EKSAMEN TKP 4105 SEPARASJONSTEKNOLOGI DESEMBER 2005 Forslag til løsning

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "EKSAMEN TKP 4105 SEPARASJONSTEKNOLOGI DESEMBER 2005 Forslag til løsning"

Transkript

1 EKSAMEN TKP 415 SEPARASJONSTEKNOLOGI DESEMBER 25 Forslag til løsning Oppgave / Oppgåve 1 ADSORPSJON (vekt 4%) Ved å benytte molekylsikter skal vann fjernes fra en nitrogen gasstrøm med temperatur 3 C. Kolonnehøyden er gitt til totalt,27m, og tettheten for tørkematerialet er 712,8 kg/m 3. Tørkematerialet inneholder i utgangspunktet,1 kg vann / kg fast stoff, og massefluksen for nitrogengassen er 452 kg/m 2. time (antas konstant). Vannkonsentrasjonen i gassen er ved start c = 926x1-6 kg vann / kg nitrogen. Konsentrasjonen av vann i gassen ut (c) som funksjon av tid er oppgitt i tabellen under ( Break through data ): t (timer) 9 9,2 9,6 1 1,4 c (kg H 2 O / kg N 2 ) x1 6 <,6,6 2, t (timer) 1,8 11,25 11,5 12, 12,5 12,8 c (kg H 2 O/kg N 2 ) x Verdien av c/c =,2 ved break point Oppgave: a) Skisser kurven c/c som funksjon av tiden, t. Indiker med pil hvor vi har break-point og hva som tilsvarer masseoverføringssonen. b) Bestem tiden det tar før vi er ved kolonnas break point c) Bestem fraksjon av kolonnas totale kapasitet som er brukt opp til break point d) Bestem lengden av den ubrukte kolonna ( length of unused bed ) e) Bestem tørkekapasiteten av molekylsikten ( saturation loading capacity of solid ) f) Kolonna skal oppskaleres til H T = 4 cm. Bestem tiden til break-point i den nye kolonna, og fraksjonen vi da får av total kapasitet g) Er det en korrekt antagelse at massefluksen antas konstant? Diskuter. Gitt: c tt = 1 dt c hvor t t = er tiden det tar for å utnytte kolonnas totale kapasitet og c er som gitt i tabellen over tu HB = HT tt hvor H B er høyden av kolonna som er utnyttet opp til break point ; H T er total kolonnehøyde t u er tiden for utnyttbar kapasitet Løsning: a) Se vedlegg for kurven: Det er forventet en nøyaktig tegnet kurve som gir mulighet for avlesning for break-point for c/c =,2, eller angitt tabell som viser klart t b. Masseoverføringssone er vist i figur; i boka figur b) b) Break-point nås når c/c =,2 (oppgitt). Avleser t b = 9,6 timer ( ~9,5 t godtas også) 1

2 c) Kapasitet av kolonna utnyttet opptil rett før break-point kalles t u, og er gitt ved likning i boka (skravert areal A 1 ); dvs. den oppgitte likning i oppgaven, med grenseverdiene 9,6: 9,6 c tu = 1 dt=,98 9,6= 9,41 c i timer NB! t u er altså ikke lik t b der er en liten forskjell! Dette kan også finnes ved numerisk eller grafisk integrasjon, se boka fig Utrykket for H B er gitt i oppgaven, og vi ser vi må kjenne t t for å beregne fraksjonen av kolonnas totale kapasitet; H B /H T : Figuren viser at ved c/c = 1 så er sluttiden, t d = 12,8 timer Grafisk integrasjon gir tiden fra t u til t d : (12,8-9,41)/2 = 1,7 timer Den totale tid for absorpsjon, t t = 9,4 + 1,7 = 11,1 timer Utnyttet fraksjon av kolonna: Gitt formel: H B /H T = t u /t t = 9,4/11,1=,85 d) Lengden av den ubrukte kolonna søkes: H B =,85 x,27 =,23 m Dvs.: Ubrukt kolonne:,27,23 =,4 m = 4 cm e) Tørkekapasitet på molekylsikten skal bestemmes: Kolonnehøyden gitt til,27 m. Kolonnediameter er ikke gitt. Tetthet tørkemateriale gitt: 712,8 kg/m 3 Mengde tørkemateriale: 712,8 x,27 = 192,46 kg/m 2 Massefluks fuktig N 2 -gass: 452 kg N 2 /(time m 2 ) som inneholder H 2 O: (926x1-6 )x 452 = 3,752 kg H 2 O /time m 2 ) Total mengde vann som kan adsorberes: 3,752 x 11,1= 41,65 kg H 2 O / m 2 + Mengde vann ved start:,1 kg H 2 O / kg fast stoff:,1 x 192,46 = 1,93 kg H 2 O / m 2 Total mengde vann adsorbert: 43,58 kg H 2 O / m 2 Tørkekapasitet av molekylsikten: 43,58 / 192,46=,226 kg H 2 O / kg fast stoff f) Oppskalering: Kolonna skal oppskaleres til 4 cm. Lengden på masseoverføringssonen blir som før (4 cm) Den nye høyden på kolonna frem til break point, t b : 4 4 = 36 cm (og men husker at t u =,98 t b ) Fraksjonen av kolonnas totale kapasitet: t u /t t = H B / H T = 36/4 =,9 Tiden til break-point i ny kolonne: t u /(t u + 1,7) =,9 t u = 15,3 timer t b = 15,3 /,98t u ; t b = 15,6 timer g) Diskusjon vedr. konstant massefluks. Her forventes det en diskusjon om betydningen av at vann fjernes noe redusert fluks, men tilnærmet ubetydelig. Ettersom kolonna mettes, vil imidlertid den mettede kolonna representere større motstand mot fluksen enn tørt (porøst) materiale. Betyr heller ikke mye. Konklusjon; det er OK med antagelsen. 2

3 Bonus spørsmål: Forklar (og illustrer) hvordan vi ved hjelp av likevektsdata for adsorpsjon kan finne om adsorpsjonsisotermen følger Henry s lov (q = K. c), Freundlich s lov (q = K. c n ) eller Langmuir s lov (q = (q c)/(k+c)) Se læreboka s (pkt.12.1 og 12.2) for denne oppgaven Riktig besvarelse av denne bonusoppgaven teller i positiv retning dersom kandidaten ligger i en gråsone mellom to karakterer når alle bidrag til sluttkarakter er summert. 3

4 Oppgave / Oppgåve 2 EKSTRAKSJON (vekt 3%) En vandig løsning som inneholder 37.7 wt% eddiksyre skal behandles i et motstrøms ekstraksjonsanlegg med 1 wt% isopropyleter. Den utgående konsentrasjonen av eddiksyre i den vannrike fasen er 5 wt%. Føderaten av den vandige løsningen er 1 kg/h. Føderaten av isopropyleter skal bestemmes i regneoppgavene nedenfor. I besvarelsen skal du bruke bokstavene A, B og C for henholdsvis eddiksyre, vann og isopropyleter. Faselikevektene fremgår av figuren nederst på siden. En kopi av diagrammet for bruk i besvarelsene er lagt ved oppgavesettet. a) Finn den minste føderaten av isopropyleter som er mulig i henhold til fasediagrammet. Når fødepunktet (37.7 wt% eddiksyre) ligger i forlengelsen av en likevektslinje (eng. tie-line) er det ingen drivende krefter for separasjonen. Dette tilsvarer den minste føderaten som er mulig for prosessen. Føderate pluss total massebalanse pluss komponentbalanser for eddiksyre og isopropyleter gir (konsentrasjonene er avlest i det vedlagte diagrammet) 1 L V N + 1 = L N V 1 med løsningen L = 1, VN+ 1 = 1152, LN = 568, V1 = 1585 [ kg/h ]. Den minste føeraten av isopropyleter er 1152 kg/h. b) Bestem konsentrasjonene av alle komponentene i det første likevektstrinnet (der hvor eddiksyren kommer inn), når forholdene er som beskrevet i deloppgave a). Avlesning i fasediagrammet nedenfor gir: y y x x A,1 C,1 A,1 C,1 = 22 wt% = 72 wt% = 37 wt% = 4 wt% 4

5 1 A = acetic acid, C = isopropyl ether x C, y C x, y A A 1 A = acetic acid, C = isopropyl ether x C, y C x, y A A 5

6 c) Bestem antall likevektstrinn i ekstraksjonsanlegget når føderaten av isopropyleter er 3 kg/h. Bruk gjerne to farger når du konstruerer diagrammet (lettere å lese). Trinnberegningen følger den vanlige oppskriften: 1. Trekker forbindelseslinjen mellom nedre høyre (37.7 eddiksyre) og øvre venstre fødepunkt (1% isopropyleter). 2. Beregner avstanden fra øvre venstre fødepunkt ved hjelp av vektstangregelen til 1/(1+3)=.25 av det totale linjestykket. 3. Antar likevekt og trekker driftslinjen mellom nedre venstre (5% eddiksyre) og øvre høyre endepunkt. 4. Konstruerer pivotpunktet. 5. Trekker alternerende driftslinjer og likevektslinjer. Det trengs 3 likevektstrinn. d) Et alternativ til motstrømsanlegget er å bruke ren isopropyleter i hvert trinn. Trengs det flere eller færre trinn i dette tilfellet? Begrunn svaret med utgangspunkt i fasediagrammet. Det trengs færre likevektstrinn fordi den drivende konsentrasjonsforskjellen blir større i hvert trinn. 1 A = acetic acid, C = isopropyl ether x C, y C x, y A A 6

7 Oppgave / Oppgåve 3 REGULERINGSTEKNIKK (vekt 3 %) Figuren viser et varmekraftverk der varmen i en gass-strøm utnyttes til å produsere arbeid i en turbin (W 4 ). Det brukes en lukket syklus med vann/damp bestående av følgende trinn: 1) Forvarming av fødevann fra ca. 45 C til ca. 25 C. 2) Fordampning ved 1 bar/38 C. 3) Overheting av damp til ca. 5 C (1 bar). 4) Ekspansjon fra 1 bar til.1 bar der arbeid tas ut. 5) Kondensering av gassen ved ca..1 bar / 45 C. W 4 5. kjølevann 4: turbin x 4 T 6 p 7 7: dampkjele 6: kondesattank LC T 3 W 8 8: pumpe T gass,inn 3: overheting damp med bypass) 2: fordampning med naturlig sirkulasjon) 1: oppvarming vann med bypass) T gass,ut I oppsamlingstanken for kondensat (6) og i dampkjelen (7) er det damp-væske likevekt. Nivået i kondensat-tanken holdes konstant ved å justere pumpearbeidet (8) som vist i figuren. Fuktighetsinnholdet (vanninnholdet) i strømmen ut av turbinen skal ikke overstige 1% for å unngå skader på turbinen. Fuktighetsmåleren (x 4 ) er noe langsom og lite pålitelig. Merk at når vi kjøler mer så vil fuktighetsinnholdet x 4 øke og temperaturen T 6 synke. Følgende variable ønskes holdt konstant: p 7 = 1 bar, T 3 = 5 C, T gass,ut = 1 C, x 4 =.1 Målepunkter er angitt med prikker. a) Mesteparten av massen befinner seg som væske i dampkjelen. Forklar hvorfor det ikke er nødvendig å regulere denne, dvs. hvorfor det ikke trenges nivåregulering i dampkjelen. b) Klassifiser variablene c) Sett opp et forslag til reguleringssystem 7

8 Løsning: a) Siden vi har et lukket system er det ikke nødvendig å regulere den totale massen (den er konstant så fremt vi ikke har noen lekkasje). Hvis det er litt lekkasje må vi evt. ha en påfylling som brukes til å holde nivået i dampkjelen konstant. W 4 5. kjølevann xc T 6s 4: turbin TC x 4 T 6 TC p 7 7: dampkjele 6: kondesattank LC T 3 W 8 PC 8: pumpe T gass,inn 3: overheting damp med bypass) 2: fordampning med naturlig sirkulasjon) T gass,ut TC b) Pådrag er vist på figuren: q 1 (bypass), q 2, q 3 (bypass), q 5 + arbeidet W 4 Forstyrrelser: T gass,inn, q gass,inn, Regulerte utganger er oppgitt: p 7, T 3, T gass,ut, x 4 Målinger: Regulerte utganger + T 6 Merk at arbeidet som tas ut av turbinen W 4 er en uavhengig variabel (pådrag). Hvis studenten antar at W4 er en avhengig variabel (egentlig ikke riktig) eller forstyrrelse (mulig for et begrenset driftsområde, men ikke optimalt) så er dette også OK (figuren over er vist for dette tilfellet). c) Vi har 4 utganger og 4 (evt. 5) manipulerte variable. Det er ikke så mye hjelp å sette opp prosess-matrisen her for alt påvirker alt, men parringene gir nesten seg selv dersom vi bruker parr nært -prinsippet. Det gis selvsagt poeng for de som setter opp riktig prosess-matrise. Resultatet (reguleringsstruktur) er vist i figuren over for tilfellet der W4 er gitt (forstyrrelse) og vi regulerer Tgassut med bypass. 8

9 Merk at fuktighetsinnholdet x4 øker når vi kjøler mer (T6 lavere). Siden målingen x 4 er langsom og upålitelig foreslås det at man utnytter denne sammenhengen og bruker en kaskade basert på å regulere T 6 i en indre sløyfe og med setpunktet satt av fuktighetsregulatoren (xc). (Dersom det i praksis viser seg at fuktighetsinnholdet ikke er noe problem vil det lønne seg å bruke max. kjøling, dvs. q 5 skal være så stor som mulig (ventil fullt åpen).) Alternativ: Energimessig er det imidlertid ikke optimalt å bruke bypass. Denne burde reduseres så mye som mulig. Dette kan gjøres ved å sette bypass (q1) på null og så bruke W4 (arbeid ut fra turbin) til å regulere T gass,ut (ikke vist over). Begge disse alternativene gir full uttelling. 9

EKSAMEN TKP 4105 SEPARASJONSTEKNOLOGI DESEMBER 2005

EKSAMEN TKP 4105 SEPARASJONSTEKNOLOGI DESEMBER 2005 EKSAMEN TKP 415 SEPARASJONSTEKNOLOGI DESEMBER 25 Oppgave / Oppgåve 1 ADSORPSJON (vekt 4%) Ved å benytte molekylsikter skal vann fjernes fra en nitrogen gasstrøm med temperatur 3 C. Kolonnehøyden er gitt

Detaljer

TKP 4105 Separasjonsteknikk (kontinuasjonseksamen) 16. august 2005

TKP 4105 Separasjonsteknikk (kontinuasjonseksamen) 16. august 2005 TKP 4105 Separasjonsteknikk (kontinuasjonseksamen) 16. august 2005 Oppgave 1 (50%) Ventilasjonsluften fra et anlegg hvor aceton er brukt som løsningsmiddel inneholder 8 mol% aceton. Det meste av acetonen

Detaljer

TEMA: Destillasjon. Løsningsforslag: Komponentbalanse (molar basis) for acetaldehyd: F X F = B X B + D Y D

TEMA: Destillasjon. Løsningsforslag: Komponentbalanse (molar basis) for acetaldehyd: F X F = B X B + D Y D Norges Teknisk-Naturvitenskapelige Universitet Fag: Energi og Prosess Institutt for Termisk Energi og Vannkraft Nr.: TEP 4230 Trondheim, 06.10.04, T. Gundersen Del: Separasjonsprosesser Øving: 11 År: 2004

Detaljer

Den spesifike (molare) smeltevarmen for is er den energi som trengs for å omdanne 1 kg (ett mol) is med temperatur 0 C til vann med temperatur 0 C.

Den spesifike (molare) smeltevarmen for is er den energi som trengs for å omdanne 1 kg (ett mol) is med temperatur 0 C til vann med temperatur 0 C. Øvelse 1 Faseoverganger Denne øvelsen går ut på å bestemme smeltevarmen for is og fordampningsvarmen for vann ved 100 C. Trykket skal i begge tilfeller være lik atmosfæretrykket. 1.1 Smeltevarmen Den spesifike

Detaljer

Fuktig luft. Faseovergang under trippelpunktet < > 1/71

Fuktig luft. Faseovergang under trippelpunktet < > 1/71 Fuktig luft 1/71 Faseovergang under trippelpunktet Fuktig luft som blanding at to gasser 2/71 Luft betraktes som en ren komponent Vanndamp og luft oppfører seg som en blanding av nær ideelle gasser 3/71

Detaljer

Finn Haugen. Oppgaver i reguleringsteknikk 1. Nevn 5 variable som du vet eller antar kan være gjenstand for regulering i industrianlegg.

Finn Haugen. Oppgaver i reguleringsteknikk 1. Nevn 5 variable som du vet eller antar kan være gjenstand for regulering i industrianlegg. Finn Haugen. Oppgaver i reguleringsteknikk 1 Oppgave 0.1 Hvilke variable skal reguleres? Nevn 5 variable som du vet eller antar kan være gjenstand for regulering i industrianlegg. Oppgave 0.2 Blokkdiagram

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I TE 335 Termodynamikk VARIGHET: 9.00 14.00 (5 timer). DATO: 24/2 2001 TILLATTE HJELPEMIDLER: Lommekalkulator OPPGAVESETTET BESTÅR AV 2 oppgaver på 5 sider (inklusive tabeller) HØGSKOLEN I STAVANGER

Detaljer

Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær)

Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær) Side 1 av 9 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Faglig kontakt under eksamen: Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk

Detaljer

EKSAMEN I EMNE TFY4125 FYSIKK

EKSAMEN I EMNE TFY4125 FYSIKK Bokmål NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Studentnummer: Studieretning: Bokmål, Side 1 av 1 Faglig kontakt under eksamen: Institutt for fysikk, Gløshaugen Professor Steinar

Detaljer

HØGSKOLEN I SØR-TRØNDELAG

HØGSKOLEN I SØR-TRØNDELAG Prosessteknologi FO173N, 9 studiepoeng, AMMT, HiST,. august 2007 Side 1 (av 6) HØGSKOLEN I SØR-TRØNDELAG AVDELING FOR MAT- OG MEDISINSK TEKNOLOGI Kandidatnr: Eksamensdato:.august 2007 Varighet: Fagnummer:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: GEF1 Eksamensdag: 3. November 9 Tid for eksamen: 9.-1. Oppgavesettet er på 5 sider Vedlegg: Ingen Tillatte hjelpemidler:

Detaljer

Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær)

Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær) Side 1 av 12 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Faglig kontakt under eksamen: Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk

Detaljer

DET TEKNISK-NATURVITENSKAPELIGE FAKULTET

DET TEKNISK-NATURVITENSKAPELIGE FAKULTET DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I BIT 130 Termodynamikk VARIGHET: 9.00 13.00 (4 timer). DATO: 1/12 2005 TILLATTE HJELPEMIDLER: Lommekalkulator OPPGAVESETTET BESTÅR AV: 2 oppgaver på 5

Detaljer

Det matematisk-naturvitenskapelige fakultet

Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: GEF2200 Eksamensdag: 14. Juni 2013 Tid for eksamen: 09.00-12.00 Oppgavesettet er på 4 sider + Vedlegg 1 (1 side) Vedlegg 1: Sondediagram

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: GEF 1100 Klimasystemet Eksamensdag: Torsdag 8. oktober 2015 Tid for eksamen: 15:00 18:00 Tillatte hjelpemidler: Kalkulator Oppgavesettet

Detaljer

HØGSKOLEN I SØR-TRØNDELAG

HØGSKOLEN I SØR-TRØNDELAG HØGSKOLEN I SØR-TRØNDELAG AVDELING FOR MAT- OG MEDISINSK TEKNOLOGI Kandidatnr: Eksamensdato: 30.mai 2005 Varighet: Kl. 09.00-13.00 Fagnummer: Fagnavn: Klasse(r): FO140N Konserveringsteknologi 1N Studiepoeng:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: GEO3020/4020 Mark- og Grunnvann Eksamensdag: Fredag 5 desember 2006 Tid for eksamen: 09.00 2.00 Oppgavesettet er på 5 side(r)

Detaljer

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE Emne: Gruppe(r): Eksamensoppgaven består av: Kybernetikk I E Antall sider (inkl. forsiden): 7 Emnekode: SO 8E Dato: 7. juni Antall oppgaver: Faglig veileder:

Detaljer

Det matematisk-naturvitenskapelige fakultet

Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: GEF2200 Eksamensdag: 14. Juni 2013 Tid for eksamen: 09.00-12.00 Oppgavesettet er på 4 sider + Vedlegg 1 (1 side) Vedlegg 1: Sondediagram

Detaljer

EKSAMENSOPPGAVE. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute

EKSAMENSOPPGAVE. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: FYS-1002 Dato: 26. september 2017 Klokkeslett: 09.00-13.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: ü Kalkulator med tomt dataminne

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS3230 Sensorer og måleteknikk Eksamensdag: Mandag 16. desember Tid for eksamen: 09:00 12:00 Oppgavesettet er på: 2 sider Vedlegg:

Detaljer

Reguleringsstrukturer

Reguleringsstrukturer Kapittel 11 Reguleringsstrukturer Dette kapitlet beskriver diverse reguleringsstrukturer for industrielle anvendelser. I strukturene inngår én eller flere PID-reguleringssløyfer. 11.1 Kaskaderegulering

Detaljer

Fysikkolympiaden Norsk finale 2017

Fysikkolympiaden Norsk finale 2017 Norsk fysikklærerforening Fysikkolympiaden Norsk finale 7 Fredag. mars kl. 8. til. Hjelpemidler: abell/formelsamling, lommeregner og utdelt formelark Oppgavesettet består av 6 oppgaver på sider Lykke til!

Detaljer

a) Stempelet står i en posisjon som gjør at V 1 = 0.0200 m 3. Finn det totale spesikte volumet v 1 til inneholdet i tanken. Hva er temperaturen T 1?

a) Stempelet står i en posisjon som gjør at V 1 = 0.0200 m 3. Finn det totale spesikte volumet v 1 til inneholdet i tanken. Hva er temperaturen T 1? 00000 11111 00000 11111 00000 11111 DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I BIT 130 Termodynamikk VARIGHET: 900 1300 (4 timer). DATO: 22/5 2007 TILLATTE HJELPEMIDLER: Godkjent lommekalkulator

Detaljer

Oppgave 1 (30%) a) De to nettverkene gitt nedenfor skal forenkles. Betrakt hvert av nettverkene inn på klemmene:

Oppgave 1 (30%) a) De to nettverkene gitt nedenfor skal forenkles. Betrakt hvert av nettverkene inn på klemmene: 3. juni 2010 Side 2 av 16 Oppgave 1 (30%) a) De to nettverkene gitt nedenfor skal forenkles. Betrakt hvert av nettverkene inn på klemmene: Reduser motstandsnettverket til én enkelt resistans og angi størrelsen

Detaljer

EKSAMEN. Oppgavesettet består av 3 oppgaver. Alle spørsmål på oppgavene skal besvares, og alle spørsmål teller likt til eksamen.

EKSAMEN. Oppgavesettet består av 3 oppgaver. Alle spørsmål på oppgavene skal besvares, og alle spørsmål teller likt til eksamen. EKSAMEN Emnekode: ITD12011 Emne: Fysikk og kjemi Dato: 29. April 2015 Eksamenstid: kl.: 9:00 til kl.: 13:00 Hjelpemidler: 4 sider (A4) (2 ark) med egne notater. Ikke-kommuniserende kalkulator. Gruppebesvarelse,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 12. juni 2017 Tid for eksamen: 9.00-13.00, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).

Detaljer

FYS2160 Laboratorieøvelse 1

FYS2160 Laboratorieøvelse 1 FYS2160 Laboratorieøvelse 1 Faseoverganger (H2013) Denne øvelsen går ut på å bestemme smeltevarmen for is og fordampningsvarmen for vann ved 100 C (se teori i del 5.3 i læreboka 1 ). Trykket skal i begge

Detaljer

Løsningsforslag eksamen TFY desember 2010.

Løsningsforslag eksamen TFY desember 2010. Løsningsforslag eksamen TFY4115 10. desember 010. Oppgave 1 a) Kreftene på klossene er vist under: Siden trinsene og snorene er masseløse er det bare to ulike snordrag T 1 og T. b) For å finne snordraget

Detaljer

KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2013 Løsninger

KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2013 Løsninger Side 1 av 6 KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2013 Løsninger Oppgave 1 a) Termodynamikkens tredje lov kan formuleres slik: «Entropien for et rent stoff i perfekt krystallinsk

Detaljer

Lokalt gitt eksamen januar 2015 Praktiske opplysninger til rektor

Lokalt gitt eksamen januar 2015 Praktiske opplysninger til rektor Lokalt gitt eksamen januar 2015 Praktiske opplysninger til rektor MATEMATIKK 1TY for yrkesfag 9.1.2015 MAT1006 8 sider inkludert forside og opplysningsside Forhold som skolen må være oppmerksom på: Elevene

Detaljer

Løsninger til innlæringsoppgavene

Løsninger til innlæringsoppgavene Tall i arbeid Påbygging Kapittel 4 Modellering Løsninger til innlæringsoppgavene 4.1 a Modellen gir følgende verdier for årene i oppgaven: År 1955 1985 015 Folketall (millioner) 3,5 4, 4,8 b Setter vi

Detaljer

Eksamensoppgave i MA0002 Brukerkurs i matematikk B - LØSNING

Eksamensoppgave i MA0002 Brukerkurs i matematikk B - LØSNING Institutt for matematiske fag Eksamensoppgave i MA0002 Brukerkurs i matematikk B - LØSNING Faglig kontakt under eksamen: Frode Rønning Tlf: 95 21 81 38 Eksamensdato: 7. august 2017 Eksamenstid (fra til):

Detaljer

SAMMENDRAG AV FORELESNING I TERMODYNAMIKK ONSDAG 23.02.00

SAMMENDRAG AV FORELESNING I TERMODYNAMIKK ONSDAG 23.02.00 SAMMENDRAG A FORELESNING I TERMODYNAMIKK ONSDAG 3.0.00 Tema for forelesningen var termodynamikkens 1. hovedsetning. En konsekvens av denne loven er: Energien til et isolert system er konstant. Dette betyr

Detaljer

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Alle svar skal grunngis. Alle deloppgaver har lik vekt. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom

Detaljer

LØSNINGSFORSLAG. EKSAMEN I SIO 4060 PROSESSINTEGRASJON Lørdag 10. mai 2003 Q H 190 C 180 C R C 170 C 900 kw R C 140 C 100 C 90 C

LØSNINGSFORSLAG. EKSAMEN I SIO 4060 PROSESSINTEGRASJON Lørdag 10. mai 2003 Q H 190 C 180 C R C 170 C 900 kw R C 140 C 100 C 90 C NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM Institutt for Energi og Prosessteknikk Side 1 av 7 OPPGAVE 1 (65%) LØSNINGSFORSLAG EKSAMEN I SIO 4060 PROSESSINTEGRASJON Lørdag 10. mai

Detaljer

KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG Høgskolen i Østfold Avdeling for ingeniørfag EKSAMENSOPPGAVE Fag: IRK21014 Fysikalsk kjemi 10 studiepoeng Emneansvarlig: Ole Kr. Førrisdahl, mobil 974 873 78 Grupper: K2 Dato: 11.12.2014 Tid: 0900-1300

Detaljer

Lørdag 20. mai C 180 C C 130 C C 60 C kw 50 C 30 C C 20 C

Lørdag 20. mai C 180 C C 130 C C 60 C kw 50 C 30 C C 20 C Side 1 av 10 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK LØSNINGSFORSLAG EKSAMEN I EMNE TEP 4215 PROSESSINTEGRASJON Lørdag 20. mai 2006 OPPGAVE

Detaljer

EKSAMEN. Tall og algebra, funksjoner 2

EKSAMEN. Tall og algebra, funksjoner 2 EKSAMEN Emnekode: LSV3MAT12 Emne: Tall og algebra, funksjoner 2 Dato: 06/12/2012 Eksamenstid: kl. 09.00 til kl. 15.00 Hjelpemidler: Kalkulator Faglærer: Petter Løkkeberg Eksamensoppgaven: Oppgavesettet

Detaljer

Lokalt gitt eksamen vår 2016 Eksamen

Lokalt gitt eksamen vår 2016 Eksamen Lokalt gitt eksamen vår 2016 Eksamen MATEMATIKK 1TY for yrkesfag MAT 1006 9 sider inkludert forside og opplysningsside Side 1 av 9 Eksamenstid: Totalt fire klokketimer. Vi anbefaler at du ikke bruker mer

Detaljer

KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2012 Løsninger

KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2012 Løsninger Side 1 av 10 KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2012 Løsninger Oppgave 1 a) Et forsøk kan gjennomføres som vist i figur 1. Røret er isolert, dvs. at det ikke tilføres varme

Detaljer

Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K

Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K ORDINÆR EKSAMEN 11.1.009 Oppgave 1 a) En følge av parallellaksiomet er at samsvarende vinkler ved parallelle linjer er like store.

Detaljer

Typisk T-v Diagram. Fasediagrammer & Projeksjoner. p-v p-t T-v. TEP 4120 Termodynamikk 1. Beregning av Egenskaper. Beregning av Egenskaper

Typisk T-v Diagram. Fasediagrammer & Projeksjoner. p-v p-t T-v. TEP 4120 Termodynamikk 1. Beregning av Egenskaper. Beregning av Egenskaper Fasediagrammer & Projeksjoner p-v p-t T-v T. Gundersen 3-1 Typisk T-v Diagram T. Gundersen 3-2 T-v Diagram for H 2 O T. Gundersen 3-3 Lineær Interpolasjon i en Dimensjon Tabeller og Linearitet?? T. Gundersen

Detaljer

Frivillig test 5. april Flervalgsoppgaver.

Frivillig test 5. april Flervalgsoppgaver. Inst for fysikk 2013 TFY4155/FY1003 Elektr & magnetisme Frivillig test 5 april 2013 Flervalgsoppgaver Kun ett av svarene rett Du skal altså svare A, B, C, D eller E (stor bokstav) eller du kan svare blankt

Detaljer

NTNU Fakultet for lærer- og tolkeutdanning

NTNU Fakultet for lærer- og tolkeutdanning NTNU Fakultet for lærer- og tolkeutdanning Emnekode(r): LGU51007 Emnenavn: Naturfag 1 5-10, emne 1 Studiepoeng: 15 Eksamensdato: 26. mai 2016 Varighet/Timer: Målform: Kontaktperson/faglærer: (navn og telefonnr

Detaljer

EKSAMEN I EMNE TEP 4215 PROSESSINTEGRASJON Onsdag 1. juni C kw 50 C Q C. R 2 = = 0 kw

EKSAMEN I EMNE TEP 4215 PROSESSINTEGRASJON Onsdag 1. juni C kw 50 C Q C. R 2 = = 0 kw Side 1 av 9 NORGES TEKNSK-NATURVTENSKAPELGE UNVERSTET (NTNU) - TRONDEM NSTTUTT FOR ENERG OG PROSESSTEKNKK LØSNNGSFORSLAG EKSAMEN EMNE TEP 4215 PROSESSNTEGRASJON Onsdag 1. juni 05 OPPGAVE 1 (%) a) Ettersom

Detaljer

MAS117 Termodynamikk. Vanndamp som arbeidsfluid. Kapittel 10 Dampkraftsykluser del

MAS117 Termodynamikk. Vanndamp som arbeidsfluid. Kapittel 10 Dampkraftsykluser del MAS7 ermodynamikk Kapittel 0 Dampkraftsykluser del Vanndamp som arbeidsfluid Vanndamp egner seg godt som arbeidsfluid fordi vann er billig og lett tilgjengelig er ikke giftig eller eksplosjonsfarlig har

Detaljer

Løsningsforslag til EKSAMEN

Løsningsforslag til EKSAMEN Løsningsforslag til EKSAMEN Emnekode: ITD006 Emne: Fysikk og datateknikk Dato: 09. Mai 007 Eksamenstid: kl 9:00 til kl :00 Hjelpemidler: 4 sider (A4) ( ark) med egne notater. Kalkulator. Gruppebesvarelse,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 19. august 2016 Tid for eksamen: 9.00-13.00, 4 timer Oppgavesettet er på 6 sider Vedlegg: Formelark (2 sider).

Detaljer

Emnekode: LO 358E. OYAo~~ Alle skrevne og trykte hjelpemidler, skrivesaker og kalkulator

Emnekode: LO 358E. OYAo~~ Alle skrevne og trykte hjelpemidler, skrivesaker og kalkulator ~ h øgskolen i oslo Emne: Kybemetikk Emnekode: LO 358E Gruppe(r): Dato: \? 2E OYAo~~ Eksamensoppgav Antall sider (inkl. Antall oppgaver en består av: forsiden): 6 5 Faglig veileder: Veslemøy Tyssø Bjørn

Detaljer

Løsning til sluttprøve i IA3112 Automatiseringsteknikk ved Høgskolen i Telemark

Løsning til sluttprøve i IA3112 Automatiseringsteknikk ved Høgskolen i Telemark Løsning til sluttprøve i IA3 Automatiseringsteknikk ved Høgskolen i Telemark Sluttprøvens dato:. 05. Varighet 5 timer. Vekt i sluttkarakteren: 00%. Emneansvarlig: Finn Aakre Haugen (finn.haugen@hit.no).

Detaljer

Emnekode: Faglig veileder: Veslemøy Tyssø Bjørn Ena~bretsen. Gruppe(r): I Dato: Alle skrevne og trykte hjelpemidler, skrivesaker og kalkulator

Emnekode: Faglig veileder: Veslemøy Tyssø Bjørn Ena~bretsen. Gruppe(r): I Dato: Alle skrevne og trykte hjelpemidler, skrivesaker og kalkulator G høgskolen i oslo Emne: Kybemetikk Emnekode: to 358E Faglig veileder: Veslemøy Tyssø Bjørn Enabretsen. Gruppe(r): Dato: Eksamenstid: ST - 2E i 7. juni 2005 ' Eksamensoppgaven består av: forsiden): 7 5

Detaljer

Kapittel 2. Algebra. Kapittel 2. Algebra Side 29

Kapittel 2. Algebra. Kapittel 2. Algebra Side 29 Kapittel. Algebra Algebra kalles populært for bokstavregning. Det er ikke mye algebra i Matematikk P-Y. Det viktigste er å kunne løse enkle likninger og regne med formler. Kapittel. Algebra Side 9 1. Forenkling

Detaljer

2T kapittel 3 Modellering og bevis Løsninger til innlæringsoppgavene

2T kapittel 3 Modellering og bevis Løsninger til innlæringsoppgavene T kapittel 3 Modellering og bevis Løsninger til innlæringsoppgavene 3.1 a Modellen gir følgende verdier for årene i oppgaven: År 1955 1985 015 Folketall (millioner) 3,5 4, 4,8 b Setter vi inn for = 00

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Lørdag 5. juni Tid. Kl LØSNINGSFORSLAG

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Lørdag 5. juni Tid. Kl LØSNINGSFORSLAG Side 1 av 15 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Bjørn B. Larsen 73 59 44 93 / 902 08 317 (Digitaldel) Ingulf Helland

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring - AITeL

HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring - AITeL HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring - AITeL Kandidatnr: Eksamensdato: 18. desember 2002 Varighet: Fagnummer: Fagnavn: 3 timer BO328D Applikasjonsutvikling Klasse(r): FU 1HKD2002

Detaljer

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål Eksamen 30..00 REA304 Matematikk R Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del : Hjelpemidler på Del : Framgangsmåte: 5 timer: Del skal leveres inn etter timer. Del skal

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Kontinuasjonseksamen i: FYS 1000 Eksamensdag: 16. august 2012 Tid for eksamen: 09.00 13.00, 4 timer Oppgavesettet er på 5 sider inkludert

Detaljer

INSTITUTT FOR SOSIOLOGI OG SAMFUNNSGEOGRAFI EKSAMEN I SOSIOLOGI (MASTER) SOS KVANTITATIV METODE. SKOLEEKSAMEN 11. mai 2005 (4 timer)

INSTITUTT FOR SOSIOLOGI OG SAMFUNNSGEOGRAFI EKSAMEN I SOSIOLOGI (MASTER) SOS KVANTITATIV METODE. SKOLEEKSAMEN 11. mai 2005 (4 timer) EKSAMEN I SOSIOLOGI (MASTER) SOS400 - KVANTITATIV METODE SKOLEEKSAMEN 11. mai 005 (4 timer) Tillatt hjelpemiddel: Ikke-programmerbar kalkulator. Oppgavesettet består av 6 sider inkludert denne. Kandidaten

Detaljer

a) Blir produktet av to vilkårlige oddetall et partall eller et oddetall? Bevis det.

a) Blir produktet av to vilkårlige oddetall et partall eller et oddetall? Bevis det. Prøve i R1 04.1.15 Del 1 Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Husk å begrunne alle svar. Det skal gå klart frem av besvarelsen hvordan du har tenkt. Oppgave

Detaljer

8 Likninger med to ukjente rette linjer

8 Likninger med to ukjente rette linjer 8 Likninger med to ukjente rette linjer 8. Likninger med to ukjente Per vil teste kameratens matematiske kunnskaper. Han forteller at han har ni mnter med en samlet verdi på 40 kroner i lommeboken sin.

Detaljer

a. Hvordan endrer trykket seg med høyden i atmosfæren SVAR: Trykket avtar tilnærmet eksponentialt med høyden etter formelen:

a. Hvordan endrer trykket seg med høyden i atmosfæren SVAR: Trykket avtar tilnærmet eksponentialt med høyden etter formelen: Oppgave 1 a. Hvordan endrer trykket seg med høyden i atmosfæren Trykket avtar tilnærmet eksponentialt med høyden etter formelen: pz ( ) = p e s z/ H Der skalahøyden H er gitt ved H=RT/g b. Anta at bakketrykket

Detaljer

Løsningsforslag for 2P våren 2015

Løsningsforslag for 2P våren 2015 Del 1 Oppgave 1 Sortert i stigende rekkefølge blir det: 4 5 6? 10 12 Medianen, som er 7, skal ligge midt mellom de to midterste tallene 6 og det ukjente tallet, som derfor må være 8. Oppgave 2 Opprinnelig

Detaljer

gass Faglig kontakt under eksamen/fagleg kontakt under eksamen: Professor Edd A.Blekkan, tlf.:

gass Faglig kontakt under eksamen/fagleg kontakt under eksamen: Professor Edd A.Blekkan, tlf.: NORGES TEKNISKE NTUR- VITENSKPELIGE UNIVERSITETET INSTITUTT FOR KJEMISK PROSESSTEKNOLOGI Side 1 av 5 Faglig kontakt under eksamen/fagleg kontakt under eksamen: Professor Edd.Blekkan, tlf.: 73594157 EKSMEN

Detaljer

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Alle svar skal grunngis. Alle deloppgaver har lik vekt. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom

Detaljer

EKSAMEN Løsningsforslag Emne: Fysikk og datateknikk

EKSAMEN Løsningsforslag Emne: Fysikk og datateknikk Emnekode: ITD006 EKSAMEN Løsningsforslag Emne: Fysikk og datateknikk Dato: 09. Mai 006 Eksamenstid: kl 9:00 til kl :00 Hjelpemidler: 4 sider (A4) ( ark) med egne notater. Kalkulator. Gruppebesvarelse,

Detaljer

SIO 1027 Termodynamikk I Noen formler og uttrykk som er viktige, samt noen stikkord fra de forskjellige kapitler,, Versjon 25/

SIO 1027 Termodynamikk I Noen formler og uttrykk som er viktige, samt noen stikkord fra de forskjellige kapitler,, Versjon 25/ SIO 1027 Termodynamikk I Noen formler og uttrykk som er viktige, samt noen stikkord fra de forskjellige kapitler,, Versjon 25/11-2001 Geir Owren November 25, 2001 Som avtalt med referansegruppen, er det

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS 1000 Eksamensdag: 11. juni 2012 Tid for eksamen: 09.00 13.00, 4 timer Oppgavesettet er på 5 sider inkludert forsiden Vedlegg:

Detaljer

LØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Mandag 17. desember 2012 Tid: kl. 09:00-13:00

LØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Mandag 17. desember 2012 Tid: kl. 09:00-13:00 Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK LØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Mandag 17. desember 2012 Tid: kl. 09:00-13:00

Detaljer

Eksamen i MIK130, Systemidentifikasjon

Eksamen i MIK130, Systemidentifikasjon DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Eksamen i MIK130, Systemidentifikasjon Dato: 21 februar 2007 Lengde på eksamen: 4 timer Tillatte hjelpemidler: ingen Bokmål

Detaljer

Løsningsforslag nr.4 - GEF2200

Løsningsforslag nr.4 - GEF2200 Løsningsforslag nr.4 - GEF2200 i.h.h.karset@geo.uio.no Oppgave 1 - Definisjoner og annet pugg s. 375-380 a) Hva er normal tykkelse på det atmosfæriske grenselaget, og hvor finner vi det? 1-2 km. fra bakken

Detaljer

IFEA On-Line Analyse September 2011. Sesjon 2: Målemetoder. Prøvetaking og Prøvebehandling Gass

IFEA On-Line Analyse September 2011. Sesjon 2: Målemetoder. Prøvetaking og Prøvebehandling Gass IFEA On-Line Analyse September 2011 Sesjon 2: Målemetoder Prøvetaking og Prøvebehandling Gass Sampling og Sample handling GAS Hva er viktig for en vellykket Prøvebehandling? Hvorfor? Hvordan? Alle har

Detaljer

Utvalgte løsninger oppgavesamlingen

Utvalgte løsninger oppgavesamlingen P kapittel Modellering Utvalgte løsninger oppgavesamlingen 01 a Snitthøyden i 1910 lir 170,0 171, 4 170,7. I 1970 lir den 177,1 179, 4 178,3. Med som antall år etter 1900 og y som snitthøyden i entimeter

Detaljer

KJ1042 Øving 5: Entalpi og entropi

KJ1042 Øving 5: Entalpi og entropi KJ1042 Øving 5: Entalpi og entropi Ove Øyås Sist endret: 17. mai 2011 Repetisjonsspørsmål 1. Hva er varmekapasitet og hva er forskjellen på C P og C? armekapasiteten til et stoff er en målbar fysisk størrelse

Detaljer

Løsningsforslag til sluttprøven i emne IA3112 Automatiseringsteknikk

Løsningsforslag til sluttprøven i emne IA3112 Automatiseringsteknikk Høgskolen i Telemark. Emneansvarlig: Finn Aakre Haugen (finn.haugen@hit.no). Løsningsforslag til sluttprøven i emne IA3 Automatiseringsteknikk Sluttprøvens dato: 5. desember 04. Varighet 5 timer. Vekt

Detaljer

Oppgavesett nr.5 - GEF2200

Oppgavesett nr.5 - GEF2200 Oppgavesett nr.5 - GEF2200 i.h.h.karset@geo.uio.no Oppgave 1 a) Den turbulente vertikalfluksen av følbar varme (Q H ) i grenselaget i atmosfæren foregår ofte ved turbulente virvler. Hvilke to hovedmekanismer

Detaljer

Faglig kontakt under eksamen: Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær)

Faglig kontakt under eksamen: Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær) Side 1 av 14 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Faglig kontakt under eksamen: Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.:

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MEK 1100 Feltteori og vektoranalyse. Eksamensdag: Torsdag 11 desember 2008. Tid for eksamen: 14:30 17:30. Oppgavesettet er på

Detaljer

EMAR2101 Reguleringssystemer 1: Øving 3

EMAR2101 Reguleringssystemer 1: Øving 3 Høgskolen i Buskerud Finn Haugen (finn.haugen@hibu.no) 6.10 2008 EMAR2101 Reguleringssystemer 1: Øving 3 Oppgave 1 I underkapittel 1.1 i læreboken er det listet opp syv forskjellige formål for reguleringsteknikken,

Detaljer

Høgskoleni østfold EKSAMEN. V3: Tall og algebra, funksjoner 2 ( trinn) Dato: Eksamenstid: Fra kl til kl

Høgskoleni østfold EKSAMEN. V3: Tall og algebra, funksjoner 2 ( trinn) Dato: Eksamenstid: Fra kl til kl Høgskoleni østfold EKSAMEN Emnekode: LSV3MAT12 Emne: V3: Tall og algebra, funksjoner 2 (5.-10. trinn) Dato: Eksamenstid: Fra kl. 09.00 til kl. 15.00 3. desember 2015 Hjelpemidler: Numerisk lommeregner

Detaljer

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Fredag 25. mai Tid. Kl LØSNINGSFORSLAG

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Fredag 25. mai Tid. Kl LØSNINGSFORSLAG Side 1 av 17 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44

Detaljer

Fakultet for teknologi, kunst og design Teknologiske fag. Eksamen i: Fysikk for tretermin (FO911A)

Fakultet for teknologi, kunst og design Teknologiske fag. Eksamen i: Fysikk for tretermin (FO911A) Fakultet for teknologi, kunst og design Teknologiske fag Eksamen i: Fysikk for tretermin (FO911A) Målform: Bokmål Dato: 26/11-2014 Tid: 5 timer Antall sider (inkl. forside): 5 Antall oppgaver: 5 Tillatte

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I

Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I Universitetet i Bergen Matematisk institutt Bokmål Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I Mandag 17. desember 2007, kl. 09-14. Oppgave 1 Gitt f(x) = x + x 2 1, 1 x 1. a) Finn og

Detaljer

Høgskoleni østfold EKSAMEN

Høgskoleni østfold EKSAMEN Høgskoleni østfold EKSAMEN Emnekode: LBMAT10311 Emne: Måling, tall og algebra og funksjoner Dato: Eksamenstid: kl 09.00 til kl 15.00 4. desember 2014 Hjelpemidler: Kalkulator uten grafisk vindu Faglærer:

Detaljer

Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Prøve i Matte 1 BYFE DAFE 1 Dato: 3. mars 216 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. LØSNINGSFORSLAG Oppgave 1 Gitt matrisene A = [ 8 3 6 2 ] [ og

Detaljer

Figur 1. Skisse over initialprofilet av θ(z) før grenselagsblanding

Figur 1. Skisse over initialprofilet av θ(z) før grenselagsblanding Høyde (km) Eksamen GEF2200 6 5 4 θ(z) 2 1 0 285 290 295 00 05 10 Potentiell Temeratur (K) Figur 1. Skisse over initialrofilet av θ(z) før grenselagsblanding Ogave 1. a. Anta at otentiell temeratur (θ(z))

Detaljer

Universitetet i Stavanger Institutt for petroleumsteknologi

Universitetet i Stavanger Institutt for petroleumsteknologi Universitetet i Stavanger Institutt for petroleumsteknologi Side 1 av 6 Faglig kontakt under eksamen: Professor Ingve Simonsen Telefon: 470 76 416 Eksamen i PET110 Geofysikk og brønnlogging Mar. 09, 2015

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring - AITeL

HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring - AITeL HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring - AITeL Kandidatnr: Eksamensdato: 15. mai 2003 Varighet: Fagnummer: Fagnavn: Klasse(r): 3 timer LO116D Programmering i Visual Basic FU Studiepoeng:

Detaljer

Oppgave 12.1 (a) Monopol betyr en tilbyder. I varemarkedet betraktes produsentene som tilbydere. Ved monopol er det derfor kun en produsent.

Oppgave 12.1 (a) Monopol betyr en tilbyder. I varemarkedet betraktes produsentene som tilbydere. Ved monopol er det derfor kun en produsent. Kapittel 12 Monopol Løsninger Oppgave 12.1 (a) Monopol betyr en tilbyder. I varemarkedet betraktes produsentene som tilbydere. Ved monopol er det derfor kun en produsent. (b) Dette er hindringer som gjør

Detaljer

Fysikkolympiaden 1. runde 31. oktober 11. november 2011

Fysikkolympiaden 1. runde 31. oktober 11. november 2011 Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Universitetet i Oslo Fysikkolympiaden 1. runde 31. oktober 11. november 011 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner

Detaljer

Oppsummering av første del av kapitlet

Oppsummering av første del av kapitlet Forelesningsnotater om eksergi Siste halvdel av kapittel 7 i Fundamentals of Engineering Thermodynamics, M.J. Moran & H.N. Shapiro Rune N. Kleiveland, oktober Notatene følger presentasjonen i læreboka,

Detaljer

Typisk T-v Diagram. Fasediagrammer & Projeksjoner. p-v p-t T-v. TEP 4120 Termodynamikk 1. Beregning av Egenskaper. TEP 4120 Termodynamikk 1

Typisk T-v Diagram. Fasediagrammer & Projeksjoner. p-v p-t T-v. TEP 4120 Termodynamikk 1. Beregning av Egenskaper. TEP 4120 Termodynamikk 1 Fasediagrammer & Projeksjoner p-v p-t T-v 3-1 Typisk T-v Diagram 3-2 T-v Diagram for H 2 O 3-3 Lineær Interpolasjon i en Dimensjon Tabeller og Linearitet?? TABLE A-4 (Continued) T v u h s C m 3 /kg kj/kg

Detaljer

EKSAMEN Løsningsforslag. med forbehold om bugs :-)

EKSAMEN Løsningsforslag. med forbehold om bugs :-) 1 EKSAMEN Løsningsforslag med forbehold om bugs :-) Emnekode: ITF20006 000 Dato: 20. mai 2011 Emne: Algoritmer og datastrukturer Eksamenstid: 09:00 til 13:00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater

Detaljer

EKSAMEN I SOS1120 KVANTITATIV METODE 30. NOVEMBER 2006 (4 timer)

EKSAMEN I SOS1120 KVANTITATIV METODE 30. NOVEMBER 2006 (4 timer) EKSAMEN I SOS1120 KVANTITATIV METODE 30. NOVEMBER 2006 (4 timer) Bruk av ikke-programmerbar kalkulator er tillatt under eksamen. Utover det er ingen hjelpemidler tillatt. Sensur faller torsdag 21. desember

Detaljer

FYS2160 Laboratorieøvelse 1

FYS2160 Laboratorieøvelse 1 FYS2160 Laboratorieøvelse 1 Faseoverganger (H2016) Denne øvelsen går ut på å bestemme smeltevarmen for is og fordampningsvarmen for vann ved 100 C (se teori i del 5.3 i læreboka 1 ). Trykket skal i begge

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) Dag Temperatur Mandag 4 ºC Tirsdag 10 ºC Onsdag 1 ºC Torsdag 5 ºC Fredag 6 ºC Lørdag Tabellen ovenfor viser hvordan temperaturen har variert i løpet av noen dager.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNVERSTETET OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 14. august 2015 Tid for eksamen: 14.30-18.30, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).

Detaljer