Lineære likningssystemer, vektorer og matriser
|
|
- Ine Gjerde
- 8 år siden
- Visninger:
Transkript
1 Lineære likningssystemer, vektorer og matriser Kompendium 1 i MAT1001 Matematikk 1 Høsten 2008 Inger Christin Borge Matematisk institutt, UiO
2 Forord Velkommen til Universitetet i Oslo, og til MAT1001! Selv om de fleste av dere ikke skal ta så mange flere matematikk-kurs enn dette, er det viktig at dere føler dere som matematikkstudenter dette semesteret. Emnebeskrivelsen for MAT1001 er som følger: Kort om emnet: I dette emnet står løsningsmetoder og studie av løsninger av 3 typer likninger i fokus. Emnet gir en innføring i følgende 3 hovedtemaer: 1) Lineære likningssystemer, vektorer og matriser (herunder Gauss- Jordan eliminasjon, matriseoperasjoner, determinanter, egenverdier og egenvektorer). 2) Differenslikninger (herunder følger, grenseverdier, komplekse tall, enkel grafteori, trær, nettverk og boolsk algebra). 3) Differensiallikninger og modellering (herunder derivasjon, integrasjon, eksponential-, logaritme-, og trigonometriske funksjoner). Hva lærer du? Emnet gir deg en matematisk verktøykasse som du vil ha bruk for i videre realfagsstudier som ikke forutsetter full fordypning i matematikk fra videregående skole. Målet er å gi deg en forståelse av hvordan visse typer problemstillinger kan modelleres og lære deg å finne løsninger på problemene. Problemstillingene hentes fra relevante fagområder, som f.eks. biologi, informatikk og kjemi. Vi håper at det nye kurset virkelig vil gi deg en matematisk verktøykasse, og at du vil synes det er spennende og interessant. Til kurset er det skrevet en trilogi bestående av 3 kompendier som følger de 3 hovedtemaene. Utgangspunktet for stoffvalg og presentasjon har vært 2MX eller 2MY og 3MY fra videregående skole, samt tidligere eksamensoppgaver i kurs tilsvarende MAT1001 ved UiO. ii
3 Dette kompendiet er skrevet til bruk i undervisningen av det første temaet Lineære likningssystemer, vektorer og matriser, og vi går rett på med Lineære likningssystemer som første kapittel. Deretter innfører vi matriser og ser på hvordan de kan brukes for å løse lineære likningssystemer. Vi ser så på anvendelser, spesielt problemer av typen som faller inn under såkalt populasjonsdynamikk. Her er det mange morsomme problemer! Matematikken du har som bakgrunn fra videregående vil nå bakes inn i en større sammenheng, og vi vil minne om dette stoffet etterhvert som vi trenger det. Noe av denne matematikken vil vi også prøve og ta litt ekstra grundig på plenum og grupper, men sørg for å repetere stoff fra videregående så fort det dukker opp ting du føler du ikke husker godt nok! Underveis i teksten gis det mange eksempler, og bakerst vil du finne oppgavesamling og tidligere eksamensoppgaver. Ta gjerne en titt på dem med en gang, så ser du hva slags problemer vi skal ende opp med å løse. Oppgavene varierer i vanskelighetsgrad, og noen er markert Ekstra vanskelig. Det er veldig viktig at du prøver å løse alle oppgavene! Husk at det er nettopp da du virkelig ser hva du har forstått. Hjelp vil du få underveis av forelesere, plenumsregnere, gruppelærere og orakler. Lykke til med kurset! Tusen takk til mine medspillere Erik Bédos, Arne B. Sletsjøe, Elisabeth Seland, Jørgen Myre og Xiang He Kong for kontinuerlige innspill og kommentarer til dette heftet. Også en stor takk til Dina Haraldsson for hjelp med tidligere eksamensoppgaver, Kari T. Hylland for hjelp med treningsoppgaver, Magnus Dehli Vigeland for å ha lært meg xfig på en dag, slik at det ble noen figurer i kompendiet også, og til Helge Flakstad for å ha gitt meg bøker og informasjon om pensum fra videregående. Send gjerne trykkfeil og kommentarer til ingerbo@math.uio.no Blindern, juni 2008 Inger Christin Borge iii
4 Innhold Notasjon vi 1 Lineære likningssystemer Lineære likninger Vektorer og n-tupler Løsningsmengde og parameterfremstilling Lineære likningssystemer Løsningsmetoder Geometriske løsninger Et viktig resultat Nå skal du kunne Matriser Definisjoner og regneoperasjoner Regneregler og noen spesielle matriser Anvendelse: Binære matriser og søkevektorer Determinanten til en matrise Matriselikninger Nå skal du kunne Lineære likningssystemer og matriser Den utvidede matrisen til et likningssystem Et viktig bevis Radoperasjoner Redusert trappeform Gauss-Jordan-eliminasjon Et nyttig resultat Cramers regel iv
5 3.8 Nå skal du kunne Anvendelser av lineære likningssystemer Populasjonsdynamikk Egenverdier og egenvektorer Hva skjer i det lange løp for lineære sammenhenger? Nå skal du kunne A Oppgaver 80 A.1 Kapittel A.2 Kapittel A.3 Kapittel A.4 Kapittel B Tidligere eksamensoppgaver 96 C Fasit og løsningsforslag 117 C.1 Kapittel C.2 Kapittel C.3 Kapittel C.4 Kapittel C.5 Tidligere eksamensoppgaver D Støtte- og tilleggslitteratur 142 E Norsk-engelsk ordliste 143 Register 147 v
6 Notasjon {} mengde element i N de naturlige tallene 1,2,3,... Z de hele tallene..., 2, 1, 0, 1, 2,... Q de rasjonale tallene (brøker) R de reelle tallene (tallinjen) med ordet tall menes et reelt tall R 2 det reelle planet R 3 det reelle rommet R n det n-dimensjonale rommet avslutter et Bevis avslutter et Eksempel eller en Bemerkning vi
7 Tillegg D Støtte- og tilleggslitteratur Matematikk i praksis av Tor Gulliksen, Universitetsforlaget, 4. utgave, 3. opplag 2002 (har vært brukt i dette kurset siden 1981) Elementary linear algebra av Howard Anton, Wiley, 7. utgave 1994 (ble før brukt i kurs i lineær algebra (MA104). Denne går langt videre, men deler av boken kan støtte, og det er mange oppgaver her som kan gjøres.) Linear algebra and its applications av David C. Lay, Addison-Wesley, 3. utgave 2006 (brukes i MAT1120, og går også langt utover MAT1001- pensum, men deler av denne kan støtte, og det er mange fine oppgaver her.) Ellers er det mange bøker om lineær algebra på Matematisk bibliotek i 2. etasje i Niels Henrik Abels hus. De står i laveregradsavdelingen sammen med annen støttelitteratur og populærmatematiske bøker. På biblioteket finner du også pensumlitteratur til dagslån og pensumbøker fra videregående til utlån. 142
8 Tillegg E Norsk-engelsk ordliste For oppslag i engelske lærebøker eller på nettet, har vi tatt med en engelsk oversettelse av ordene og begrepene i registeret (som fins bakerst i kompendiet). addisjonsmetoden the addition/subtraction method binær matrise binary matrix Cramers regel Cramer s Rule determinant determinant diagonal matrise diagonal matrix dimensjonen til løsningsmengden the dimension of the solution set dokument-dokument-matrise document-document matrix dokument-term-matrise document-term matrix egenvektor eigenvector egenverdi eigenvalue eliminasjonsmetoden the elimination method fri variabel free variabel 143
9 Gauss-Jordan-eliminasjon Gauss-Jordan elimination Gauss-eliminasjon Gaussian elimination geometrisk løsning av lineært likningssystem geometric solution of a system of linear equations grenseverdi limit (value) homogent likningssystem homogeneous system of equations identitetsmatrise identity matrix inhomogent likningssystem inhomogeneous system of equations initialvektor initial state vector inkonsistent likningssystem inconsistent system of equations karakteristisk likning characteristic equation koeffisientmatrise coefficient matrix kolonnevektor column vector komponent (i matrise) entry (in a matrix) konsistent likningssystem consistent system of equations konvergere converge kvadratisk matrise square matrix løsningsmengden til et lineært likningssystem the solution set of a system of linear equations løsningsmengden til en lineær likning the solution set of a linear equation ledende variabel leading variable ledende 1-er leading 1 144
10 likevektsforhold steady state relation likevektstilstand steady state vector lineær likning linear equation lineært likningssystem system of linear equations (or: linear system) linje i planet a line in the plane matrise matrix n-dimensjonalt rom n-dimensional space n-tuppel n-tuple nedre triangulær matrise lower triangular matrix nullmatrise zero matrix nullvektor zero vector overgangsmatrise transition matrix parameter parameter parameterfremstilling parametrization plan i rommet a plane in the 3-dimensional space posisjon (til en komponent i matrise) position (of an entry in a matrix) projeksjonsmatrise transition matrix radoperasjoner row operations radvektor row vector redusert trappeform reduced row-echelon form søkevektor query vector (or: search vector) skalar scalar 145
11 skalarprodukt scalar product substitusjonsmetoden the substitution method svarvektor close to answer set ( svarvektor is not an established Norwegian term) tilstandsvektor ved tid n state vector at time n transponert matrise transposed matrix trappeform row-echelon form utvidet matrise augmented matrix variabel variable vektor vector øvre triangulær matrise upper triangular matrix 146
12 Register addisjonsmetoden, 11 binær matrise, 32 Cramers regel, 51 determinant, 34 diagonal matrise, 28 dimensjonen til løsningsmengden, 46 dokument-dokument-matrise, 34 dokument-term-matrise, 32 egenvektor, 66 egenverdi, 66 eliminasjonsmetoden, 11 fri variabel, 46 Gauss-eliminasjon, 46 Gauss-Jordan-eliminasjon, 46 geometrisk løsning av lineært likningssystem, 17 grenseverdi, 75 homogent likningssystem, 39 identitetsmatrise, 28 inhomogent likningssystem, 39 initialvektor, 56 inkonsistent likningssystem, 13 karakteristisk likning, 67 koeffisientmatrise, 39 kolonnevektor, 22 komponent (i matrise), 21 konsistent likningssystem, 12 konvergere, 75 kvadratisk matrise, 28 løsningsmengden til et lineært likningssystem, 9 løsningsmengden til en lineær likning, 5 ledende variabel, 45 ledende 1-er, 43 likevektsforhold, 75 likevektstilstand, 75 lineær likning, 1 lineært likningssystem, 9 linje i planet, 16 matrise, 21 n-dimensjonalt rom, 3 n-tuppel, 2 nedre triangulær matrise, 29 nullmatrise, 28 nullvektor, 5 overgangsmatrise,
13 parameter, 6, 10 parameterfremstilling, 7 plan i rommet, 16 posisjon (i matrise), 22 projeksjonsmatrise, 57 radoperasjoner, 41 radvektor, 22 redusert trappeform, 44 søkevektor, 33 skalar, 2 skalarprodukt, 4 substitusjonsmetoden, 13 svarvektor, 33 tilstandsvektor ved tid n, 55 transponert matrise, 34 trappeform, 43 utvidet matrise, 39 variabel, 1 øvre triangulær matrise,
Tre tester, en etter hver av de tre delene.
Forord På skolen er det mange som spør «Hvorfor må jeg lære dette?», spesielt i matematikktimene. Er du en av dem som stilte dette spørsmålet? Eller er du en av dem som sa til deg selv at «jeg får nok
Detaljer1 Gauss-Jordan metode
Merknad I dette Kompendiet er det gitt referanser både til læreboka og til selve Kompendiet Hvordan å gjenkjenne dem? Referansene til boka er 3- tallede, som Eks 3 Vi kan også referere til 22, kap 22 eller
DetaljerLineære likningssystemer, vektorer og matriser
Lineære likningssystemer, vektorer og matriser Kompendium i MAT00 Matematikk Høsten 2008 Inger Christin Borge Matematisk institutt, UiO Forord Velkommen til Universitetet i Oslo, og til MAT00! Selv om
DetaljerLineære likningssystemer, vektorer og matriser
Lineære likningssystemer, vektorer og matriser Kompendium i MAT00 Matematikk Våren 2009 Inger Christin Borge Matematisk institutt, UiO Forord Velkommen til Universitetet i Oslo, og til MAT00 våren 2009!
DetaljerLineære likningssystemer og matriser
Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger
DetaljerEksamensoppgavehefte 2. MAT1012 Matematikk 2: Mer lineær algebra
Eksamensoppgavehefte 2 MAT1012 Matematikk 2: Mer lineær algebra Matematisk institutt, UiO, våren 2010 I dette heftet er det samlet et utvalg av tidligere eksamensoppgaver innenfor temaet Lineær algebra
DetaljerMa Linær Algebra og Geometri Øving 1
Ma0 - Linær Algebra og Geometri Øving Øistein Søvik 0. september 0 Excercise Set. = 4 x6 x x = x 6 4 x x = x 4 4 4 x x. In each part, determine whether the equation is linear in x, x and x Før vi begynner
Detaljer2 Antiderivering 26 2.1 Derivasjon... 26 2.2 Differensiallikninger... 33 2.3 Antiderivasjon... 35 2.4 Nå skal du kunne... 46
Innhold Notasjon vi 1 Funksjoner 1 1.1 Definisjoner............................ 1 1.2 Om anvendelser.......................... 4 1.3 Polynomfunksjoner........................ 5 1.4 Rasjonale funksjoner.......................
DetaljerLineære likningssystemer
Kapittel 1 Lineære likningssystemer Jeg tenker på et tall slik at π ganger tallet er 12. 1.1 Lineære likninger Matematikk dreier seg om å løse problemer. Problemene gjøres ofte om til likninger som så
DetaljerLineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning
Lineær Algebra og Vektorrom Eivind Eriksen Høgskolen i Oslo, Avdeling for Ingeniørutdanning c Eivind Eriksen 2005. Innhold Kapittel 1. Lineære likningssystemer 1 1.1. Lineære likningssystemer i to variable
DetaljerMAT-1004 Vårsemester 2017 Prøveeksamen
MAT-4 Vårsemester 7 Prøveeksamen Contents. Forord................................. OPPGAVE OPPGAVE OPPGAVE 7 4 OPPGAVE 8 OPPGAVE 6 OPPGAVE 7 OPPGAVE 8 OPPGAVE 9 Formatering av svarene 4 9. Rasjonale tall.............................
DetaljerMAT 1001. Vår 2010. Oblig 1. Innleveringsfrist: Fredag 19.februar kl. 1430
MAT Vår Oblig Innleveringsfrist: Fredag 9februar kl 43 Oppgaven leveres stiftet med forsideark på ekspedisjonskontoret til Matematisk institutt i 7 etg i Niels Henrik Abels hus innen fristen Oppgaven vil
DetaljerForelesning 10 Cramers regel med anvendelser
Forelesning 10 Cramers regel med anvendelser Eivind Eriksen 25. mars 2010 Lineære likningssystemer Vi minner om at ethvert lineært likningssystem Ax = b kan løses ved hjelp av Gauss eliminasjon, som er
DetaljerDigital Arbeidsbok i ELE 3719 Matematikk
Eivind Eriksen Digital Arbeidsbok i ELE 3719 Matematikk 3. april 215 Handelshøyskolen BI Innhold Del I Forelesninger i ELE3719 Matematikk 1 Vektorer og vektorregning......................................
DetaljerMAT1120 Repetisjon Kap. 1
MAT1120 Repetisjon Kap. 1 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Idag skal vi repetere fra kap. 1 i Lays bok. Det handler bl.a. om : Matriser Vektorer
DetaljerEksamensoppgave MAT juni 2010 (med løsningsforslag)
Eksamensoppgave MAT-4 juni (med løsningsforslag) Contents OPPGAVE OPPGAVE 4 OPPGAVE 5 4 OPPGAVE 6 5 Fasit 7 5 Oppgave 7 5 Oppgave 7 5 Oppgave 8 54 Oppgave 8 6 Løsningsforslag 9 6 Oppgave 9 6 Oppgave 6
DetaljerMAT-1004 Vårsemester 2017 Prøveeksamen
MAT-1004 Vårsemester 017 Prøveeksamen Contents 0.1 Forord................................. 1 1 OPPGAVE OPPGAVE OPPGAVE 6 4 OPPGAVE 7 5 OPPGAVE 10 6 OPPGAVE 11 7 OPPGAVE 11 8 OPPGAVE 1 9 Formatering av
DetaljerLineær algebra-oppsummering
Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:
DetaljerAvdeling for lærerutdanning. Lineær algebra. for allmennlærerutdanningen. Inger Christin Borge
Avdeling for lærerutdanning Lineær algebra for allmennlærerutdanningen Inger Christin Borge 2006 Innhold Notasjon iii 1 Lineære ligningssystemer 1 1.1 Lineære ligninger......................... 1 1.2 Løsningsmengde
DetaljerMAT-1004 Vårsemester 2017 Obligatorisk øving 3
MAT-4 Vårsemester 7 Obligatorisk øving Contents OPPGAVE OPPGAVE Hvordan løses oppgave? 5 4 Hvordan løses oppgave? 6 5 Formatering av svarene 8 5. Rasjonale tall............................. 8 5. Matriser
DetaljerLineær algebra. Kurskompendium, Utøya, MAT1000. Inger Christin Borge
Lineær algebra Kurskompendium, Utøya, MAT1000 Inger Christin Borge 2006 Forord Dette er et kompendium skrevet til bruk i MAT1000-varianten av Utøyaseminarene, arrangert av Matematisk fagutvalg ved Matematisk
DetaljerTiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver.
Kapittel 4 Anvendelser av lineære likningssystemer Tiden går og alt forandres, selv om vi stopper klokka Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver 4 Populasjonsdynamikk
DetaljerLineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.
Lineær algebra H. Fausk 09.03.2015 Første utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. Selv om løsningen av lineære likingsystem i prinsippet er elementært blir det fort
Detaljer10 Radrommet, kolonnerommet og nullrommet
Radrommet kolonnerommet og nullrommet La A være en m n matrise Vi kan beskrive matrisen ved hjelp av dens rader r A r r i R n r m eller dens kolonner A [ c c c n ci R m Definisjon (se Def 7 i boka) For
DetaljerI dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer.
Kapittel 2 Matriser I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer. 2.1 Definisjoner og regneoperasjoner
DetaljerLineære likningssett.
Lineære likningssett. Forelesningsnotater i matematikk. Lineære likningssystemer. Side 1. 1. Innledning. La x 1, x, x n være n ukjente størrelser. La disse størrelsene være forbundet med m lineære likninger,
DetaljerMAT-1004 Vårsemester 2017 Obligatorisk øving 2
MAT-1004 Vårsemester 2017 Obligatorisk øving 2 Contents 1 OPPGAVE 2 2 OPPGAVE 2 Eksempler 4.1 Oppgave 1............................... 4.2 Oppgave 2............................... 5 4 Formatering av svarene
DetaljerGauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts.
Gauss-Jordan eliminasjon; redusert echelonform Forelesning, TMA4110 Fredag 18/9 Martin Wanvik, IMF MartinWanvik@mathntnuno En matrise vil normalt være radekvivalent med flere echelonmatriser; med andre
Detaljer(a) R n defineres som mengden av kolonnevektorer. a 1 a 2. a n. (b) R n defineres som mengden av radvektorer
5 Vektorrom Et vektorrom er en mengde V med tre algebraiske operasjoner (addisjon, negasjon og skalærmultiplikasjon) som tilfredsstiller de 10 betingelsene fra Def. 4.1.1. Jeg vil ikke gi en eksamensoppgave
Detaljer13 Oppsummering til Ch. 5.1, 5.2 og 8.5
3 Oppsummering til Ch. 5. 5. og 8.5 3. Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A. I kalkulus (teori av differensiallikninger) er det viktig å beregne
DetaljerDifferenslikninger. Inger Christin Borge. Matematisk institutt, UiO. Kompendium 2 i MAT1001 Matematikk 1. Våren 2009
Differenslikninger Kompendium 2 i MAT1001 Matematikk 1 Våren 2009 Inger Christin Borge Matematisk institutt, UiO Forord Trilogien fortsetter, og du tar nå fatt på Kompendium 2 i MAT1001. Her skal vi ta
DetaljerVær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!
Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.
DetaljerEksamen i ELE Matematikk valgfag Torsdag 18. mai Oppgave 1
Eksamen i ELE79 - Matematikk valgfag Torsdag 8. mai 07 LØSNINGFORSLAG Oppgave (a) Den utvidede matrisen til likningssystemet er 6 Gausseliminasjon: ganger rad I legges til rad II: 0 0 Rad I trekkes fra
DetaljerMer om kvadratiske matriser
Kapittel 2 Mer om kvadratiske matriser Vi lader opp til anvendelser, og skal bli enda bedre kjent med matriser. I mange anvendelser er det ofte de kvadratiske matrisene som dukker opp, så fra nå skal vi
DetaljerØving 3 Determinanter
Øving Determinanter Determinanten til en x matrise er definert som Clear@a, b, c, dd K a b OF c d ad -bc Determinanten til en matrise er derfor et tall. Du skal se at det viktige for oss er om tallet er
DetaljerComputers in Technology Education
Computers in Technology Education Beregningsorientert matematikk ved Høgskolen i Oslo Skisse til samlet innhold i MAT1 og MAT2 JOHN HAUGAN Både NTNU og UiO har en god del repetisjon av videregående skoles
DetaljerEivind Eriksen. Matematikk for økonomi og finans
Eivind Eriksen Matematikk for økonomi og finans # CAPPELEN DAMM AS 2016 ISBN 978-82-02-47417-1 1. utgave, 1. opplag 2016 Materialet i denne publikasjonen er omfattet av åndsverklovens bestemmelser. Uten
DetaljerMAT1120 Repetisjon Kap. 1, 2 og 3
MAT1120 Repetisjon Kap. 1, 2 og 3 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Fra kap. 1 repeterer vi: Matriser Vektorer og lineære kombinasjoner Lineæravbildninger
DetaljerElementær Matriseteori
Elementær Matriseteori Magnus B. Botnan NTNU 3. august, 2015 Kursinfo - Foreleser: Magnus B. Botnan http://www.math.ntnu.no/~botnan/ - Hjemmeside: https: //wiki.math.ntnu.no/tma4110/2015h/forkurs/start
DetaljerKapittel 3. Mer om egenverdier og egenvektorer. 3.1 Komplekse n-tupler og vektorer
Kapittel 3 Mer om egenverdier og egenvektorer I neste kapittel skal vi lære å løse systemer av difflikninger. Da vil vi trenge egenverdier og egenvektorer, og selv om vi skal løse reelle problemer, vil
DetaljerMer om kvadratiske matriser
Kapittel 2 Mer om kvadratiske matriser Vi lader opp til anvendelser, og skal bli enda bedre kjent med matriser. I mange anvendelser er det ofte de kvadratiske matrisene som dukker opp, så fra nå skal vi
DetaljerDifferensiallikninger og modellering
Differensiallikninger og modellering Kompendium 3 i MAT1001 Matematikk 1 Våren 2009 Inger Christin Borge Matematisk institutt, UiO Forord Trilogien avsluttes (på én vår), og du tar nå fatt på Kompendium
Detaljer<kode> Grunnleggende matematikk for ingeniører Side 1 av 5
Grunnleggende matematikk for ingeniører Side 1 av 5 Emnebeskrivelse 1 Emnenavn og kode Grunnleggende matematikk for ingeniører 2 Studiepoeng 10 studiepoeng 3 Innledning Dette er det ene av
Detaljer4 Matriser TMA4110 høsten 2018
Matriser TMA høsten 8 Nå har vi fått erfaring med å bruke matriser i et par forskjellige sammenhenger Vi har lært å løse et lineært likningssystem ved å sette opp totalmatrisen til systemet og gausseliminere
DetaljerMer lineær algebra. Inger Christin Borge. Matematisk institutt, UiO. Kompendium i MAT1012 Matematikk 2. Våren 2014
Mer lineær algebra Kompendium i MAT Matematikk Våren 4 Inger Christin Borge Matematisk institutt, UiO Forord Dette kompendiet er skrevet til bruk i andre del av emnet MAT. I dette emnet jobber vi under
DetaljerEKSAMENSOPPGAVE. to A4 ark egne notater og Rottmanns tabeller. Kontaktperson under eksamen: Professor Andrei Prasolov. Telefon:
EKSAMENSOPPGAVE Eksamen i: Mat 4 Lineær algebra Dato: Torsdag 4 juni 25 Tid: Kl 9: 3: Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Godkjent kalkulator, to A4 ark egne notater og Rottmanns tabeller Oppgavesettet
DetaljerTMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer:
TMA4 Matematikk 3 Eksamen høsten 8 Løsning Side av 9 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 8 5 4 8 3 36 8 4 8 8 8 Den siste matrisen her er på redusert trappeform, og
Detaljer12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5)
Diagonalisering av matriser og operatorer (Ch 5, 5 og 85) Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A I kalkulus (teori av differensiallikninger) er
DetaljerMatematikk påbygging
Høgskolen i Østfold Matematikk påbygging Omfang: 1 år 60 studiepoeng Påbyggingsstudium Godkjent Av Dato: 14.08.04 Endret av Dato: Innholdsfortegnelse INNHOLDSFORTEGNELSE... 2 MÅLGRUPPE OG OPPTAKSKRAV...
DetaljerLøsning Eksamensrelevante oppgaver i ELE 3719 Matematikk Vektorer, matriser og lineær algebra Dato Februar Oppgave 1. (A) Vi leser av at
Løsning Eksamensrelevante oppgaver i ELE 379 Matematikk Vektorer, matriser og lineær algebra Dato Februar 05 Oppgave. (A) Vi leser av at A = 3 5, B = ( 0 5 ), C = 0 5 9 og har dermed at π x = Ax + BT =
DetaljerNTNU KOMPiS Studieplan for MATEMATIKK 2 (8.-13. trinn) med hovedvekt på 8.-10. trinn Studieåret 2015/2016
NTNU KOMPiS Studieplan for MATEMATIKK 2 (8.-13. trinn) med hovedvekt på 8.-10. trinn Studieåret 2015/2016 Profesjons- og yrkesmål Dette studiet er beregnet for lærere på ungdomstrinnet som ønsker videreutdanning
DetaljerDifferenslikninger. Inger Christin Borge. Matematisk institutt, UiO. Kompendium 2 i MAT1001 Matematikk 1. Våren 2009
Differenslikninger Kompendium 2 i MAT1001 Matematikk 1 Våren 2009 Inger Christin Borge Matematisk institutt, UiO Forord Trilogien fortsetter, og du tar nå fatt på Kompendium 2 i MAT1001. Her skal vi ta
DetaljerTiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver.
Kapittel 4 Anvendelser av lineære likningssystemer Tiden går og alt forandres, selv om vi stopper klokka Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver 4 Populasjonsdynamikk
DetaljerLineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.
Lineær algebra H. Fausk 09.03.2015 Andre utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er det enkelt, men det blir fort veldig mange regneoperasjoner som
Detaljer12 Lineære transformasjoner
2 Lineære transformasjoner 2 Funksjoner Definisjon 2 En funksjon ( a function) f : A B er en regel, som tilordner en entydig bestemt verdi f (a) B til ethvert element a A Mengden A kalles domenet til f
DetaljerEmne 9. Egenverdier og egenvektorer
Emne 9. Egenverdier og egenvektorer Definisjon: Vi starter med en lineær transformasjon fra til, hvor Dersom, hvor, sier vi at: er egenverdiene til A er tilhørende egenvektorer. betyr at er et reelt eller
DetaljerØving 2 Matrisealgebra
Øving Matrisealgebra Gå til menyen Edit Preferences... og sett Format type of new output cells til TraditionalForm hvis det ikke allerede er gjort. Start med to eksempelmatriser med samme dimensjon: In[]:=
DetaljerForelesning 22 MA0003, Mandag 5/11-2012 Invertible matriser Lay: 2.2
Forelesning 22 M0003, Mandag 5/-202 Invertible matriser Lay: 2.2 Invertible matriser og ligningssystemet x b Ligninger på formen ax b, a 0 kan løses ved å dividere med a på begge sider av ligninger, noe
DetaljerRang og Vektorrom. Magnus B. Botnan NTNU. 4. august, 2015
Rang og Vektorrom Magnus B. Botnan NTNU 4. august, 2015 Lineær Uavhengighet La v (1),..., v (m) være vektorer av samme størrelse. Vi sier at vektorene er lineært avhengige hvis det finnes konstanter c
DetaljerMAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7.
MAT 2 april 2.7 Lineær.8 Underrom MAT 2 Våren 2 UiO 7. april 2 / 23 MAT 2 april 2.7 Lineær.8 Underrom Minner om:.7 Lineær (fortsettelse) Definisjon. To vektorer u og v i R n kalles lineært avhengige dersom
DetaljerEmneplaner for fysikk og matematikk 3-treterminordingen (TRE)
Emneplaner for fysikk og matematikk 3-treterminordingen (TRE) Heltid - ikke studiepoenggivende utdanning Godkjent av Avdelingsstyret ved ingeniørutdanningen 14. mars 2011 Fakultet for teknologi, kunst
DetaljerØving 5 Diagonalisering
Øving 5 Diagonalisering En matrise A er diagonaliserbar dersom den er similær med en diagonalmatrise, dvs. det eksisterer en invertibel matrise P og diagonal matrise D slik at P.D.P -1. I øving 4 lærte
Detaljerx 1 x 2 x = x n b 1 b 2 b = b m Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder
4 Noen merknader 4. Lineære systemer Ax = b Gitt systemet Ax = b, A = [a i,j ] i=,,...,m, j=,,...,n x = b = Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder b i. Med det finnes
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Lørdag 25. Mai 29. Tid for eksamen: :5 4:5. Oppgavesettet er på 7 sider. Vedlegg:
DetaljerObligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 2006
Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 006 Oppgave I hele oppgaven bruker vi I = 0 0 0 0. 0 0 a) Matrisen A har størrelse og B har størrelse slik at matriseproduktet A B er en
DetaljerVELKOMMEN TIL MAT-INF1100(L) Knut Mørken knutm@ifi.uio.no Rom 1033, Niels Henrik Abels hus
VELKOMMEN TIL MAT-INF1100(L) Knut Mørken knutm@ifi.uio.no Rom 1033, Niels Henrik Abels hus Forelesere Knut Mørken og Martin Reimers, Matematisk institutt, 10. etg i Niels Henrik Abels hus Arbeider med
DetaljerKap. 5 Egenverdier og egenvektorer
Kap. 5 Egenverdier og egenvektorer Egenverdier, egenvektorer og diagonaliserbarhet er sentrale begreper for kvadratiske matriser. Mye er kjent fra tidligere, skal repetere dette og gå videre. Sammenhengen
DetaljerVektorligninger. Kapittel 3. Vektorregning
Kapittel Vektorligninger I denne uken skal vi bruke enkel vektorregning til å analysere lineære ligningssystemer. Vi skal ha et spesielt fokus på R, for det går an å visualisere; klarer man det, går det
DetaljerTil enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.
4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet
Detaljertilfeller tatt for gitt ved universiteter og høyskoler. Her er framstillingen kortfattet, meningen er at dette kan brukes som referanse.
Forord Denne læreboken gir en innføring i lineær algebra, rettet mot begynnerkurs på Universitets- og Høyskolenivå. Arbeidet med dette stoffet tok til som en del av et større prosjekt, som omfattet datastøttet
DetaljerLineære ligningssystem og matriser
Lineære ligningssystem og matriser E.Malinnikova, NTNU, Institutt for matematiske fag September 15, 2009 Lineære ligningssystem Vi har et ligningssystem av m ligninger med n ukjente x 1,..., x n som kan
Detaljer5.6 Diskrete dynamiske systemer
5.6 Diskrete dynamiske systemer Egenverdier/egenvektorer er viktige for å analysere systemer av typen x k+1 = A x k, k 0, der A er en kvadratisk diagonaliserbar matrise. Tenker her at x k angir systemets
DetaljerForelesere VELKOMMEN TIL MAT-INF 1100. Forelesere MAT-INF 1100 22/8-2005
Forelesere VELKOMMEN TIL MAT-INF 1100 Geir Pedersen, Matematisk institutt, avd. for mekanikk Rom nr. 918 i Niels Henrik Abels hus E-post: geirkp@math.uio.no Arbeider med havbølger og numerisk analyse av
DetaljerVELKOMMEN TIL MAT-INF 1100
VELKOMMEN TIL MAT-INF 1100 1 Forelesere Geir Pedersen, Matematisk institutt, avd. for mekanikk Rom nr. 918 i Niels Henrik Abels hus E-post: geirkp@math.uio.no Arbeider med havbølger og numerisk analyse
Detaljertma4110 Matematikk 3 Notater høsten 2018 Øystein Skartsæterhagen Morten Andreas Nome Paul Trygsland
tma4 Matematikk Notater høsten 8 Øystein Skartsæterhagen Morten Andreas Nome Paul Trygsland Innhold Introduksjon ii Lineære likningssystemer Gausseliminasjon 4 Vektor- og matriselikninger 8 4 Matriser
DetaljerUniversitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra
Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT - Lineær algebra Onsdag 5 september, 0, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets
Detaljer7 Egenverdier og egenvektorer TMA4110 høsten 2018
7 Egenverdier og egenvektorer TMA4 høsten 8 Det er ofte hensiktsmessig å tenke på en matrise ikke bare som en tabell med tall, men som en transformasjon av vektorer. Hvis A er en m n-matrise, så gir A
DetaljerEKSAMEN. 1 Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Trond Stølen Gustavsen. Klasser: (div) Dato: 24. mai 2004 Eksamenstid:
EKSAMEN EMNE: MA6 FAGLÆRER: Svein Olav Nyberg, Trond Stølen Gustavsen Klasser: (div) Dato: mai Eksamenstid: Eksamensoppgaven består av følgende: Antall sider (ink forside): 5 Antall oppgaver: Antall vedlegg:
DetaljerEksamen i matematikk. Hvordan har eksamen i R1 høsten 2011 endret all læreplantolkning?
Eksamen i matematikk Hvordan har eksamen i R1 høsten 2011 endret all læreplantolkning? Samarbeidet udir/forlag Før reform 94: En representant fra hvert matematikkverk var med på å lage eksamensoppgavene
DetaljerForelesning i Matte 3
Forelesning i Matte 3 Determinanter H. J. Rivertz Institutt for matematiske fag 1. februar 008 Innhold 1. time 1 Determinanter og elementære radoperasjoner Innhold 1. time 1 Determinanter og elementære
DetaljerEKSAMENSOPPGAVE. 4 (1+3) Det er 12 deloppgaver (1abc, 2abcd, 3abc, 4ab) Andrei Prasolov
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Mat-004 Lineær algebra Dato: Torsdag. juni 207 Klokkeslett: 09.00-3.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Godkjent kalkulator,
DetaljerEgenverdier for 2 2 matriser
Egenverdier for matriser (Bearbeidet versjon av tidligere notat på nett-sidene til MA101 - Lineær algebra og geometri Versjon oppdatert med referanser til 10utg av læreboken) Egenvektorer og egenverdier
DetaljerLøsningsforslag B = 1 3 A + B, AB, BA, AB BA, B 2, B 3 C + D, CD, DC, AC, CB. det(a), det(b)
Innlevering BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Fredag 05. februar 2016 kl 14:00 Antall oppgaver: 5 Løsningsforslag 1 Vi denerer noen matriser A [ 1 5 2 0 B [ 1
DetaljerLær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat. Av Sigbjørn Hals
Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat Av Sigbjørn Hals 1 Innhold Hva er matematikktillegget for Word?... 2 Nedlasting og installasjon av matematikktillegget for Word...
DetaljerMAT UiO. 10. mai Våren 2010 MAT 1012
MAT Våren UiO. / 7 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar) og D (diagonal) som diagonaliserer
DetaljerInnlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 24. april 2014 før forelesningen Antall oppgaver: 9
Innlevering BYPE000 Matematikk 000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 4. april 014 før forelesningen Antall oppgaver: 9 1 Regn ut determinanten til følgende matriser. (Det er også
Detaljer4.4 Koordinatsystemer
4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } V kalles en basis for et vektorrom V dersom B er lineært uavhengig og B utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer
DetaljerMatriser. Kapittel 4. Definisjoner og notasjon
Kapittel Matriser Vi har lært å løse et lineært ligningssystem ved å sette opp totalmatrisen til systemet gausseliminere den ved hjelp av radoperasjoner på matrisen Vi skal nå se nærmere på egenskaper
DetaljerLineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler
Lineære ligningssystemer Generell form; m ligninger i n ukjente, m n-system: Forelesning, TMA4110 Torsdag 17/9 Martin Wanvik, IMF MartinWanvik@mathntnuno a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1
DetaljerMAT1120 Notat 2 Tillegg til avsnitt 5.4
MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjoner (også kalt koordinatmatriser) av lineære avbildninger mellom endeligdimensjonale vektorrom En slik
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 0 Lineær algebra Eksamensdag: Mandag 0. desember 0 Tid for eksamen: 4.30 8.30. Oppgavesettet er på 7 sider. Vedlegg: Tillatte
DetaljerRepetisjon: Om avsn og kap. 3 i Lay
Repetisjon: Om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon. La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p. Produktet AB er m p matrisen definert
DetaljerLP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1
LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1 Vi fortsetter studiet av (MKS): minimum kost nettverk strøm problemet. Har nå en algoritme for beregning av x for gitt spenntre T Skal forklare
DetaljerVELKOMMEN TIL MAT-INF1100(L) Knut Mørken knutm@ifi.uio.no Rom 1033, Niels Henrik Abels hus
VELKOMMEN TIL MAT-INF1100(L) Knut Mørken knutm@ifi.uio.no Rom 1033, Niels Henrik Abels hus Foreleser Knut Mørken, Matematisk institutt Rom nr. 1033 i Niels Henrik Abels hus E-post: knutm@ifi.uio.no Arbeider
DetaljerMAT-1004 Vårsemester 2017 Obligatorisk øving 6
MAT-4 Vårsemester 7 Obligatorisk øving Contents OPPGAVE Hvordan å løse oppgaven? 4 Formatering av svarene 9. Rasjonale tall............................. 9. Matriser og vektorer.........................
DetaljerMa Linær Algebra og Geometri Øving 5
Ma20 - Linær Algebra og Geometri Øving 5 Øistein søvik 7. oktober 20 Excercise Set.5.5 7, 29,.6 5,, 6, 2.7, A = 0 5 B = 0 5 4 7 9 0-5 25-4 C = 0 5 D = 0 0 28 4 7 9 0-5 25 F = 6 2-2 0-5 25 7. Find an elementary
DetaljerLineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.
Lineær algebra H. Fausk 23.08.2015 Fjerde utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er løsing av linære likningsystem enkelt, men det blir fort veldig
DetaljerEksamensoppgave i TMA4115 Matematikk 3
Institutt for matematiske fag Eksamensoppgave i TMA45 Matematikk 3 Faglig kontakt under eksamen: Aslak Bakke Buan a, Morten Andreas Nome b, Tjerand Silde c Tlf: a mobil Aslak, b mobil Morten, c mobil Tjerand
DetaljerEKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014
EKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014 Matematikk R2 Oversikt over hovedområdene: Programfag Hovedområder Matematikk R1 Geometri Algebra Funksjoner Matematikk R2 Geometri Algebra Funksjoner
DetaljerEgenverdier og egenvektorer
Kapittel 9 Egenverdier og egenvektorer Det er ofte hensiktsmessig å tenke på en matrise ikke bare som en tabell med tall, men som en transformasjon av vektorer Hvis A er en m n-matrise, så gir A en transformasjon
Detaljer