Læringsmål. Epidemiologi. Insidensrater og insidensandel Relative og absolutte risikomål Statistisk slutning. P verdi versus konfidensintervall
|
|
- Daniel Henriksen
- 9 år siden
- Visninger:
Transkript
1 Epidemiologi The study of the occurrence of illness Læringsmål Insidensrater og insidensandel Relative og absolutte risikomål Statistisk slutning P verdi versus konfidensintervall Studier av sykdommers fremtreden Pål Romundstad Hva brukes epidemiologi til? finne årsaker til sykdom Miljø (forbygging) genetikk samspill mellom faktorer mekanismer (mål for behandling) vurdere effekt av intervensjoner i befolkning (kosthold, trening, vaksiner, screening) vurdere effekt av behandling (klinisk epidemiologi) studere naturlige forløp av sykdom (forløp etter diagnose og behandling) generell helsestatistikk-helsetjenesteplanlegging Hvorfor lære epidemiologi? Evidence Based Medicine : kritisere og vurdere kunnskap som den medisinske praksis bygger på Lese faglitteratur kritisk Behandling: ta i bruk ny kunnskap i klinikken Kommunikasjon: forståelse av risikobegreper Forskning: planlegge og gjennomføre pasient- eller populasjonsbaserte studier 1
2 Mål på forekomst av sykdom Mål på forekomst av sykdom Prevalens antall med sykdom i en spesifikk populasjon på et gitt tidspunkt- uttrykker status Insidens antall nye tilfeller av sykdom i en spesifikk populasjon i løpet av et gitt tidsrom - uttrykker endring Prevalens - måler sykdomsstatus Insidens av sykdom = nye tilfeller av sykdom Andel av en populasjon som har en sykdom på et gitt tidspunkt eksempel: dersom 30 har sykdommen diabetes i en befolkning på 1000 personer er prevalensen på 3% et viktig sykdomsmål i helseplanlegging- ressursbehov ikke så velegnet for å finne årsaker til sykdom varighet av sykdom gitt av recovery og dødelighet påvirker prevalensen faktorer en studerer kan påvirke insidens, recovery eller dødelighet tidsrelasjonene mellom årsak og effekt uklar Insidens uttrykkes på to ulike måter: 1. Insidens andel («kumulativ insidens») er sannsynligheten for å få sykdom i løpet av en viss tid, også kalt risiko 2. Insidens raten, sier noe om hvor hyppig en sykdom oppstår -måler endring fra ikke syk til syk per tidsenhet -Mål på hastigheten sykdom opptrer i befolkningen Insidensandel (risk) Competing risk og Persontid Sannsynligheten for at et individ blir syk i løpet av et gitt tidsintervall = Antall individer som blir syke over et gitt tidsintervall Antall individer i populasjonen ved starttidspunktet dersom man følger kvinner i 10 år og 30 av disse får diagnosen livmorkreft er insidensandelen: (30/10 000) = 0.3 % Men, noen av disse er ikke under risiko for å få diagnosen gjennom hele oppfølgingsperioden på 10 år. Noen får kreft, dør, fjerner livmora, eller emigrerer Competing risk: Individer forsvinner ut av studien pga andre faktorer enn utfallet og er ikke lenger under risiko i studien Insidensandel tar ikke hensyn til dynamikken i en populasjon og dermed antall personer som til enhver tid er under risiko for utfallet For å ta hensyn til competing risk bruker en persontid i stedet for antall personer i befolkningen ved studiestart 2
3 Insidensrater og persontid under risiko Insidensrater (gullstandarden) Persontid = summere tid under risiko Start oppfølging Person 1 HI Studieslutt Personår 7 år 2 10 år antall nye tilfeller av en sykdom Insidensrate = sum av persontid under risiko 3 4 død HI 6 år 2 år 5 emigrert 5 år Vi må beregne bidraget av persontid fra hver person i studien for å estimere insidensrater År I løpet av 30 personår; 2 fikk HI (hjerteinfarkt), 1 døde, 1 emigrerte, og 1 ble fulgt uten hendelser. Insidensraten for HI er 2 per 30 personår (p.år) = 6.67 per 100 p.år eller 667 per p.år Insidens Sammenligning av sykdomsforekomst Trenger mål på sammenheng, effekt, forskjell Absolutte effektmål Relative effektmål Absolutte effektmål Differanse mellom to absolutte sykdomsmål (RD) risiko differanse (insidensandel differanse) rate differanse Numbers needed to treat (NNT) Antall som må behandles for å forebygge ett sykdomstilfelle/død Risiko differanse i klinikken Eks: Risiko for hjerteinfarkt i løpet av 10 år Statinbrukere = 6% risiko for H.infarkt Placebogruppe = 12% risiko for H.infarkt Absolutt risikodifferanse i løpet av 10 år: RD=12 % 6 % = 6% Numbers needed to treat: 1/ RD NNT=1/0.06 = 17 3
4 Rate differanse H.Infarkt personår Insidens rate Relative effektmål Triglyserid+ Triglyserid / 790 = 190 per 1000 p.år 80 / 880 = 91 per 1000 p.år Relativ risiko = ratio mellom to absolutte risikomål risk ratio (insidensandel ratio) insidensrate ratio hazard ratio (ratio mellom to hazarder) Rate differanse(rd): raten for eksponerte minus raten for ikke eksponerte Rate differanse = (190-91) per 1000 p.år = 99 per 1000 p.år Odds ratio ratio mellom to odds (indirekte mål på relativ risiko) Blant individer med høyt triglyseridnivå oppstår det 99 flere tilfeller av hjerte infarkt per 1000 p.år enn blant individer med lavt Insidens rate ratio (relativ risiko) # H.Infarkt # personår Insidens rate Føflekk-kreft i Norge Relativ risiko etter fylke Triglyserid / 790 = 190 per 1000 p.år Triglyserid / 880 = 91 per 1000 p.år Insidens rate ratio (IRR) - insidens raten blant eksponerte dividert med insidens raten blant ikke-eksponerte 150/ IRR = = = / Dvs. individer med høyt triglyseridnivå har ca 2 ganger så høy risiko for å få HI som individer med lavt Kilde: Kreftregisteret, Institute of Population-based Cancer Research, sept 2002 Absolutt versus relativ risiko Samme studie som forrige bilde vises her, men nå uttrykkes absolutt risiko i stedet for relativ risiko Hvordan bruke statistikk for å fremme et budskap? Osteoporose som eksempel Kilde: Skolbekken og Forsmo (NTNU) Tidsskriftet,
5 Samme studie som forrige bilde vises her, men nå uttrykkes absolutt risiko i stedet for relativ risiko Statistisk slutning (inference) Statistisk slutning dreier seg om å trekke valide konklusjoner basert på informasjon fra et utvalg Eksempel: Vi søker en sann forskjell i dødelighet eller en sann forskjell i blodtrykk mellom to grupper, men vi har ikke målinger for hele populasjonen (vi må basere oss på et utvalg) Kilde: Skolbekken og Forsmo (NTNU) Tidsskriftet, 2003 Hvor sikre kan vi være på at observasjonene vi gjør i utvalget korresponderer med resultatet vi ville fått om vi hadde målinger for hele populasjonen? En Ulykke: Valg av effektmål (effektestimat) Estimerer forskjell mellom kjønnene i andel døde : Vårt effektmål: = (54.1%) Statistisk slutning Uncertainty-chance Uncertainty of the estimate is an important consideration If you flipped a coin 5 times and it came up "heads" 4 times, would you be correct to say that the coin will land on heads 80% of the time? Vårt effektestimat: = (54.1%) It did for your sample of 5 flips. But what would happen if you flipped the coin 100 times or 1000 times? Andelen døde er helt klart meningsfullt forskjellige, men ville de vært forskjellig for alle tilsvarende hendelser 5
6 Statistisk slutning Statistisk slutning Vårt effektestimat: = (54.1%) Er forskjellen statistisk signifikant? Hypotestesting (p-verdi) Vårt effektestimat: = (54.1%) Er forskjellene statistisk signifikante? Hypotestesting (p-verdi) Hvor presise er estimatene? Intervall estimering-konfidensintervall) Statistisk slutning (inference) Statistisk inferens baseres på enten: hypotesetesting intervall estimering 0-hypotesen (H 0 ) P-verdier estimeres ut i fra en spesifikk hypotese Vanligst 0-hypotesen (betegnes ofte H 0 ) Ved hypotesetesting prøver vi å forkaste en nullhypotese H 0 : Ingen sammenheng, ingen forskjell Ved intervall estimering beregner vi et konfidensintervall, som med for eksempel 95% konfidens, inneholder den sanne parameterverdien Hypotesetesting sjekker hvor sjeldne eller usannsynlig observasjonen er gitt at det egentlig ikke er noen forskjell, mens konfidensintervall viser resultater forenlige med observasjonene våre Uskyldig inntil det motsatte er bevist The concept of innocent until proven guilty Alternativ hypotese Betegnes ofte H 1 Det er en forskjell/sammenheng Gjensidig utelukkende i forhold til 0-hypotesen To-sidig test 0-hypotesen (H o ) hevder vanligvis at det ikke er forskjell Alternativ til dette er at det en forskjell (alternativ hypotese, H 1 ) Siden verken H o eller H 1 spesifiserer retning på forskjellen, gir dette grunnlag for en tosidig test (forskjellen kan gå begge veier) Tosidige tester bør brukes såfremt en ikke har veldig gode grunner for å foreta en ensidig test 6
7 p-verdi P-verdien representerer sannsynligheten, betinget at 0-hypotesen er sann, for at test observatoren i studien er like langt eller lengre fra 0-hypotesen enn det som ble observert Eks: Anta at en studie gir et estimat på forskjell i blodtrykk mellom to grupper = + 10 mmhg P-verdien (ensidig) representerer da tilnærmelsesvis sannsynligheten, gitt sann forskjell=0 (Ho), for at en studie vil gi: en positiv forskjell lik 10mmHg eller høyere I en randomisert studie ble Medikament A sammenliknet med Medikament B. 57% av pasientene som tok medikament A ble friske. 39% av pasientene som tok medikament B ble friske. Forskjellen mellom gruppene ble testet å ga en p-verdi = Forutsatt at ingen tidligere studier har blitt foretatt, hvilke utsagn anser du som mest korrekt: I. It is more likely to recover from the disease if given Drug A than if given Drug B. II. It is less likely to recover from the disease if given Drug A than if given Drug B. III. It is equally likely to recover from the disease if given Drug A or if given Drug B. IV. It cannot be determined whether a person is more/less/equally likely to recover from the disease if given Drug A or if given Drug B. I en randomisert studie ble medikament A sammenliknet med medikament B. Common guidelines for manuscripts submitted to biomedical journals - ICMJE 57% av pasientene som tok medikament A ble friske. 39% av pasientene som tok medikament B ble friske. Forskjellen mellom gruppene ble testet å ga en p-verdi = Hvis du skulle behandle pasienter av samme type som i studien, hvilke medikament ville du valgt (under ellers like forhold)? I. Drug A II. Drug B III. Hipp som happ, da det ikke var signifikante forskjeller Statistics When possible, quantify findings and present them with appropriate indicators of measurement error or uncertainty (such as confidence intervals) Avoid relying solely on statistical hypothesis testing, such as the use of P values, which fails to convey important quantitative information ICMJE in 1996 were: the Annals of Internal Medicine, the British Medical Journal, the Canadian Medical Association Journal, the Journal of the American Medical Association, the Lancet, the Medical Journal of Australia, the New England Journal of Medicine, the New Zealand Medical Journal, the Tidsskrift for den Norske Laegeforening, the Western Journal of Medicine, and the Index Medicus Ref: International Committee of Medical Journal Editors. Uniform requirements for manuscripts submitted to biomedical journals. N Engl J Med 1997; 336: Konfidensintervall (KI)- Presisjon In the IJE (International Journal of Epidemiology) we actively discourage the use of the term "statistically significant" or just "significant" and such statements in method sections as "findings at p<0.05 were considered significant". Where used, we ask authors to provide effect estimates with confidence intervals and exact P values, and to refrain from the use of the term "significant" in either the results or discussion section of their papers. Hvis vi gjentar studien mange ganger, vil 95% av KI inneholde den sanne parameterverdien ( det sanne effektestimatet ) Kan si at vi er 95% sikre (confident) på at intervallet inneholder den sanne parameterverdien (verdien vi forsøker å estimere) eller at intervallet inneholder verdier som er forenlige med våre observasjoner- dvs et mål på presisjon 7
8 Konfidensintervall versus p-verdi Konfidensintervall gir utrykk for: Størrelse på effekt Retning Presisjon P-verdier uttrykker: En mix av presisjon og effektstørrelse 8
Epidemiologi. Læringsmål. Hva brukes epidemiologi til? The study of the occurrence of illness. Læren om sykdommers utbredelse og årsaker
Epidemiologi The study of the occurrence of illness Læren om sykdommers utbredelse og årsaker Johan Håkon Bjørngaard Professor, Institutt for samfunnsmedisin, NTNU Læringsmål Insidensrater og insidensandel
DetaljerEpidemiologi. Hva brukes epidemiologi til? Hvorfor lære epidemiologi? Mål på forekomst av sykdom. The study of the occurrence of illness
Epidemiologi The study of the occurrence of illness Hva brukes epidemiologi til? finne årsaker til sykdom Miljø (forbygging) genetikk samspill mellom faktorer mekanismer (mål for behandling) vurdere effekt
Detaljer04.01.2012. Epidemiologi. Hvorfor lære epidemiologi? Mål på forekomst av sykdom. Hva brukes epidemiologi til? The study of the occurrence of illness
Epidemiologi The study of the occurrence of illness Hva brukes epidemiologi til? finne årsaker til sykdom Miljø (forbygging) genetikk samspill mellom faktorer vurdere effekt av intervensjoner (frukt, trening,
DetaljerEpidemiologi. Hva brukes epidemiologi til? Hvorfor lære epidemiologi? Mål på forekomst av sykdom. The study of the occurrence of illness
Epidemiologi The study of the occurrence of illness Hva brukes epidemiologi til? finne årsaker til sykdom Miljø (forbygging) genetikk samspill mellom faktorer vurdere effekt av intervensjoner (frukt, trening,
DetaljerEpidemiologi - en oppfriskning. Epidemiologi. Viktige begreper 12.04.2015. Deskriptiv beskrivende. Analytisk årsaksforklarende. Ikke skarpt skille
Epidemiologi - en oppfriskning Epidemiologi Deskriptiv beskrivende Hyppighet og fordeling av sykdom Analytisk årsaksforklarende Fra assosiasjon til kausal sammenheng Ikke skarpt skille Viktige begreper
DetaljerGrunnleggende statistikk. Eva Denison 25. Mai 2016
Grunnleggende statistikk Eva Denison 25. Mai 2016 Agenda Hva er statistikk, og hvorfor trenger vi det? Beskrivende statistikk Statistisk analyse Meta-analyse Hva er statistikk? En måte å kvantitativt beskrive
DetaljerEpidemiologi - en oppfriskning. En kort framstilling. Er det behov for kunnskaper om epidemiologi?
Epidemiologi - en oppfriskning En kort framstilling Dere kan finne en kort gjennomgang av epidemiologifaget i et kapittel som jeg skrev i en bok. Jacobsen BK. Epidemiologi. I: Kvantitativ forskningsmetodologi
DetaljerKLH 3002 Epidemiologi Eksamen Høst 2011 Eksaminator: Geir W. Jacobsen, ISM
KLH 3002 Epidemiologi Eksamen Høst 2011 Eksaminator: Geir W. Jacobsen, ISM Oppgaven består av 18 spørsmål, hvorav de første 15 er flervalgsspørsmål (ett poeng per oppgave) - sett ring rundt riktig svar.
DetaljerKLH3002 Epidemiologi. Eksamen høsten 2012
KLH3002 Epidemiologi Eksamen høsten 2012 1. Insidens andel (Eng. Incidence proportion)avhenger av A. oppfølgingstiden i studien (= follow up time) B. bortfall fra studien (= loss to follow up) C. Både
DetaljerTema Kvalitativ og kvantitativ forskningsmetode. Forskningsmetode. Kausalitet. Reliabilitet og validitet. Usikkerhet. IA mandag 5/9-2014
Kvalitativ og kvantitativ forskningsmetode IA mandag 5/9-2014 Johan Håkon Bjørngaard, Professor Institutt for samfunnsmedisin johan.h.bjorngaard@ntnu.no Name, title of the presentation Forskningsmetode
Detaljer6.2 Signifikanstester
6.2 Signifikanstester Konfidensintervaller er nyttige når vi ønsker å estimere en populasjonsparameter Signifikanstester er nyttige dersom vi ønsker å teste en hypotese om en parameter i en populasjon
Detaljer1 8-1: Oversikt. 2 8-2: Grunnleggende hypotesetesting. 3 Section 8-3: Å teste påstander om andeler. 4 Section 8-5: Teste en påstand om gjennomsnittet
1 8-1: Oversikt 2 8-2: Grunnleggende hypotesetesting 3 Section 8-3: Å teste påstander om andeler 4 Section 8-5: Teste en påstand om gjennomsnittet Definisjoner Hypotese En hypotese er en påstand om noe
DetaljerSJEKKLISTE FOR VURDERING AV EN RANDOMISERT KONTROLLERT STUDIE (RCT) Målgruppe: studenter og helsepersonell Hensikt: øvelse i kritisk vurdering
SJEKKLISTE FOR VURDERING AV EN RANDOMISERT KONTROLLERT STUDIE (RCT) Målgruppe: studenter og helsepersonell Hensikt: øvelse i kritisk vurdering FØLGENDE FORHOLD MÅ VURDERES: Kan vi stole på resultatene?
DetaljerDenne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans
Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig
DetaljerAnalyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger
Intro til hypotesetesting Analyse av kontinuerlige data 21. april 2005 Tron Anders Moger Seksjon for medisinsk statistikk, UIO 1 Repetisjon fra i går: Normalfordelingen Variasjon i målinger kan ofte beskrives
DetaljerSupplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 2013. Skrevet av Stian Lydersen 16 januar 2013
1 Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 013. Skrevet av Stian Lydersen 16 januar 013 Vi antar at vårt utvalg er et tilfeldig og representativt utvalg for
DetaljerStatistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere
2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Å analysere en utvalgsobservator for å trekke slutninger
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig
DetaljerStatistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere
2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Analysere en observator for å finne ut noe om korresponderende
DetaljerVerdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/
Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator
DetaljerDenne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans
Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner
DetaljerMedisinsk statistikk, KLH3004 Dmf, NTNU 2009. Styrke- og utvalgsberegning
Styrke- og utvalgsberegning Geir Jacobsen, ISM Sample size and Power calculations The essential question in any trial/analysis: How many patients/persons/observations do I need? Sample size (an example)
DetaljerSjekkliste for vurdering av en randomisert kontrollert studie (RCT)
Sjekkliste for vurdering av en randomisert kontrollert studie (RCT) Hvordan bruke sjekklisten Sjekklisten består av tre deler der de overordnede spørsmålene er: Kan du stole på resultatene? Hva forteller
DetaljerSimulering med Applet fra boken, av z og t basert på en rekke utvalg av en gitt størrelse n fra N(μ,σ). Illustrerer hvordan estimering av variansen
Simulering med Applet fra boken, av z og t basert på en rekke utvalg av en gitt størrelse n fra N(μ,σ). Illustrerer hvordan estimering av variansen gir testobservatoren t mer spredning enn testobservatoren
DetaljerUtvalgsstørrelse, styrke
Utvalgsstørrelse, styrke Lise Lund Håheim DDS, PhD Professor II, Forskerlinjen, UiO Seniorforsker, Nasjonalt kunnskapssenter for helsetjenesten, Oslo Seniorforsker, Institutt for oral biologi, UiO Introduksjonskurset,
DetaljerEPIDEMIOLOGI. Hva er det? Medisin for ikke-medisinere. onsdag 25. september 2002. Tom Ivar Lund Nilsen. Institutt for samfunnsmedisinske fag
EPIDEMIOLOGI Hva er det? Medisin for ikke-medisinere onsdag 25. september 2002 Tom Ivar Lund Nilsen Institutt for samfunnsmedisinske fag TI Lund Nilsen EPIDEMIOLOGI - Hva er det? 1 Medisinsk forskning
DetaljerKapittel 3: Studieopplegg
Oversikt over pensum Kapittel 1: Empirisk fordeling for en variabel o Begrepet fordeling o Mål for senter (gj.snitt, median) + persentiler/kvartiler o Mål for spredning (Standardavvik s, IQR) o Outliere
DetaljerHypotesetesting (kp. 6) ÅMA110 Sannsynlighetsregning med statistikk, våren Tre deler av faget/kurset: 1. Beskrivende statistikk
ÅMA Sannsynlighetsregning med statistikk, våren 2 Kp. 6 Hypotesetesting Hypotesetesting (kp. 6) Tre deler av faget/kurset:. Beskrivende statistikk 2. Sannsynlighetsteori, sannsynlighetsregning 3. Statistisk
DetaljerKjennskap til egen diagnose helsemessige konsekvenser?
Kjennskap til egen diagnose helsemessige konsekvenser? (Diagnostic labelling and implications for health a population-based study) PhD-prosjekt Stipendiat: Pål Jørgensen Veiledere: Siri Forsmo, Arnulf
DetaljerBrystkreft: hyppigheten øker men dødeligheten går ned hvorfor? Lars Vatten, dr med Professor i epidemiologi. Det medisinske fakultet NTNU, Trondheim
Brystkreft: hyppigheten øker men dødeligheten går ned hvorfor? Lars Vatten, dr med Professor i epidemiologi Det medisinske fakultet NTNU, Trondheim 1 Dødelighetskurven for brystkreft viste en svakt økende
DetaljerStatistikk En måte å beskrive og analysere fenomener kvantitativt Eva Denison
Statistikk En måte å beskrive og analysere fenomener kvantitativt Eva Denison Formål Kunnskap om statistikk som verktøy for kritisk vurdering av studier Agenda Kort oversikt Beskrivende statistikk Statistisk
DetaljerStatistikk i klinikken. Arild Vaktskjold 2015
Statistikk i klinikken Arild Vaktskjold 2015 Kvantitativ forskningsmetode Alt tallfestes, selv kvalitative iakttakelser Målenivå Tall kan klassifiseres forskjellig Målte tallverdier kan anvendes med nøyaktighet
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting, innledning. Kp.
ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. 6 Hypotesetesting Hypotesetesting (kp. 6) Tre deler av faget/kurset:. Beskrivende statistikk. Sannsynlighetsteori, sannsynlighetsregning 3. Statistisk
DetaljerOppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0
Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir
DetaljerKræsjkurs i STAT101. Noen anbefalinger Regn mange(5-10) oppgavesett til eksamen:
Kræsjkurs i STAT101 Noen anbefalinger Regn mange(5-10) oppgavesett til eksamen: Legg vekt på å forstå hva formlene brukes til, det vil si når, og hvordan? Lær sammenhengen mellom fordelingene og tema i
DetaljerOver personer vil få en kreftdiagnose i Norge i 2015.
Over 30 000 personer vil få en kreftdiagnose i Norge i 2015. Hvordan har utviklingen vært? Hvordan blir den fremover? Hva kan vi bidra med? Steinar Tretli, PhD, Professor Kreftregisteret/ NTNU- ISM Litt
DetaljerScreening kva er forskingsbasert?
Screening kva er forskingsbasert? Geir Sverre Braut, SUS Sola, 7. september 2017 Grunnkurs D (Forsking i allmennpraksis) Med inspirasjon og ein del lånte plansjar frå professor Lars Vatten, NTNU Læringsutbytte
DetaljerPage 1 EN DAG PÅ HELSESTASJONEN. Lises klassevenninnner. Formelen: Du har en hypotese om vanlig høyde
1 E DAG PÅ HELSESTASJOE Lises klassevenninnner Lise er veldig liten Hva gjør at du sier at hun er liten? Du har en hypotese om vanlig høyde Du har en hypotese om vanlig høyde Du sammenligner Lises høyde
DetaljerSJEKKLISTE FOR VURDERING AV EN STUDIE SOM TESTER EN NY DIAGNOSTISK TEST
SJEKKLISTE FOR VURDERING AV EN STUDIE SOM TESTER EN NY DIAGNOSTISK TEST Målgruppe: studenter og helsepersonell Hensikt: øvelse i kritisk vurdering FØLGENDE FORHOLD MÅ VURDERES: Kan vi stole på resultatene?
DetaljerDenne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans
Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner
DetaljerKausalitet - Hvordan komme litt nærmere sannheten
Seniorforsker, professor Lise Lund Håheim Nasjonalt kunnskapssenter for helsetjenesten, Universitetet i Oslo Kausalitet - Hvordan komme litt nærmere sannheten Nasjonalt kunnskapssenter for helsetjenesten
DetaljerKATEGORISKE DATA- TABELLANALYSE ANALYSE AV. Tron Anders Moger. 3. Mai 2005
ANALYSE AV KATEGORISKE DATA- TABELLANALYSE 3. Mai 2005 Tron Anders Moger Forrige gang: Snakket om kontinuerlige data, dvs data som måles på en kontinuerlig skala Hypotesetesting med t-tester evt. ikkeparametriske
DetaljerFormelsamling i medisinsk statistikk
Formelsamling i medisinsk statistikk Versjon av 6. mai 208 Dette er en formelsamling til O. O. Aalen (red.): Statistiske metoder i medisin og helsefag, Gyldendal, 208. Gjennomsnitt x = n (x + x 2 + x 3
DetaljerEKSAMENSOPPGAVE KLH3004 Medisinsk statistikk (Medical statistics) KLMED8004 Medisinsk statistikk, del I (Medical Statistics, Part I)
Det medisinske fakultet Institutt for kreftforskning og molekylær medisin EKSAMENSOPPGAVE KLH3004 Medisinsk statistikk (Medical statistics) KLMED8004 Medisinsk statistikk, del I (Medical Statistics, Part
DetaljerKrysstabellanalyse (forts.) SOS1120 Kvantitativ metode. 4. Statistisk generalisering. Forelesningsnotater 9. forelesning høsten 2005.
SOS112 Kvantitativ metode Krysstabellanalyse (forts.) Forelesningsnotater 9. forelesning høsten 25 4. Statistisk generalisering Per Arne Tufte Eksempel: Hypoteser Eksempel: observerte frekvenser (O) Hvordan
DetaljerST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon
ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere
DetaljerVerdens statistikk-dag.
Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator
DetaljerPSY 1002 Statistikk og metode. Frode Svartdal April 2016
PSY 1002 Statistikk og metode Frode Svartdal April 2016 GANGEN I HYPOTESETESTING 1. Formuler en hypotese «Man får bedre karakterer hvis man leser pensum» 2. Formuler motstykket, nullhypotesen H 0 «Man
DetaljerUlike typer screening
Ulike typer screening Hvordan virker dette på overdiagnostikk? Moderne bildediagnostikk og medisinske tester, for mye av det gode? Mette Kalager Lege, PhD Min bakgrunn Kirurg Sykehuset Telemark, OUS Radiumhospitalet
DetaljerSJEKKLISTE FOR VURDERING AV FOREKOMSTSTUDIE
SJEKKLISTE FOR VURDERING AV FOREKOMSTSTUDIE (Tverrsnittstudie, spørreundersøkelse, survey) FØLGENDE FORHOLD MÅ VURDERES: Kan vi stole på resultatene? Hva forteller resultatene? Kan resultatene være til
DetaljerSannsynlighet (Kap 3)
Sannsynlighet (Kap 3) Medisinsk statistikk Del I 3 sept. 2008 Eirik Skogvoll, 1.amanuensis/ overlege Hva er sannsynlighet? Grunnleggende sannsynlighetsregning 1 Brystkreft (Eks. 3.1) Forekomst av brystkreft
DetaljerKapittel 7: Inferens for forventningerukjent standardavvik
Kapittel 7: Inferens for forventningerukjent standardavvik 7.1: Inferens for forventningen i en populasjon 7.2: Inferens for å sammenligne to forventninger 7.1 Inferens for forventningen i en populasjon
DetaljerTallene forteller hva som virker
Tallene forteller hva som virker «Viten på lørdag» 7. Mars 2015. Odd O. Aalen, Avdeling for biostatistikk Institutt for medisinske basalfag Universitetet i Oslo Berømt historisk eksempel: Håndvask og barselfeber
Detaljerregresjonsmodeller multippel logistisk regresjon logistisk regresjon prediksjon vs assosiasjon den logistisk funksjonen (2)
Innføring i medisinsk statistikk del 2 regresjonsmodeller Hvorfor vil man bruke regresjonsmodeller? multippel logistisk regresjon. predikere et utfall (f.eks. sykdom, død, blodtrykk) basert på et sett
DetaljerST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner
ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner Bo Lindqvist Institutt for matematiske fag 2 Kapittel 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to
Detaljer7.2 Sammenligning av to forventinger
7.2 Sammenligning av to forventinger To-utvalgs z-observator To-utvalgs t-prosedyrer To-utvalgs t-tester To-utvalgs t-konfidensintervall Robusthet To-utvalgs t-prosedyrerår variansene er like Sammenlikning
DetaljerIntroduksjon til inferens
Introduksjon til inferens Hittil: Populasjon der verdien til et individ/enhet beskrives med en fordeling. Her inngår vanligvis ukjente parametre, μ, p,... Enkelt tilfeldig utvalg (SRS), observator p =
DetaljerTrenger vi nye kostholdsråd? (ja)
Trenger vi nye kostholdsråd? (ja) Birger Svihus, Norges miljø- og biovitenskapelige universitet Norwegian University of Life Sciences 1 Det sunne kostholdets to generelle bud: Spis variert Sørg for energibalanse
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: Tirsdag 11. desember 2012. Tid for eksamen: 14.30 18.30. Oppgavesettet
DetaljerHypotesetesting. mot. mot. mot. ˆ x
Kapittel 6.4-6.5: ypotesetesting ypotesetesting er en standard vitenskapelig fremgangsmåte for å sjekke påstander. Generell problemstilling: Basert på informasjonen i data fra et tilfeldig utvalg ønsker
DetaljerSlope-Intercept Formula
LESSON 7 Slope Intercept Formula LESSON 7 Slope-Intercept Formula Here are two new words that describe lines slope and intercept. The slope is given by m (a mountain has slope and starts with m), and intercept
DetaljerIdentifisere mekanismene bak de fordelaktige effektene som fysisk trening gir på hjerte, blodårer og skjelettmuskel.
Dorthe Stensvold CERG / K.G. Jebsen Center of Exercise in Medisin Identifisere mekanismene bak de fordelaktige effektene som fysisk trening gir på hjerte, blodårer og skjelettmuskel. Endring i ulike aldersgrupper
DetaljerInformation search for the research protocol in IIC/IID
Information search for the research protocol in IIC/IID 1 Medical Library, 2013 Library services for students working with the research protocol and thesis (hovedoppgaven) Open library courses: http://www.ntnu.no/ub/fagside/medisin/medbiblkurs
DetaljerNeuroscience. Kristiansand
Neuroscience Kristiansand 16.01.2018 Neuroscience Frank E. Sørgaard Medisinsk rådgiver «Hvordan kan MS medikamentenes effekt og sikkerhet sammenlignes»? Neuroscience Når det ikke finne head to head studier
DetaljerEpidemiologi og risikovurdering. Disposisjon. Epidemiologi. Noen begreper. Metoder epidemiologi
Metoder epidemiologi Epidemiologi og BIO 4530: Regulatorisk toksikologi UiO 28. april 2005 Formål Gi en kritisk vurdering av epidemiologi som et verktøy i Målgruppe Alle som er involvert i toksikologisk
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting. Kp. 6 Hypotesetesting ...
ÅMA Sannsynlighetsregning med statistikk, våren 6 Kp. 6 (kp. 6)... Begrep: nullhypotese alternativhypotese ensidig, tosidig teststørrelse (testobservator) nullfordeling kritisk verdi, forkastningsområde
DetaljerKompetanse i pasientopplæring
Kompetanse i pasientopplæring Perspektiv fra pasienter med erfaring fra pasientopplæring i hjertebehandling Dr. Margrét Hrönn Svavarsdóttir Førsteamanuensis NTNU Gjøvik, Seksjon for sykepleie og Universitet
DetaljerForelesning 10 Kjikvadrattesten
verdier Forelesning 10 Kjikvadrattesten To typer av statistisk generalisering: Statistisk hypotesetesting Statistiske hypoteser (H 0 og H 1 ) om populasjonen Finner forkastningsområdet for H 0 ut fra en
DetaljerStatistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG
Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG AVDELING FOR MAT- OG MEDISINSK TEKNOLOGI Matteknologisk utdanning Kandidatnr: Eksamensdato:
DetaljerMetaanalyse. Metaanalyse. Hvorfor metaanalyse. Metaanalyse. Kritikken har vært betydelig. Valg av aktuelle studier
Metaanalyse Metaanalyse Pål Romundstad Statistisk analyse av resultater fra flere separate studier kombinere resultater fra ulike studier for om mulig identifisere konsistens og divergens En observasjonsstudie
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT BOKMÅL Utsatt eksamen i: ECON2915 Vekst og næringsstruktur Eksamensdag: 07.12.2012 Tid for eksamen: kl. 09:00-12:00 Oppgavesettet er på 5 sider Tillatte hjelpemidler:
DetaljerTMA4240 Statistikk H2010
TMA4240 Statistikk H2010 Statistisk inferens: 9.4: Konfidensintervall for µ 8.7: Student-t fordeling 8.6: Fordeling til S 2 Mette Langaas Foreleses onsdag 13.oktober, 2010 2 Estimering Mål: finne sannheten
DetaljerSaksnotat vedrørende Retningslinjer for medikamentell primærforebygging av hjerte- og karsykdommer
Nasjonalt råd for kvalitet og prioritering v/ sekretariatet Deres ref: Saksbehandler: OFN Vår ref: 1/07 Arkivkode: Dato: 110907 Saksnotat vedrørende Retningslinjer for medikamentell primærforebygging av
DetaljerEpidemiologi og risikovurdering. Disposisjon. Noen begreper. Epidemiologi klassifisert etter formål. Epidemiologi. Metoder epidemiologi.
Metoder epidemiologi Epidemiologi og BIO 4530: Regulatorisk toksikologi UiO 29. april 2004 Formål Gi en kritisk vurdering av epidemiologi som et verktøy i Målgruppe Alle som er involvert i toksikologisk
DetaljerForelesning 9 Kjikvadrattesten. Kjikvadrattest for bivariate tabeller (klassisk variant) Når kan vi forkaste H 0?
Forelesning 9 Kjikvadrattesten Kjikvadrattesten er den mest benyttede metoden for å utføre statistiske generaliseringer fra bivariate tabeller. Kjikvadrattesten brukes til å teste nullhypotesen om at det
DetaljerForeleses onsdag 13.oktober, 2010
TMA440 Statistikk H010 Statistisk inferens: 9.4: Konfidensintervall for µ 8.7: Student-t fordeling 8.6: Fordeling til S Mette Langaas Foreleses onsdag 13.oktober, 010 Estimering Mål: finne sannheten om
DetaljerMetodisk kvalitetsvurdering av systematisk oversikt. Rigmor C Berg Kurs H, mars 2019
Metodisk kvalitetsvurdering av systematisk oversikt Rigmor C Berg Kurs H, mars 2019 Oppsummering av forskning har lang tradisjon 12th century: knowledge syntheses in field of philosophy 17th century: statistical
DetaljerLøsningsforslag øving 9, ST1301
Løsningsforslag øving 9, ST1301 Oppgave 1 Regresjon. Estimering av arvbarhet. a) Legg inn din egen høyde, din mors høyde, din fars høyde, og ditt kjønn via linken på fagets hjemmeside 1. Last så ned dataene
DetaljerKap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere
Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis μ 1 og μ. Vi trekker da ett utvalg fra hver populasjon. ST00 Statistikk for
DetaljerEksamensoppgave i ST3001
Det medisinske fakultet Institutt for kreftforskning og molekylær medisin Eksamensoppgave i ST3001 Onsdag 16. desember 2010, kl. 9.00 13:00 ntall studiepoeng: 7.5 Tillatte hjelpemidler: Kalkulator og alle
DetaljerPSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014
Psykologisk institutt PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014 Skriftlig skoleeksamen fredag 2. mai, 09:00 (4 timer). Kalkulator uten grafisk display og tekstlagringsfunksjon
DetaljerSammendrag. Innledning
Sammendrag Innledning Omtrent 80 prosent av alle hjerneslag er iskemiske, et resultat av blokkering av oksygentilførselen til hjernen. Dersom det ikke blir påvist intrakraniell blødning og det ikke foreligger
Detaljer2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger.
H12 - Semesteroppgave i statistikk - sensurveiledning Del 1 - teori 1. Gjør rede for resonnementet bak ANOVA. Enveis ANOVA tester om det er forskjeller mellom gjennomsnittene i tre eller flere populasjoner.
Detaljer1 9-3: Sammenligne gjennomsnitt for to uavhengige stikkprøver. 2 9-4: Sammenligne gjennomsnitt for to relaterte stikkprøver
1 9-3: Sammenligne gjennomsnitt for to uavhengige stikkprøver 2 9-4: Sammenligne gjennomsnitt for to relaterte stikkprøver 3 Oppvarming til kap 10: Rette linjer Sammenligne to populasjoner Data fra to
DetaljerInferens i fordelinger
Inferens i fordelinger Modifiserer antagelsen om at standardavviket i populasjonen σ er kjent Mer kompleks systematisk del ( her forventningen i populasjonen). Skal se på en situasjon der populasjonsfordelingen
DetaljerKan vi stole på resultater fra «liten N»?
Kan vi stole på resultater fra «liten N»? Olav M. Kvalheim Universitetet i Bergen Plan for dette foredraget Hypotesetesting og p-verdier for å undersøke en variabel p-verdier når det er mange variabler
DetaljerSjekkliste for vurdering av en kasuskontrollstudie
Sjekkliste for vurdering av en kasuskontrollstudie Hvordan bruke sjekklisten Sjekklisten består av tre deler der de overordnede spørsmålene er: Kan du stole på resultatene? Hva forteller resultatene? Kan
Detaljer5 E Lesson: Solving Monohybrid Punnett Squares with Coding
5 E Lesson: Solving Monohybrid Punnett Squares with Coding Genetics Fill in the Brown colour Blank Options Hair texture A field of biology that studies heredity, or the passing of traits from parents to
DetaljerSjekkliste for vurdering av en kohortstudie
Sjekkliste for vurdering av en kohortstudie Hvordan bruke sjekklisten Sjekklisten består av tre deler der de overordnede spørsmålene er: Kan du stole på resultatene? Hva forteller resultatene? Kan resultatene
DetaljerRegisterbaserte pandemistudier - en oppsummering. Lill Trogstad Avdeling for vaksine, FHI
Registerbaserte pandemistudier - en oppsummering Lill Trogstad Avdeling for vaksine, FHI Vaksinedagene 2015 Influensapandemien 2009/ 2010 RegFlu - Registerbaserte influensastudier Meldesystemet for smittsomme
DetaljerAntall kvinner som lever med brystkreft i Oslo i Antall kvinner som lever med brystkreft 10 år etter diagnosen i
Oppgave 1 Insidens, insidensrate og prevalens er alle begreper som brukes for å beskrive forekomst av sykdom. For hver brøk nedenfor, bestem om det er en insidens, insidensrate, prevalens, eller ingen
DetaljerDatabases 1. Extended Relational Algebra
Databases 1 Extended Relational Algebra Relational Algebra What is an Algebra? Mathematical system consisting of: Operands --- variables or values from which new values can be constructed. Operators ---
DetaljerForskning og kvalitetsregistre hvilke muligheter finnes? Kaare Harald BønaaB Trondheim
Forskning og kvalitetsregistre hvilke muligheter finnes? Kaare Harald BønaaB Trondheim Gardermoen 30.11.2012 «No matter how beautiful the strategy, you should occasionally look at the results.» Winston
DetaljerSJEKKLISTE FOR VURDERING AV EN KOHORTSTUDIE
SJEKKLISTE FOR VURDERING AV EN KOHORTSTUDIE Målgruppe: studenter og helsepersonell Hensikt: øvelse i kritisk vurdering FØLGENDE FORHOLD MÅ VURDERES: Kan vi stole på resultatene? Hva forteller resultatene?
DetaljerSTUDIEÅRET 2013/2014. Individuell skriftlig eksamen. VTM 200- Vitenskapsteori og metode. Fredag 25. april 2014 kl. 10.00-12.00.
STUDIEÅRET 2013/2014 Individuell skriftlig eksamen i VTM 200- Vitenskapsteori og metode Fredag 25. april 2014 kl. 10.00-12.00 Hjelpemidler: ingen Eksamensoppgaven består av 5 sider inkludert forsiden Sensurfrist:
DetaljerPATIENCE TÅLMODIGHET. Is the ability to wait for something. Det trenger vi når vi må vente på noe
CARING OMSORG Is when we show that we care about others by our actions or our words Det er når vi viser at vi bryr oss om andre med det vi sier eller gjør PATIENCE TÅLMODIGHET Is the ability to wait for
DetaljerMer om hypotesetesting
Mer om hypotesetesting I underkapittel 36 i læreboka gir vi en kort innføring i tankegangen ved hypotesetesting Vi gir her en grundigere framstilling av temaet Problemstilling Vi forklarer problemstillingen
DetaljerOPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt.
EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir forlag) OPPGAVESETTET
DetaljerIntensiv trening ved spondyloartritt
Intensiv trening ved spondyloartritt Diakonhjemmet Sykehus Nasjonal Kompetansetjeneste for Revmatologisk Rehabilitering Silje Halvorsen Sveaas 29. april 2015 Disposisjon Introduksjon Risiko for hjerte-og
Detaljer