Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Fredag 25. mai Tid. Kl LØSNINGSFORSLAG

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Fredag 25. mai Tid. Kl LØSNINGSFORSLAG"

Transkript

1 Side 1 av 17 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum / Bjørn B. Larsen Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Fredag 25. mai 2007 Tid. Kl LØSNINGSFORSLAG Tillatte hjelpemidler: D: Ingen trykte eller håndskrevne hjelpemidler er tillatt. Bestemt, enkel kalkulator tillatt. Sensuren faller 16. juni 2006

2 Side 2 av 17 Oppgave 1 (22%) a) I denne deloppgaven skal Kirchoffs lover (KCL og KVL) og Ohms lov benyttes. Kretsen vist nedenfor er en integrert krets med åtte ben med strømretninger som vist. Finn strømmen I 1. Antar at I 1 går inn i kretsen og benytter KCL for alle strømmene inn og ut av kretsen: I 1 5mA + 10mA + 4 ma 4 ma + 8mA 2mA 6mA = 0 I 1 = - 5mA Kretsen nedenfor viser en transistorkobling. Selve transistoren kan betraktes som en komponent med tre ben der spenningene mellom hvert ben og strømmene inn og ut av transistoren er som angitt i figuren.

3 Side 3 av 17 Finn spenningen V E og strømmen I E. Finn spenningen V 1. I transistoren kan vi anta at I C = I E. Finn da spenningen V BC. Finn spenningen V CE. Benytter KVL rundt nederste maske: V 2 V BE - V E = 0 => V E = V 2 V BE = 2 0,7 = 1,3 V I E = V E /R E = 1,3V/1kΩ = 1,3 Benytter KVL fra jord til V CC langs venstre sti: V 2 + V 1 V CC = 0 => V 1 = V CC V 2 = V CC V B = 22 2 = 20 Finner først spenningen i punkt C: V CC - V Rc - V C = 0 => V C = V CC - V Rc I C = I E => V C = V CC IERC = 22 (1,3 ma)(10 kω) = 9 V Dermed: V BC = V B V C = 2 9 = - 7 V CE er spenningsdifferansen mellom punkt C og E: V CE = V C V E = 9 1,3 = 7,7 V b) I kretsen vist nedenfor skal nodespenningsmetoden benyttes. Finn spenningene V 1 og V 2 i node 1 og node 2. Finn bidraget til strømmen gjennom 4 Ω-motstanden fra 2A-strømkilden.

4 Side 4 av 17 Likningen for nodespenning i node 1 blir: v 1 "V + v 1 " v 2 " 1 + I = 0 => v % " 1 % $ ' ( v 2 $ ' = (I + V => R 1 R 2 # R 1 R 2 & # R 2 & R 1 1) 0,371V 1 0,25V 2 = 6 Likningen for nodespenningen i node 2 blir: v 2 " v 1 + v " 2 1 " I = 0 => v % " 1 % $ ' ( v 1 $ ' = I => R 2 R 3 # R 2 R 3 & # R 2 & 2) - 0,25V 1 + 0,35V 2 = 2 Løser likning 1 og 2 og får : V 1 = 37,82 V V 2 = 32,73 Finner bidraget fra bare strømkilden ved å nullstille spenningskilden. Strømkilden ligger da i parallell med motstanden R 2 og seriekoblingen av R 1 pluss R 3. Finner seriemotstanden: R S = R 1 + R 3 = 18 Ω Strømmen gjennom R 2 alene (strømdeling): I R2 = I R S = 2 18 R 2 + R S = 1,64 A c) I figuren vist nedenfor ønsker vi å variere en lastmotstand R L mellom klemmene a - b slik at spenningen over klemmene blir som angitt i tabellen nedenfor. V a-b R L 12 V 2 Ω 24 V 6 Ω 36 V 18 Ω

5 Side 5 av 17 Finn kretsens Thévenin motstand R Th og Thévenin spenning V Th sett fra klemmene a b. Tegn opp kretsens Thévenin ekvivalent. Bruk denne ekvivalenten og fyll inn riktig verdi på lastmotstanden R L i tabellen ovenfor slik at spenningene over klemmene blir som angitt. I kretsen vist nedenfor skal det settes inn en lastmotstand R L mellom klemmene a b slik at spenningen mellom klemmene får en ønsket verdi. Finn verdien på motstanden R L slik at spenningen over klemmene skal bli V a-b = - 2,66 V Åpner strømkilden og finner R Th sett inn i klemmene a b: R Th = R 1 + R 2 = 6 Ω Spenningen sett inn i klemmene gir Thevenin-spenningen : V Th = IR 1 = 48 V Thevenin-ekvivalenten blir Spenningen over en vilkårlig lastmotstand er gitt ved: V L = V Th R Th + R L R L Omformer likningen og får: R L = V L R Th V Th "V L Setter inn V L = 12 V, 24 V og 36 V og får lastmotstandene R L = 2 Ω, 6 Ω og 18 Ω

6 Side 6 av Finner først kretsens Thevenin-ekvivalent. Thevenin-motstanden sett fra klemmene a b (med kortsluttet spenningskilde): R Th = R 1 //R 2 = 2,4 Ω (R 3 kortsluttes når spenningskilden kortsluttes) Thevenin-spenningen sett inn i klemmene a b (grenen med R 1 kan bytte plass med a b-grenen for å lettere se Thevenin-spenningen): V Th = V 1 R 1 + R 2 R 1 = "4,8V Dermed kan problemstillingen brytes ned til følgende krets som skal belastes med en R L slik at spenningen mellom klemmene a b skal bli 2,66 V. Tilsvarende som i forrige deloppgave: R L = V R L Th "2,66V # 2,4$ = V Th "V L "4,8V " ("2,66V ) = 3 Ω

7 Side 7 av 17 Oppgave 2 (23%) a) Gitt kretsen i figuren nedenfor Finn den totale kapasitans i denne kretsen. Hvor stor blir ladningen totalt og på hver kondensator? Finn spenningen på hver kondensator. Tre kondensatorer i serie gir C T = = = 1 C 1 C 2 C 3 200" #6 50 " " " "10 = 8 µf 3 #6 10 "10 Kondensatorer i serie har samme ladning: Q T = Q 1 = Q 2 = Q 3 = C. T V = = 480 Kondensatorene deler spenningen mellom seg: V 1 = Q 1 C 1 = 480"10#6 200"10 #6 = 2,4 V V 2 = Q 2 C 2 = 480 "10#6 50 "10 #6 = 9,6 V V 3 = Q 3 C 3 = 480 "10#6 = 48 V #6 10 "10 b) I kretsen vist nedenfor har bryteren stått åpen (rett opp) i lang tid. Spenningen over kondensatoren er i utgangspunktet lik null. Sett opp det matematiske uttrykket for spenningen v C og strømmen i C etter at bryteren har slått ned i posisjon 1 ved t = 0 s. Hva blir tidskonstanten for kretsen når bryteren står i posisjon 1?

8 Side 8 av 17 Finn på tilsvarende måte likningen for spenningen v C og strømmen i C etter at bryteren har slått over i posisjon 2 ved t = 9 ms. Tegne en skisse av både den resulterende spenning og resulterende strøm fra t = 0 s til t = 30 ms. Tegn spenning og strøm som to separate figurer med angivelse av tidskonstanter. Bruk samme tidsakse for begge figurer. Finner en Thevenin-ekvivalent for venstre del av kretsen sett fra node 1: V V V V R Th = R1//R2 + R3 = 60"103 " 30" " " = ( )10 3 = 30 kω 3 V 21 V Th = R 2 = R 1 + R 2 ( ) "103 = 7V Generell likning for spenning over en kondensator er: v c = V " + (v c 0 #V " )e # t $ I dette tilfellet er v c0 = 0 V, V " = 7V og " = R Th C = 30 #10 3 # 0,2 #10 $6 = 6ms Dermed: v c = V Th + (0 "V Th )e " t # = 7(1" e " t 6$10 "3 ) Strømmen blir: i c = C dv c dt ( ) ' # 1 & $ = C " #V Th % ( * e # 1 $ = V Th ) e # t R Th $ = 0,23e # t 6"10 #3 Når bryteren slår over i posisjon 2 etter 9 ms har spenning og strøm blitt: v c = 7(1" e " 9#10 "3 6#10 "3 ) = 7(1" e "1,5 ) = 5,44V og i c = 0,23e " 9#10"3 6#10 "3 #10 "3 = 0,05mA

9 Side 9 av 17 Bruker igjen den generelle likningen, men nå med v c0 = 5,44 V, V " = 0V og " # = R 4 C =10 $10 3 $ 0,2 $10 %6 = 2ms Dette gir: v c = 0 + (5,44 " 0)e " t"9ms # $ = 5,44e " t"9ms 2%10 "3 ) og i c = C dv c dt = " v c 0 e " t"9ms # $ = " 5,44 R 4 10 %10 3 e" t"9ms 2%10 "3 = "0,54e " t"9ms 2%10 "3 Skisse av spenning og strøm i intervallet 0 til 30 ms er gitt nedenfor: c) I figurene nedenfor påtrykkes RC-kretsene et firkantsignal som vist. I figur a) tas utgangssignalet v C ut over kondensatoren, mens det i krets b) er spenningen over motstanden v R som er utgangssignal. I kretsene er R =1k" og C =100pF.

10 Side 10 av 17 Beregn stigetid og falltid for v C når firkantsignalet påtrykkes krets a. Det er her tilstrekkelig med en overslagsberegning. Anta pulsbredden T/2 >> 5 τ. Tegn en skisse av hvordan v C og v R vil se ut. Skisser de samme spenningene hvis pulsbredden T/2 = 5 τ? Skisser spenningene hvis pulsbredden T/2 << 5 τ og firkantsignalet har stått som inngangssignal en stund? Med R =1k" og C =100pF blir tidskonstanten " = RC =1#10 3 #100 #10 $12 =100nS Av en generell oppladings-/utladingskurve som gitt nedenfor ser vi at spenningen når 10% etter ca 0,1 τ = 10nS og 90% etter ca 2,3 τ = 230nS. I dette tilfellet er stigetid = falltid (230 10)nS = 220 Skisse for T/2 >> 5 τ:

11 Side 11 av Skisse for T/2 = 5 Skisse for T/2 << 5 τ etter at firkantsignalet har stått påtrykt kretsen en stund. Spenningen v C blir symmetrisk om V/2 og v R blir symmetrisk om 0.

12 Side 12 av 17 Oppgave 3 (20%) Nedenfor er gitt 10 spørsmål i form av 3 påstander eller svaralternativer A, B eller C. Bare en av påstandene er riktig. Kryss av for riktig svar A, B eller C i tabellen bak i oppgavesettet. OBS! Tabellsiden må leveres inn som en del av besvarelsen. Riktig svar gir 2 poeng, manglede svar gir 0 poeng, og galt svar gir -1 poeng. Flere svar på samme spørsmål regnes som galt svar. 1. I en krets som vist nedenfor vil effekten i motstanden være lineært proporsjonal med: A. Resistansen R 1 X B. Strømmen I 1 C. Ingen av delene 2. Gitt en krets som vist i figuren nedenfor. Hvis vi kobler sammen terminalene a og b, hvilken vei vil strømmen da gå mellom disse terminalene? A. Fra a til b B. Fra b til a C. Det vil ikke gå noen strøm X 3. Gitt tre kretser som vist nedenfor. Hvilken krets, a), b) eller c), har en ekvivalent kapasitans på 3µF? A. Krets a) har ekvivalent kapasitans på 3 µf X B. Krets b) har ekvivalent kapasitans på 3 µf C. Krets c) har ekvivalent kapasitans på 3 µf

13 Side 13 av I en brolikeretter som vist i kretsen nedenfor er v f for diodene 0,7 V. Hvilken av grafene a), b) eller c) representerer spenningen v 1-2 (t) mellom terminalene 1 og 2? A. Graf a) angir riktig spenning B. Graf b) angir riktig spenning C. Graf c) angir riktig spenning X 5. I kretsen nedenfor dissiperer lasten R L effekt. Hvilken verdi må R L ha for at denne effekten skal bli størst mulig? A. 940Ω B. 470Ω X C. 1880Ω

14 Side 14 av Hva er tallet -525 (10) på tos-komplement binær form? A B C X 7. Hvilket alternativ (A, B eller C) representerer hexadesimaltallet AAAA (16) på oktal form? A (8) X B (8) C (8) 8. Hvilken funksjon er dette? Gitt som sum av mintermer. X Y F A. (, ) ( 0,2) FA X Y =! B. (, ) ( 1, 2) F X Y =! X A C. (, ) ( 0,3) FA X Y =! 9. To av de tre uttrykkene under er likeverdige. Hvilket av de tre utrykkene (A, B eller C) er ikke likeverdig med de to andre? A. A (,,, ) B. B (,,, ) C. (,,, ) F A B C D = BCD + ABD + ABC F A B C D = ABC + BCD + ABD F A B C D = ABC + ACD + ACD X C 10. Gitt (,,, ) ( 2,3, 4,5) ( 10,11,12,13,14,15) F A B C D =! d =! F?, med don t care betingelsene. Hviket av alternativene er en forenklet funksjon for

15 Side 15 av 17 A. A (,,, ) B. B (,,,,) C. (,,, ) F A B C D = BC + BC X F A B C D = AB + CD F A B C D = AB + AC C Oppgave 4 (35 %) LØSNING KOMMER SEPARAT Gitt en tilstandsmaskin med nestetilstands- utgangstabellen vist under. Nåtilstand Inngang Neste tilstand Utgang S 0 S 1 S 2 S 3 S 4 0 S 0 1 S 4 0 S 0 1 S 1 0 S 0 1 S 3 0 S 0 1 S 1 0 S 0 1 S a) Bruk implikasjonstabell, og undersøk om noen av tilstandene er ekvivalente. Fjern eventuelt overflødige tilstander og sett opp ny tabell. b) Tilstandsmaskinen skal kodes binært, slik at tilstandene S 0, S 1, S 2 får henholdsvis kodene 000, 001 og 010, og tilsvarende for eventuelt påfølgende tilstander. (Angitt for 3 bit.) Tilstandsmaskinen skal realiseres ved hjelp av D-vipper. Hva er det minste antallet vipper som er nødvendig? Begrunn svaret. c) Sett opp sannhetstabell for utgangen og nestetilstand, som funksjon av inngangen og nåtilstand. Eventuelle ubrukte tilstander skal ha utgangsverdi X, og nestetilstanden skal være S 0, uansett inngangsverdi. d) Finn uttrykkene for D-inngangen (nestetilstandsinngangen) til vippene, og for utgangen O.

16 Side 16 av 17 e) Bruk Karnaugh-diagram til å forenkle uttrykkene mest mulig. NB!! Dersom du ikke kom frem til uttrykkene i punkt 0, skal du bruke følgende uttrykk i stedet: D = Q Q I + Q Q I D = Q Q I + Q Q I + Q Q I O = Q Q Q f) Tegn den kombinatoriske kretsen som realiserer disse funksjonene. Bruk gjerne PLA-type skjema. g) Tegn tilstandsdiagram for tilstandsmaskinen med følgende notasjon: X: Tilstand Y: Utgangsverdi for den gitte tilstanden Z: Inngangsverdi som bytter tilstand til neste tilstand X Y Z h) Finnes det en inngangsverdi-sekvens som setter tilstandsmaskinen i tilstand S 0, uansett starttilstand? Begrunn svaret. Angi eventuelt sekvensen.

17 Side 17 av 17 Student nr: Emnenr: Side: / Svartabell for oppgave 3: SPØRSMÅL NR.: A B C 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X 9 X 10 X

TFE4101 Vår Løsningsforslag Øving 1. 1 Ohms lov. Serie- og parallellkobling. (35 poeng)

TFE4101 Vår Løsningsforslag Øving 1. 1 Ohms lov. Serie- og parallellkobling. (35 poeng) TFE4101 Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekomunikasjon Løsningsforslag Øving 1 1 Ohms lov. Serie- og parallellkobling. (35 poeng) a) Hvilke av påstandene

Detaljer

EKSAMENSOPPGAVE I TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK

EKSAMENSOPPGAVE I TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Side av 8 Norges teknisknaturvitenskapelige universitet Institutt for elektronikk og telekommunikasjon EKSAMENSOPPGAVE I TFE4 DIGITALTEKNIKK MED KRETSTEKNIKK LØSNINGSFORSLAG Versjon. Faglig kontakt under

Detaljer

EKSAMEN Løsningsforslag Emne: Fysikk og datateknikk

EKSAMEN Løsningsforslag Emne: Fysikk og datateknikk Emnekode: ITD006 EKSAMEN Løsningsforslag Emne: Fysikk og datateknikk Dato: 09. Mai 006 Eksamenstid: kl 9:00 til kl :00 Hjelpemidler: 4 sider (A4) ( ark) med egne notater. Kalkulator. Gruppebesvarelse,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i INF 1411 Introduksjon til elektroniske systemer Eksamensdag: 30. mai 2010 Tid for eksamen: 3 timer Oppgavesettet er på

Detaljer

TFE4101 Vår 2016. Løsningsforslag Øving 3. 1 Teorispørsmål. (20 poeng)

TFE4101 Vår 2016. Løsningsforslag Øving 3. 1 Teorispørsmål. (20 poeng) TFE411 Vår 216 Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekommunikasjon Løsningsforslag Øving 3 1 Teorispørsmål. (2 poeng) a) Beskriv følgende med egne ord: Nodespenningsmetoden.

Detaljer

5 E, B (16) , 1011 (2) Danner grupper a' fire bit , (2) Danner grupper a' tre bit 1 3 6, 5 4 (8)

5 E, B (16) , 1011 (2) Danner grupper a' fire bit , (2) Danner grupper a' tre bit 1 3 6, 5 4 (8) 7. juni Side 8 av 17 11) Gitt det negative desimale tallet -20 (10). Hva er det samme tallet på binær 2 skomplement form? A) 110100 (2) B) 101100 (2) C) 001011 (2) Vi starter med å finne binær form av

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Elektroniske systemer Eksamensdag: 4. juni 2012 Tid for eksamen: 14:30 18:30 Oppgavesettet er på 5 sider Vedlegg: Ingen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Introduksjon til elektroniske systemer Eksamensdag: 28. mai 2014 Tid for eksamen: 4 timer Oppgavesettet er på 6 sider

Detaljer

RAPPORT LAB 3 TERNING

RAPPORT LAB 3 TERNING TFE4110 Digitalteknikk med kretsteknikk RAPPORT LAB 3 TERNING av June Kieu Van Thi Bui Valerij Fredriksen Labgruppe 201 Lab utført 09.03.2012 Rapport levert: 16.04.2012 FAKULTET FOR INFORMASJONSTEKNOLOGI,

Detaljer

LF - anbefalte oppgaver fra kapittel 2

LF - anbefalte oppgaver fra kapittel 2 1 LF - anbefalte oppgaver fra kapittel 2 N2.1 Denne oppkoblingen er lovlig: Alle spenningkildene kan få en strøm på 5 A fra strømkilden. Spenningsfallet over strømkilden er også lovlig. Ved å summere alle

Detaljer

KONTINUASJONSEKSAMEN I EMNE TFY 4102 FYSIKK

KONTINUASJONSEKSAMEN I EMNE TFY 4102 FYSIKK BOKMÅL NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Magnus Borstad Lilledahl Telefon: 73591873 (kontor) 92851014 (mobil) KONTINUASJONSEKSAMEN I EMNE

Detaljer

Rapport laboratorieøving 2 RC-krets. Thomas L Falch, Jørgen Faret Gruppe 225

Rapport laboratorieøving 2 RC-krets. Thomas L Falch, Jørgen Faret Gruppe 225 Rapport laboratorieøving 2 RC-krets Thomas L Falch, Jørgen Faret Gruppe 225 Utført: 12. februar 2010, Levert: 26. april 2010 Rapport laboratorieøving 2 RC-krets Sammendrag En RC-krets er en seriekobling

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Eksamensdag: mandag 3.juni 2013 Tid for eksamen: 14.30-18.30 Oppgavesettet er på 6 sider Vedlegg: Ingen Tillatte

Detaljer

TFE4100 Kretsteknikk Kompendium. Eirik Refsdal <eirikref@pvv.ntnu.no>

TFE4100 Kretsteknikk Kompendium. Eirik Refsdal <eirikref@pvv.ntnu.no> TFE4100 Kretsteknikk Kompendium Eirik Refsdal 16. august 2005 2 INNHOLD Innhold 1 Introduksjon til elektriske kretser 4 1.1 Strøm................................ 4 1.2 Spenning..............................

Detaljer

Prøveeksamen 1. Elektronikk 8.feb. 2010. Løsningsforslag

Prøveeksamen 1. Elektronikk 8.feb. 2010. Løsningsforslag Prøveeksamen 1 Elektronikk 8.feb. 2010 Løsningsforslag OPPGAVE 1 a) I koplingen til venstre ovenfor er u I et sinusformet signal med moderat frekvens og effektivverdi på 6,3V. Kretsen er en negativ toppverdikrets,

Detaljer

Løsningsforslag til 1. del av Del - EKSAMEN

Løsningsforslag til 1. del av Del - EKSAMEN Løsningsforslag til 1. del av Del - EKSAMEN Emnekode: ITD13012 Emne: Datateknikk Dato: 27. November 2012 Eksamenstid: kl 9:00 til kl 12:00 Hjelpemidler: 4 sider (A4) (2 ark) med egne notater. Ikke-kummuniserende

Detaljer

WORKSHOP BRUK AV SENSORTEKNOLOGI

WORKSHOP BRUK AV SENSORTEKNOLOGI WORKSHOP BRUK AV SENSORTEKNOLOGI SENSOROPPSETT 2. Mikrokontroller leser spenning i krets. 1. Sensor forandrer strøm/spenning I krets 3. Spenningsverdi oversettes til tallverdi 4. Forming av tallverdi for

Detaljer

EKSAMENSOPPGÅVE I TFE4110 DIGITALTEKNIKK MED KRINSTEKNIKK

EKSAMENSOPPGÅVE I TFE4110 DIGITALTEKNIKK MED KRINSTEKNIKK Side 1 av 15 Noregs teknisk-naturvitskaplege universitet Institutt for elektronikk og telekommunikasjon EKSAMENSOPPGÅVE I TFE4110 DIGITALTEKNIKK MED KRINSTEKNIKK - Fagleg kontakt under eksamen: Peter Svensson:

Detaljer

LABORATORIERAPPORT. RL- og RC-kretser. Kristian Garberg Skjerve

LABORATORIERAPPORT. RL- og RC-kretser. Kristian Garberg Skjerve LABORATORIERAPPORT RL- og RC-kretser AV Kristian Garberg Skjerve Sammendrag Oppgavens hensikt er å studere pulsrespons for RL- og RC-kretser, samt studere tidskonstanten, τ, i RC- og RL-kretser. Det er

Detaljer

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi LØSNING TIL PRØVE 2 I FYS135 - ELEKTRO- MAGNETISME, 2004.

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi LØSNING TIL PRØVE 2 I FYS135 - ELEKTRO- MAGNETISME, 2004. NOGES LANDBUKSHØGSKOLE Institutt for matematiske realfag og teknologi LØSNING TIL PØVE 2 I FYS3 - ELEKTO- MAGNETISME, 2004. Dato: 20. oktober 2004. Prøvens varighet: 08:4-09:4 ( time) Informasjon: Alle

Detaljer

Forelesning nr.4 INF 1410

Forelesning nr.4 INF 1410 Forelesning nr.4 INF 1410 Flere teknikker for kretsanalyse og -transformasjon 1 Oversikt dagens temaer inearitet Praktiske Ekvivalente Nortons Thévenins Norton- og superposisjonsprinsippet (virkelige)

Detaljer

Datamaskiner og operativsystemer =>Datamaskinorganisering og arkitektur

Datamaskiner og operativsystemer =>Datamaskinorganisering og arkitektur Datamaskiner og operativsystemer =>Datamaskinorganisering og arkitektur Lærebok: Computer organization and architecture/w. Stallings. Avsatt ca 24 timers tid til forelesning. Lærestoffet bygger på begrepsapparat

Detaljer

Enkle kretser med kapasitans og spole- bruk av datalogging.

Enkle kretser med kapasitans og spole- bruk av datalogging. Laboratorieøvelse i FY3-Elektrisitet og magnetisme Vår Fysisk Institutt, NTNU Enkle kretser med kapasitans og spole- bruk av datalogging. Oppgave -Spenning i krets a: Mål inngangsspenningen og spenningsfallet

Detaljer

FYS 2150. ØVELSE 10 SPENNINGSFORSYNING

FYS 2150. ØVELSE 10 SPENNINGSFORSYNING FYS 2150. ØVELSE 10 SPENNINGSFORSYNING Fysisk institutt, UiO Mål Alle former for elektriske og elektroniske apparater er utstyrt med en spenningskilde. Slike spenningskilder leverer enten vekselspenning

Detaljer

Dagens tema. Dagens tema hentes fra kapittel 3 i Computer Organisation and Architecture. Sekvensiell logikk. Flip-flop er. Tellere og registre

Dagens tema. Dagens tema hentes fra kapittel 3 i Computer Organisation and Architecture. Sekvensiell logikk. Flip-flop er. Tellere og registre Dagens tema Dagens tema hentes fra kapittel 3 i Computer Organisation and Architecture Sekvensiell logikk Flip-flop er Tellere og registre Design av sekvensielle kretser (Tilstandsdiagram) 1/19 Sekvensiell

Detaljer

EKSAMEN. Oppgavesettet består av 3 oppgaver. Alle spørsmål på oppgavene skal besvares, og alle spørsmål teller likt til eksamen.

EKSAMEN. Oppgavesettet består av 3 oppgaver. Alle spørsmål på oppgavene skal besvares, og alle spørsmål teller likt til eksamen. EKSAMEN Emnekode: ITD12011 Emne: Fysikk og kjemi Dato: 30. April 2013 Eksamenstid: kl.: 9:00 til kl.: 13:00 Hjelpemidler: 4 sider (A4) (2 ark) med egne notater. Ikke-kummuniserende kalkulator. Gruppebesvarelse,

Detaljer

EKSAMENSOPPGAVE. Eksamen i: FYS- 1002 Elektromagnetisme Fredag 31. august 2012 Kl 09:00 13:00 adm. Bygget, rom B154

EKSAMENSOPPGAVE. Eksamen i: FYS- 1002 Elektromagnetisme Fredag 31. august 2012 Kl 09:00 13:00 adm. Bygget, rom B154 side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: FYS- 1002 Elektromagnetisme Dato: Tid: Sted: Fredag 31. august 2012 Kl 09:00 13:00 adm. Bygget, rom B154 Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO.

UNIVERSITETET I OSLO. UNIVESITETET I OSLO. Det matematisk - naturvitenskapelige fakultet. Eksamen i : FYS204 Eksamensdag : 11 juni 1996. Tid for eksamen : Kl.0900-1500 Oppgavesettet er på 5 sider. Vedlegg : 4 stk. logaritmepapir

Detaljer

Elektrolaboratoriet RAPPORT. Oppgave nr. 1. Spenningsdeling og strømdeling. Skrevet av xxxxxxxx. Klasse: 09HBINEA. Faglærer: Tor Arne Folkestad

Elektrolaboratoriet RAPPORT. Oppgave nr. 1. Spenningsdeling og strømdeling. Skrevet av xxxxxxxx. Klasse: 09HBINEA. Faglærer: Tor Arne Folkestad Elektrolaboratoriet RAPPORT Oppgave nr. 1 Spenningsdeling og strømdeling Skrevet av xxxxxxxx Klasse: 09HBINEA Faglærer: Tor Arne Folkestad Oppgaven utført, dato: 5.10.2010 Rapporten innlevert, dato: 01.11.2010

Detaljer

Løsningsforslag til 1. del av Del - EKSAMEN

Løsningsforslag til 1. del av Del - EKSAMEN Løsningsforslag til 1. del av Del - EKSAMEN Emnekode: ITD13012 Emne: Datateknikk Dato: 13. Desember 2013 Eksamenstid: kl 9:00 til kl 12:00 Hjelpemidler: 4 sider (A4) (2 ark) med egne notater. Ikke-kummuniserende

Detaljer

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME Eksamensdag: 10. desember 2004 Tid for eksamen: Kl. 09:00-12:30 (3,5 timer) Tillatte hjelpemidler:

Detaljer

Løsningsforslag for øvningsoppgaver: Kapittel 12

Løsningsforslag for øvningsoppgaver: Kapittel 12 Løsningsforslag for øvningsoppgaver: Kapittel 2 Jon Walter Lundberg 20.04.205 Viktige formler: Kirchhoffs. lov: Ved et forgreiningspunkt i en strømkrets er summen av alle strømene inn mot forgreiningspunktet

Detaljer

Rapport. Lab 1. Absoluttverdikrets - portkretser

Rapport. Lab 1. Absoluttverdikrets - portkretser TFE4105 Digitalteknikk og datamaskiner Rapport Lab 1 Absoluttverdikrets - portkretser av Even Wiik Thomassen Broen van Besien Gruppe 193 Lab utført: 8. september 2004 Rapport levert: 12. november 2004

Detaljer

Rapport TFE4100. Lab 5 Likeretter. Eirik Strand Herman Sundklak. Gruppe 107

Rapport TFE4100. Lab 5 Likeretter. Eirik Strand Herman Sundklak. Gruppe 107 Rapport TFE4100 Lab 5 Likeretter Eirik Strand Herman Sundklak Gruppe 107 Lab utført: 08.november 2012 Rapport generert: 30. november 2012 Likeretter Sammendrag Denne rapporten er et sammendrag av laboratorieøvingen

Detaljer

LABORATORIERAPPORT. Halvlederdioden AC-beregninger. Christian Egebakken

LABORATORIERAPPORT. Halvlederdioden AC-beregninger. Christian Egebakken LABORATORIERAPPORT Halvlederdioden AC-beregninger AV Christian Egebakken Sammendrag I dette prosjektet har vi forklart den grunnleggende teorien bak dioden. Vi har undersøkt noen av bruksområdene til vanlige

Detaljer

Transistorkretser Laboratorieeksperimenter realfagseminar Sjøkrigsskolen 15. November 2010

Transistorkretser Laboratorieeksperimenter realfagseminar Sjøkrigsskolen 15. November 2010 Transistorkretser Laboratorieeksperimenter realfagseminar Sjøkrigsskolen 15. November 2010 1. Referanser http://wild-bohemian.com/electronics/flasher.html http://www.creative-science.org.uk/transistor.html

Detaljer

Forelesning nr.5 INF 1410

Forelesning nr.5 INF 1410 Forelesning nr.5 INF 40 Operasjonsforsterker Oersikt dagens temaer Kort historikk til operasjonsforsterkeren (OpAmp) Enkel Karakteristikker modell for OpAmp til ideell OpAmp Konfigurasjoner Mer med OpAmp

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2015. Øving 11. Veiledning: 9. - 13. november.

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2015. Øving 11. Veiledning: 9. - 13. november. TFY0 Fysikk. Institutt for fysikk, NTNU. Høsten 05. Øving. Veiledning: 9. -. november. Opplysninger: Noe av dette kan du få bruk for: /πε 0 = 9 0 9 Nm /, e =.6 0 9, m e = 9. 0 kg, m p =.67 0 7 kg, g =

Detaljer

MIK 200 Anvendt signalbehandling, 2012. Lab. 5, brytere, lysdioder og logikk.

MIK 200 Anvendt signalbehandling, 2012. Lab. 5, brytere, lysdioder og logikk. Stavanger, 25. januar 2012 Det teknisknaturvitenskapelige fakultet MIK 200 Anvendt signalbehandling, 2012. Lab. 5, brytere, lysdioder og logikk. Vi skal i denne øvinga se litt på brytere, lysdioder og

Detaljer

Oppgave 3 -Motstand, kondensator og spole

Oppgave 3 -Motstand, kondensator og spole Oppgave 3 -Motstand, kondensator og spole Ole Håvik Bjørkedal, Åge Johansen olehb@stud.ntnu.no, agej@stud.ntnu.no 18. november 2012 Sammendrag Rapporten omhandler hvordan grunnleggende kretselementer opptrer

Detaljer

Kondensator - Capacitor. Kondensator - en komponent som kan lagre elektrisk ladning. Symbol. Kapasitet, C. 1volt

Kondensator - Capacitor. Kondensator - en komponent som kan lagre elektrisk ladning. Symbol. Kapasitet, C. 1volt Kondensator - apacitor Lindem. mai 00 Kondensator - en komponent som kan lagre elektrisk ladning. Symbol Kapasiteten ( - capacity ) til en kondensator måles i Farad. Som en teknisk definisjon kan vi si

Detaljer

Andreas. har 8 sider

Andreas. har 8 sider Instituttt for fysikk Eksamensoppgave i TFY 4102 Fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng Tlf.: 45 45 55 33 Eksamensdato: 8. juni 2013 Eksamenstid (fra-til): 0900-1300 Hjelpemiddelkode/Tillattee

Detaljer

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye. Løsningsforslag Emnekode: ITF75 Dato: 5 desember Emne: Matematikk for IT Eksamenstid: kl 9 til kl Hjelpemidler: To A4-ark med valgfritt innhold på begge sider Kalkulator er ikke tillatt Faglærer: Christian

Detaljer

Oppsummering om kretser med R, L og C FYS1120

Oppsummering om kretser med R, L og C FYS1120 Oppsummering om kretser med R, L og C FYS1120 Likestrømskretser med motstander Strøm og spenning er alltid i fase. Ohms lov: V = RI Effekt er gitt ved: P = VI = RI 2 = V 2 /R Kirchoffs lover: Summen av

Detaljer

TRANSISTORER Transistor forsterker

TRANSISTORER Transistor forsterker Kurs: FYS1210 Elektronikk med prosjektoppgaver Gruppe: Gruppe-dag: Oppgave: LABORAORIEØVELSE NR 4 Omhandler: RANSISORER ransistor forsterker Revidert utgave, desember 2014 (. Lindem, M.Elvegård, K.Ø. Spildrejorde)

Detaljer

Forelesning nr.7 INF 1410. Kondensatorer og spoler

Forelesning nr.7 INF 1410. Kondensatorer og spoler Forelesning nr.7 IF 4 Kondensatorer og spoler Oversikt dagens temaer Funksjonell virkemåte til kondensatorer og spoler Konstruksjon Modeller og fysisk virkemåte for kondensatorer og spoler Analyse av kretser

Detaljer

AVSLUTTENDE EKSAMEN I. TDT4160 Datamaskiner Grunnkurs. Torsdag 29. November 2007 Kl. 09.00 13.00

AVSLUTTENDE EKSAMEN I. TDT4160 Datamaskiner Grunnkurs. Torsdag 29. November 2007 Kl. 09.00 13.00 Side 1 av 11 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap AVSLUTTENDE EKSAMEN

Detaljer

Kontinuasjonseksamensoppgave i TFY4120 Fysikk

Kontinuasjonseksamensoppgave i TFY4120 Fysikk Side 1 av 10 Bokmål Institutt for fysikk Kontinuasjonseksamensoppgave i TFY4120 Fysikk Faglig kontakt under eksamen: Ragnvald Mathiesen Tlf.: 97692132 Eksamensdato: 13.08.2014 Eksamenstid (fra-til): 09:00-13:00

Detaljer

Ny og utsatt eksamen i Elektronikk 28. Juli 2015. Løsningsforslag Knut Harald Nygaard

Ny og utsatt eksamen i Elektronikk 28. Juli 2015. Løsningsforslag Knut Harald Nygaard Ny og utsatt eksamen i Elektronikk 28. Juli 205 Løsningsforslag Knut Harald Nygaard Oppgave (30 % En operasjonsforsterker, som antas ideell, er benyttet i figuren nedenfor. V a Transferfunksjonen: V (s=

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO929A Matematikk Prøve-eksamen Dato 13. desember 2007 Tidspunkt 09.00-1.00 Antall oppgaver Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 a) Likningen

Detaljer

Løsningsforslag. Emnekode: Emne: Matematikk for IT ITF Eksamenstid: Dato: kl til kl desember Hjelpemidler: Faglærer:

Løsningsforslag. Emnekode: Emne: Matematikk for IT ITF Eksamenstid: Dato: kl til kl desember Hjelpemidler: Faglærer: Løsningsforslag Emnekode: ITF75 Dato: 7. desember Emne: Matematikk for IT Eksamenstid: kl 9. til kl. Hjelpemidler: To -ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer: Christian

Detaljer

Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag

Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Institutt for matematiske fag Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Faglig kontakt under eksamen: Martin Strand Tlf: 970 27 848 Eksamensdato:. august 2014 Eksamenstid (fra

Detaljer

FYS1210 Løsningsforslag Eksamen V2015

FYS1210 Løsningsforslag Eksamen V2015 FYS1210 Løsningsforslag Eksamen V2015 K. Spildrejorde, M. Elvegård Juni 2015 1 Oppgave 1: Frekvensfilter Frekvensfilteret har følgende verdier: 1A C1 = 1nF C2 = 100nF R1 = 10kΩ R2 = 10kΩ Filteret er et

Detaljer

Laboratorieøvelse 3 - Elektriske kretser

Laboratorieøvelse 3 - Elektriske kretser Laboratorieøvelse 3 - Elektriske kretser FYS1000, Fysisk institutt, UiO Våren 2014 (revidert 15. april 2016) Innledning I denne oppgaven skal du måle elektriske størrelser som strøm, spenning og resistans.

Detaljer

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON Side 1 av 7 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON Faglig kontakt under eksamen: Navn: Helge E. Engan Tlf.: 94420 EKSAMEN I EMNE TFE4130 BØLGEFORPLANTNING

Detaljer

Halvledere. Vg1 Vg3 Antall elever: Maksimum 15 Varighet: 90 minutter. Passer for:

Halvledere. Vg1 Vg3 Antall elever: Maksimum 15 Varighet: 90 minutter. Passer for: Halvledere Lærerveiledning Passer for: Vg1 Vg3 Antall elever: Maksimum 15 Varighet: 90 minutter Halvledere er et skoleprogram hvor elevene får en innføring i halvlederelektronikk. Elevene får bygge en

Detaljer

Batteri. Lampe. Strømbryter. Magnetbryter. Motstand. Potensiometer. Fotomotstand. Kondensator. Lysdiode. Transistor NPN. Motor. Mikrofon.

Batteri. Lampe. Strømbryter. Magnetbryter. Motstand. Potensiometer. Fotomotstand. Kondensator. Lysdiode. Transistor NPN. Motor. Mikrofon. Batteri Lampe Strømbryter Magnetbryter Motstand Potensiometer Fotomotstand Kondensator Lysdiode Transistor NPN Motor Mikrofon Høytaler Ampèremeter 1 1. Sett sammen kretsen. Pass på at motorens pluss og

Detaljer

Kraftelektronikk (Elkraft 2 høst), øvingssett 2, høst 2005

Kraftelektronikk (Elkraft 2 høst), øvingssett 2, høst 2005 Kraftelektronikk (Elkraft 2 høst), øvingssett 2, høst 2005 Ole-Morten Midtgård HiA 2005 Ingen innlevering. Det gis veiledning tirsdag 27. september og tirsdag 11. oktober. Oppgave 1 Figuren nedenfor viser

Detaljer

Elektronikksett blinklys metronom synthesizer løgndetektor innbruddsalarm ultralyd støysender

Elektronikksett blinklys metronom synthesizer løgndetektor innbruddsalarm ultralyd støysender Elektronikksett blinklys metronom synthesizer løgndetektor innbruddsalarm ultralyd støysender BLINKLYS Her kan du lage blinklys. Slik gjør du det 1. Ha kontakten ute. 2. Legg koblingsbrettet på et bord.

Detaljer

ITPE2400/DATS2400: Datamaskinarkitektur

ITPE2400/DATS2400: Datamaskinarkitektur ITPE2400/DATS2400: Datamaskinarkitektur Forelesning 6: Mer om kombinatoriske kretser Aritmetikk Sekvensiell logikk Desta H. Hagos / T. M. Jonassen Institute of Computer Science Faculty of Technology, Art

Detaljer

Oppgave Nr.og navn LABORATORIEØVELSE NR 6 Revidert utgave desember 2014 T. Lindem, K. Ø. Spildrejorde, M. Elvegård

Oppgave Nr.og navn LABORATORIEØVELSE NR 6 Revidert utgave desember 2014 T. Lindem, K. Ø. Spildrejorde, M. Elvegård Kurs: FYS1210 Elektronikk med prosjektoppgaver Gruppe: Gruppe-dag: Oppgave Nr.og navn LABORATORIEØVELSE NR 6 Revidert utgave desember 2014 T. Lindem, K. Ø. Spildrejorde, M. Elvegård Omhandler: «KLOKKEGENERATOR

Detaljer

RAPPORT. Elektrolaboratoriet. Oppgave nr.: 1. Tittel: Spenningsdeling og strømdeling. Skrevet av: Ole Johnny Berg

RAPPORT. Elektrolaboratoriet. Oppgave nr.: 1. Tittel: Spenningsdeling og strømdeling. Skrevet av: Ole Johnny Berg Elektrolaboratoriet APPOT Oppgave nr.: Tittel: Spenningsdeling og strømdeling Skrevet av: Ole Johnny Berg Klasse: Fleksing Gruppe: 4.a Øvrige deltakere: Gudbrand i Lia Faglærer: Nomen Nescio Lab.ingeniør.:

Detaljer

KONTIUNASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME

KONTIUNASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME NTNU Norges teknisk-naturvitenskapelige universitet ide 1 av 7 Fakultet for informatikk, matematikk og elektroteknikk Institutt for fysikalsk elektronikk Bokmål/Nynorsk Faglig/fagleg kontakt under eksamen:

Detaljer

Løsningsforslag til EKSAMEN

Løsningsforslag til EKSAMEN Løsningsforslag til EKSAMEN Emnekode: ITD0 Emne: Fysikk og kjemi Dato: 30. April 03 Eksamenstid: kl.: 9:00 til kl.: 3:00 Hjelpemidler: 4 sider (A4) ( ark) med egne notater. Ikke-kummuniserende kalkulator.

Detaljer

Den indre spenning som genereres i en spenningskilde kalles elektromotorisk spenning.

Den indre spenning som genereres i en spenningskilde kalles elektromotorisk spenning. 3.5 KOPLNGR MD SYMTRSK NRGKLDR 3.5 KOPLNGR MD SYMMTRSK NRGKLDR SPNNNGSKLD Den indre spenning som genereres i en spenningskilde kalles elektromotorisk spenning. lektromotorisk spenning kan ha flere navn

Detaljer

Digitalstyring sammendrag

Digitalstyring sammendrag Digitalstyring sammendrag Boolsk algebra A + A = 1 AA = 0 A + A = A AA = A A + 0 = A A 1 = A A + 1 = 1 A 0 = 0 (A ) = A A + B = B + A AB = BA A + (B + C) = (A + B) + C A(BC) = (AB)C A(B + C) = AB + AC

Detaljer

KONTIUNASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME

KONTIUNASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME NTNU Norges teknisk-naturvitenskapelige universitet ide 1 av 7 Fakultet for informatikk, matematikk og elektroteknikk Institutt for elektronikk og telekommunikasjon Bokmål/Nynorsk Faglig/fagleg kontakt

Detaljer

Løsningsforslag eksamen 1T våren 2010 DEL 1. Oppgave 1. a) Funksjonen f er gitt ved f x 2x 3. Tegn grafen og finn nullpunktene for f f x 2x 3 Grafen

Løsningsforslag eksamen 1T våren 2010 DEL 1. Oppgave 1. a) Funksjonen f er gitt ved f x 2x 3. Tegn grafen og finn nullpunktene for f f x 2x 3 Grafen Løsningsforslag eksamen T våren 00 DEL Oppgave a) Funksjonen f er gitt ved f 3. Tegn grafen og finn nullpunktene for f f 3 Grafen y 0 8 6 4-4 -3 - - 3 4 - -4 Nullpunkt 3 0 3 Nullpunkt når 3 b) Løs likningen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Introduksjon til elektroniske systemer Eksamensdag: 28. mai 2014 Tid for eksamen: 4 timer Oppgavesettet er på 6 sider

Detaljer

Case: Analyse av passive elektriske filtre

Case: Analyse av passive elektriske filtre HØGSKOEN I SØR-TRØNDEAG AVDEING FOR TEKNOOGI PROGRAM FOR EEKTRO- OG DATATEKNIKK N7004 TRONDHEIM Telefon jobb: 735 59584 Mobil: 911 77 898 kare.bjorvik@hist.no http://www.edt.hist.no/ Kåre Bjørvik, 15.

Detaljer

INF1411 Obligatorisk oppgave nr. 5

INF1411 Obligatorisk oppgave nr. 5 INF1411 Obligatorisk oppgave nr. 5 Fyll inn navn på alle som leverer sammen, 2 per gruppe (1 eller 3 i unntakstilfeller): 1 2 3 Informasjon og orientering I denne prosjektoppgaven skal du bygge en AM radiomottaker.

Detaljer

Kandidaten må selv kontrollerer at oppgavesettet er fullstendig. Innføring skal være med blå eller sort penn

Kandidaten må selv kontrollerer at oppgavesettet er fullstendig. Innføring skal være med blå eller sort penn Side 1 Høgskolen i Oslo Avdelingfor ingeniørutdanning Kandidaten må selv kontrollerer at oppgavesettet er fullstendig. Innføring skal være med blå eller sort penn Les igjennom ~ oppgaver før du begynner

Detaljer

Eksamen i FO929A Matematikk Underveiseksamen Dato 14. desember 2006 Tidspunkt Antall oppgaver 4. Løsningsforslag

Eksamen i FO929A Matematikk Underveiseksamen Dato 14. desember 2006 Tidspunkt Antall oppgaver 4. Løsningsforslag Eksamen i FO99A Matematikk Underveiseksamen Dato. desember 6 Tidspunkt 9. -. Antall oppgaver Vedlegg Tillatte hjelpemidler Ingen Godkjent kalkulator Godkjent formelsamling Oppgave Vi løser likningene ved

Detaljer

INF1400. Digital teknologi. Joakim Myrvoll 2014

INF1400. Digital teknologi. Joakim Myrvoll 2014 INF1400 Digital teknologi Joakim Myrvoll 2014 Innhold 1 Forenkling av funksjonsuttrykk 3 1.1 Huntingtons postulater......................................... 3 1.2 DeMorgans...............................................

Detaljer

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon Repetisjon og mer motivasjon MAT030 Diskret matematikk Forelesning 22: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 4. april 2008 Først litt repetisjon En graf består av noder og

Detaljer

Installasjonstest med Fluke 1650 tester på IT anlegg i drift

Installasjonstest med Fluke 1650 tester på IT anlegg i drift Installasjonstest med Fluke 1650 tester på IT anlegg i drift Utføring av testene Spenningsmålinger Testeren kan brukes som et multimeter hvor spenning og frekvens kan vises samtidig ved å sette rotasjonsbryteren

Detaljer

F = a bc + abc + ab c + a b c

F = a bc + abc + ab c + a b c UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 240 Digital Systemkonstruksjon Eksamensdag: 8. desember 1998 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 5 sider. Vedlegg:

Detaljer

Norsk informatikkolympiade 2012 2013 1. runde

Norsk informatikkolympiade 2012 2013 1. runde Norsk informatikkolympiade 2012 2013 1. runde Uke 45, 2012 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler. Instruksjoner:

Detaljer

EKSAMENSOPPGAVE. Tillatte hjelpemidler: Kalkulator med tomt dataminne Rottmann: Matematisk Formelsamling A.T. Surenovna: Norsk russisk ordbok

EKSAMENSOPPGAVE. Tillatte hjelpemidler: Kalkulator med tomt dataminne Rottmann: Matematisk Formelsamling A.T. Surenovna: Norsk russisk ordbok EKSAMENSOPPGAVE Eksamen i: FYS-1002 Dato: Fredag 12.juni 2015 Tid: Kl 09:00 13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Kalkulator med tomt dataminne Rottmann: Matematisk Formelsamling A.T. Surenovna:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS3230 Sensorer og måleteknikk Eksamensdag: Mandag 16. desember Tid for eksamen: 09:00 12:00 Oppgavesettet er på: 2 sider Vedlegg:

Detaljer

INF1411 Obligatorisk oppgave nr. 4

INF1411 Obligatorisk oppgave nr. 4 INF1411 Obligatorisk oppgave nr. 4 Fyll inn navn på alle som leverer sammen, 2 per gruppe (1 eller 3 i unntakstilfeller): 1 2 3 Informasjon og orientering I denne oppgaven skal du lære litt om responsen

Detaljer

MA3002 Generell topologi

MA3002 Generell topologi Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Faglig kontakt under eksamen: Richard Williamson, (735) 90154 MA3002 Generell topologi Lørdag 1. juni 2013 Tid:

Detaljer

Gruppa består av studenter fra AU2: Espen Seljemo, Vidar Wensel, Torry Eriksen, Magnus Bendiksen

Gruppa består av studenter fra AU2: Espen Seljemo, Vidar Wensel, Torry Eriksen, Magnus Bendiksen Gruppa består av studenter fra AU: Espen Seljemo, Vidar Wensel, Torry Eriksen, Magnus Bendiksen Dette er et prosjekt som ble gitt i faget Digitalteknikk ved Høgskolen i Tromsø avd. Ingeniør, år 003. Prosjektet

Detaljer

UTSATT EKSAMEN Sensur faller innen Resultatet blir tilgjengelig på studentweb første virkedag etter sensurfrist,

UTSATT EKSAMEN Sensur faller innen Resultatet blir tilgjengelig på studentweb første virkedag etter sensurfrist, Individuell skriftligeksamen i Naturfag 2, Na230E 15 studiepoeng UTSATT EKSAMEN 10.01.2012 Sensur faller innen 31.01.2012. Resultatet blir tilgjengelig på studentweb første virkedag etter sensurfrist,

Detaljer

Forelesning nr.1 INF 1411 Elektroniske systemer

Forelesning nr.1 INF 1411 Elektroniske systemer Forelesning nr.1 INF 1411 Elektroniske systemer Kursoversikt Strøm, spenning, ladning og Ohms lov 16.01. INF 1411 1 Dagens temaer Organisering av kurset Læringsmål Bakgrunn og motivasjon for kurs i analog

Detaljer

EKSAMENSOPPGAVE I FYS-1002

EKSAMENSOPPGAVE I FYS-1002 Side 1 av 5 sider EKSAMENSOPPGAVE I FYS-1002 Eksamen i : Fys-1002 Elektromagnetisme Eksamensdato : 29. september, 2011 Tid : 09:00 13:00 Sted : Administrasjonsbygget B154 Tillatte hjelpemidler : K. Rottmann:

Detaljer

Solcellen. Nicolai Kristen Solheim

Solcellen. Nicolai Kristen Solheim Solcellen Nicolai Kristen Solheim Abstract Med denne oppgaven ønsker vi å oppnå kunnskap om hvordan man rent praktisk kan benytte en solcelle som generator for elektrisk strøm. Vi ønsker også å finne ut

Detaljer

7.1 RESISTANS - SPOLE - KONDENSATOR TILKOPLET ENKELTVIS 7.1 RESISTANS - SPOLE - KONDENSATOR TILKOPLET VEKSELSTRØM ENKELTVIS

7.1 RESISTANS - SPOLE - KONDENSATOR TILKOPLET ENKELTVIS 7.1 RESISTANS - SPOLE - KONDENSATOR TILKOPLET VEKSELSTRØM ENKELTVIS 7. ESSTANS - SPOLE - KONDENSATO TLKOPLET ENKELTVS 7. ESSTANS - SPOLE - KONDENSATO TLKOPLET VEKSELSTØM ENKELTVS DEELL ESSTANS TLKOPLET VEKSELSTØM Når en motstandstråd blir brettet i to og de to delene av

Detaljer

ORDINÆR EKSAMEN Sensur faller innen

ORDINÆR EKSAMEN Sensur faller innen Skriftlig eksamen i Naturfag 2, NA230-E 30 studiepoeng ORDINÆR EKSAMEN 27.05.0. Sensur faller innen 7.06.0. BOKMÅL Resultatet blir tilgjengelig på studentweb første virkedag etter sensurfrist, dvs. 8.06.0

Detaljer

Algoritmer og Datastrukturer

Algoritmer og Datastrukturer Eksamen i Algoritmer og Datastrukturer IAI 21899 Høgskolen i Østfold Avdeling for informatikk og automatisering Torsdag 3. november 2, kl. 9. - 14. Hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.

Detaljer

KONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME

KONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME Norges teknisk naturitenskapelige uniersitet Institutt for elektronikk og telekommunikasjon ide 1 a 8 Bokmål/Nynorsk Faglig/fagleg kontakt under eksamen: Robert Marskar (48222091) Hjelpemidler: C - pesifiserte

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Kontinuasjonseksamen i: FYS 1000 Eksamensdag: 16. august 2012 Tid for eksamen: 09.00 13.00, 4 timer Oppgavesettet er på 5 sider inkludert

Detaljer

Faglig kontakt under eksamen: Navn: Anne Borg Tlf. 93413 BOKMÅL. EKSAMEN I EMNE TFY4115 Fysikk Elektronikk og Teknisk kybernetikk

Faglig kontakt under eksamen: Navn: Anne Borg Tlf. 93413 BOKMÅL. EKSAMEN I EMNE TFY4115 Fysikk Elektronikk og Teknisk kybernetikk Side 1 av 10 NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Navn: Anne Borg Tlf. 93413 BOKMÅL EKSAMEN I EMNE TFY4115 Fysikk Elektronikk og Teknisk kybernetikk

Detaljer

Farer ved strøm og spenning

Farer ved strøm og spenning Farer ved strøm og spenning Skadeomfanget ved elektrisk støt avhenger hovedsakelig av følgende faktorer [1]: Type strøm, eksponeringstid, strømstyrke og strømbane gjennom kropp. 1. Type strøm AC strøm

Detaljer

V.17. Sven Åge Eriksen. Referanse:

V.17. Sven Åge Eriksen.  Referanse: V.17 Sven Åge Eriksen Referanse: http://www.ee.surrey.ac.uk/projects/labview/minimisation/karnaugh.html#introduction Hensikten med Karnaughdiagrammet er å forenkle funksjonsuttrykk ved å gruppere sammen

Detaljer

EKSAMEN Løsningsforslag. med forbehold om bugs :-)

EKSAMEN Løsningsforslag. med forbehold om bugs :-) 1 EKSAMEN Løsningsforslag med forbehold om bugs :-) Emnekode: ITF20006 000 Dato: 20. mai 2011 Emne: Algoritmer og datastrukturer Eksamenstid: 09:00 til 13:00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater

Detaljer

Sammendrag, uke 13 (30. mars)

Sammendrag, uke 13 (30. mars) nstitutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2005 Sammendrag, uke 13 (30. mars) Likestrømkretser [FGT 27; YF 26; TM 25; AF 24.7; LHL 22] Eksempel: lommelykt + a d b c + m Spenningskilde

Detaljer

Designnotat. 1. Innledning

Designnotat. 1. Innledning Designnotat Design og utforming av en klasse A effektforsterker Forfatter: Fredrik Ellertsen Versjon: 1 Dato: 26.03.2015 Kontrollert av: Dato: Innhold 1. Innledning 1 2. Mulig løsning 2 3. Realisering

Detaljer

ELEKTRISITET. - Sammenhengen mellom spenning, strøm og resistans. Lene Dypvik NN Øyvind Nilsen. Naturfag 1 Høgskolen i Bodø 18.01.02.

ELEKTRISITET. - Sammenhengen mellom spenning, strøm og resistans. Lene Dypvik NN Øyvind Nilsen. Naturfag 1 Høgskolen i Bodø 18.01.02. ELEKTRISITET - Sammenhengen mellom spenning, strøm og resistans Lene Dypvik NN Øyvind Nilsen Naturfag 1 Høgskolen i Bodø 18.01.02.2008 Revidert av Lene, Øyvind og NN Innledning Dette forsøket handler om

Detaljer

Analog til digital omforming

Analog til digital omforming Kurs: FYS3230 Sensorer og måleteknikk Gruppe: Gruppe-dag: Oppgave: LABORATORIEØVELSE NR 2 Omhandler: Analog til digital omforming Studere noen D/A- og A/D- kretser Revidert, 27 sept. 06 T.Lindem Utført

Detaljer