Eksamen i TTK4135 Optimalisering og regulering

Størrelse: px
Begynne med side:

Download "Eksamen i TTK4135 Optimalisering og regulering"

Transkript

1 Norwegian university of science and technology Department of engineering cybernetics Kontaktperson under eksamen: Navn: Professor Bjarne Foss Tlf: Norsk/nynorsk utgave/utgåve Eksamen i TTK4135 Optimalisering og regulering Optimization and Control Tirsdag 27. mai 2008 Kl: Tillatte hjelpemidler / Tilletne hjelpemiddel: D - Ingen trykte eller skrevne hjelpemidler / Inga trykte eller skrevne hjelpemiddel. Godkjent kalkulator med tomt minne / Godkjend kalkulator med tomt minne Nyttig informasjon nnes i vedlegg / Nyttig informasjon nns i vedlegg (Denne informasjonen er gitt på engelsk for å samsvare med pensumlitteraturen som den er hentet ifra). Sensur faller 17.6 / Sensur fell

2 1 QP (35%) Gitt følgende QP-problem min f(x) = 1 x2r n 2 xt Gx + x T d s:t: a T i x = b i; i 2 E a T i x b i; i 2 I hvor G = G T : Alternativt kan likhetsbetingelsene skrives som Ax = b; A 2 R mn : a Formuler Kuhn-Tucker betinglsene for QP-problemet over.. b Anta E = ;, I = ; (ingen bibetinglser) og G 0, dvs. positive de nit. Vis at Newton retningen er gitt av p N k = G 1 (Gx + d) Vis at p N k er en avtagende retning (descent direction). Vis at algoritmen x k+1 = x k + p N k iterasjon. alltid konvergerer til optimum på en c Anta G 0 og at G er en dårlig kondisjonert matrise (ill-conditioned matrix). Foreslå en metode for å modi sere G slik at den blir godt kondisjonert (well conditioned matrix). Svar gjerne ved å skrive en kort pseudo-kode. Hva slags problem gir en dårlig kondisjonert G-matrise (ill-conditioned G-matrix) opphav til? d Formuler følgende investeringsproblem som et QP-problem (du skal ikke beregne løsningen). Et selskap trenger 60 millioner kroner for å nansiere en ny produksjonsprosess, og tre ulike banker har kommet med tilbud om å låne ut hele eller deler av dette beløpet. Alle bankene forlanger at lånet med renter skal tilbakebetales over 6 år. Tilbakebetalingsplanen er imidlertid forskjellig fra bank til bank, som vist i tabellen. (Tabellen skal tolkes slik at prosentandelene som er oppgitt gjelder lånebeløpet pluss renter, f.eks. for Bank 1 skal det betales totalt 175% ( ) av lånebeløpet). Prosent (%) av totalbeløp som skal tilbakebetales hvert år År 1 År 2 År 3 År 4 År 5 År 6 Bank Bank Bank Selskapet ser det som en fordel om de låner på en slik måte at de totale årlige betalingene på lånet er så like som mulig. Likevel ønsker de ikke å betale mer enn totalt 40 millioner kroner i renter. Formuler et QP-problem som skal nne hvor mye penger som skal lånes fra hver bank, slik at selskapets mål er tilfredsstilt. 2

3 2 MPC (35%) a Forklar kort prinsippet for MPC. Bruk en skisse i forklaringen. b Hva er de viktigste grunnene til suksessen for MPC i industrien. forklaringen til 2 årsaker. Begrens c Alle praktiske systemer er ulineære. Hvorfor er majoriteten av MPC-applikasjoner basert på lineære modeller? Gitt et optimaliseringsproblem (3), (4), (5), (6), (7) for å regulere et dynamisk system med MPC. ((3) - (7) er gitt i Appendix) d Anta at prediksjonshorisonten n = 10 for en MPC applikasjon. Anta videre at u i 2 < m hvor m = 2. (Indeks i refererer til tiid). Antallet frie reguleringsvariable er da 102 = 20 på prediksjonshorisonten. I en gitt applikasjon er det nødvendig å begrense antall frihetsgrader (frie reguleringsvariable) til 6 selv om prediksjonshorisonten er n = 10: Forklar hvordan dette kan gjøres. Bruk en skisse i forklaringen. e Anta nå i tillegg at antallet regulerte variable y i 2 < j er j = 2. Det betyr at dimensjonen på pådraget u i er lik dimensjonen til y i. Integralvirkning kan oppnås ved å reformulere MPC problemet. Foreslå en reformulering. Anta at alle tilstander måles. (Hint: Du kan utvide antall tilstander). Problemet over har to pådrag og to regulerte variable. Kan integralvirkning oppnås dersom en eller to pådrag er i metning, dvs. en eller to ulikheter (6) er aktive? Begrunn svaret. f Ugyldig løsning (Infeasibility handling): I ere tilfeller kan forstyrrelser skyve tilstandene utenfor det tillatte området (feasible region), dvs. at MPC QP problemet ikke har noen gyldig (feasible) løsning. Det er viktig at en praktisk implementasjon håndterer dette, Foreslår en metode for å håndtere dette problemet. 3

4 3 Konveksitet og ulineær programming (30%) Gitt et generelt optimaliseringsproblem (1). a La x 0 være en lokal løsning av (1), og anta at (1) er et konvekst problem. Vis at x 0 er en global løsning av (1). (A preses verbal forklaring vil gi noen poeng, men et bevis er nødvendig for full score). b Anta at alle bibetingelser er lineære, dvs. at alle c i er lineære funksjoner. Det betyr at den gyldige mengden (feasible set) er konveks. Hvilke egenskaper må f ha dersom optimaliseringsproblemet (1) skal være et konvekst problem? La n = 2 og f = x x 2 2. Er (1) et konvekst problem i dette tilfellet? La n = 1 og f = x 3 1. Er (1) et konvekst problem i dette tilfellet? c Reformuler problemet (1) til et maksimeringsproblem. d Anta at I =?, dvs. at det er ingen ulikhetsbetingelser. De ner en passende Merit-funksjon som kan benyttes i en SQP-algoritme for dette tilfellet. e Anta at I =?, E = f1g ; n = 2; c 1 (x) = x x 2 2 1; f(x) = x 1 + x 2. Anta at en SQP-algoritme i iterasjon nr.5 gir følgende verdier: x = (1:0; 0:5) T og Lagrangian variabel = 0:7. Formuler det lokale QPproblem i iterasjon nr.5. Er dette lokale QP-problemet konvekst? Hva er null-rommet (null-space) til begrensningene for det lokale QP-problemet? 4

5 Appendix Part 1 E and I given below are two nite sets of indices. General optimization problem. f and c i are di erentiable functions: min f(x) (1) x2rn c i (x) = 0; c i (x) 0; i 2 E i 2 I The Lagrangian function is given by L(x; ) = f(x) X i2e[i T i c i (x) The KKT-conditions for (1) are given by: r x L(x ; ) = 0 (2) c i (x ) = 0; i 2 E c i (x ) 0; i 2 I i 0; i 2 I i c i (x ) = 0; i 2 E [ I 2nd order (su cient) conditions for (1) are given by: 8 < rc i (x ) T w = 0 for all i 2 E w 2 F 2 ( ), rc i (x ) T w = 0 : rc i (x ) T w 0 for all i 2 A(x ) \ I with i > 0 for all i 2 A(x ) \ I with i = 0 Theorem (Second-Order Su cient Conditions) Suppose that for some feasible point x 2 R n there is a Lagrange multiplier vector such that the KKT conditions (2) are satis ed. Suppose also that w T r xx L(x ; )w > 0; for all w 2 F 2 ( ); w 6= 0: Then x is a strict local solution for (1). 5

6 LP-problem on standard form: s:t: min f(x) = x2r ct x n Ax = b x 0 where A 2 R mn and rank(a) = m: QP-problem on standard form: min f(x) = 1 x2r n 2 xt Gx + x T d s:t: a T i x = b i; i 2 E a T i x b i; i 2 I where G = G T : Alternatively, the equalities can be written Ax = b; A 2 R mn : Iterative method: x k+1 = x k + k p k x 0 given x k ; p k 2 R n ; k 2 R p k is the search direction and k is the line search parameter. Part 2 Linear quadratic control of discrete dynamic systems A typical optimal control problem on the time horizon 0 to n might take the form min f 0 (z) = 1 nx 1 f(y i y ref;i ) T Q i (y i y ref;i ) (3) z 2 i=0 + (u i u i 1 ) T P i (u i u i 1 )g (y n y ref;n ) T S(y n y ref;n ) subject to equality and inequality constraints x i+1 = A i x i + B i u i ; 0 i n 1 (4) y i = Hx i x 0 = given ( xed) (5) U L u i U U ; 0 i n 1 (6) Y L y i Y U ; 1 i n (7) 6

7 where system dimensions are given by u i 2 < m x i 2 < l y i 2 < j z T = (u T 0 ; ::; u T n 1; x T 1 ; ::; x T n ) 2 < mn+ln The subscript i refers to the sampling instants. That is, subscript i + 1 refers to the sample instant one sample interval after sample i. Note that the sampling time between each successive sampling instant is constant. Further, we assume that the control input u i is constant between each sample. 7

Exam in TTK4135 Optimization and Control

Exam in TTK4135 Optimization and Control Department of Engineering Cybernetics Faculty of Information Technology, Mathematics and Electrical Engineering Norwegian University of Science and Technology (NTNU) Contact for questions during exam:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON20/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON20/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Fredag 2. mai

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON30/40 Matematikk : Matematisk analyse og lineær algebra Exam: ECON30/40 Mathematics : Calculus and Linear Algebra Eksamensdag: Tirsdag 0. desember

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Date of exam: Friday, May

Detaljer

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postponed exam: ECON420 Mathematics 2: Calculus and linear algebra Date of exam: Tuesday, June 8, 203 Time for exam: 09:00 a.m. 2:00 noon The problem set covers

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Mathematics 2: Calculus an linear algebra Exam: ECON3120/4120 Mathematics 2: Calculus an linear algebra Eksamensag: Tirsag 3. juni 2008

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Onsdag 6. desember

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag 8. desember

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag 7. juni

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Exam: ECON3120/4120 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Tirsdag

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamensdag:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt ksamen i: ECON3120/4120 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON3120/4120 Mathematics 2: Calculus and linear algebra Eksamensdag:

Detaljer

EKSAMEN I TMA4180 OPTIMERINGSTEORI

EKSAMEN I TMA4180 OPTIMERINGSTEORI Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side av 4 Faglig kontakt under eksamen: Marte Pernille Hatlo 7359698 / 97537854 EKSAMEN I TMA48 OPTIMERINGSTEORI Fredag 2. juni

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT2400 Analyse 1. Eksamensdag: Onsdag 15. juni 2011. Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON320/420 Mathematics 2: Calculus and linear algebra Exam: ECON320/420 Mathematics 2: Calculus and linear algebra Eksamensdag: Tirsdag 30. mai 207

Detaljer

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 1 MAT131 Bokmål Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 09-14 Oppgavesettet er 4 oppgaver fordelt på

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON420 Matematikk 2: Matematisk analyse og lineær algebra Postponed exam: ECON420 Mathematics 2: Calculus and Linear Algebra Eksamensdag: Mandag

Detaljer

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Side 1 av 5 INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Side 1 av 5 INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK NORGES TEKNISK-NATURVITENSKAPEIGE UNIVERSITET Side 1 av 5 INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Faglig kontakt under eksamen: Reidar Kristoffersen, tlf.: 73 59 35 67 EKSAMEN I TEP 4110 FUIDMEKANIKK Bokmål/Nnorsk/English

Detaljer

η = 2x 1 + x 2 + x 3 x 1 + x 2 + x 3 + 2x 4 3 x x 3 4 2x 1 + x 3 + 5x 4 1 w 1 =3 x 1 x 2 x 3 2x 4 w 2 =4 x 1 x 3 w 3 =1 2x 1 x 3 5x 4

η = 2x 1 + x 2 + x 3 x 1 + x 2 + x 3 + 2x 4 3 x x 3 4 2x 1 + x 3 + 5x 4 1 w 1 =3 x 1 x 2 x 3 2x 4 w 2 =4 x 1 x 3 w 3 =1 2x 1 x 3 5x 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MA-IN-ST 233 Konveksitet og optimering Eksamensdag: 31. mai 2000 Tid for eksamen: 9.00 13.00 Oppgavesettet er på 5 sider. Vedlegg:

Detaljer

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ.

Oppgave 1. ( xφ) φ x t, hvis t er substituerbar for x i φ. Oppgave 1 Beviskalklen i læreboka inneholder sluttningsregelen QR: {ψ φ}, ψ ( xφ). En betingelse for å anvende regelen er at det ikke finnes frie forekomste av x i ψ. Videre så inneholder beviskalklen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. april 2008 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet.

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet. TDT445 Øving 4 Oppgave a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet. Nøkkel: Supernøkkel: Funksjonell avhengighet: Data i en database som kan unikt identifisere (et sett

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 4. juni 2010 Tid for eksamen: 9.00 12.00 Oppgavesettet

Detaljer

EKSAMENSOPPGAVE I SØK3004 VIDEREGÅENDE MATEMATISK ANALYSE ADVANCED MATHEMATICS

EKSAMENSOPPGAVE I SØK3004 VIDEREGÅENDE MATEMATISK ANALYSE ADVANCED MATHEMATICS NTNU Norges teknisk-naturvitenskapelige universitet Institutt for samfunnsøkonomi EKSAMENSOPPGAVE I SØK3004 VIDEREGÅENDE MATEMATISK ANALYSE ADVANCED MATHEMATICS Faglig kontakt under eksamen: Snorre Lindset,

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON360/460 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Exam: ECON360/460 - Resource allocation and economic policy Eksamensdag: Fredag 2. november

Detaljer

Eksamen i TMA4123/TMA4125 Matematikk 4M/N

Eksamen i TMA4123/TMA4125 Matematikk 4M/N Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Faglig kontakt under eksamen: Anne Kværnø: mobil 92663824 Eksamen i TMA423/TMA425 Matematikk 4M/N Bokmål Mandag 2.

Detaljer

Exam in Quantum Mechanics (phys201), 2010, Allowed: Calculator, standard formula book and up to 5 pages of own handwritten notes.

Exam in Quantum Mechanics (phys201), 2010, Allowed: Calculator, standard formula book and up to 5 pages of own handwritten notes. Exam in Quantum Mechanics (phys01), 010, There are 3 problems, 1 3. Each problem has several sub problems. The number of points for each subproblem is marked. Allowed: Calculator, standard formula book

Detaljer

Exercise 1, Process Control, advanced course

Exercise 1, Process Control, advanced course Exercise 1, Process Control, advanced course Henrik Manum September 22, 2005 Contents 1 Problem 1. Optimization 1 1.1 Case I................................................ 1 1.1.1 Deloppgave a........................................

Detaljer

SCE1106 Control Theory

SCE1106 Control Theory Master study Systems and Control Engineering Department of Technology Telemark University College DDiR, October 26, 2006 SCE1106 Control Theory Exercise 6 Task 1 a) The poles of the open loop system is

Detaljer

EKSAMENSOPPGAVE I SØK3004 VIDEREGÅENDE MATEMATISK ANALYSE ADVANCED MATHEMATICS

EKSAMENSOPPGAVE I SØK3004 VIDEREGÅENDE MATEMATISK ANALYSE ADVANCED MATHEMATICS NTNU Norges teknisk-naturvitenskapelige universitet Institutt for samfunnsøkonomi EKSMENSOPPGVE I SØK004 VIDEREGÅENDE MTEMTISK NLYSE DVNCED MTHEMTICS Faglig kontakt under eksamen: Snorre Lindset, Tlf:

Detaljer

EKSAMENSOPPGAVE I FAG TKP 4105

EKSAMENSOPPGAVE I FAG TKP 4105 EKSAMENSOPPGAVE I FAG TKP 4105 Faglig kontakt under eksamen: Sigurd Skogestad Tlf: 913 71669 (May-Britt Hägg Tlf: 930 80834) Eksamensdato: 08.12.11 Eksamenstid: 09:00 13:00 7,5 studiepoeng Tillatte hjelpemidler:

Detaljer

EKSAMENSOPPGAVE I SØK 1002 INNFØRING I MIKROØKONOMISK ANALYSE

EKSAMENSOPPGAVE I SØK 1002 INNFØRING I MIKROØKONOMISK ANALYSE Norges teknisk-naturvitenskapelige universitet Institutt for samfunnsøkonomi EKSAMENSOPPGAVE I SØK 1002 INNFØRING I MIKROØKONOMISK ANALYSE Faglig kontakt under eksamen: Hans Bonesrønning Tlf.: 9 17 64

Detaljer

Quo vadis prosessregulering?

Quo vadis prosessregulering? Quo vadis prosessregulering? Morten Hovd PROST industrimøte Granfos, 24. Januar 2001 PROST Industrimøte, Granfos, 24. januar 2001 Hvor står vi? Et subjektivt bilde PROST Industrimøte, Granfos, 24. januar

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT BOKMÅL Utsatt eksamen i: ECON2915 Vekst og næringsstruktur Eksamensdag: 07.12.2012 Tid for eksamen: kl. 09:00-12:00 Oppgavesettet er på 5 sider Tillatte hjelpemidler:

Detaljer

Eksamensoppgave MAT juni 2010 (med løsningsforslag)

Eksamensoppgave MAT juni 2010 (med løsningsforslag) Eksamensoppgave MAT-4 juni (med løsningsforslag) Contents OPPGAVE OPPGAVE 4 OPPGAVE 5 4 OPPGAVE 6 5 Fasit 7 5 Oppgave 7 5 Oppgave 7 5 Oppgave 8 54 Oppgave 8 6 Løsningsforslag 9 6 Oppgave 9 6 Oppgave 6

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Bokmål Eksamen i: ECON1210 Forbruker, bedrift og marked Exam: ECON1210 Consumer Behaviour, Firm behaviour and Markets Eksamensdag: 12.12.2014 Sensur kunngjøres:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON1410 - Internasjonal økonomi Exam: ECON1410 - International economics Eksamensdag: 18.06.2013 Date of exam: 18.06.2013 Tid for eksamen: kl.

Detaljer

SIF5030/75047 Optimeringsteori, 5 timer. Ingen hjelpemidler.

SIF5030/75047 Optimeringsteori, 5 timer. Ingen hjelpemidler. Oppgave1: SIF5/757 Optimeringsteori, 5 timer Ingen hjelpemidler. (a) Forklar hva som menes med en konveks funksjon, og argumentér for at alle minima til en konveks funksjon på en konveks mengde er globale

Detaljer

MA2501 Numerical methods

MA2501 Numerical methods MA250 Numerical methods Solutions to problem set Problem a) The function f (x) = x 3 3x + satisfies the following relations f (0) = > 0, f () = < 0 and there must consequently be at least one zero for

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON3610/4610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Exam: ECON3610/4610 Resource Allocation and Economic Policy Eksamensdag: Torsday 28.

Detaljer

MAT 1120: Obligatorisk oppgave 1, H-09

MAT 1120: Obligatorisk oppgave 1, H-09 MAT 110: Obligatorisk oppgave 1, H-09 Innlevering: Senest fredag 5. september, 009, kl.14.30, på Ekspedisjonskontoret til Matematisk institutt (7. etasje NHA). Du kan skrive for hånd eller med datamaskin,

Detaljer

Generalization of age-structured models in theory and practice

Generalization of age-structured models in theory and practice Generalization of age-structured models in theory and practice Stein Ivar Steinshamn, stein.steinshamn@snf.no 25.10.11 www.snf.no Outline How age-structured models can be generalized. What this generalization

Detaljer

TDT DESEMBER, 2008, 09:00 13:00

TDT DESEMBER, 2008, 09:00 13:00 Norwegian University of Science and Technology Faculty of Information Technology, Mathematics and Electrical Engineering The Department of Computer and Information Science TDT4160 DATAMASKINER GRUNNKURS

Detaljer

Oppgavesettet er på 3 sider eks. forside, og inneholder 12 deloppgaver: 1abc, 2, 3, 4abc, 5ab, 6ab.

Oppgavesettet er på 3 sider eks. forside, og inneholder 12 deloppgaver: 1abc, 2, 3, 4abc, 5ab, 6ab. EKSAMENSOPPGAVE MAT-0001 (BOKMÅL) Eksamen i : Mat-0001 Brukerkurs i matematikk. Dato : tirsdag 4. desember 2012. Tid : 09.00-13.00. Sted: : Åsgårdvegen 9. Tillatte hjelpemidler : Alle trykte og skrevne.

Detaljer

ECON2200: Oppgaver til for plenumsregninger

ECON2200: Oppgaver til for plenumsregninger University of Oslo / Department of Economics / Nils Framstad 9. mars 2011 ECON2200: Oppgaver til for plenumsregninger Revisjoner 9. mars 2011: Nye oppgavesett til 15. og 22. mars. Har benyttet sjansen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 14 juni 2004 Tid for eksamen: 9.00 12.00 Oppgavesettet er på 5 sider. Vedlegg: Tillatte hjelpemidler: INF-MAT2350

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON1910 Poverty and distribution in developing countries Exam: ECON1910 Poverty and distribution in developing countries Eksamensdag: 1. juni 2011 Sensur

Detaljer

Løsning til deleksamen 2 i SEKY3322 Kybernetikk 3

Løsning til deleksamen 2 i SEKY3322 Kybernetikk 3 Høgskolen i Buskerud. Finn Haugen (finn@techteach.no). Løsning til deleksamen 2 i SEKY3322 Kybernetikk 3 Tid: 7. april 28. Varighet 4 timer. Vekt i sluttkarakteren: 3%. Hjelpemidler: Ingen trykte eller

Detaljer

Du må håndtere disse hendelsene ved å implementere funksjonene init(), changeh(), changev() og escape(), som beskrevet nedenfor.

Du må håndtere disse hendelsene ved å implementere funksjonene init(), changeh(), changev() og escape(), som beskrevet nedenfor. 6-13 July 2013 Brisbane, Australia Norwegian 1.0 Brisbane har blitt tatt over av store, muterte wombater, og du må lede folket i sikkerhet. Veiene i Brisbane danner et stort rutenett. Det finnes R horisontale

Detaljer

LP. Kap. 17: indrepunktsmetoder

LP. Kap. 17: indrepunktsmetoder LP. Kap. 17: indrepunktsmetoder simpleksalgoritmen går langs randen av polyedret P av tillatte løsninger et alternativ er indrepunktsmetoder de finner en vei i det indre av P fram til en optimal løsning

Detaljer

EKSAMEN I TIØ4120 OPERASJONSANALYSE, GK Tirsdag 4. desember 2012 Tid: kl. 1500 1900 (Bokmål)

EKSAMEN I TIØ4120 OPERASJONSANALYSE, GK Tirsdag 4. desember 2012 Tid: kl. 1500 1900 (Bokmål) Fag TIØ 4120 Operasjonsanalyse, grunnkurs 4. desember 2012 Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR INDUSTRIELL ØKONOMI OG TEKNOLOGILEDELSE Faglig kontakt under eksamen:

Detaljer

EKSAME SOPPGAVE MAT-0001 (BOKMÅL)

EKSAME SOPPGAVE MAT-0001 (BOKMÅL) EKSAME SOPPGAVE MAT-0001 (BOKMÅL) Eksamen i : Mat-0001 Brukerkurs i matematikk. Dato : Tirsdag 21. februar 2012. Tid : 09.00-13.00. Sted: : Adm. bygget, B154. Tillatte hjelpemidler : Alle trykte og skrevne.

Detaljer

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems Department of Economics May 004 Arne Strøm ECON0/40 Mathematics, spring 004 Problem solutions for the seminar on 5 May 004 (For practical reasons (read laziness, most of the solutions this time are in

Detaljer

BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver uke 33

BYFE/EMFE 1000, 2012/2013. Numerikkoppgaver uke 33 BYFE/EMFE 1000, 2012/2013 Numerikkoppgaver uke 33 Oppgave 2 Litt aritmetikk a) Her har vi skrevet ut det som kommer opp i Octave-vinduet når vi utfører operasjonene. octave-3.2.4.exe:9> 2+2 4 octave-3.2.4.exe:10>

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3230/4230 Formell modellering og analyse av kommuniserende systemer Eksamensdag: 24. mars 2006 Tid for eksamen: 13.30 16.30

Detaljer

Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering

Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering 8. mars 2004 1 Kort om Newton s metode i flere dimensjoner Newton s metode kan generaliseres til å løse sett av n ligninger med n ukjente. Skal

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT BOKMÅL Eksamen i: ECON1210 - Forbruker, bedrift og marked Eksamensdag: 26.11.2013 Sensur kunngjøres: 18.12.2013 Tid for eksamen: kl. 14:30-17:30 Oppgavesettet er

Detaljer

LØSNINGSFORSLAG KONTINUASJONSEKSAMEN VÅR 2012 I TIØ4120 OPERASJONSANALYSE, GRUNNKURS

LØSNINGSFORSLAG KONTINUASJONSEKSAMEN VÅR 2012 I TIØ4120 OPERASJONSANALYSE, GRUNNKURS LØSNINGSFORSLAG KONTINUASJONSEKSAMEN VÅR 2012 I TIØ4120 OPERASJONSANALYSE, GRUNNKURS Oppgave 1 1 2 Oppgave 2 a) Vi lar x s, x g og x p være nye priser for henholdsvis standard-, gull- og platinarom. Hvis

Detaljer

Bioberegninger, ST november 2006 Kl. 913 Hjelpemidler: Alle trykte og skrevne hjelpemidler, lommeregner.

Bioberegninger, ST november 2006 Kl. 913 Hjelpemidler: Alle trykte og skrevne hjelpemidler, lommeregner. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Bokmål Faglig kontakt under eksamen: Førsteamanuensis Jarle Tufto Telefon: 99 70 55 19 Bioberegninger, ST1301 30.

Detaljer

TDT4160 AUGUST, 2008, 09:00 13:00

TDT4160 AUGUST, 2008, 09:00 13:00 Norwegian University of Science and Technology Faculty of Information Technology, Mathematics and Electrical Engineering The Department of Computer and Information Science TDT4160 DATAMASKINER GRUNNKURS

Detaljer

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS English Exam: ECON2915 Economic Growth Date of exam: 25.11.2014 Grades will be given: 16.12.2014 Time for exam: 09.00 12.00 The problem set covers 3 pages Resources

Detaljer

Eksamensoppgave i PSY Forskningsdesign

Eksamensoppgave i PSY Forskningsdesign Psykologisk institutt Eksamensoppgave i PSY2022 - Forskningsdesign Faglig kontakt under eksamen: Odin Hjemdal Tlf.: 73 59 19 60 Eksamensdato: 2. juni 2016 Eksamenstid (fra-til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

LISTE OVER TILLATTE HJELPEMIDLER EKSAMEN I NOVEMBER OG DESEMBER 2014

LISTE OVER TILLATTE HJELPEMIDLER EKSAMEN I NOVEMBER OG DESEMBER 2014 1 LISTE OVER TILLATTE HJELPEMIDLER EKSAMEN I NOVEMBER OG DESEMBER 2014 REGLEMENT FOR BRUK AV KALKULATOR OG ORDBOK SE SISTE SIDE 1. STUDIEÅR (ØKAD/REV): Finansregnskap m/ikt (ØABED1000) Markedsføring og

Detaljer

Eksamen - INF 283 Maskinlæring

Eksamen - INF 283 Maskinlæring Eksamen - INF 283 Maskinlæring 23 feb. 2016 Tid: 3 timer Eksamen inneholder 15 oppgaver, som vil bli vektet likt ved evaluering. 1 Table 1 attributt antall personer forsørget av låntaker månedlig inntekt

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON1220 Velferd og økonomisk politikk Exam: ECON1220 Welfare and politics Eksamensdag: 29.11.2010 Sensur kunngjøres: 21.12.2010 Date of exam: 29.11.2010

Detaljer

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23

0:7 0:2 0:1 0:3 0:5 0:2 0:1 0:4 0:5 P = 0:56 0:28 0:16 0:38 0:39 0:23 UTKAST ENGLISH VERSION EKSAMEN I: MOT100A STOKASTISKE PROSESSER VARIGHET: 4 TIMER DATO: 16. februar 2006 TILLATTE HJELPEMIDLER: Kalkulator; Tabeller og formler i statistikk (Tapir forlag): Rottman: Matematisk

Detaljer

Eksamensoppgave i SØK1002 Mikroøkonomisk analyse

Eksamensoppgave i SØK1002 Mikroøkonomisk analyse Institutt for samfunnsøkonomi Eksamensoppgave i SØK00 Mikroøkonomisk analyse Faglig kontakt under eksamen: Lars-Erik Borge Tlf.: 73 59 9 4 Eksamensdato: 9. mai 07 Eksamenstid (fra-til): 4 timer (09.00-3.00)

Detaljer

Optimalisering av olje- og gassproduksjon. Vidar Alstad Dr. Ing stipendiat Institutt for kjemisk prosessteknologi NTNU, Trondheim

Optimalisering av olje- og gassproduksjon. Vidar Alstad Dr. Ing stipendiat Institutt for kjemisk prosessteknologi NTNU, Trondheim Optimalisering av olje- og gassproduksjon Vidar Alstad Dr. Ing stipendiat Institutt for kjemisk prosessteknologi NTNU, Trondheim 1 Seminar: Optimal utnyttelse av naturgass, 23.april 2003 Oversikt Introduksjon

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Prøveeksamen 1 Eksamensdag: Onsdag 14. November 2014. Tid for eksamen:

Detaljer

TMA4135 Matematikk 4D Kompendium i numerikk. Eirik Refsdal

TMA4135 Matematikk 4D Kompendium i numerikk. Eirik Refsdal TMA4135 Matematikk 4D Kompendium i numerikk Eirik Refsdal 2. august 2005 En mangel ved dagens autorative kompendium i matematikk 4, er at numerikkbiten i matematikk 4D er fullstendig utelatt. Dette er

Detaljer

Second Order ODE's (2P) Young Won Lim 7/1/14

Second Order ODE's (2P) Young Won Lim 7/1/14 Second Order ODE's (2P) Copyright (c) 2011-2014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

Detaljer

EXAM IN TIØ4120 OPERASJONSANALYSE GRUNNKURS EKSAMEN I TIØ4120 OPERASJONSANALYSE GRUNNKURS EKSAMEN I TIØ4120 OPERASJONSANALYSE GRUNNKURS

EXAM IN TIØ4120 OPERASJONSANALYSE GRUNNKURS EKSAMEN I TIØ4120 OPERASJONSANALYSE GRUNNKURS EKSAMEN I TIØ4120 OPERASJONSANALYSE GRUNNKURS NTNU Institutt for industriell økonomi og teknologiledelse Faglig kontakt under eksamen: Navn: Peter Schütz Tlf: 980 86 185 EXAM IN TIØ4120 OPERASJONSANALYSE GRUNNKURS Saturday 19 December 2009 Time: 09:00

Detaljer

Ma Linær Algebra og Geometri Øving 1

Ma Linær Algebra og Geometri Øving 1 Ma0 - Linær Algebra og Geometri Øving Øistein Søvik 0. september 0 Excercise Set. = 4 x6 x x = x 6 4 x x = x 4 4 4 x x. In each part, determine whether the equation is linear in x, x and x Før vi begynner

Detaljer

c) En bedrift ønsker å produsere en gitt mengde av en vare, og finner de minimerte

c) En bedrift ønsker å produsere en gitt mengde av en vare, og finner de minimerte Oppgave 1 (10 poeng) Finn den første- og annenderiverte til følgende funksjoner. Er funksjonen strengt konkav eller konveks i hele sitt definisjonsområde? Hvis ikke, bestem for hvilke verdier av x den

Detaljer

EKSAMEN I FAG MA0601 Matematikk for ikke-matematikere Lørdag 3. desember 2005 Tid: 09:00 13:00 Hjelpemidler: Kalkulator

EKSAMEN I FAG MA0601 Matematikk for ikke-matematikere Lørdag 3. desember 2005 Tid: 09:00 13:00 Hjelpemidler: Kalkulator Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Geir Arne Hjelle: 9321-1279 EKSAMEN I FAG MA0601 Matematikk for ikke-matematikere

Detaljer

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN

HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN HØGSKOLEN I NARVIK - SIVILINGENIØRUTDANNINGEN EKSAMEN I FAGET STE 6243 MODERNE MATERIALER KLASSE: 5ID DATO: 7 Oktober 2005 TID: 900-200, 3 timer ANTALL SIDER: 7 (inklusiv Appendix: tabell og formler) TILLATTE

Detaljer

Mikroøkonomien med matematikk

Mikroøkonomien med matematikk Mikroøkonomien med matematikk Kjell Arne Brekke March 11, 2011 1 Innledning I Varian: Intermediate Microeconomics, er teorien i stor grad presentert med gurer og verbale diskusjoner. Da vi som økonomer

Detaljer

Eksamen i TFY4230 STATISTISK FYSIKK Onsdag 21. desember, :00 19:00

Eksamen i TFY4230 STATISTISK FYSIKK Onsdag 21. desember, :00 19:00 NTNU Side 1 av 3 Institutt for fysikk Faglig kontakt under eksamen: Professor Kåre Olaussen Telefon: 9 36 52 eller 45 43 71 70 Eksamen i TFY4230 STATISTISK FYSIKK Onsdag 21. desember, 2011 15:00 19:00

Detaljer

Eksamen i Geometrisk Modellering

Eksamen i Geometrisk Modellering Eksamen i Geometrisk Modellering STE608 Sivilingeniørutdanningen ved Høgskolen i Narvik, Produktutformingsteknologi (. PUT),. desember 998 Til denne eksamenen er alle skrevne hjelpemidler samt alle typer

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF-MAT 3370 Lineær optimering Eksamensdag: 3. juni 2008 Tid for eksamen: 14.30 17.30 Oppgavesettet er på 5 sider. Vedlegg: Ingen

Detaljer

12 Lineære transformasjoner

12 Lineære transformasjoner 2 Lineære transformasjoner 2 Funksjoner Definisjon 2 En funksjon ( a function) f : A B er en regel, som tilordner en entydig bestemt verdi f (a) B til ethvert element a A Mengden A kalles domenet til f

Detaljer

EKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER

EKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 3 Faglig kontakt under eksamen: Carl Fredrik Berg (975 05 585) EKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER

Detaljer

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT

melting ECMI Modelling week 2008 Modelling and simulation of ice/snow melting Sabrina Wandl - University of Linz Tuomo Mäki-Marttunen - Tampere UT and and ECMI week 2008 Outline and Problem Description find model for processes consideration of effects caused by presence of salt point and numerical solution and and heat equations liquid phase: T L

Detaljer

ALGORITMER OG DATASTRUKTURER

ALGORITMER OG DATASTRUKTURER Stud. nr: Side 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap AVSLUTTENDE

Detaljer

EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK

EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 BOKMÅL EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK Onsdag

Detaljer

EKSAMEN I NUMERISK MATEMATIKK (TMA4215)

EKSAMEN I NUMERISK MATEMATIKK (TMA4215) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 5 Faglig kontakt under eksamen: Anne Kværnø 92663824) EKSAMEN I NUMERISK MATEMATIKK TMA425) Tirsdag 4. desember 2007

Detaljer

STE 6219 Digital signalbehandling Løsning til kontinuasjonseksamen

STE 6219 Digital signalbehandling Løsning til kontinuasjonseksamen HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Masterstudiet EL/RT Side av 4 STE 629 Digital signalbehandling Løsning til kontinuasjonseksamen Tid: Fredag 03.08.2007, kl: 09:00-2:00

Detaljer

Eksamensoppgave i SØK3006 Valuta, olje og makroøkonomisk politikk

Eksamensoppgave i SØK3006 Valuta, olje og makroøkonomisk politikk Institutt for samfunnsøkonomi Eksamensoppgave i SØK3006 Valuta, olje og makroøkonomisk politikk Faglig kontakt under eksamen: Ragnar Torvik Tlf.: 73 59 14 20 Eksamensdato: 8. desember 2015 Eksamenstid

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON110 Forbruker, bedrift og marked, våren 004 Exam: ECON110 Consumer behavior, firm behavior and markets, spring 004 Eksamensdag: Tirsdag 18. mai 004

Detaljer

Systemidentifikasjon Oppgaver

Systemidentifikasjon Oppgaver Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics Systemidentifikasjon Oppgaver HANS-PETTER HALVORSEN, 2012.03.16 Faculty of Technology, Postboks

Detaljer

Siste seminar: Foreslåtte oppgaver basert på ønsker.

Siste seminar: Foreslåtte oppgaver basert på ønsker. Siste seminar: Foreslåtte oppgaver basert på ønsker.!!! Siste seminar er i utgangspunktet åpent for repetisjon. Hvis seminargruppen har planlagt andre temaer for gjennomgang med seminarleder, kan det være

Detaljer

LP. Leksjon 5. Kapittel 5: dualitetsteori. motivasjon det duale problemet svak og sterk dualitet det duale til LP problemer på andre former

LP. Leksjon 5. Kapittel 5: dualitetsteori. motivasjon det duale problemet svak og sterk dualitet det duale til LP problemer på andre former LP. Leksjon 5 Kapittel 5: dualitetsteori motivasjon det duale problemet svak og sterk dualitet det duale til LP problemer på andre former 1 / 26 Motivasjon Til ethvert LP problem (P) er det knyttet et

Detaljer

KONTINUASJONSEKSAMEN I EMNE TDT4195 BILDETEKNIKK ONSDAG 13. AUGUST 2008 KL. 09.00 13.00

KONTINUASJONSEKSAMEN I EMNE TDT4195 BILDETEKNIKK ONSDAG 13. AUGUST 2008 KL. 09.00 13.00 Side 1 av 5 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap KONTINUASJONSEKSAMEN

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF5110 Eksamensdag : Tirsdag 5. juni 2007 Tid for eksamen : 14.30-17.30 Oppgavesettet er på : 6 sider (pluss vedlegg) Vedlegg

Detaljer

Oppgave 1. e rt = 120e. = 240 e

Oppgave 1. e rt = 120e. = 240 e Løsning MET 803 Matematikk Dato 5. desember 05 kl 0900-00 Oppgave. (a) Dersom vi selger eiendommen etter t år, med t > 0, så er nåverdien av salgssummen med r = 0,0. Da får vi N(t) = V (t)e rt = 0 e e

Detaljer

MAT Oblig 1. Halvard Sutterud. 22. september 2016

MAT Oblig 1. Halvard Sutterud. 22. september 2016 MAT1110 - Oblig 1 Halvard Sutterud 22. september 2016 Sammendrag I dette prosjektet skal vi se på anvendelsen av lineær algebra til å generere rangeringer av nettsider i et web basert på antall hyperlinker

Detaljer

10 Radrommet, kolonnerommet og nullrommet

10 Radrommet, kolonnerommet og nullrommet Radrommet kolonnerommet og nullrommet La A være en m n matrise Vi kan beskrive matrisen ved hjelp av dens rader r A r r i R n r m eller dens kolonner A [ c c c n ci R m Definisjon (se Def 7 i boka) For

Detaljer

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Geografisk institutt

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Geografisk institutt NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Geografisk institutt BOKMÅL EKSAMEN i GEOG 2007 Effekter av klimaendringer Eksamensdato : 07.12.11 Sidetall bokmål: 2 Eksamenstid : 4 t Sidetall nynorsk:

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 2 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 2 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon Løsningsforslag Oppgave 1 Vektorer a) Variablene i MATLAB kan være tall, vektorer eller matriser. Vi kan for eksempel gi vektoren x = [1, 0, 3] på denne

Detaljer