Hensikten med studien:

Størrelse: px
Begynne med side:

Download "Hensikten med studien:"

Transkript

1 Elevenes første møte med multiplikasjon på småskoletrinnet En sosiokulturell tilnærming til appropriering av multiplikasjon i klasserommet Odd Tore Kaufmann Hensikten med studien:. er å gi teoretiske og empiriske bidrag til beskrivelser av hvordan elever lærer seg å beherske multiplikasjon i deres første møte med det i den norske skolen. Det vil være et fokus på elevers forståelse av multiplikasjon og hvordan de lærer å resonnere omkring ulike egenskaper ved denne aritmetiske operasjon. 1

2 Hensikten med studien forts: å skaffe ny innsikt om multiplikasjon i skolen ved å ta i bruk en sosiokulturell teoretisk og metodisk tilnærming. å beskrive og forklare spenninger som oppstår i elevers bruk av redskap og i dialogen mellom aktørene i klasserommet. Forskningsspørsmål Hvordan møter og approprierer elevene multiplikasjon på småskoletrinnet? Hvordan presenteres multiplikasjon på småskoletrinnet? Hvilke artefakter brukes i elevenes møte med multiplikasjon? Hvordan approprierer elevene multiplikasjon: hvilke steg kan beskrives i denne prosessen? Hvilke spenninger kan identifiseres når elevene tilegner og forsøker å bruke kulturelle redskap som har med multiplikasjon å gjøre (i konkrete situasjoner)? 2

3 Teoretisk perspektiv Kunnskap blir konstruert gjennom samhandling og i en kontekst, og ikke primært gjennom individuelle prosesser. Derfor blir interaksjon og samarbeid sett på som helt grunnleggende for læring. Det å kunne er i sosiokulturell læringsteori nært knyttet til praksisfelleskap og individets evne til å delta i disse. I et sosiokulturelt perspektiv forstår en læring som et spørsmål om hvordan individer nyttiggjør seg (det vil si approprierer) kunnskaper og ferdigheter de blir eksponert for (Säljö, 2005). Man må analysere aktiviteter, hvordan individet agerer i disse og hvilke erfaringer det gjør. Metode Metoden er basert på en dyptgående dokumentasjon i en etnografisk tradisjon for å studere matematikkaktiviteter i en naturlig klasseromssetting. Syv lærere fra fem forskjellige skoler og totalt 144 elever fra 3. trinn ble med på dette prosjektet. De ble observert i deres tre første undersvisningsøkter med multiplikasjon. Alle disse undervisningstimene ble dokumentert ved hjelp av feltnotater og bruk av videoopptaker og lydopptaker. Forskningsstrategien går ut på og prøve å forstå hva informantene forstår, samt utvikle kategorier og begreper som kan gi en bedre forståelse av det som studeres. 3

4 Metode (forts) Analysen kan karakteriseres som en veksling mellom induktive og deduktive faser, det vil si en abduktiv forskningsstrategi. I en slik karakteristikk vil forskeren veksle mellom inspeksjon av data og utvikling av idéer fra overordnede teoretiske perspektiver. Den er foretatt ut i fra sosiokulturelle begreper som er relevante ut i fra problemstillingen; appropriering, bruk av redskaper, interaksjon og samspill er fundamentale begreper i et sosiokulturelt perspektiv. Metode (forts) Det er fokus på et dialogisk perspektiv, analyser av hvordan deltakerne gjensidig påvirker hverandre ved bruk av ulike kulturelle redskap der språket er det viktigste medierende redskap. Gjennom samtaler bygger deltakerne på hverandres ytringer og utvikler ny kunnskap i fellesskap. Ytringene får mening gjennom den konteksten de blir skapt i. 4

5 Metode (forts) Det å klassifisere data var en vesentlig del av analysen. Klassifiseringen utføres ved at man danner kategorier, tilskriver kategoriene til datamaterialet, og bryter opp og spleiser sammen kategorier. - Når klassifiseringen ble foretatt kjente jeg til tidligere forskning om multiplikasjon og innhold i læreplaner og lærebøker. - Kategoriene var ikke bestemt på forhånd, men ut i fra hvordan elever og lærer brukte multiplikasjon i klasserommet. Resultat og diskusjon Hvordan presenteres multiplikasjon på småskoletrinnet? I samtaler med elevene Ofte ved å knytte det til spesifikke kontekst og problemer(jmfr Vygotsky; hverdagslige og vitenskaplige begrep.) Sentralt er overgangen mellom gjentatt addisjon og multiplikasjon 5

6 Resultat og diskusjon (forts) Hvilke pedagogiske hjelpemidler brukes som redskap i elevenes møte med multiplikasjon? Eks: Tellebrikker, centikuber, terninger, blyanter. De fleste fysiske redskapene som ble brukt er tidligere benyttet i for eksempel telling og addisjon. Resultat og diskusjon (forts) Hvilke spenninger kan identifiseres når elevene tilegner og forsøker å bruke kulturelle redskap som har med multiplikasjon å gjøre (i konkrete situasjoner)? Appropriering omfatter spenning mellom redskapet og hvordan redskapet er nyttegjort. I de fleste episoder i analysen klarer elevene å overvinne motstanden slik at redskapet gir dem nye muligheter innen multiplikasjon (for eksempel tellebrikkene som før ble brukt til å addere, kan nå brukes til å multiplisere) 6

7 Resultat og diskusjon (forts) Det er åpenbart at allerede på dette tidlige stadium fremkommer tydelige individuelle forskjeller i beherskningen av multiplikasjon. Dette kom av at redskapene har multiple meninger for dem. Analysen viser at det kunne oppstå en begrepslig spenning i dialogen mellom lærer og elev på grunn av forskjellig tolkning av redskapet, der elevene ofte knyttet redskapet til telling og addisjon. 7

8 Resultat og diskusjon (forts) Hvordan approprierer elevene multiplikasjon: hvilke steg kan beskrives i denne prosessen? En operasjonalisering av appropriering avklarer og beskriver hva det er elevene approprierer slik det fungerer i bestemte matematiske områder, det vil si at eleven deltar i diskusjonen for å løse oppgavene/problemene som oppstår med egne ord og forklaringer. 8

9 Resultat og diskusjon (forts) Gjennom en analyse av datamaterialet ble det avdekket forskjellige kategorier, som viser hva det samtales om i klasserommet i innføringsfasen i multiplikasjon. De forskjellige kategoriene blir dermed sentrale når man skal beskrive en approprieringsprosess for aktivitetene i klasserommet i multiplikasjon. Prosessen der elevene deltar i klasserommet kan da beskrives som en approprieringsprosess mot en stadig økende beherskelse av aktivitetene som omhandler multiplikasjon. Resultat og diskusjon (forts) Fra analysen er det blitt identifisert syv kategorier av måter å resonnere på. Ofte veksler deltakernes måte å resonere i et veldig tempo, det vil si at de bytter måter å håndtere problemene på: - Elevene teller en og en - Elevene benytter addisjon - Elevene benytter gjentatt addisjon - Elevene benytter rekketelling - Elevene benytter fordobling - Elevene multipliserer - Elevene kan føre samtaler om forskjellige egenskaper ved multiplikasjon 9

10 10

11 11

12 Konklusjon Det sentrale i analysen av disse kategoriene er forskjellen på å løse et problem når læreren stiller eleven et spørsmål (ofte formulert som et kort svar hvor bare tallene og operasjonen inngår), og å kunne samtale om multiplikasjon (hva er det, hva trenger vi det til, hvordan er sammenhengen mellom multiplikasjon og andre strategier). Denne siste kategorien skiller seg også ut i forhold til andre forskningsrapporter jeg har lest om multiplikasjon. Nye funn Det er avdekket kategorier som tidligere ikke er beskrevet; addisjon og at elevene kan utføre samtaler om forskjellige egenskaper ved multiplikasjon. Gjennom en sosiokulturell teoretisk og metodisk tilnærming gir denne studien en grundigere beskrivelse av hvordan elevene møter og approprierer multiplikasjon på småskoletrinnet. 12

Innføring i sosiologisk forståelse

Innføring i sosiologisk forståelse INNLEDNING Innføring i sosiologisk forståelse Sosiologistudenter blir av og til møtt med spørsmål om hva de egentlig driver på med, og om hva som er hensikten med å studere dette faget. Svaret på spørsmålet

Detaljer

Telle med 0,3 fra 0,3

Telle med 0,3 fra 0,3 Telle med 0,3 fra 0,3 Mål Generelt: Søke etter mønster og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønstre ved å utnytte mønstre en allerede har funnet. Utfordre elevene på å resonnere

Detaljer

MATEMATIKK 1, 4MX15-10E1 A

MATEMATIKK 1, 4MX15-10E1 A Skriftlig eksamen i MATEMATIKK 1, 4MX15-10E1 A 15 studiepoeng ORDINÆR EKSAMEN 20. desember 2010. Sensur faller innen 11. januar 2011. BOKMÅL Resultatet blir tilgjengelig på studentweb første virkedag etter

Detaljer

Hvordan hjelpe elever til å utvikle teoretisk kunnskap når de gjør praktisk arbeid i naturfag?

Hvordan hjelpe elever til å utvikle teoretisk kunnskap når de gjør praktisk arbeid i naturfag? Hvordan hjelpe elever til å utvikle teoretisk kunnskap når de gjør praktisk arbeid i naturfag? Western Graduate School of Research (WNGER), november 2010 ElevForsk Hvordan kan elever bli mer forskende

Detaljer

Telle med 4 fra 4. Mål. Gjennomføring. Telle i kor Telle med 4 fra 4 Planleggingsdokument

Telle med 4 fra 4. Mål. Gjennomføring. Telle i kor Telle med 4 fra 4 Planleggingsdokument Telle med 4 fra 4 Mål Generelt: Søke etter mønster og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønster ved å utnytte mønster en allerede har funnet. Utfordre elevene på å resonnere og

Detaljer

Telle med 120 fra 120

Telle med 120 fra 120 Telle med 120 fra 120 Mål Generelt: Søke etter mønstre og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønstre ved å utnytte mønstre en allerede har funnet. Utfordre elevene på å resonnere

Detaljer

Kvikkbilde Mål. Gjennomføring. Planleggingsdokument Kvikkbilde 4 12

Kvikkbilde Mål. Gjennomføring. Planleggingsdokument Kvikkbilde 4 12 Kvikkbilde 4 12 Mål Generelt: Sammenligne og diskutere ulike måter å se et antall på. Utfordre elevene på å resonnere omkring tallenes struktur og egenskaper, samt egenskaper ved regneoperasjoner. Spesielt:

Detaljer

Kvikkbilder i arbeid med tallforståelse. Forfatter Astrid Bondø

Kvikkbilder i arbeid med tallforståelse. Forfatter Astrid Bondø Forfatter Astrid Bondø Publisert dato: April 2016 Matematikksenteret Kvikkbilde Aktiviteten Kvikkbilde er designet for å engasjere elever i å visualisere tall og å forme mentale representasjoner av en

Detaljer

Vurdering for og av læring

Vurdering for og av læring Vurdering for og av læring Skolens nye trendord? Svein H. Torkildsen, NSMO Dagens program Arbeidet legges opp rundt 1. læreplanens kompetansemål 2. arbeidsmåter i faget 3. læreboka og pedagogens arbeid

Detaljer

Forståelse og bruk av fagbegreper - differensiert undervisning

Forståelse og bruk av fagbegreper - differensiert undervisning Forståelse og bruk av fagbegreper - differensiert undervisning Differensiering er en viktig strategi for å tilpasse opplæringen til elevenes ulike faglige behov. Derfor er det viktig å differensiere arbeidet

Detaljer

Telle med 19 fra 19. Mål. Gjennomføring. Telle i kor Telle med 19 fra 19 Planleggingsdokument

Telle med 19 fra 19. Mål. Gjennomføring. Telle i kor Telle med 19 fra 19 Planleggingsdokument Telle med 19 fra 19 Mål Generelt: Søke etter mønstre og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønstre ved å utnytte mønstre en allerede har funnet. Utfordre elevene på å resonnere

Detaljer

Kvikkbilde 8 6. Mål. Gjennomføring. Planleggingsdokument Kvikkbilde 8 6

Kvikkbilde 8 6. Mål. Gjennomføring. Planleggingsdokument Kvikkbilde 8 6 Kvikkbilde 8 6 Mål Generelt: Sammenligne og diskutere ulike måter å se et antall på. Utfordre elevene på å resonnere omkring tallenes struktur og egenskaper, samt egenskaper ved regneoperasjoner. Spesielt:

Detaljer

REGNEPLAN FOR LANDÅS SKOLE

REGNEPLAN FOR LANDÅS SKOLE 1 REGNEPLAN FOR LANDÅS SKOLE På Landås skole har alle lærere, i alle fag, på alle trinn ansvar for elevenes regneutvikling. Å kunne regne er å bruke matematikk på en rekke livsområder. Å kunne regne innebærer

Detaljer

Dialogisk undervisning: Å organisere produktive dialoger i helklasseøkter

Dialogisk undervisning: Å organisere produktive dialoger i helklasseøkter Dialogisk undervisning: Å organisere produktive dialoger i helklasseøkter Dialogisk undervisning: å organisere produktive dialoger i helklasseøkter gir en introduksjon til spørsmålet hva er dialogisk undervisning?,

Detaljer

Regning er en grunnleggende ferdighet som går på tvers av fag. Ferdigheten å kunne regne er å bruke matematikk på en rekke livsområder

Regning er en grunnleggende ferdighet som går på tvers av fag. Ferdigheten å kunne regne er å bruke matematikk på en rekke livsområder Aspekter ved regning som skal vektlegges i ulike fag Regning er en grunnleggende ferdighet som går på tvers av fag. Ferdigheten å kunne regne er å bruke matematikk på en rekke livsområder ARTIKKEL SIST

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk Inspirasjon og motivasjon for matematikk Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? Bjørnar Alseth Høgskolen i Oslo Styremedlem i Lamis Lærebokforfatter; MULTI Mona Røsseland

Detaljer

ELEVAKTIVE METODER: Snakke matte, samarbeidslæring og problemløsing. PÅBYGG TIL GENERELL STUDIEKOMPETANSE Skolering av lærere

ELEVAKTIVE METODER: Snakke matte, samarbeidslæring og problemløsing. PÅBYGG TIL GENERELL STUDIEKOMPETANSE Skolering av lærere ELEVAKTIVE METODER: Snakke matte, samarbeidslæring og problemløsing PÅBYGG TIL GENERELL STUDIEKOMPETANSE Skolering av lærere MATEMATIKK 2P-Y 15.januar 2013 Tone Elisabeth Bakken tone.bakken@ohg.vgs.no

Detaljer

Dybdelæring: hva er det - og hvordan kan det utvikles? Sten Ludvigsen, UiO

Dybdelæring: hva er det - og hvordan kan det utvikles? Sten Ludvigsen, UiO Dybdelæring: hva er det - og hvordan kan det utvikles? Sten Ludvigsen, UiO Metaforer om læring Meteforer om læring Læring som distribuert kognisjon Metaforer om læring Metaforer om læring Multiple perspektiver

Detaljer

Bruk av digitale læringsmidler, læringsressurser og læringsomgivelser. Sten Ludvigsen, InterMedia, Universitetet ioslo Udir, Nov 2011

Bruk av digitale læringsmidler, læringsressurser og læringsomgivelser. Sten Ludvigsen, InterMedia, Universitetet ioslo Udir, Nov 2011 Bruk av digitale læringsmidler, læringsressurser og læringsomgivelser Sten Ludvigsen, InterMedia, Universitetet ioslo Udir, Nov 2011 Digitale Elever: lære om globale klimaendringer 66% virtuelle forsøk,

Detaljer

BARNEHAGEN SOM IDENTITETSSKAPENDE KONTEKST

BARNEHAGEN SOM IDENTITETSSKAPENDE KONTEKST FORSKNINGSDAGENE 2009 BARNEHAGEN SOM IDENTITETSSKAPENDE KONTEKST - ET FORSKNINGSPROSJEKT I STARTFASEN BAKGRUNN Behov for forskning på barnehager Barnehager har fått en betydelig posisjon som utdanningsinstitusjon

Detaljer

Oppfølging og opplæring gjennom skoleløpet

Oppfølging og opplæring gjennom skoleløpet Oppfølging og opplæring gjennom skoleløpet Disposisjon Kunnskapsløftet inn i klasserommet Læringsmål, underveisvurdering og halvårsvurdering. Hvordan jobbe med kollektiv kompetanseheving til beste for

Detaljer

MAM Mestre Ambisiøs Matematikkundervisning. Realfagskonferansen Trondheim,

MAM Mestre Ambisiøs Matematikkundervisning. Realfagskonferansen Trondheim, MAM Mestre Ambisiøs Matematikkundervisning Realfagskonferansen Trondheim, 03.05.16 Mestre Ambisiøs Matematikkundervisning matematikksenteret.no Utvikle en modell med tilhørende ressurser for skolebasert

Detaljer

Bruk av nettressurser i utvikling av matematikkundervisning. Seminar Realfagskommuner Pulje 1, 26. september 2016

Bruk av nettressurser i utvikling av matematikkundervisning. Seminar Realfagskommuner Pulje 1, 26. september 2016 Bruk av nettressurser i utvikling av matematikkundervisning Seminar Realfagskommuner Pulje 1, 26. september 2016 Hva er matematikk? Måter å se matematikk på: Regler resonnering Redskap eget fag Huske kreativitet

Detaljer

Samfunnsvitenskapelig metode. SOS1120 Kvantitativ metode. Teori data - virkelighet. Forelesningsnotater 1. forelesning høsten 2005

Samfunnsvitenskapelig metode. SOS1120 Kvantitativ metode. Teori data - virkelighet. Forelesningsnotater 1. forelesning høsten 2005 SOS1120 Kvantitativ metode Forelesningsnotater 1. forelesning høsten 2005 Per Arne Tufte Samfunnsvitenskapelig metode Introduksjon (Ringdal kap. 1, 3 og 4) Samfunnsvitenskapelig metode Forskningsspørsmål

Detaljer

Matematisk kompetanse en aktivitet

Matematisk kompetanse en aktivitet Matematisk kompetanse en aktivitet Matematisk kompetanse - Aktivitet Hvor mange røde kvadrater? Matematisk kompetanse - Aktivitet Hvor mange røde kvadrater? Prinsipper for god regneopplæring 1. Sett klare

Detaljer

MATEMATISK KOMPETANSE PRINSIPPER FOR EFFEKTIV UNDERVISNING

MATEMATISK KOMPETANSE PRINSIPPER FOR EFFEKTIV UNDERVISNING MATEMATISK KOMPETANSE PRINSIPPER FOR EFFEKTIV UNDERVISNING Svein H. Torkildsen Ny GIV 2012-13 Dette har vi fokus på God regning effektiv undervisning 10. trinn underyterne Elevers tenking Grunnleggende

Detaljer

Læreren som forskende i egen praksis FoU- kompetanse (May Britt Postholm) Hvordan samle inn informasjon/data

Læreren som forskende i egen praksis FoU- kompetanse (May Britt Postholm) Hvordan samle inn informasjon/data Læreren som forskende i egen praksis FoU- kompetanse (May Britt Postholm) Hvordan samle inn informasjon/data 1 2 Observasjon 3 4 5 6 7 Summeoppgave: Hva er det som gjør at vi ser forskjellig? Hva gjør

Detaljer

Telle med 15 fra 4. Mål. Gjennomføring. Telle i kor Telle med 15 fra 4 Planleggingsdokument

Telle med 15 fra 4. Mål. Gjennomføring. Telle i kor Telle med 15 fra 4 Planleggingsdokument Telle med 15 fra 4 Mål Generelt: Søke etter mønster og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønstre ved å utnytte mønstre en allerede har funnet. Utfordre elevene på å resonnere

Detaljer

Vurdering for læring. Lillehammer mars 2011

Vurdering for læring. Lillehammer mars 2011 Vurdering for læring Lillehammer mars 2011 Gode skoler og dårlige Alle vil ha en god skole, men hva er en god skole, og hvordan kan vi få det? Hva kjennetegner gode skoler? Skolene har fokus på læring

Detaljer

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016 LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016 TID EMNE DELMÅL LÆRINGSKJENNETEGN/ VURDERINGSKRITERIER Høy Middels Lav måloppnåelse måloppnåelse måloppnåelse KJØP OG SALG Lære om : - Sedler og mynters

Detaljer

TJORA: TIØ10 + TIØ11 FORELESNING 1 - HØSTEN 2003

TJORA: TIØ10 + TIØ11 FORELESNING 1 - HØSTEN 2003 : TIØ10 + TIØ11 FORELESNING 1 - HØSTEN 2003 TIØ10 + TIØ11 læringsmål Velkommen til TIØ10 + TIØ11 Metode Høsten 2003 1-1 Ha innsikt i empiriske undersøkelser Kunne gjennomføre et empirisk forskningsprosjekt

Detaljer

HELHETLIG PLAN I REGNING VED OLSVIK SKOLE.

HELHETLIG PLAN I REGNING VED OLSVIK SKOLE. HELHETLIG PLAN I REGNING VED OLSVIK SKOLE. Prinsipper og strategier ved Olsvik skole. FORORD Olsvik skole har utarbeidet en helhetlig plan i regning som viser hvilke mål og arbeidsmåter som er forventet

Detaljer

Matematisk samtale Multiaden 2015. Tine Foss Pedersen

Matematisk samtale Multiaden 2015. Tine Foss Pedersen Matematisk samtale Multiaden 2015 Tine Foss Pedersen Matematisk samtale - muntlige ferdigheter Vi bør vektlegge bruk av ulike uttrykksmåter, strategier og løsningsmetoder. Det skaper grunnlag for diskusjon:

Detaljer

Høgskolen i Vestfold (HiVe) Hvordan kan bruk av en interaktiv tavle medvirke til endring i skolen og bedre tilpasset opplæring?

Høgskolen i Vestfold (HiVe) Hvordan kan bruk av en interaktiv tavle medvirke til endring i skolen og bedre tilpasset opplæring? Høgskolen i (HiVe) Hvordan kan bruk av en interaktiv tavle medvirke til endring i skolen og bedre tilpasset opplæring? På hvilken måte kan bruk av Smart Board være en katalysator for å sette i gang pedagogisk

Detaljer

Mappeoppgave 6: Ulike perspektiv på læring

Mappeoppgave 6: Ulike perspektiv på læring Mappeoppgave 6: Ulike perspektiv på læring Innledning Den nyere forskning viser at god klasseledelse har svært stor påvirkning på både atferdsproblem og læring i skolen (Nordahl, Mausethagen, Kostøl, 2009

Detaljer

Hvordan kan vi sikre oss at læring inntreffer

Hvordan kan vi sikre oss at læring inntreffer Hvordan kan vi sikre oss at læring inntreffer Morten Sommer 18.02.2011 Modell for læring i beredskapsarbeid Innhold PERSON Kontekst Involvering Endring, Bekreftelse og/eller Dypere forståelse Beslutningstaking

Detaljer

MAM Mestre Ambisiøs Matematikkundervisning. Novemberkonferansen 2015

MAM Mestre Ambisiøs Matematikkundervisning. Novemberkonferansen 2015 MAM Mestre Ambisiøs Matematikkundervisning Novemberkonferansen 2015 Eksempel: Telle i kor Film Kort omtale av aktiviteten Oversikt Introduksjon av aktiviteten Eksempler på aktiviteter Link til plandokument

Detaljer

Aktiv læring gjennom Newton

Aktiv læring gjennom Newton Aktiv læring gjennom Newton Newton-rom som arena for tilrettelagt opplæring i realfag og teknologi Wenche Rønning, Nordlandsforskning Disposisjon Begrepet aktiv læring Newton-rom og aktiv læring Elevens

Detaljer

Oppgaver knyttet til filmen

Oppgaver knyttet til filmen Mål Barnehage Gjennom arbeid med kommunikasjon, språk og tekst skal barnehagen bidra til at barna - lytter, observerer og gir respons i gjensidig samhandling med barn og voksne - videreutvikler sin begrepsforståelse

Detaljer

8 årstrinn, Høst Tina Dufke & Arne Christian Ringbsu

8 årstrinn, Høst Tina Dufke & Arne Christian Ringbsu 35-38 TALLÆRE OG GRUNNLEGGENDE REGNING Periode 8 årstrinn, Høst 2016. Tina Dufke & Arne Christian Ringbsu Hovedemne Mål Innhold Læringsressurser Vurdering Titallssystemet med heltall og desimaltall Regning

Detaljer

En definisjon (von Glaserfeld): Er din modell av verden en direkte avspeiling av verden slik den er? 1. Kunnskap mottas ikke passivt, men bygges aktiv

En definisjon (von Glaserfeld): Er din modell av verden en direkte avspeiling av verden slik den er? 1. Kunnskap mottas ikke passivt, men bygges aktiv KONSTRUKTIVISME Hvordan lærer elever? Er noen arbeidsmåter mer effektive enn andre? Stein Dankert Kolstø Inst. for fysikk og teknikk Universitetet i Bergen 22. Februar 2007 Hvorfor skårer vi middelmådig

Detaljer

De fire regningsartene

De fire regningsartene De fire regningsartene Det går ikke an å si at elevene først skal ha forstått posisjonssystemet, og deretter kan de begynne med addisjon og subtraksjon. Dette må utvikles gradvis og om hverandre. Elevene

Detaljer

Regning i alle fag. Hva er å kunne regne? Prinsipper for god regneopplæring. 1.Sett klare mål, og form undervisningen deretter

Regning i alle fag. Hva er å kunne regne? Prinsipper for god regneopplæring. 1.Sett klare mål, og form undervisningen deretter Regning i alle fag Hva er å kunne regne? Å kunne regne er å bruke matematikk på en rekke livsområder. Å kunne regne innebærer å resonnere og bruke matematiske begreper, fremgangsmåter, fakta og verktøy

Detaljer

Sigrunn Askland (UiA)

Sigrunn Askland (UiA) Grammatikkundervisningens rolle i spansk som fremmedspråk i norsk skole. -Resultater fra en undersøkelse. Sigrunn Askland (UiA) sigrunn.askland@uia.no 5. FELLES SPRÅKL ÆRERDAG 2017 LØRDAG 1. APRIL 2017

Detaljer

Planlegging, prosess & produkt

Planlegging, prosess & produkt MAM Mestre Ambisiøs Matematikkundervisning Planlegging, prosess & produkt Novemberkonferansen 2016 Ambisiøs matematikkundervisning En undervisningspraksis hvor lærerne engasjerer seg i elevens tenkning,

Detaljer

LÆREPLAN I FREMMEDSPRÅK

LÆREPLAN I FREMMEDSPRÅK LÆREPLAN I FREMMEDSPRÅK Formål med faget Språk åpner dører. Når vi lærer andre språk, får vi mulighet til å komme i kontakt med andre mennesker og kulturer, og dette kan øke vår forståelse for hvordan

Detaljer

Plan for etablering og gjennomføring av Lektor2-opplegg

Plan for etablering og gjennomføring av Lektor2-opplegg Lektor2-ordningen Mål: å øke elevenes interesse for realfag og øke deres kunnskap innen realfag Gjennom å anskueliggjøre bruken av kunnskap ved å involvere eksterne fagpersoner direkte i undervisningen

Detaljer

Gje meg eit tresifra. Hvordan skal jeg regne, lærer? 1. Arbeide både praktisk og teoretisk. Retningslinjer for undervisningen

Gje meg eit tresifra. Hvordan skal jeg regne, lærer? 1. Arbeide både praktisk og teoretisk. Retningslinjer for undervisningen Hvordan skal jeg regne, lærer? Fokus på tall og utvikling av god tall forståelse Mona Røsseland Nasjonalt senter for matematikk i opplæringen Gje meg eit tresifra tal 17-Apr-06 17-Apr-06 2 Intensjoner

Detaljer

Grunnlagsdokument for arbeidet med barnehage- og skolemiljø, mobbing og andre krenkelser

Grunnlagsdokument for arbeidet med barnehage- og skolemiljø, mobbing og andre krenkelser Grunnlagsdokument for arbeidet med barnehage- og skolemiljø, mobbing og andre krenkelser Nina Grini Læringsmiljøsenteret.no Delmål, forankring og oppbygning av dokumentet Dokumentet skal vise sammenhengen

Detaljer

Kvifor? Matematikksamtalen Munnlege arbeidsmetodar Munnleg kompetanse i matematikk?

Kvifor? Matematikksamtalen Munnlege arbeidsmetodar Munnleg kompetanse i matematikk? Kvifor? Matematikksamtalen Munnlege arbeidsmetodar Munnleg kompetanse i matematikk? Læreplan i matematikk fellesfag - formål Matematisk kompetanse inneber å bruke problemløysing og modellering til å analysere

Detaljer

Integreringsoppgaver som pedagogisk verktøy i arbeidsrettet norskopplæring

Integreringsoppgaver som pedagogisk verktøy i arbeidsrettet norskopplæring Integreringsoppgaver som pedagogisk verktøy i arbeidsrettet norskopplæring I arbeidsrettet norskopplæring får deltakerne mulighet til å lære og bruke språk i to ulike kontekster, i og på praksisstedet.

Detaljer

Hvordan tenker Jonas i matematikk? Dynamisk kartlegging

Hvordan tenker Jonas i matematikk? Dynamisk kartlegging Hvordan tenker Jonas i matematikk? Dynamisk kartlegging Sinus matematikkseminar Oslo, 17. mars 2017 Svein Aastrup, Statped midt 1 Utgangspunkt for all kartlegging: At man, naar det i Sandhet skal lykkes

Detaljer

Læring med digitale medier

Læring med digitale medier Læring med digitale medier Arbeidskrav 3- Undervisningsopplegg Dato: 15.12-13 Av: Elisabeth Edvardsen Innholdsfortegnelse Innholdsfortegnelse... i Innledning... 1 Kunnskapsløftet... 2 Beskrivelse undervisningsopplegg...

Detaljer

Ønsker å få til: -Elevmedvirkning for å lykkes med egenvurdering differensiering, mestring og progresjon -Utvikle vurdering for læring

Ønsker å få til: -Elevmedvirkning for å lykkes med egenvurdering differensiering, mestring og progresjon -Utvikle vurdering for læring Overordnet plan for fagene. Fag: MATEMATIKK Trinn: 9 KLASSE Skole: LINDESNES UNGDOMSSKOLE År: 2015-2016 Lærestoff: MEGA 9A OG 9B Vurdering. Prinsipper i vurdering. 1. Elevene forstår hva de skal lære og

Detaljer

Kjennetegn på måloppnåelse - en del av lærerens vurderingskompetanse

Kjennetegn på måloppnåelse - en del av lærerens vurderingskompetanse Kjennetegn på måloppnåelse - en del av lærerens vurderingskompetanse Vurderingskonferanse 10.09.2009 Grete Sevje 1 Innhold Vurderingskompetanse i praksis Å arbeide med et undervisningsforløp Planlegging

Detaljer

Viktige læringsaktiviteter

Viktige læringsaktiviteter Viktige læringsaktiviteter Læringsaktiviteter som dekkes av Aktiviteter Stille spørsmål. Utvikle og bruke modeller. = dekkes Planlegge og gjennomføre undersøkelser. Analysere og tolke data. Bruke matematikk,

Detaljer

Refleksjonsnotat 2 nye praksisformer: Nye praksisformer: Diskuter forholdet mellom organisasjon, teknologi og læring i en valgt virksomhet.

Refleksjonsnotat 2 nye praksisformer: Nye praksisformer: Diskuter forholdet mellom organisasjon, teknologi og læring i en valgt virksomhet. Refleksjonsnotat 2 nye praksisformer: Nye praksisformer: Diskuter forholdet mellom organisasjon, teknologi og læring i en valgt virksomhet. Navn: Kristina Halkidis Studentnr. 199078 Vårsemester 2015 Master

Detaljer

Hvordan skal vi jobbe med rammeplanens fagområder på Tyttebærtua i 2013/2014?

Hvordan skal vi jobbe med rammeplanens fagområder på Tyttebærtua i 2013/2014? Hvordan skal vi jobbe med rammeplanens fagområder på Tyttebærtua i 2013/2014? Fagområde Mål for barna Hvordan? Bravo Kommunikasjon, språk og tekst Barna skal lytte, observere og gi respons i gjensidig

Detaljer

LaUDiM - Didaktikken bak måten vi arbeider på

LaUDiM - Didaktikken bak måten vi arbeider på LaUDiM - Didaktikken bak måten vi arbeider på Siri-Malén Høynes Torunn Klemp Mars 2016 Kunnskap for en bedre verden Puslespilloppgave i gruppe Tenk deg at du er femteklasseelev og løs utdelt gruppeoppgave

Detaljer

Alternativ muntlig kommunikasjon i matematikk

Alternativ muntlig kommunikasjon i matematikk Institutt for lærerutdanning og pedagogikk Norges arktiske universitet Alternativ muntlig kommunikasjon i matematikk Fra et tradisjonelt til et alternativt muntlig kommunikasjonsmønster Frederic Aronsen

Detaljer

Løsningsforslag til eksamenen i MAT103, våren 2016

Løsningsforslag til eksamenen i MAT103, våren 2016 Løsningsforslag til eksamenen i MAT103, våren 2016 Oppgave 1 (vekt 10%) a) Sjekk om følgende tall er delelig med 9: 654, 45231, 1236546 Løsning: Et tall er delelig med 9 hvis og bare hvis tverrsummen er

Detaljer

Sensorveiledning nasjonal deleksamen

Sensorveiledning nasjonal deleksamen Sensorveiledning nasjonal deleksamen 11.05.2016 Oppgave 1 Viser to ulike resonnement som fører frem. Eksempler: 1. Forklarer at 3 = 6 som igjen er lik 0,6. 5 10 2. Korrekt eliminering av de tre gale alternativene,

Detaljer

UTDRAG AV VEILEDER I FAGET GRUNNLEGGENDE NORSK FOR ELEVER FRA SPRÅKLIGE MINORITETER

UTDRAG AV VEILEDER I FAGET GRUNNLEGGENDE NORSK FOR ELEVER FRA SPRÅKLIGE MINORITETER UTDRAG AV VEILEDER I FAGET GRUNNLEGGENDE NORSK FOR ELEVER FRA SPRÅKLIGE MINORITETER Læreplan i grunnleggende norsk Opplæringen etter læreplanen i grunnleggende norsk for språklige minoriteter skal fremme

Detaljer

Veileder. Undervisningsvurdering en veileder for elever og lærere

Veileder. Undervisningsvurdering en veileder for elever og lærere Veileder Undervisningsvurdering en veileder for elever og lærere Til elever og lærere Formålet med veilederen er å bidra til at elevene og læreren sammen kan vurdere og forbedre opplæringen i fag. Vi ønsker

Detaljer

Oslo kommune Utdanningsetaten. Strategisk plan Toppåsen skole

Oslo kommune Utdanningsetaten. Strategisk plan Toppåsen skole Oslo kommune Utdanningsetaten Strategisk plan 2017 Toppåsen skole Innhold Skolens profil... 3 Oppsummering Strategisk plan... 4 Alle elever skal ha grunnleggende lese-, skrive og regneferdigheter tidlig

Detaljer

Praksiseksempel fra Høgskolen i Lillehammer

Praksiseksempel fra Høgskolen i Lillehammer Praksiseksempel fra Høgskolen i Lillehammer Berit Dahl Prosessveileder Senter for Livslang Læring Utdrag fra rammeverket: UH skal bidra med kompetanse og faglig veiledning i nettverkene. Det faglige bidraget

Detaljer

Refleksjonsnotat 1. - Et nytt fagområde. Av Kristina Halkidis S199078

Refleksjonsnotat 1. - Et nytt fagområde. Av Kristina Halkidis S199078 Refleksjonsnotat 1 - Et nytt fagområde Av Kristina Halkidis S199078 Innholdsfortegnelse Innledning... 3 Felleskurs i IKT- støttet læring... 3 Participatory Design... 3 Deltakeraktive læringsformer... 4

Detaljer

Legitimitet og lojalitet to sider av samme sak

Legitimitet og lojalitet to sider av samme sak Legitimitet og lojalitet to sider av samme sak Førsteamanuensis/ avdelingsleder Elin Ødegård 16.03.2017 Læringsmiljøsenteret.no Mitt forskningsfelt Kompetansebygging i overgangen mellom utdanning og yrke?

Detaljer

L06. Den gode matematikkundervisning. - hva er det? Hvordan bli en motiverende lærer? Intensjonene med den nye læreplanen

L06. Den gode matematikkundervisning. - hva er det? Hvordan bli en motiverende lærer? Intensjonene med den nye læreplanen Den gode matematikkundervisning Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? - hva er det? Mona Røsseland Nasjonalt senter for matematikk i opplæringen 1-May-06 1-May-06

Detaljer

Innhold: Satsingsområdene: Regning, lesing, skriving og klasseledelse. Grunnleggende ferdigheter i LK06 og læreplanforståelse

Innhold: Satsingsområdene: Regning, lesing, skriving og klasseledelse. Grunnleggende ferdigheter i LK06 og læreplanforståelse Innhold: Satsingsområdene: Regning, lesing, skriving og klasseledelse Grunnleggende ferdigheter i LK06 og læreplanforståelse Vurdering for læring som gjennomgående tema Pedagogiske nettressurser Åpne dører

Detaljer

Kvalitativ metode. Kvalitativ metode. Kvalitativ metode. Kvalitativ metode. Forskningsprosessen. Forelesningen

Kvalitativ metode. Kvalitativ metode. Kvalitativ metode. Kvalitativ metode. Forskningsprosessen. Forelesningen 9. februar 2004 Forelesningen Metode innenfor samfunnsvitenskap og humaniora: Vi studerer en fortolket verden: oppfatninger, verdier, normer - vanskelig å oppnå objektiv kunnskap Metodisk bevissthet: Forstå

Detaljer

Presentasjon av Multi

Presentasjon av Multi Presentasjon av Multi Mellomtrinnet Eksempler på Multi i praktisk bruk Faglig fokus og tydelige læringsmål Nettstedet Tilpasset opplæring Ulike oppgavetyper og aktivitetsformer Faglig fokus og tydelige

Detaljer

Etterutdanningskurs "Mestre Ambisiøs Matematikkundervisning" høst 2015 - vår 2016

Etterutdanningskurs Mestre Ambisiøs Matematikkundervisning høst 2015 - vår 2016 Etterutdanningskurs "Mestre Ambisiøs Matematikkundervisning" høst 2015 - vår 2016 Om kurset Prosjektet "Mestre Ambisiøs Matematikkundervisning" (MAM) er et treårig prosjekt ved Matematikksenteret med oppstart

Detaljer

Den gode matematikkundervisning

Den gode matematikkundervisning Den gode matematikkundervisning Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? - hva er det? Mona Røsseland Nasjonalt senter for matematikk i opplæringen Leder i LAMIS Lærebokforfatter;

Detaljer

Grunnlaget for kvalitative metoder I

Grunnlaget for kvalitative metoder I Forelesning 22 Kvalitativ metode Grunnlaget for kvalitativ metode Thagaard, kapittel 2 Bruk og utvikling av teori Thagaard, kapittel 9 Etiske betraktninger knyttet til kvalitativ metode Thagaard, kapittel

Detaljer

Vi anbefaler at elevene blir introdusert for likninger via en praktisk problemstilling. Det kan for eksempel være:

Vi anbefaler at elevene blir introdusert for likninger via en praktisk problemstilling. Det kan for eksempel være: Likninger og algebra Det er større sprang fra å regne med tall til å regne med bokstaver enn det vi skulle tro. Vi tror at både likninger og bokstavregning (som er den algebraen elevene møter i grunnskolen)

Detaljer

NTNU Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap

NTNU Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap NTNU Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap SENSORVEILEDNING SOS1002 SAMFUNNSVITENSKAPELIG FORSKNINGSMETODE Eksamensdato: 29. mai 2009 Eksamenstid: 5 timer

Detaljer

Velkommen til presentasjon av Multi!

Velkommen til presentasjon av Multi! Velkommen til presentasjon av Multi! Bjørnar Alseth Høgskolen i Oslo Henrik Kirkegaard, Flisnes skole, Ålesund Mona Røsseland, Matematikksenteret Gunnar Nordberg, Høgskolen i Oslo Dagsoversikt Ny læreplan,

Detaljer

Kjennetegn på god læringsledelse i lierskolen. - et verktøy for refleksjon og utvikling

Kjennetegn på god læringsledelse i lierskolen. - et verktøy for refleksjon og utvikling Kjennetegn på god læringsledelse i lierskolen - et verktøy for refleksjon og utvikling INNLEDNING Dette heftet inneholder kjennetegn ved god læringsledelse. Det tar utgangspunkt i Utdanningsdirektoratets

Detaljer

Læreplanen: Ønsker vi oss forandringer og eventuelt hvilke? Innspill v/ Tor Jan Aarstad

Læreplanen: Ønsker vi oss forandringer og eventuelt hvilke? Innspill v/ Tor Jan Aarstad Læreplanen: Ønsker vi oss forandringer og eventuelt hvilke? Innspill v/ Tor Jan Aarstad ToF X, ToF 1, ToF 2 ToF X ToF 1 Hvor skal vi legge listen? ToF 2 Elevenes forventninger og lærerens ønsker Hvordan

Detaljer

Levanger kommune innvandrertjenesten Opplæring av deltakere med lite eller ingen skolebakgrunn

Levanger kommune innvandrertjenesten Opplæring av deltakere med lite eller ingen skolebakgrunn Opplæring av deltakere med lite eller ingen skolebakgrunn Toril Sundal Leirset 1 Betegnelser: Analfabet: person som ikke har knekt lesekoden Person uten funksjonell lese- og skriveferdigheter Forskere

Detaljer

SKOLEUTVIKLING OG OPPFØLGING -fra individuelt til kollektiv læring

SKOLEUTVIKLING OG OPPFØLGING -fra individuelt til kollektiv læring Ruth Jensen, Utdanningsledelse, ILS, UiO SKOLEUTVIKLING OG OPPFØLGING -fra individuelt til kollektiv læring 11.desember, 2012 Hvorfor utforske skolens praksis? Skolen utfordres til å håndere komplekse

Detaljer

Artefakter i sosialt samspill Tegn på læring i undervisning av voksne døve innvandrere

Artefakter i sosialt samspill Tegn på læring i undervisning av voksne døve innvandrere Artefakter i sosialt samspill Tegn på læring i undervisning av voksne døve innvandrere Forord Arbeidet med denne masteroppgaven har vært svært lærerikt. Jeg har fått mulighet til å fordype meg i ett vitenskapelig

Detaljer

FORELDREMØTE 25.april 2017

FORELDREMØTE 25.april 2017 FORELDREMØTE 25.april 2017 Hva er Russisk matematikk utviklende opplæring i matematikk? - Prinsippene og tenkningen bak - Eksempel på noen oppgaver - Hva legges vekt på? - Hva bør elevene ha lært på de

Detaljer

Etterutdanningskurs "Mestre Ambisiøs Matematikkundervisning" høst vår 2016

Etterutdanningskurs Mestre Ambisiøs Matematikkundervisning høst vår 2016 Etterutdanningskurs "Mestre Ambisiøs Matematikkundervisning" høst 2015 - vår 2016 Om kurset Prosjektet "Mestre Ambisiøs Matematikkundervisning" (MAM) er et treårig prosjekt ved Matematikksenteret med oppstart

Detaljer

Tilrettelegging for læring av grunnleggende ferdigheter

Tilrettelegging for læring av grunnleggende ferdigheter Tilrettelegging for læring av grunnleggende ferdigheter Sørlandske lærerstemne 21. oktober 2005 Stein Dankert Kolstø Institutt for fysikk og teknologi Universitetet i Bergen 1 Oversikt Kompetanser og læring

Detaljer

Bedre vurderingspraksis. Utprøving av kjennetegn på måloppnåelse i fag. Slik jobber vi i Tana (Seida og Austertana)

Bedre vurderingspraksis. Utprøving av kjennetegn på måloppnåelse i fag. Slik jobber vi i Tana (Seida og Austertana) Bedre vurderingspraksis Utprøving av kjennetegn på måloppnåelse i fag. Slik jobber vi i Tana (Seida og Austertana) Bedre vurderingspraksis Prosjekt Bedre vurderingspraksis skal arbeide for å få en tydeligere

Detaljer

Grunnleggende ferdigheter er integrert i kompetansemålene på fagets premisser.

Grunnleggende ferdigheter er integrert i kompetansemålene på fagets premisser. Lesing i valgfaget forskning i praksis Grunnleggende ferdigheter er integrert i kompetansemålene på fagets premisser. ARTIKKEL SIST ENDRET: 10.09.2015 Innhold Praksiseksempel - Kan vi stole på forskning?

Detaljer

«Matematikk med hjertebank»

«Matematikk med hjertebank» 1 «Matematikk med hjertebank» «Kun den kan tenne et hjerte som selv brenner» (Jon-Roar Bjørkvold) Basert på teoriene til Ostad, Vygotsky og kognitiv psykologi. Iris S. Krokmyrdal, 2016 Innhold: Elevene

Detaljer

KOMPETANSEMÅL ETTER 2. TRINNET Tall:

KOMPETANSEMÅL ETTER 2. TRINNET Tall: KOMPETANSEMÅL ETTER 2. TRINNET Tall: 1. Telle til 100, dele opp og byggemengder oppt il 10, sette sammen og dele opp tiergrupper. 2. Bruke tallinjen til beregninger og å angi tallstørrelser. 3. Gjøre overslag

Detaljer

H Ø G S K O L E N I BERGEN Avdeling for lærerutdanning Landåssvingen 15, 5096 BERGEN

H Ø G S K O L E N I BERGEN Avdeling for lærerutdanning Landåssvingen 15, 5096 BERGEN H Ø G S K O L E N I BERGEN Avdeling for lærerutdanning Landåssvingen 15, 5096 BERGEN Eksamensoppgave våren 2005 Ordinær eksamen Eksamensdato : 23.05.2005 Utdanning : ALU/FØU : Fag Fagkode : Flerkulturell

Detaljer

04.01.2015. Dagsoversikt. Matematikkundervisningen har forandret seg. Hvordan bidra til at dine elever får større ferdigheter i matematikk?

04.01.2015. Dagsoversikt. Matematikkundervisningen har forandret seg. Hvordan bidra til at dine elever får større ferdigheter i matematikk? Hvordan bidra til at dine elever får større ferdigheter i matematikk? Haugalandsløftet 26. januar 2015 Tine Foss Pedersen 4-Jan-15 Dagsoversikt Læring basert på forståelse Ulike måter å regne på basert

Detaljer

Men hvorfor trenger vi et didaktisk verktøy og hvorfor skulle vi endre eller lage oppgaver?

Men hvorfor trenger vi et didaktisk verktøy og hvorfor skulle vi endre eller lage oppgaver? DiVeLOpp - DEL 1 Didaktisk Verktøy for å Lage Oppgaver Vi vil snakke om kunnskaper og læringsaktiviteter i fire ganger. Vi begynner med å identifisere kunnskaper. Deretter ser vi på læringsaktiviteter.

Detaljer

Å studere læreres tenkning en kilde til å forstå deres praksis. Wenche Rønning Nordlandsforskning

Å studere læreres tenkning en kilde til å forstå deres praksis. Wenche Rønning Nordlandsforskning Å studere læreres tenkning en kilde til å forstå deres praksis Wenche Rønning Nordlandsforskning Grunnlag for presentasjonen To ulike forskningsprosjekter: Aktiv Læring i Skolen (ALiS); finansiert av NFR

Detaljer

Masteroppgave i matematikkdidaktikk

Masteroppgave i matematikkdidaktikk Masteroppgave i matematikkdidaktikk En matematikklærers bruk av medierende redskaper i undervisning av lengde, areal og volum Svanhild Breive Veileder Martin Carlsen Masteroppgaven er gjennomført som ledd

Detaljer

Posisjonsystemet FRA A TIL Å

Posisjonsystemet FRA A TIL Å Posisjonsystemet FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til posisjonsystemet P - 2 2 Grunnleggende om posisjonsystemet P - 2 3 Titallsystemet P - 3 4 Posisjonsystemet

Detaljer

FREMMEDSPRÅK PROGRAMFAG I STUDIESPESIALISERENDE UTDANNINGSPROGRAM

FREMMEDSPRÅK PROGRAMFAG I STUDIESPESIALISERENDE UTDANNINGSPROGRAM FREMMEDSPRÅK PROGRAMFAG I STUDIESPESIALISERENDE UTDANNINGSPROGRAM Fastsatt som forskrift av Utdanningsdirektoratet 3. mai 2006 etter delegasjon i brev 26. september 2005 fra Utdannings- og forskningsdepartementet

Detaljer

Læring og undervisning. - didaktikk og didaktisk relasjonsmodell

Læring og undervisning. - didaktikk og didaktisk relasjonsmodell 30. JANUAR 2016 Læring og undervisning - didaktikk og didaktisk relasjonsmodell VEITV6100 vår 2016 Et skifte i høyere utdanning fra undervisning til læring endringer inne studie- og vurderingsformer vekt

Detaljer

NUMERACY -hverdagslivets matematikk. Workshop Alfabetiseringskonferansen i Sandefjord 16.-18.september 2015

NUMERACY -hverdagslivets matematikk. Workshop Alfabetiseringskonferansen i Sandefjord 16.-18.september 2015 NUMERACY -hverdagslivets matematikk Workshop Alfabetiseringskonferansen i Sandefjord 16.-18.september 2015 1 PROBLEMSTILLING: Hvorfor bør numeracy inkluderes i undervisningen av voksne minoritetsspråklige

Detaljer

Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig

Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig Sensurveiledning Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1 Semester: VÅR År: 2016 Eksamenstype: Skriftlig Oppgave 1 Figuren viser hvordan en nettside forklarer en metode for addisjon og

Detaljer