S A M E N S O P P G A V E"

Transkript

1 HØGSKOLEN I AGDER Fakultet for teknologi E K S A M E N S O P P G A V E EMNE: FAGLÆRER: DAT 2 Grafisk Databehandling Morgan Konnestad Klasse(r): 2DTM, 2DT, 2 Siving, DT Dato: Eksamenstid, fra-til: Eksamensoppgaven består av følgende Antall sider: 8 inkl. forside Antall oppgaver: 6 Antall vedlegg: Tillatte hjelpemidler er: Ingen KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

2 OPPGAVE. (2%) NB: Du får +poeng for riktig svar, -poeng for feil svar. (Skriv besvarelsen inn på eget ark sammen med resten av besvarelsen.) Angi om du er enig(ja) eller uenig(nei) i følgende utsagn: a) Klassebiblioteket Swing er et maskinavhengig GUI som gir forskjellig utseende på brukerinterfacet på forskjellige maskinplattformer (som for eksempel på PC, MAC og Linu). b) I Java brukes adapterobjekter (for eksempel MouseAdapter) for at programmereren skal slippe å skrive de metodene som ikke skal ha innhold. c) Separasjon av brukergrensesnitt og applikasjonskode er hensiktsmessig dersom vi vil ha samme kommando tilgjengelig på flere måter (for eksempel fra nedtrekksmenyer, trykknapper og tastatur). d) Applikasjonsprogrammet må bortsett fra i male- og bildeprosesseringsapplikasjoner opprettholde en modell over det som skal vises. e) Raster Scan (Pikselbaserte) skjermer baserer seg på en displayprosessor som tolker en displayfil med kommandoer og sender til utenheten. f) Ved bruk av Cohen Sutherland sin linjeklippingsalgoritme benyttes en - bits kode for å sortere endepunktene til linjene. g) Bresenhams linjealgoritme tegner rettere linjer enn DDA algoritmen. h) Nonzero Winding number er en algoritme som kan anvendes for lyssetting av transparente objekter. i) Scanlinje-algoritmen for fylling av polygoner benytter oddeparitetsregelen ved fylling av et polygon. j) Antialiasing er en teknikk som benyttes for å bergene diffus lysrefleksjon i en scene. k) De tre basistransformasjonene er translasjon, rotasjon og skalering. l) En av de store fordelene med NURBS (Non Uniform Rational B-Spline) er at kurven er invariant ovenfor perspektiviske transformasjoner. Ja Nei 2

3 OPPGAVE 2. TRANSFORMASJONER OG PROJEKSJONER ( 8%) a). Lag et objekt fire ganger så stort. 2. Transler et objekt enheter langs -aksen. 3. Roter et objekt 9 grader om -aksen. b) Ved å utnytte spesiell ortogonal kan transformasjonsmatrisa som roterer kuben slik at den faller sammen med koordinatsystemet som indikert i oppgaven settes opp direkte. Først translerer vi kuben til origo med translasjonen: 3 2 Deretter roterer vi kuben(utnytter spesiell ortogonal): c) Med en trepunkts perspektivisk projeksjon forstår vi en projeksjon der projeksjonsplanet skjærer samtlige 3 hovedakser. I projeksjonen kan vi observere at samtlige linjer parallelle til henholdsvis hver sin hovedakse etter projeksjon vil ha et forsvinningspunkt (trepunkts projeksjon svarer til 3 forsvinningspunkter) 3

4 d) Den perspektiviske projeksjonen av punktet (2,,) ned i -y-planet når projeksjonspunktet er i (,,-6) blir: = p. 2+(-p). = 2p y = p. +(-p). = p z = p. +(-p). (-6) = p -6 Da z = i projeksjonplanet finner vi at p=6/=3/5 Da har vi at projeksjonspunktet er: (2,2,) OPPGAVE 3. SOLIDER OG KURVER (2%) a) Med en Boundary -representasjon av 3D objekter forstår vi et volum begrenset av flater. Det kan være plane polugoner eller fri-form flater. Et par andre eksempler på representasjonsformer er Octrees og CSG. b) Et Binary Space-Partitioning Tree bygges opp ved å ta utgangspunkt i et vilkårlig plan i objektet og la dette dele objektet i en innside og en utside. Dette gjentas rekursivt for samtlige flater i objekter på hver sin side av den utvalgte flaten. Samtlige noder der man har endt opp på innsiden vil da angi et volumelement av hele objektet. Ved å se på den første flaten og fortelle om vi er på innsiden eller utsiden kan man avgjøre hvilke flater som skal tegnes først. Ved å gjenta dette rekursivt for hele treet har man gjennomført fjerning av skjulte flater. c) Naturlige kubiske splines som har C, C og C 2 kontinuitet brukes ikke i noen særlig grad ved modellering da de ikke har lokal kontroll. Det vil si hele kurven/flaten må regnes ut på nytt dersom et kontrollpunkt endrer posisjon. d) Hermite kurvesegment er definert av vektoren [p k, p k+, Dp k, Dp k+ ] -. De to første angir start- og sluttpunkt. De to andre angir de retningsderivert i start og slutt av kurven. For at vi skal ha C kontinuitet må de to kurvesegmentene ha derivert med samme retning i skjøten. e) Hermite-kurver interpolerer start- og sluttpunkt, og er lettere, og mer intuitive å manipulere enn uniforme B- splines. Dette er grunnen til at de så ofte brukes i interaktive grafiske programmer fremfor uniforme B- Splines?

5 OPPGAVE. FJERNING AV SKJULTE FLATER, LYSSETTING OG FARGER (2%) a) Dybdesorteringsalgoritmen sorterer samtlige flater og maler ut den bakerste flaten først, deretter den nestbakerste. Hastigheten til algoritmen er avhengig av antall flater. Den er ikke lineær slik som z-buffer algortimen og vil derfor bruke mer enn dobbelt så lang tid når antall flater fordobles. b) Z-buffer algoritmen er i tillegg til å være en effektiv algoritme også implementert i hardware på en rekke grafikkort og er derfor en mye brukt algoritme. c) Teoretisk lysintensitet for en punktkilde avtar med over avstanden i andre (/dl 2 ). Da en lyspære ikke er en punktkilde, men har en utstrekning, så gir ikke denne formelen gode resultater direkte men må modifiseres. d) Diffus refleksjon er lik refleksjon av lys i alle retninger og opptrer typisk på matte materialer (for eksempel kritt). Spekular refleksjon er refleksjon av lys speilt om normalvektoren og opptrer typisk for blanke materialer (for eksempel polert metall) e) Ray-tracing sender inn en stråle for hver piksel inn i vår virtuelle verden. Treffer et objekt og ser på lyspåvirkningen i dette punktet samt aventuelle refleksjoner i dette punktet. Er materialet gjennomsiktig blir det også definert en refraksjonsretning. Dette fortsetter til et visst nivå før samtlige bidrag summeres.. f) Blanding av farger på skjerm og papir er to fundamentalt forskjellige prosesser. Den ene er additiv blanding mens den andre er subtraksjon blanding. Derfor brukes RGB som fargemodell ved gjengivelse av farger på skjerm mens CMY (komplementærfargene til RGB) benyttes ved gjengivelse av farger på papir? OPPGAVE 5. 3D-Studio (%) Vi skal modellere deler av en hestehenger som vist i figuren under: a) For å generere taket til hestehengeren ville jeg brukt en lofting der jeg bruker forskjellige tverrsnitt av taket langs loftingen. Hjulet ville jeg generert som et omdreiningslegeme og trukket fra sylindere i for å lage hull i hjulet. b) Dekkmønstre kan enten fysisk genereres ved lage forsenkninger i dekket eller man kan lime et bilde av mønsteret på dekket. Den ene gir et bedre nærbilde mens den andre teknikken gir bedre hastighet. OPPGAVE 6. Java 3D (2%) 5

6 Ta utgangspunkt i modellen vist i oppgave 5. Hengeren er sammensatt av følgende forenklede objekter:. Kasse (Inkluderer kasse med tilbehør som brems og håndbrems, feste til henger ) 2. Hjul foran (som kan rotere) 3. Festeanordning (for hjul foran som kan rotere med hjulet om den vertikale aksen). Hjul (Fire like hjul som bærer vekten av hengeren) Hjulet foran skal kunne rotere om to akser slik at vognen kan svinge mens de øvrige hjulene kun kan rotere om en akse. Tegn opp den scenegrafen (tre-hierarkiet /DAG Directed Acyclic Graph) som representer hengeren med innlagte muligheter for rotasjon av hjulene. Alle bevegelser skal være styrt av -objekter. Angi plassering av origo og akseretninger i forhold til hengeren gjerne i en skisse. BG Hestehenger RotY Flytt Flytt 2 Flytt 3 Flytt Flytt hjul på plass Kasse med tilbehør Hjul Hjul 2 Hjul 3 Hjul Hjul Innfestning foran Hjul Foran 6

LØSNINGSANTYDNING. HØGSKOLEN I AGDER Fakultet for teknologi. DAT 200 Grafisk Databehandling. Ingen. Klasse(r): 2DTM, 2DT, 2 Siving, DT

LØSNINGSANTYDNING. HØGSKOLEN I AGDER Fakultet for teknologi. DAT 200 Grafisk Databehandling. Ingen. Klasse(r): 2DTM, 2DT, 2 Siving, DT HØGSKOLEN I AGDER Fakultet for teknologi LØSNINGSANTYDNING EMNE: FAGLÆRER: DAT 2 Grafisk Databehandling Morgan Konnestad Klasse(r): 2DTM, 2DT, 2 Siving, DT Dato: 5.2.5 Eksamenstid, fra-til: 9. - 3. Eksamensoppgaven

Detaljer

LØSNINGSFORSLAG. Universitetet i Agder Fakultet for Teknologi og realfag. Dato: 03. desember 2009 Varighet: Antall sider inkl.

LØSNINGSFORSLAG. Universitetet i Agder Fakultet for Teknologi og realfag. Dato: 03. desember 2009 Varighet: Antall sider inkl. Universitetet i Agder Fakultet for Teknologi og realfag LØSNINGSFORSLAG Emnekode: Emnenavn: DAT2 Grafisk Databehandling Dato: 3. desember 29 Varighet: 9-3 Antall sider inkl. forside 8 Tillatte hjelpemidler:

Detaljer

Universitetet i Agder Fakultet for teknologi og realfag LØSNINGSFORSLAG. Dato: 11. desember 2008 Varighet: 0900-1300. Antall sider inkl.

Universitetet i Agder Fakultet for teknologi og realfag LØSNINGSFORSLAG. Dato: 11. desember 2008 Varighet: 0900-1300. Antall sider inkl. Universitetet i Agder Fakultet for teknologi og realfag LØSNINGSFORSLAG Emnekode: Emnenavn: DAT2 Grafisk Databehandling Dato:. desember 28 Varighet: 9 - Antall sider inkl. forside 7 OPPGAVE. (2%) a) b)

Detaljer

LØSNINGSANTYDNING EKSAMEN

LØSNINGSANTYDNING EKSAMEN Universitetet i Agder Fakultet for teknologi og realfag LØSNINGSANTYDNING EKSAMEN Emnekode: Emnenavn: DAT Grafisk Databehandling Dato: 5. desember Varighet: 9 - Antall sider inkl. forside 8 Tillatte hjelpemidler:

Detaljer

Computer Graphics with OpenGL

Computer Graphics with OpenGL Computer Graphics with OpenGL 2. Computer Graphics Hardware Plasmapaneler baserer seg på gass som satt under spenning vil emittere lys. LCD-skjermer baserer seg på at lys kan polariseres og at krystaller

Detaljer

EKSAMEN I EMNE TDT4230 VISUALISERING FREDAG 10. DESEMBER 2010 KL LØSNINGSFORSLAG

EKSAMEN I EMNE TDT4230 VISUALISERING FREDAG 10. DESEMBER 2010 KL LØSNINGSFORSLAG Side 1 av 11 EKSAMEN I EMNE TDT4230 VISUALISERING FREDAG 10. DESEMBER 2010 KL. 09.00 13.00 LØSNINGSFORSLAG OPPGAVE 1 Kubiske Bézier-kurver og flater a) Sammenhengen mellom vektoren av blandefunksjoner

Detaljer

a. Hva er de inverse transformasjonene avfølgende tre transformasjoner T, R og S: θ θ sin( ) cos( ) Fasit: 1 s x cos( θ) sin( θ) 0 0 y y z

a. Hva er de inverse transformasjonene avfølgende tre transformasjoner T, R og S: θ θ sin( ) cos( ) Fasit: 1 s x cos( θ) sin( θ) 0 0 y y z Kommentar: Svar kort og konsist. Husk at eksamen har tre oppgaver. Poengene for hver (del-) oppgave bør gi en indikasjon på hvor me tid som bør benttes per oppgave. Oppgave 1: Forskjellige emner (40 poeng)

Detaljer

E K S A M E N. Universitetet i Agder Fakultet for fakultet for Teknologi og realfag. Grafisk Databehandling

E K S A M E N. Universitetet i Agder Fakultet for fakultet for Teknologi og realfag. Grafisk Databehandling Universitetet i Agder Fakultet for fakultet for Teknologi og realfag E K S A M E N Emnekode: Emnenavn: DAT200 Grafisk Databehandling Dato: 23. November 2016 Varighet: 0900-1300 Antall sider inkl. forside

Detaljer

EKSAMEN I EMNE TDT4230 VISUALISERING LØRDAG 10. DESEMBER 2005 KL

EKSAMEN I EMNE TDT4230 VISUALISERING LØRDAG 10. DESEMBER 2005 KL NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for fysikk, informatikk og matematikk Institutt for datateknikk og informasjonsvitenskap EKSAMEN I EMNE TDT4230 VISUALISERING LØRDAG 10. DESEMBER

Detaljer

HØGSKOLEN I BERGEN Avdeling for ingeniørutdanning

HØGSKOLEN I BERGEN Avdeling for ingeniørutdanning HØGSKOLEN I BERGEN Avdeling for ingeniørutdanning Eksamen i SOD 165 Grafiske metoder Klasse : 3D Dato : 15. august 2000 Antall oppgaver : 4 Antall sider : 4 Vedlegg : Utdrag fra OpenGL Reference Manual

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF330 Metoder i grafisk databehandling og diskret geometri Eksamensdag: 3. desember 010 Tid for eksamen: 14.30 18.30 Oppgavesettet

Detaljer

TDT4195 Bildeteknikk

TDT4195 Bildeteknikk TDT495 Bildeteknikk Grafikk Vår 29 Forelesning 5 Jo Skjermo [email protected] Department of Computer And Information Science Jo Skjermo, TDT423 Visualisering 2 TDT495 Forrige gang Attributter til

Detaljer

HØGSKOLEN I SØR-TRØNDELAG

HØGSKOLEN I SØR-TRØNDELAG HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring Kandidat nr: Eksamensdato: 7. desember 007 Varighet: timer (9:00 :00) Fagnummer: LV78D Fagnavn: Digital bildebehandling Klasser: HIDT005H

Detaljer

KONTINUASJONSEKSAMEN I EMNE TDT4230 VISUALISERING TIRSDAG 9. AUGUST 2005 KL LØSNINGSFORSLAG

KONTINUASJONSEKSAMEN I EMNE TDT4230 VISUALISERING TIRSDAG 9. AUGUST 2005 KL LØSNINGSFORSLAG Side 1 av 8 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for fysikk, informatikk og matematikk Institutt for datateknikk og informasjonsvitenskap KONTINUASJONSEKSAMEN I EMNE TDT430 VISUALISERING

Detaljer

EKSAMEN I EMNE TDT4230 VISUALISERING MANDAG 12. DESEMBER 2011 KL LØSNINGSFORSLAG

EKSAMEN I EMNE TDT4230 VISUALISERING MANDAG 12. DESEMBER 2011 KL LØSNINGSFORSLAG Side 1 av 7 EKSAMEN I EMNE TDT4230 VISUALISERING MANDAG 12. DESEMBER 2011 KL. 09.00 13.00 LØSNINGSFORSLAG OPPGAVE 1 Diverse om objektrepresentasjoner a) Likningen er: ( x y r ) z r (1) 2 2 2 2 2 axial

Detaljer

EKSAMEN I EMNE TDT4230 VISUALISERING LØRDAG 18. DESEMBER 2004 KL Løsningsforslag

EKSAMEN I EMNE TDT4230 VISUALISERING LØRDAG 18. DESEMBER 2004 KL Løsningsforslag Side 1 av 12 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for fysikk, informatikk og matematikk Institutt for datateknikk og informasjonsvitenskap EKSAMEN I EMNE TDT4230 VISUALISERING LØRDAG

Detaljer

Forelesningsnotater SIF8039/ Grafisk databehandling

Forelesningsnotater SIF8039/ Grafisk databehandling Forelesningsnotater SIF839/ Grafisk databehandling Notater til elesninger over: Kapittel 5: Viewing i: Edward Angel: Interactive Computer Graphics Vårsemesteret 22 Torbjørn Hallgren Institutt datateknikk

Detaljer

EKSAMEN I EMNE TDT4195 BILDETEKNIKK TORSDAG 9. JUNI 2011 KL

EKSAMEN I EMNE TDT4195 BILDETEKNIKK TORSDAG 9. JUNI 2011 KL Side av 5 EKSAMEN I EMNE TDT495 BILDETEKNIKK TORSDAG 9. JUNI 0 KL. 09.00 3.00 Oppgavestillere: Richard Blake Torbjørn Hallgren Kontakt under eksamen: Richard Blake tlf. 93683/96 0 905 Torbjørn Hallgren

Detaljer

EKSAMEN I EMNE TDT4230 VISUALISERING TIRSDAG 18. DESEMBER 2007 KL LØSNINGSFORSLAG

EKSAMEN I EMNE TDT4230 VISUALISERING TIRSDAG 18. DESEMBER 2007 KL LØSNINGSFORSLAG Side 1 av 10 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for fysikk, informatikk og matematikk Institutt for datateknikk og informasjonsvitenskap EKSAMEN I EMNE TDT40 VISUALISERING TIRSDAG

Detaljer

KONTINUASJONSEKSAMEN I EMNE TDT4230 VISUALISERING MANDAG 15. AUGUST 2011 KL LØSNINGSFORSLAG

KONTINUASJONSEKSAMEN I EMNE TDT4230 VISUALISERING MANDAG 15. AUGUST 2011 KL LØSNINGSFORSLAG Side 1 av 8 KONTINUASJONSEKSAMEN I EMNE TDT4230 VISUALISERING MANDAG 15. AUGUST 2011 KL. 09.00 13.00 LØSNINGSFORSLAG OPPGAVE 1 Parametriske kurver a) En eksplisitt eller implisitt funksjon i tre variable

Detaljer

Forelesningsnotater SIF8039/ Grafisk databehandling

Forelesningsnotater SIF8039/ Grafisk databehandling Forelesningsnotater SIF839/ Grafisk databehandling Notater til forelesninger over: Kapittel 4: Geometric Objects and ransformations i: Edward Angel: Interactive Computer Graphics Vårsemesteret 22 orbjørn

Detaljer

3D modul for syntetisk kalkulator

3D modul for syntetisk kalkulator av Geir Borgi Glenn Ole Haugen Dag Asle Johansen Masteroppgave i informasjons og kommunikasjonsteknologi Høgskolen i Agder Fakultet for teknologi Grimstad mai 2006 SAMMENDRAG ActionScript er et språk som

Detaljer

FAG: Fysikk FYS118 LÆRER: Fysikk : Per Henrik Hogstad (fellesdel) Kjetil Hals (linjedel)

FAG: Fysikk FYS118 LÆRER: Fysikk : Per Henrik Hogstad (fellesdel) Kjetil Hals (linjedel) UNIVERSITETET I AGDER Grimstad E K S A M E N S O P P G A V E : FAG: Fysikk FYS118 LÆRER: Fysikk : Per Henrik Hogstad (fellesdel) Kjetil Hals (linjedel) Klasse(r): Dato: 22.05.18 Eksamenstid, fra-til: 09.00

Detaljer

UNIVERSITETET I OSLO. Introduksjon. Det matematisk-naturvitenskapelige fakultet 1.1

UNIVERSITETET I OSLO. Introduksjon. Det matematisk-naturvitenskapelige fakultet 1.1 Introduksjon UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Tid for eksamen: 3 timer Vedlegg: Formelark Tillatte hjelpemidler: Øgrim og Lian: Størrelser og enheter

Detaljer

Eksamensoppgave i MA0002 Brukerkurs i matematikk B - LØSNING

Eksamensoppgave i MA0002 Brukerkurs i matematikk B - LØSNING Institutt for matematiske fag Eksamensoppgave i MA0002 Brukerkurs i matematikk B - LØSNING Faglig kontakt under eksamen: Frode Rønning Tlf: 95 21 81 38 Eksamensdato: 7. august 2017 Eksamenstid (fra til):

Detaljer

Teksturering. Mer om Grafisk Databehandling. Et annet eksempel. Eksempel

Teksturering. Mer om Grafisk Databehandling. Et annet eksempel. Eksempel Teksturering Mer om Grafisk Databehandling Øker detaljgraden uten å øke antall grafiske primitiver. Grafiske primitiver brukes som bærere for bilder (f.eks. fotografier). INF2340 / V04 2 Eksempel Et annet

Detaljer

E K S A M E N S O P P G A V E

E K S A M E N S O P P G A V E HØGSKOLEN I AGDER Fakultet for teknologi E K S A M E N S O P P G A V E EMNE: FAGLÆRER: ELE 7351 Kraftelektronikk OleMorten Midtgård Klasse(r): 3ENTEK Dato: 11.03.2005 Eksamenstid, fratil: 09:00 12:00 Eksamensoppgaven

Detaljer

EKSAMEN I EMNE TDT4195/SIF8043 BILDETEKNIKK ONSDAG 19. MAI 2004 KL

EKSAMEN I EMNE TDT4195/SIF8043 BILDETEKNIKK ONSDAG 19. MAI 2004 KL Side 1 av 5 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap EKSAMEN I EMNE TDT4195/SIF8043

Detaljer

EKSAMENSOPPGAVE Njål Gulbrandsen / Ole Meyer /

EKSAMENSOPPGAVE Njål Gulbrandsen / Ole Meyer / Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: 21.2.2017 Klokkeslett: 09:00 13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Fire A4-sider (to dobbeltsidige

Detaljer

FAG: Fysikk FYS121 LÆRER: Fysikk : Per Henrik Hogstad (fellesdel) Kjetil Hals (linjedel)

FAG: Fysikk FYS121 LÆRER: Fysikk : Per Henrik Hogstad (fellesdel) Kjetil Hals (linjedel) UNIVERSITETET I AGDER Grimstad E K S A M E N S O P P G A V E : FAG: Fysikk FYS121 LÆRER: Fysikk : Per Henrik Hogstad (fellesdel) Kjetil Hals (linjedel) Klasse(r): Dato: 22.05.18 Eksamenstid, fra-til: 09.00

Detaljer

EKSAMEN. Dato: 9. mai 2016 Eksamenstid: 09:00 13:00

EKSAMEN. Dato: 9. mai 2016 Eksamenstid: 09:00 13:00 EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 9. mai 2016 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet består

Detaljer

EKSAMEN. Algoritmer og datastrukturer

EKSAMEN. Algoritmer og datastrukturer EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2009 kl 09.00 til kl 13.00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Kalkulator Faglærer: Gunnar Misund

Detaljer

Fargebilder. Lars Vidar Magnusson. March 12, 2018

Fargebilder. Lars Vidar Magnusson. March 12, 2018 Fargebilder Lars Vidar Magnusson March 12, 2018 Delkapittel 6.1 Color Fundamentals Delkapittel 6.2 Color Models Delkapittel 6.3 Bildeprosessering med Pseudofarger Delkapittel 6.4 Prosessering av Fargebilder

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: Tirsdag, 3. juni 2014 Tid for eksamen: kl. 9:00 13:00 Oppgavesettet omfatter 6 oppgaver på 4 sider

Detaljer

Visualiseringsdelen - Oppsummering

Visualiseringsdelen - Oppsummering Visualiseringsdelen - Oppsummering Fenomen/prosess Visualisering i inf2340 Måling Mat. modell Simulering inf2340 - Simuleringsdelen inf2340 - Visualiseringsdelen 1.23E-08 2.59E-10 3.04E-08 3.87E-09 7.33E-06

Detaljer

Høgskolen i Gjøvik. Avdeling for elektro- og allmennfag K O N T I N U A S J O N S E K S A M E N. EKSAMENSDATO: 11. august 1995 TID:

Høgskolen i Gjøvik. Avdeling for elektro- og allmennfag K O N T I N U A S J O N S E K S A M E N. EKSAMENSDATO: 11. august 1995 TID: Høgskolen i Gjøvik Avdeling for elektro- og allmennfag K O N T I N U A S J O N S E K S A M E N FAGNAVN: FAGNUMMER: Algoritmiske metoder LO 164A EKSAMENSDATO: 11. august 1995 TID: 09.00-14.00 FAGLÆRER:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 0 Eksamensdag: 3 juni 205 Tid for eksamen: 4:30 8:30 (4 timer) Oppgavesettet er på 5 sider Vedlegg: Formelark Tillatte

Detaljer

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1008 Matematikk T Eksamen 30.11.009 Bokmål MAT1008 Matematikk T HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en

Detaljer

Forelesningsnotater SIF8039/ Grafisk databehandling

Forelesningsnotater SIF8039/ Grafisk databehandling Forelesningsnotater SIF8039/ Grafisk databehandling Notater til forelesninger over: Kapittel 1: Graphics Systems and Models i: Edward Angel: Interactive Computer Graphics Vårsemesteret 2002 Torbjørn Hallgren

Detaljer

Hvordan lage et sammensatt buevindu med sprosser?

Hvordan lage et sammensatt buevindu med sprosser? Hvordan lage et sammensatt buevindu med sprosser? I flere tilfeller er et vindu som ikke er standard ønskelig. I dette tilfellet skal vinduet under lages. Prinsippene er de samme for andre sammensatte

Detaljer

Eksamen R2, Høsten 2015, løsning

Eksamen R2, Høsten 2015, løsning Eksamen R, Høsten 05, løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) Deriver funksjonene a) f( ) 5cos( ) f 5 sin 0sin

Detaljer

R1 eksamen høsten 2016

R1 eksamen høsten 2016 R eksamen høsten 06 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (5 poeng) Deriver funksjonene f x x 5x 6 a) b) g( x) xlnx c) h x x e x 3

Detaljer

Eksamen i Geometrisk Modellering

Eksamen i Geometrisk Modellering Eksamen i Geometrisk Modellering STE608 Sivilingeniørutdanningen ved Høgskolen i Narvik, Produktutformingsteknologi (. PUT),. desember 998 Til denne eksamenen er alle skrevne hjelpemidler samt alle typer

Detaljer

Oppgavesett. Kapittel Oppgavesett 1

Oppgavesett. Kapittel Oppgavesett 1 Kapittel 9 Oppgavesett Dette kapitlet består av fire oppgavesett med oppgaver fra alle deler av kompendiet. 9. Oppgavesett Oppgave. Et dynamisk system er gitt ved x n+ = M x n der M er -matrisen.6.. M

Detaljer

1 Introduksjon GeoGebra 2 Speiling, rotasjon og parallellforskyvning 3 Perspektivtegning 4 Symmetriakser

1 Introduksjon GeoGebra 2 Speiling, rotasjon og parallellforskyvning 3 Perspektivtegning 4 Symmetriakser 1 Geometri i kunsten: 1 Introduksjon GeoGebra 2 Speiling, rotasjon og parallellforskyvning 3 Perspektivtegning 4 Symmetriakser MKH GeoGebra - Geometri i kunsten Innhold 1 Introduksjon GeoGebra... 1 1.1

Detaljer

www.ir.hiof.no/~eb/viz.htm Side 1 av 12

www.ir.hiof.no/~eb/viz.htm Side 1 av 12 VIZhtm Side 1 av 12 Innhold Side MÅL 1 OPPGAVE / RESULTAT 1 BESKRIVELSE ØVING 6A 2 BESKRIVELSE ØVING 6B 9 BESKRIVELSE ØVING 6C 12 MÅL Når du har utført denne øvingen, skal du kunne: Benytte et kamera som

Detaljer

Emne 6. Lineære transformasjoner. Del 1

Emne 6. Lineære transformasjoner. Del 1 Emne 6. Lineære transformasjoner. Del 1 Lineære transformasjoner kan sammenliknes med vanlig funksjonslære. X x 1 x 2 x 3 f Y Gitt to tallmengder X og Y. y 1 En funksjon f er her en regel som y 2 knytter

Detaljer

R2 eksamen høsten 2017 løsningsforslag

R2 eksamen høsten 2017 løsningsforslag R eksamen høsten 017 løsningsforslag DEL 1 Uten hjelpemidler Oppgave 1 (5 poeng) Deriver funksjonene a) f x sin3x f x cos3x 3 6cos3x sin x x sin x x sin x x x cos x sin x g x x x b) gx h x x cos x c) h

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 6 juni 2017 Tid for eksamen: 14:30 18:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte

Detaljer

Eksamen i Geometrisk Modellering

Eksamen i Geometrisk Modellering Eksamen i Geometrisk Modellering STE6081 Sivilingeniørutdanningen ved Høgskolen i Narvik, Data/IT og Ingeniørdesign, 10.mars 2000 Til denne eksamenen er godkjente formelsamlinger samt alle typer kalkulatorer

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT - Grunnkurs i Matematikk II Torsdag 4. juni 05, kl. 09:00-4:00 Bokmål Tillatte hjelpemiddel: Enkel kalkulator i samsvar

Detaljer

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE Emne: Informatikk II Emnekode: LO325E Faglig veileder: G.Milvang og H.Hemmer Gruppe(r): 2EA,2EB,2EC Dato:12.12.03 Eksamenstid:9 00-14 00 Eksamensoppgaven

Detaljer

EKSAMENSOPPGAVE. Dato: Fredag 01. mars 2013. Tid: Kl 09:00 13:00. Administrasjonsbygget B154

EKSAMENSOPPGAVE. Dato: Fredag 01. mars 2013. Tid: Kl 09:00 13:00. Administrasjonsbygget B154 side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: Fredag 01. mars 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget B154 Tillatte hjelpemidler:

Detaljer

E K S A M E N S O P P G A V E

E K S A M E N S O P P G A V E HØGSKOLEN I AGDER Fakultet for teknologi E K S A M E N S O P P G A V E EMNE: FAGLÆRER: ELE 7351 Kraftelektronikk OleMorten Midtgård Klasse(r): 3ENTEK Dato: 13.12.2004 Eksamenstid, fratil: 09:00 12:00 Eksamensoppgaven

Detaljer

EKSAMEN. EMNE: FYS 120 FAGLÆRER: Margrethe Wold. Klasser: FYS 120 Dato: 09. mai 2017 Eksamenstid: Antall sider (ink.

EKSAMEN. EMNE: FYS 120 FAGLÆRER: Margrethe Wold. Klasser: FYS 120 Dato: 09. mai 2017 Eksamenstid: Antall sider (ink. EKSAMEN EMNE: FYS 120 FAGLÆRER: Margrethe Wold MÅLFORM: Bokmål Klasser: FYS 120 Dato: 09. mai 2017 Eksamenstid: 09 00 14 00 Eksamensoppgaven består av følgende: Antall sider (ink. forside): 7 Antall oppgaver:

Detaljer

Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Geometri i skolen Geometri etter 4.

Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Geometri i skolen Geometri etter 4. Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI 15-Apr-07 Geometri i skolen dreier seg blant annet om å analysere egenskaper ved to- og tredimensjonale

Detaljer

Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. og setter f u ln

Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. og setter f u ln Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) Deriver funksjonene a) 3 f( ) 3 f 3 4 3 b) g( ) ln( ) Vi bruker kjerneregelen

Detaljer

Eksamen MAT0010 Matematikk Del 1. Del 1 + ark fra Del 2. Bokmål

Eksamen MAT0010 Matematikk Del 1. Del 1 + ark fra Del 2. Bokmål Eksamen 16.05.017 MT0010 Matematikk el 1 Skole: Kandidatnr.: el 1 + ark fra el okmål okmål Eksamensinformasjon Eksamenstid: Hjelpemidler på el 1: Framgangsmåte og forklaring: 5 timer totalt. el 1 og el

Detaljer

Sensorveiledning for Matematikk 103 Måling, tall og algebra og funksjoner LBMAT10311

Sensorveiledning for Matematikk 103 Måling, tall og algebra og funksjoner LBMAT10311 Høst 2018 Sensorveiledning for Matematikk 103 Måling, tall og algebra og funksjoner LBMAT10311 1) Eksamensoppgaven med løsningsforslag side 3 til 11. Den inneholder fasit og forslag eller kommentarer til

Detaljer

INF Obligatorisk oppgave 2

INF Obligatorisk oppgave 2 INF3320 - Obligatorisk oppgave 2 Innleveringsfrist: 23. september (Revisjon 4. september 2003) I denne oppgaven skal vi se på transformasjoner og interaktivitet. Vi skal lage et lite program som implementerer

Detaljer

Hjelpemidler på Del 2 Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Hjelpemidler på Del 2 Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: Onsdag, 5. juni 2013 Tid for eksamen: kl. 9:00 13:00 Oppgavesettet er på 3 sider Vedlegg: formelark

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK111 Eksamensdag: Mandag 22. mars 21 Tid for eksamen: Kl. 15-18 Oppgavesettet er på 4 sider + formelark Tillatte

Detaljer

EKSAMENSOPPGAVE. Oppgavesettet er på 5 sider inklusiv forside Kontaktperson under eksamen: Stian Normann Anfinsen Telefon:

EKSAMENSOPPGAVE. Oppgavesettet er på 5 sider inklusiv forside Kontaktperson under eksamen: Stian Normann Anfinsen Telefon: EKSAMENSOPPGAVE Eksamen i: Fys-1001 Mekanikk Dato: Torsdag 4. desember 2014 Tid: Kl 09:00 13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Fire A4-sider (to dobbeltsidige ark) med egne notater. Kalkulator

Detaljer

FAG: Fysikk FYS122 LÆRER: Fysikk : Per Henrik Hogstad (fellesdel) Tore Vehus (linjedel)

FAG: Fysikk FYS122 LÆRER: Fysikk : Per Henrik Hogstad (fellesdel) Tore Vehus (linjedel) UNIVERSITETET I AGDER Grimstad E K S A M E N S O P P G A V E : FAG: Fysikk FYS122 LÆRER: Fysikk : Per Henrik Hogstad (fellesdel) Tore Vehus (linjedel) Klasse(r): Dato: 22.05.18 Eksamenstid, fra-til: 09.00

Detaljer

Oppgave 1 (25 %) - Flervalgsoppgaver

Oppgave 1 (25 %) - Flervalgsoppgaver Oppgaver og løsningsforslag for 4t eksamen 10.mai 006 i LO510D Lineær algebra med grafiske anvendelser. Fra og med oppgave skal alle svar begrunnes. Oppgave 1 (5 %) - Flervalgsoppgaver Denne oppgaven består

Detaljer

Løsningsforslag, Øving 10 MA0001 Brukerkurs i Matematikk A

Løsningsforslag, Øving 10 MA0001 Brukerkurs i Matematikk A Løsningsforslag, Øving MA Brukerkurs i Matematikk A Læreboka s. 9-95 8. Anta at en endring i biomasse B(t) vei, t [, ], følger ligningen for t. d B(t) = cos ( ) πt 6 (a) Tegn grafen til d B(t) som funksjon

Detaljer

Høgskolen i Oslo og Akershus. c) Et annet likningssystem er gitt som. t Bestem parametrene s og t slik at likningssystemet blir inkonsistent.

Høgskolen i Oslo og Akershus. c) Et annet likningssystem er gitt som. t Bestem parametrene s og t slik at likningssystemet blir inkonsistent. Innlevering i BYFE 000 Oppgavesett Innleveringsfrist: 0 oktober klokka :00 Antall oppgaver: 6 Noen av disse oppgavene løses ved hjelp av papir blyant, mens andre oppgaver løses ved hjelp av MATLAB til

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1010 Objektorientert programmering Dato: 9. juni 2016 Tid for eksamen: 09.00 15.00 (6 timer) Oppgavesettet er på 7 sider. Vedlegg:

Detaljer

Oppgave 1. Sekvenser (20%)

Oppgave 1. Sekvenser (20%) Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I BERGEN Eksamen i emnet I 20 - Algoritmer, datastrukturer og programmering Mandag 2.Mai 200, kl. 09-5. Ingen hjelpemidler tillatt. Oppgavesettet

Detaljer

Algoritmer og Datastrukturer

Algoritmer og Datastrukturer Eksamen i Algoritmer og Datastrukturer IAI 21899 Høgskolen i Østfold Avdeling for informatikk og automatisering Torsdag 3. november 2, kl. 9. - 14. Hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.

Detaljer

Eksamen iin115 og IN110, 15. mai 1997 Side 2 Oppgave 1 Trær 55 % Vi skal i denne oppgaven se på en form for søkestrukturer som er spesielt godt egnet

Eksamen iin115 og IN110, 15. mai 1997 Side 2 Oppgave 1 Trær 55 % Vi skal i denne oppgaven se på en form for søkestrukturer som er spesielt godt egnet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 115 og IN110 Algoritmer og datastrukturer Eksamensdag: 15. mai 1997 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 8 sider.

Detaljer

www.ir.hiof.no/~eb/viz.htm Side 1 av 11

www.ir.hiof.no/~eb/viz.htm Side 1 av 11 www.ir.hiof.no/~eb/viz.htm Side 1 av 11 Innhold Side MÅL. 1 OPPGAVE / RESULTAT. 1 BESKRIVELSE ØVING 5A. 2 BESKRIVELSE ØVING 5B. 6 VIKTIGE KOMMANDOER 9 MÅL Når du har utført denne øvingen, skal du kunne:

Detaljer

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE Emne: Gruppe(r): Tillatte hjelpemidler: Ingen Kunstig intelligens Antall sider (inkl. forsiden): 5 Emnekode: LV 145A Dato: 04.05.05 Antall oppgaver: 3 Faglig

Detaljer

EKSAMENSOPPGAVE. INF-1101 Datastrukturer og algoritmer. Adm.bygget, rom K1.04 og B154 Ingen

EKSAMENSOPPGAVE. INF-1101 Datastrukturer og algoritmer. Adm.bygget, rom K1.04 og B154 Ingen Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Dato: 15.mai 2018 Klokkeslett: 09:00 13:00 Sted: Tillatte hjelpemidler: Adm.bygget, rom K1.04 og B154 Ingen Type innføringsark (rute/linje):

Detaljer

EKSAMEN 07HBINEA, 07HBINET, 07HBINDA, 07HBINDT

EKSAMEN 07HBINEA, 07HBINET, 07HBINDA, 07HBINDT KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Fysikk REA2041 EKSAMENSDATO: 14. mai 2008 KLASSE: 07HBINBPL, 07HBINBLAN, 0HBINBK, 07HBINEA, 07HBINET, 07HBINDA, 07HBINDT TID: kl. 9.00 13.00 FAGLÆRER: Are Strandlie

Detaljer

EKSAMEN. Informasjon om eksamen. Emnekode og -navn: ITD37018 Anvendt Robotteknikk. Dato og tid: , 3 timer. Faglærer: Haris Jasarevic

EKSAMEN. Informasjon om eksamen. Emnekode og -navn: ITD37018 Anvendt Robotteknikk. Dato og tid: , 3 timer. Faglærer: Haris Jasarevic Informasjon om eksamen EKSAMEN Emnekode og -navn: ITD37018 Anvendt Robotteknikk Dato og tid: 10.12.18, 3 timer Faglærer: Haris Jasarevic Hjelpemidler: Ingen hjelpemidler tillatt Om oppgaven: Alle oppgavene

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stivt legemers dynamikk.4.4 FYS-MEK.4.4 Forelesning Tempoet i forelesningene er: Presentasjonene er klare og bra strukturert. Jeg ønsker mer bruk av tavlen og mindre bruk av powerpoint. 6 35 5 5 3 4 3

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (5 poeng) Oppgave 2 (5 poeng) Oppgave 3 (3 poeng) Deriver funksjonene. En funksjon f er gitt ved

DEL 1. Uten hjelpemidler. Oppgave 1 (5 poeng) Oppgave 2 (5 poeng) Oppgave 3 (3 poeng) Deriver funksjonene. En funksjon f er gitt ved DEL 1 Uten hjelpemidler Oppgave 1 (5 poeng) Deriver funksjonene a) f x x x ( ) 5 6 b) g( x) xlnx c) h( x) e x x 3 Oppgave (5 poeng) En funksjon f er gitt ved f x x x ( ) ( 1) ( ) a) Bestem nullpunktene

Detaljer

PG 4200 Algoritmer og datastrukturer Innlevering 2

PG 4200 Algoritmer og datastrukturer Innlevering 2 PG 4200 Algoritmer og datastrukturer Innlevering 2 Frist: Mandag 21.april 2014 kl 23.55 Utdelt materiale: Se zip-filen innlevering2.zip. Innlevering: Lever en zip-fil som inneholder følgende: PG4200_innlevering_2.pdf:

Detaljer

Emnenavn: Eksamenstid: Faglærer: Christian F Heide

Emnenavn: Eksamenstid: Faglærer: Christian F Heide EKSAMEN Emnekode: ITD15013 Emnenavn: Matematikk 1 første deleksamen Dato: 13. desember 017 Hjelpemidler: Eksamenstid: 09.00 1.00 Faglærer: To A4-ark med valgfritt innhold på begge sider. Formelhefte. Kalkulator

Detaljer

Oppgavesettet består av 7 sider, inkludert denne forsiden. Kontroll& at oppgaven er komplett før du begynner å besvare spørsmålene.

Oppgavesettet består av 7 sider, inkludert denne forsiden. Kontroll& at oppgaven er komplett før du begynner å besvare spørsmålene. Høgskoleni Østfold EKSAMEN Emnekode: Emnenavn: ITF20006 Algoritmer og datastrukturer Dato: Eksamenstid: 9. mai 2016 9.00 13.00 Hjelpemidler: Faglærer: Alle trykte og skrevne Jan Høiberg Om eksamensoppgaven

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

2D Transformasjoner (s. 51 i VTK boken) Translasjon. Del 2 Grafisk databehandling forts. Rotasjon. Skalering. y x = x + d x, y = y + d y.

2D Transformasjoner (s. 51 i VTK boken) Translasjon. Del 2 Grafisk databehandling forts. Rotasjon. Skalering. y x = x + d x, y = y + d y. 2D Transformasjoner (s. i VTK boken) Translasjon Del 2 Grafisk databehandling forts. (, ) = + d, = + d På matriseform: d d (, ) P =, P =, T = d d P = P + T 24/2-3 IN229 / V3 / Dag 6 2 Skalering Rotasjon

Detaljer

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT - Lineær algebra Onsdag 5 september, 0, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets

Detaljer

EKSAMENSOPPGAVE. IAI20102 Algoritmer og datastrukturer

EKSAMENSOPPGAVE. IAI20102 Algoritmer og datastrukturer EKSAMENSOPPGAVE Fag: Lærer: IAI00 Algoritmer og datastrukturer André A. Hauge Dato:..005 Tid: 0900-00 Antall oppgavesider: 5 med forside Antall vedleggssider: 0 Hjelpemidler: Alle trykte og skrevne hjelpemidler,

Detaljer

EKSAMEN med løsningsforslag

EKSAMEN med løsningsforslag EKSAMEN med løsningsforslag Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2009 kl 09.00 til kl 13.00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Kalkulator Faglærer:

Detaljer

Hjelpemidler på Del 2 Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Hjelpemidler på Del 2 Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Computers in Technology Education

Computers in Technology Education Computers in Technology Education Beregningsorientert matematikk ved Høgskolen i Oslo Skisse til samlet innhold i MAT1 og MAT2 JOHN HAUGAN Både NTNU og UiO har en god del repetisjon av videregående skoles

Detaljer