ELEVAKTIVE METODER: Snakke matte, samarbeidslæring og problemløsing. PÅBYGG TIL GENERELL STUDIEKOMPETANSE Skolering av lærere

Størrelse: px
Begynne med side:

Download "ELEVAKTIVE METODER: Snakke matte, samarbeidslæring og problemløsing. PÅBYGG TIL GENERELL STUDIEKOMPETANSE Skolering av lærere"

Transkript

1 ELEVAKTIVE METODER: Snakke matte, samarbeidslæring og problemløsing PÅBYGG TIL GENERELL STUDIEKOMPETANSE Skolering av lærere MATEMATIKK 2P-Y 15.januar 2013 Tone Elisabeth Bakken

2 Snakke matte! Jo bedre vi er i stand til å gi matematikkfaget et språklig innhold, jo mer funksjonelt blir faget for eleven. Gode faguttrykk, d.v.s. presise begreper, er et nødvendig hjelpemiddel for tankene om tenkningen skal bli presis. Dialog (lærer elev og elev elev) Høy tale (elev) Indre tale (elev) Legge til rette for faglig samarbeid og muntlig aktivitet.

3 Samarbeidslæring Elevaktiviserende metodikk Opplegg som: - fremmer samarbeide - fremmer muntlig aktivitet - bidrar til mer aktive og utforskende elever - gir muligheter for differensiering / tilpasset opplæring - skaper variasjon

4 Samarbeidslæring Samarbeidslæring er pedagogisk bruk av grupper der deltakerne arbeider sammen med det formål å øke eget og gruppas læringsutbytte. Samarbeidslæring bygger på fem basiselementer: 1. Lik og jevnbyrdig deltakelse 2. Positiv gjensidig avhengighet 3. Individuelt ansvar 4. Trening i sosiale ferdigheter 5. Prosessvurdering

5 Undervisningsplanlegging Forberedelse / introduksjon til et emne Dette er aktiviteter som setter fokus på det som er tema for dagen. Klargjøre mål og hensikt Læreren deler/diskuterer med elevene hva de skal lære og hvorfor. Faglig påfyll Her passer det å legge til rette for ulike måter å innhente informasjon på. Sjekke ut forståelse Her bruker vi ulike modeller for å finne ut om elevene har fått de kunnskapene eller ferdighetene de trenger. Praktisere v.h.a. veiledning eller ved å prøve på egen hånd Her kan elevene få veiledning fra lærer eller medelever og/eller mulighet for på egen hånd å prøve ut det de har lært. Avslutning oppsummere det de har lært. Elevene skal finne ut om mål og hensikt er oppnådd, og

6 Problemløsing Fra formålet med faget: Problemløsing er å analysere og omforme et problem til matematisk form, løse det og vurdere hvor gyldig det er. Dette har også språklige aspekter, som det å resonnere og kommunisere ideer. Vi har en matematisk oppgave hvor det ikke er klart for oss hvilke løsningsmetoder som skal brukes. Det krever arbeid og anstrengelser for å finne en løsning. Det kan være flere veier til mål!

7 Lærerens rolle Elevenes problemløsing Matematikk for skolen, Barbro Grevholm (red.) 1. Eleven klarer ikke å komme i gang læreren fungerer som en modell for problemløsing 2. Eleven tør til en viss grad å angripe problemer hvis de virker kjente læreren er støtte 3. Eleven tør å bruke nye strategier læreren er leverandør av problemer 4. Eleven klarer å velge passende strategier og produserer nye løsningsmåter læreren fremmer kreativt elevarbeid

8 Samarbeidslæring Forslag til emner i 2P-Y Workshop : Sju metoder innen samarbeidslæring med til sammen ti undervisningsopplegg: Potenser Tall på standardform Funksjoner. Regresjon Prosent. Vekstfaktor. Eksponentiell vekst Statistikk (Regler for regnerekkefølge)

9 Metode: PARSJEKK To og to elever samarbeider De løser annenhver oppgave Den som løser oppgaven får bare lov til å si hva man skal gjøre, mens den andre i paret er sekretær. Så bytter man. (Hvis eleven ikke får det til, kan medeleven hjelpe til.) Fokus på regler Mulighet for differensiering

10 Potensregning Metode PARSJEKK Elev A Elev B 1) a 3 a 7 2) Regel: Regel: 3) a x 2 a 2 x 3 4) a a 5 Regel: Regel:

11 Metode: MEMORY Kort i to kategorier: Oppgaver og svar (eller begreper og definisjoner) Elevene gjør regnestykker i hodet (Det er lov å regne ved siden av!) Elevene skal huske hvor kortene ligger Øvelse i muntlige ferdigheter ved at de skal forklare parene for hverandre Drilloppgaver Automatisering av kunnskaper

12 , ,027 2, , , , , , , , ,7 10 5

13 Regnerekkefølge Midt i blinken Utstyr: Terninger (f.eks. 5 stykk) Man skal lage regnestykker blir enige om et svar, f.eks. 25. To elever spiller mot hverandre. Den ene eleven kaster terningene som utgjør de fem tallene man skal lage regnestykker med. Man kan bruke +, -,, :, ( ) og evt. bruke tall som eksponent. Den som får blinken (25), eller kommer nærmest har vunnet. Forklaring kreves.

14 Metode: TENK, REGN, DEL Metoden veksler mellom individuelt arbeid og samarbeid i par eller i grupper. Utgangspunktet er hva elevene kan fra før, men det kan også være mulig å få elevene til å tenke videre. Metoden fremmer individuell tenking, samarbeidsevne og muntlig evne i faget. Framgangsmåte: Elevene får et ark hver med oppgaver eller spørsmål. Først skal elevene gjøre noe individuelt. TENK + REGN Deretter skal elevene diskutere og forklare for hverandre i par eller gruppe. DEL Så kan f.eks. en elev på vegne av gruppen bli bedt om å forklare for resten av klassen. DEL

15 Lineære funksjoner Metode: TENK, REGN, DEL Hver gruppe får ansvaret for å tegne fire rette linjer inn i et koordinatsystem. Gruppene får forskjellige funksjoner. Tenk + regn : Oppgavene fordeles på gruppens medlemmer, og elevene prøver å løse hver sin oppgave alene. Elevene i hver gruppe tegner hver sin linje i samme koordinatsystem, f.eks. på PC. Del : Elevene samarbeider i gruppa og en av elevene velges til å forklare for resten av klassen.

16 Lineære funksjoner Oppgaver Gruppe A) Gruppe B) Gruppe C) y 1 = 2x + 3 y 1 = 3x + 5 y 1 = 5x y 2 = 2x + 1 y 2 = 3x + 2 y 2 = 3x y 3 = 2x 2 y 3 = 3x y 3 = x y 4 = 2x 5 y 4 = 3x 1 y 4 = 0,5x Gruppe D) Gruppe E) Gruppe F) y 1 = 0,5x y 1 = 4x + 1 y 1 = 5 y 2 = x y 2 = 2x + 1 y 2 = 2 y 3 = 3x y 3 = x + 1 y 3 = 1 y 4 = 5x y 4 = 3x + 1 y 4 = 4

17 Lineære funksjoner Metode: TENK, REGN, DEL Avslutningsvis oppsummeres hva er likt og hva er forskjellig når det gjelder de fire rette linjene: Hva kan vi se ut fra funksjonsuttrykkene? Går linjene oppover eller nedover? Hvilken linje er brattest? Hva er stigningstallet / -tallene? Hvor skjærer linjene y-aksen? Gruppe E y 1 = 4x + 1 y 2 = 2x + 1 y 3 = x + 1 y 4 = 3x + 1

18 Regresjon Metode: TENK, REGN, DEL a) Bruk verdiene i tabellen til å tegne punkter i koordinatsystemet. b) Tegn inn den rette linja som du synes passer best med punktene. c) Se sammen to og to. Har dere tegnet samme linje? Hvis ikke, - er det en av linjene som ser ut til å passe best? d) Prøv sammen å forklare hva det vil si å passe best. e) Finn til slutt funksjonsuttrykket for den beste rette linja.

19 Metode: LENKE Elevene får sjekket om de har forstått et emne Elevene får trening i å lytte Lenke kan brukes som introduksjon til et emne eller i emner elevene kan noe om fra før Lenke kan brukes i samlet klasse, i grupper eller i par Elevene får et gitt antall lapper hver som skal komme i en bestemt rekkefølge

20 Potenser Metode: LENKE i par Regning med potenser på en annen måte Fokus: Regler Fremmer muntlig aktivitet Elevene sitter to og to ved siden av hverandre Den som har første lapp legger den ut Så neste lapp, osv. til alt er lagt ut Kontroller at lenken er riktig lagt ut Til slutt: Forklar annenhver gang hva som er gjort /reglene som er brukt fra et trinn til neste

21 Prosent og vekstfaktor Metode: LENKE i gruppe + 5 % 1,08 Elevene får øvelse i å gjøre om fra prosent til vekstfaktor og motsatt Lapper som skal komme i en bestemt rekkefølge Fordel lappene ca. likt mellom dere Den som har første lapp legger den ut Så neste lapp, osv. til alt er lagt ut

22 Sannsynlighet Metode: LENKE i samlet klasse Metoden brukes som introduksjon til emne Lapper med spørsmål og svar Alle elever/par av elever får 1-2 lapper hver Nivådifferensiering er mulig

23 Metode: GUIDET LÆRING Introduksjon til et emne. Et lite hefte med tekst, oppgaver, nye regler m.m. til hvert elevpar. Elevene jobber med en og en side i heftet, tenker høyt og blir enige. Etter hvert som de jobber, og etter å ha gjort seg opp en mening skriver de ned forslag til løsning. Svar, eller nye biter av fakta som skal hjelpe dem i tankeprosessen, får de ved å bla om til neste side.

24 Prosent, vekstfaktor og eksponentiell vekst Metode: GUIDET LÆRING Repetisjon: Oppgave: mennesker, 5 % økning per år. Hvor mange om 1 år? om 2 år? Nytt: Vi kan bruke noe som kalles vekstfaktor. Oppgaven over: ,05 = ,05 2 = finne vekstfaktor. Regne ut for flere år fremover Tegne graf

25 Metode: FINN EN SOM KAN SVARE Alle elevene får utdelt et ark med oppgaver, spørsmål, påbegynte setninger, påstander eller lignende. Så gjør de 1-2 oppgaver hver seg individuelt. Deretter går elevene rundt for å finne en elev som kan gi dem svar på et spørsmål, og for å svare på et spørsmål fra den andre. Når man har fått et svar, skriver man ned det viktigste helst med egne ord før den som ga svaret kontrollerer, og signerer hvis det er riktig. Tilsvarende for den andre eleven. Så finner man en annen elev, og prosessen gjentas. Osv.

26 Statistikkoppsummering Metode: FINN EN SOM KAN SVARE Forslag til spørsmål: Hva forstår vi med frekvens? Hva menes med spredningsmål for et datamateriale? Nevn noen spredningsmål. Hvordan finner vi medianen for et datamateriale? Hva menes med gjennomsnitt, og hvordan regner vi det ut i et datamateriale med enkeltobservasjoner?

27 Repetisjon før prøve Finn en som kan svare Eksempler på oppgaver: Skriv 25 i totallssystemet. Du skal ta på deg en bukse og en genser. På hvor mange måter kan du kombinere 3 bukser og 5 gensere? Gi et praktisk eksempel på en situasjon som kan beskrives med funksjonen y = 50x Gjennomsnittsalderen til tre barn er 36 år. Ingen er like gamle, og den yngste er 10 år yngre enn den eldste. Gi et eksempel hvor gamle barna kan være når alle er yngre enn 18 år.

28 1 X 2 (konkurranse) Funksjonsuttrykk

29

Regning som grunnleggende ferdighet Ny GIV! Møre og Romsdal

Regning som grunnleggende ferdighet Ny GIV! Møre og Romsdal Regning som grunnleggende ferdighet Ny GIV! Møre og Romsdal Hefte med praktiske eksempler Tone Elisabeth Bakken Molde, 29.januar 2013 Ønsker du beskrivelse av og informasjon om flere metoder, - ta kontakt!

Detaljer

NyGIV Regning som grunnleggende ferdighet Akershus

NyGIV Regning som grunnleggende ferdighet Akershus NyGIV Regning som grunnleggende ferdighet Akershus Hefte med praktiske eksempler Tone Elisabeth Bakken 16.januar 014 Ønsker du beskrivelse av og informasjon om flere metoder, - ta kontakt! tone.bakken@ohg.vg.no

Detaljer

Regning som grunnleggende ferdighet. Møre og Romsdal Elevaktiv undervisning. Molde, 29.januar 2013 Tone Elisabeth Bakken tone.bakken@ohg.vgs.

Regning som grunnleggende ferdighet. Møre og Romsdal Elevaktiv undervisning. Molde, 29.januar 2013 Tone Elisabeth Bakken tone.bakken@ohg.vgs. Regning som grunnleggende ferdighet. Ny GIV Møre og Romsdal Elevaktiv undervisning Molde, 29.januar 2013 Tone Elisabeth Bakken tone.bakken@ohg.vgs.no Aftenposten 7.nov.2012 Matematikk. Å regne handler

Detaljer

Regning som grunnleggende ferdighet

Regning som grunnleggende ferdighet Regning som grunnleggende ferdighet Praktiske metoder i undervisningen, snakke matte,matematikkvansker Kristiansand, dag 1, 29.august 2013 Tone Elisabeth Bakken tone.bakken@ohg.vgs.no Fokus: Grunnleggende

Detaljer

Regning i alle fag. Hva er å kunne regne? Prinsipper for god regneopplæring. 1.Sett klare mål, og form undervisningen deretter

Regning i alle fag. Hva er å kunne regne? Prinsipper for god regneopplæring. 1.Sett klare mål, og form undervisningen deretter Regning i alle fag Hva er å kunne regne? Å kunne regne er å bruke matematikk på en rekke livsområder. Å kunne regne innebærer å resonnere og bruke matematiske begreper, fremgangsmåter, fakta og verktøy

Detaljer

Regning som grunnleggende ferdighet Kurs for yrkesfaglærere

Regning som grunnleggende ferdighet Kurs for yrkesfaglærere Regning som grunnleggende ferdighet. Kurs for yrkesfaglærere 3.april 2014 Tone Elisabeth Bakken tone.bakken@ohg.vgs.no Bestillingen For å greie problemløsing og utforsking som tar utgangspunkt i praktiske,

Detaljer

NyGIV Regning som grunnleggende ferdighet Kristiansand

NyGIV Regning som grunnleggende ferdighet Kristiansand NyGIV Regning som grunnleggende ferdighet Kristiansand Hefte med praktiske eksempler Tone Elisabeth Bakken 29.-30.august 2013 Ønsker du beskrivelse av og informasjon om flere metoder, - ta kontakt! tone.bakken@ohg.vg.no

Detaljer

Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra

Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra Anne-Mari Jensen Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra Innledning I ungdomsskolen kommer funksjoner inn som et av hovedområdene i læreplanen i matematikk. Arbeidet

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Microsoft Excel Innhold 1 Om Excel 4 2 Regning 4 2.1 Tallregning................................... 4 2.2

Detaljer

04.01.2015. Dagsoversikt. Matematikkundervisningen har forandret seg. Hvordan bidra til at dine elever får større ferdigheter i matematikk?

04.01.2015. Dagsoversikt. Matematikkundervisningen har forandret seg. Hvordan bidra til at dine elever får større ferdigheter i matematikk? Hvordan bidra til at dine elever får større ferdigheter i matematikk? Haugalandsløftet 26. januar 2015 Tine Foss Pedersen 4-Jan-15 Dagsoversikt Læring basert på forståelse Ulike måter å regne på basert

Detaljer

NyGIV Regning som grunnleggende ferdighet Akershus

NyGIV Regning som grunnleggende ferdighet Akershus NyGIV Regning som grunnleggende ferdighet Akershus Hefte med utdelt materiell Tone Elisabeth Bakken Dag 2 6.februar 2014 Ønsker du beskrivelse av og informasjon om flere metoder, - ta kontakt! tone.bakken@ohg.vg.no

Detaljer

Eksamen MAT1005 Matematikk 2P-Y Høsten 2013

Eksamen MAT1005 Matematikk 2P-Y Høsten 2013 Eksamen MAT1005 Matematikk 2P-Y Høsten 2013 DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) I en klasse er det 20 elever. Nedenfor ser du hvor mange dager hver av elevene var borte fra skolen i løpet av et

Detaljer

ÅRSPLAN 2015-2016. Arbeidsmåter ( forelesing, individuelt elevarbeid, gruppearbeid, forsøk, ekskursjoner ) - Felles tavleundervisning

ÅRSPLAN 2015-2016. Arbeidsmåter ( forelesing, individuelt elevarbeid, gruppearbeid, forsøk, ekskursjoner ) - Felles tavleundervisning Øyslebø oppvekstsenter ÅRSPLAN 2015-2016 Fag: Matematikk Trinn: 9. klasse Lærer: Tove Mørkesdal og Tore Neerland Tidsrom (Datoer/ ukenr, perioder..) Tema Lærestoff / læremidler (lærebok kap./ s, bøker,

Detaljer

Kompetanse for kvalitet, matematikk 1 (KFK MAT1) Ansvarlig fakultet Fakultet for humaniora og utdanningsvitenskap

Kompetanse for kvalitet, matematikk 1 (KFK MAT1) Ansvarlig fakultet Fakultet for humaniora og utdanningsvitenskap Kompetanse for kvalitet, matematikk 1 (KFK MAT1) Ansvarlig fakultet Fakultet for humaniora og utdanningsvitenskap Studiepoeng: 30 (15+15). Separat eksamen høst 2014 (muntlig) og vår 2015 (skriftlig). INNLEDNING

Detaljer

Moro med matematikk 5. - 7. trinn 90 minutter

Moro med matematikk 5. - 7. trinn 90 minutter Lærerveiledning Passer for: Varighet: Moro med matematikk 5. - 7. trinn 90 minutter Moro med matematikk er et skoleprogram i matematikk hvor elevene får jobbe variert med problemløsingsoppgaver, spill

Detaljer

Matematisk samtale Multiaden 2015. Tine Foss Pedersen

Matematisk samtale Multiaden 2015. Tine Foss Pedersen Matematisk samtale Multiaden 2015 Tine Foss Pedersen Matematisk samtale - muntlige ferdigheter Vi bør vektlegge bruk av ulike uttrykksmåter, strategier og løsningsmetoder. Det skaper grunnlag for diskusjon:

Detaljer

Hensikt. Målet for denne dialogbaserte samlingen må være å finne en faglig plattform i

Hensikt. Målet for denne dialogbaserte samlingen må være å finne en faglig plattform i Fagdag i matematikk Hensikt Målet for denne dialogbaserte samlingen må være å finne en faglig plattform i overgangen grunnskole og videregående skole slik at elevene oppnår en faglig trygghet i matematikk.

Detaljer

REGNEPLAN FOR LANDÅS SKOLE

REGNEPLAN FOR LANDÅS SKOLE 1 REGNEPLAN FOR LANDÅS SKOLE På Landås skole har alle lærere, i alle fag, på alle trinn ansvar for elevenes regneutvikling. Å kunne regne er å bruke matematikk på en rekke livsområder. Å kunne regne innebærer

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk Inspirasjon og motivasjon for matematikk Mona Røsseland Nasjonalt senter for matematikk i Opplæringen 13-Oct-06 Kursinnhald Hva er matematisk kompetanse? Hvordan styrke den hos elevene på en slik måte

Detaljer

Eksempelsett 2P, Høsten 2010

Eksempelsett 2P, Høsten 2010 Eksempelsett 2P, Høsten 2010 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Grete og Per fyller etanol i et beger.

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Casio fx-9860

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Casio fx-9860 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Casio fx-9860 Innhold 1 Om lommeregneren 4 2 Regning 4 2.1 Tallregning...................................

Detaljer

Hvordan lykkes med tilpasset undervisning?

Hvordan lykkes med tilpasset undervisning? Hvordan lykkes med tilpasset undervisning? Mona Røsseland Doktorgradsstipendiat Universitetet i Agder www.fiboline.no Oversikt 10-11.30: Makronivå: Hva er god matematikkundervisning og hvordan legger det

Detaljer

OPPGAVE 1: ELEVAKTIVE ARBEIDSMÅTER I NATURFAGENE

OPPGAVE 1: ELEVAKTIVE ARBEIDSMÅTER I NATURFAGENE OPPGAVE 1: ELEVAKTIVE ARBEIDSMÅTER I NATURFAGENE Innledning I de 9. klassene hvor jeg var i praksis, måtte elevene levere inn formell rapport etter nesten hver elevøvelse. En konsekvens av dette kan etter

Detaljer

Eksamen MAT1005 Matematikk 2P-Y Høsten 2013

Eksamen MAT1005 Matematikk 2P-Y Høsten 2013 Eksamen MAT1005 Matematikk 2P-Y Høsten 2013 DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) I en klasse er det 20 elever. Nedenfor ser du hvor mange dager hver av elevene var borte fra skolen i løpet av et

Detaljer

Vurdering for og av læring

Vurdering for og av læring Vurdering for og av læring Skolens nye trendord? Svein H. Torkildsen, NSMO Dagens program Arbeidet legges opp rundt 1. læreplanens kompetansemål 2. arbeidsmåter i faget 3. læreboka og pedagogens arbeid

Detaljer

Læringsstrategier handler om å lære seg å lære! Læringsstrategier er ikke målet, men et middel for å lære.

Læringsstrategier handler om å lære seg å lære! Læringsstrategier er ikke målet, men et middel for å lære. For lærere på 1. til 7. trinn Plan for Lese- og læringsstrategi, Gaupen skole Læringsstrategier handler om å lære seg å lære! Læringsstrategier er ikke målet, men et middel for å lære. Mai 2013 1 Forord

Detaljer

Eksempeloppgave 2014. MAT1005 Matematikk 2P-Y Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler)

Eksempeloppgave 2014. MAT1005 Matematikk 2P-Y Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler) Eksempeloppgave 2014 MAT1005 Matematikk 2P-Y Ny eksamensordning våren 2015 Ny eksamensordning Del 1: 2 timer (uten hjelpemidler) Del 2: 3 timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:

Detaljer

MATEMATIKK kjennetegn på måloppnåelse HOVEDOMRÅDE Tall og algebra:

MATEMATIKK kjennetegn på måloppnåelse HOVEDOMRÅDE Tall og algebra: MATEMATIKK kjennetegn på måloppnåelse HOVEDOMRÅDE Tall og algebra: 1. sammenligne og regne om mellom hele tall, desimaltall, brøker, prosent, promille og tall på standardform, uttrykke slike tall på varierte

Detaljer

Full fart med funksjoner, prosent og potens Vg1T, TY, P, PY og Vg2P 75 minutter

Full fart med funksjoner, prosent og potens Vg1T, TY, P, PY og Vg2P 75 minutter Lærerveiledning Passer for: Varighet: Full fart med funksjoner, prosent og potens Vg1T, TY, P, PY og Vg2P 75 minutter Full fart med funksjoner, prosent og potens er et skoleprogram hvor elevene går fra

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 10. TRINN SKOLEÅR 2014-2015

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 10. TRINN SKOLEÅR 2014-2015 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 10. TRINN SKOLEÅR 2014-2015 Periode 1: UKE 34 UKE 39 Tema: Tall og algebra Kunne skrive tall på ulike måter. Skrive veldig store og små tall

Detaljer

HOPPlæring i Hortenskolen AKTIVITETER TIL IDÈBANK

HOPPlæring i Hortenskolen AKTIVITETER TIL IDÈBANK HOPPlæring i Hortenskolen AKTIVITETER TIL IDÈBANK FAG: TRINN: Engelsk 1 og 2.trinn KOMPETANSEMÅL: - Finne ord og uttrykk som er felles for engelsk og eget morsmål. MÅL FOR AKTIVITET: Elevene skal repetere

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Innstillinger................................... 5 2 Regning 5 2.1 Tallregning...................................

Detaljer

Regning som grunnleggende ferdighet Praktiske metoder i undervisningen, problemløsing, rike oppgaver, vurdering, kartlegging, NyGIV, m.m.

Regning som grunnleggende ferdighet Praktiske metoder i undervisningen, problemløsing, rike oppgaver, vurdering, kartlegging, NyGIV, m.m. Regning som grunnleggende ferdighet Praktiske metoder i undervisningen, problemløsing, rike oppgaver, vurdering, kartlegging, NyGIV, m.m. Kristiansand, Dag 2, 30.august 2013 Tone Elisabeth Bakken tone.bakken@ohg.vgs.no

Detaljer

Language descriptors in Norwegian Norwegian listening Beskrivelser for lytting i historie/samfunnsfag og matematikk

Language descriptors in Norwegian Norwegian listening Beskrivelser for lytting i historie/samfunnsfag og matematikk Language descriptors in Norwegian Norwegian listening Beskrivelser for lytting i historie/samfunnsfag og matematikk Forstå faktainformasjon og forklaringer Forstå instruksjoner og veiledning Forstå meninger

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

NYE OPPGAVETYPER OG KRAV TIL FØRING

NYE OPPGAVETYPER OG KRAV TIL FØRING CAS, Graftegner og regneark på eksamen Eksamen 1P, 2P og 2P-Y 2 timer uten hjelpemidler 3 timer med hjelpemidler Noen oppgaver i del 2 kreves løst med digitale verktøy Aktuelle verktøy er graftegner og

Detaljer

1T og 1P på Studiespesialiserende

1T og 1P på Studiespesialiserende 1T og 1P på Studiespesialiserende Snart skal du velge hvilket matematikkurs du ønsker å følge på VG1. Valget ditt på VG1, kommer også å påvirke dine valgmulighetene på VG2 og VG3. Vi ønsker derfor å informere

Detaljer

ÅRSPLAN I MATEMATIKK 1. KLASSE BREIVIKBOTN SKOLE 2014-2015. Lærer: Turid Nilsen

ÅRSPLAN I MATEMATIKK 1. KLASSE BREIVIKBOTN SKOLE 2014-2015. Lærer: Turid Nilsen ÅRSPLAN I MATEMATIKK 1. KLASSE BREIVIKBOTN SKOLE 2014-2015 Lærer: Turid Nilsen Matematikkverket består av: Grunntall 1a + 1b Ressursperm Nettsted med oppgaver Grunnleggende ferdigheter Grunnleggjande ferdigheiter

Detaljer

Tall og algebra - begrep, forutsetninger og aktiviteter

Tall og algebra - begrep, forutsetninger og aktiviteter Tall og algebra - begrep, forutsetninger og aktiviteter Astrid Bondø NSMO 17-Sep-08 Hvordan gjøre oppgavene rikere? Oppgave A Regn ut svaret: a. 985 67 b. 897 65 c. 875 96 d. 586 97 addisjon subtraksjon

Detaljer

Hva er god matematikkundervisning?

Hva er god matematikkundervisning? Hva er god matematikkundervisning? Astrid Bondø Nasjonalt Senter for Matematikk i Opplæringen 22-Feb-08 Ny læreplan, nye utfordringer for undervisninga i matematikk? Hva vil det si å ha matematiske kompetanse?

Detaljer

ÅRSPLAN I MATEMATIKK 2. trinn 2014/2015

ÅRSPLAN I MATEMATIKK 2. trinn 2014/2015 ÅRSPLAN I MATEMATIKK 2. trinn 2014/2015 Faglærer: Læreverk: Hege Skogly Grunntall 2a og 2b, Bakke og Bakke Ressursperm og nettsted Grunnleggende ferdigheter i faget (Fra læreplanverket for Kunnskapsløftet,

Detaljer

Den gretne marihøna. Mål med undervisningsopplegget: Elevene skal kunne:

Den gretne marihøna. Mål med undervisningsopplegget: Elevene skal kunne: Den gretne marihøna Dette undervisningsopplegget kan gjennomføres mot slutten av skoleåret på 1. trinn. Da har elevene lært seg alle bokstavene, og de har erfaring med å skrive tekster. Opplegget kan også

Detaljer

Ny Giv. Grunnleggende regneferdighet. Tone Skori Stavanger 270213. Ditt navn og årstall

Ny Giv. Grunnleggende regneferdighet. Tone Skori Stavanger 270213. Ditt navn og årstall Ny Giv Grunnleggende regneferdighet Tone Skori Stavanger 270213 Ditt navn og årstall Læringspartner (Kilde: Hilde Ødegaard Olsen, Skøyen skole) Hva er en læringspartner? En du sitter sammen med en viss

Detaljer

VURDERING FOR LÆRING. Norges Toppidrettsgymnas Lillehammer. Leiv Martin Thorvaldsen Helene Nesje-Haugli. Privat videregående skole

VURDERING FOR LÆRING. Norges Toppidrettsgymnas Lillehammer. Leiv Martin Thorvaldsen Helene Nesje-Haugli. Privat videregående skole VURDERING FOR LÆRING Norges Toppidrettsgymnas Lillehammer Leiv Martin Thorvaldsen Helene Nesje-Haugli Privat videregående skole 1 NTG Lillehammer - «En skole på idrettens premisser» 250 elever / 9 klasser

Detaljer

Årsplan i matematikk ved Blussuvoll skole.

Årsplan i matematikk ved Blussuvoll skole. Årsplan i matematikk ved Blussuvoll skole. Hovedområder i faget: Målinger Statistikk, sannsynlighet og Funksjoner Undervisningstimetall per uke: 8.trinn 9.trinn 10.trinn 3,00 2,25 3,00 Læreverk/materiell:

Detaljer

I følge Kunnskapsløftet er formålet med matematikkfaget å dekke følgende behov: (se s.57)

I følge Kunnskapsløftet er formålet med matematikkfaget å dekke følgende behov: (se s.57) Kunnskapsløftet-06 Grunnlag og mål for planen: Den lokale læreplanen skal være en kvalitetssikring i matematikkopplæringen ved Haukås skole, ved at den bli en bruksplan, et redskap i undervisningshverdagen.

Detaljer

Tall: Hovedområdet tall og algebra handler om å utvikle tallforståing og innsikt i hvordan tall og tallbehandling inngår i

Tall: Hovedområdet tall og algebra handler om å utvikle tallforståing og innsikt i hvordan tall og tallbehandling inngår i Lærebok: Tusen Millioner, Gjerdrum og Skovdahl Tallbok (rutebok i A5 format) Barn lærer matematikk gjennom spill, leik, utforsking og aktiv samhandling. Språkets betydning er veldig viktig for å forstå

Detaljer

for de e jo de same ungene

for de e jo de same ungene for de e jo de same ungene En studie om førskolelærere og læreres forventninger til barns kompetanse i overgangen fra barnehage til skole Anne Brit Haukland Atferden vår er er ikke bare påvirket av erfaringene

Detaljer

Årsplan i matematikk for 5. trinn, skoleåret 2009/2010. Læreverk Abakus 5A og 5B (grunnbøker+oppgavebøker), digitale læringsressurser

Årsplan i matematikk for 5. trinn, skoleåret 2009/2010. Læreverk Abakus 5A og 5B (grunnbøker+oppgavebøker), digitale læringsressurser Årsplan i matematikk for 5. trinn, skoleåret 2009/2010. Hovedområde Læreverk Abakus 5A og 5B (grunnbøker+oppgavebøker), digitale sressurser for 5. trinn Fra Lese-forlivet-planen brukes jevnlig i alle fag

Detaljer

ÅRSPLAN I MATEMATIKK 2. KLASSE BREIVIKBOTN SKOLE 2013-2014

ÅRSPLAN I MATEMATIKK 2. KLASSE BREIVIKBOTN SKOLE 2013-2014 ÅRSPLAN I MATEMATIKK 2. KLASSE BREIVIKBOTN SKOLE 2013-2014 Lærer: Turid Nilsen Matematikkverket består av: - Ressursperm - Grunntall 2a + 2b - CD-rom Forfattere: Bjørn Bakke og Inger Nygjelten Bakke Grunnleggende

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Casio fx 9860

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Casio fx 9860 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Casio fx 9860 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Kvadratrot....................................

Detaljer

Lese og skrive seg til forståelse. Svein H. Torkildsen

Lese og skrive seg til forståelse. Svein H. Torkildsen Lese og skrive seg til forståelse Svein H. Torkildsen Fra media Muntlig Munnlege ferdigheiter i matematikk inneber å skape meining gjennom å lytte, tale og samtale om matematikk. Det inneber å gjere seg

Detaljer

Eksamen 25.05.2011. MAT1015 Matematikk 2P. Nynorsk/Bokmål

Eksamen 25.05.2011. MAT1015 Matematikk 2P. Nynorsk/Bokmål Eksamen 25.05.2011 MAT1015 Matematikk 2P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Kjennetegn på god læringsledelse i lierskolen. - et verktøy for refleksjon og utvikling

Kjennetegn på god læringsledelse i lierskolen. - et verktøy for refleksjon og utvikling Kjennetegn på god læringsledelse i lierskolen - et verktøy for refleksjon og utvikling INNLEDNING Dette heftet inneholder kjennetegn ved god læringsledelse. Det tar utgangspunkt i Utdanningsdirektoratets

Detaljer

Regning som grunnleggende ferdighet, Akershus Fylkeskommune

Regning som grunnleggende ferdighet, Akershus Fylkeskommune Regning som grunnleggende ferdighet, Akershus Fylkeskommune Program for etterutdanningskurs innen Ny GIV 12. og 13. september 2011, Sandvika vgs kl. 9.00-15.30 Til deltakerne: Saks, limstift, terninger

Detaljer

Delemneplan for undervisningskunnskap i brøk og desimaltall

Delemneplan for undervisningskunnskap i brøk og desimaltall Delemneplan for undervisningskunnskap i brøk og desimaltall Emnet omfatter matematikkdidaktiske og matematikkfaglige tema innen brøk og desimaltall som er viktige for alle som skal undervise i matematikk

Detaljer

FAG: Matematikk TRINN: 10

FAG: Matematikk TRINN: 10 FAG: Matematikk TRINN: 10 Områder Kompetansemål Fra Udir Operasjonaliserte læringsmål - Breidablikk Vurderingskriteri er Tall og algebra *kunne samanlikne og rekne om heile tal, desimaltal, brøkar, prosent,

Detaljer

Regning som grunnleggende ferdighet Ny GIV! Akershus

Regning som grunnleggende ferdighet Ny GIV! Akershus Regning som grunnleggende ferdighet Ny GIV! Akershus. Problemløsing, elevaktive metoder, vurdering, m.m. Dag 2 9.oktober 2013 Håndverkeren kurssenter Tone Elisabeth Bakken tone.bakken@ohg.vgs.no Fokus:

Detaljer

Hvordan lykkes med matematikkundervisningen?

Hvordan lykkes med matematikkundervisningen? Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Hvordan lykkes med matematikkundervisningen? Kongsberg 15.mai 07 14-May-07 Oversikt Hvordan skal vi i

Detaljer

Visiting an International Workplace Besøk på en internasjonal arbeidsplass

Visiting an International Workplace Besøk på en internasjonal arbeidsplass Visiting an International Workplace Besøk på en internasjonal arbeidsplass Trinn: Engelsk, yrkesfaglige utdanningsprogram Tema: Elevgruppen besøker en arbeidsplass der engelsk blir brukt som arbeidsspråk.

Detaljer

Tilpasset opplæring. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no

Tilpasset opplæring. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no Tilpasset opplæring Brynhild.foosnas@baerum.kommune.no Hva sier Kunnskapsløftet? Tilpasset opplæring innenfor fellesskapet er grunnleggende elementer i fellesskolen. Tilpasset opplæring for den enkelte

Detaljer

Modul nr. 1094 Gjør Matte! 1-4 trinn.

Modul nr. 1094 Gjør Matte! 1-4 trinn. Modul nr. 1094 Gjør Matte! 1-4 trinn. Tilknyttet rom: Ikke tilknyttet til et rom 1094 Newton håndbok - Gjør Matte! 1-4 trinn. Side 2 Kort om denne modulen Formålet med denne modulen er å skape interesse

Detaljer

Læreplan i matematikk for samfunnsfag - programfag i studiespesialiserende program

Læreplan i matematikk for samfunnsfag - programfag i studiespesialiserende program Læreplan i matematikk for samfunnsfag - programfag i studiespesialiserende program Fastsatt som forskrift av Utdanningsdirektoratet 27. mars 2006 etter delegasjon i brev 26. september 2005 fra Utdannings-

Detaljer

Fagplan i matematikk for 9. trinn 2014/15. Faglærer: Terje Tønnessen

Fagplan i matematikk for 9. trinn 2014/15. Faglærer: Terje Tønnessen Fagplan i matematikk for 9. trinn 2014/15. Faglærer: Terje Tønnessen Standarder (gjennom hele semesteret) : - Å kunne uttrykke seg muntlig. Å forstå og kunne bruke det matematiske språket, implementeres

Detaljer

Regning som grunnleggende ferdighet Ny GIV! Akershus

Regning som grunnleggende ferdighet Ny GIV! Akershus Regning som grunnleggende ferdighet Ny GIV! Akershus. Undervisningsplanlegging funksjoner, problemløsing, kartlegging, vurdering,... Dag 2 6.februar 2014 Håndverkeren kurssenter Tone Elisabeth Bakken tone.bakken@ohg.vgs.no

Detaljer

ÅRSPLAN I MATEMATIKK FOR 4. TRINN HØSTEN

ÅRSPLAN I MATEMATIKK FOR 4. TRINN HØSTEN 34 35 36 37 38 39 40 42 43 44 45 ÅRSPLAN I MATEMATIKK FOR 4. TRINN HØSTEN 2014 Læreverk: Multi Faglærer: Astrid Løland Fløgstad MÅL (K06) TEMA ARBEIDSFORM VURDERING lese avlassere og beskrive posisjoner

Detaljer

Virkelighetsnær matematikk. Fra foredrag av Beate Stabell, Bergen sept. 2005.

Virkelighetsnær matematikk. Fra foredrag av Beate Stabell, Bergen sept. 2005. Virkelighetsnær matematikk Fra foredrag av Beate Stabell, Bergen sept. 2005. Konteksten vesentlig å legge til rette for en undervisningspraksis hvor elevene møter matematikk og matematiske problemstillinger

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk Dagsoversikt Inspirasjon og motivasjon for matematikk Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Matematikk i IKT og uteskole Om digitale ferdigheter i matematikk Presentasjon av ulike

Detaljer

Modul nr. 1095 Gjør matte! 5-7 trinn

Modul nr. 1095 Gjør matte! 5-7 trinn Modul nr. 1095 Gjør matte! 5-7 trinn Tilknyttet rom: Ikke tilknyttet til et rom 1095 Newton håndbok - Gjør matte! 5-7 trinn Side 2 Kort om denne modulen Formålet med denne modulen er å skape interesse

Detaljer

Karakter 3 og 4 Beskrivelse av nokså god / god kompetanse

Karakter 3 og 4 Beskrivelse av nokså god / god kompetanse Fag: Matematikk Skoleår: 2008/ 2009 Klasse: 9 Lærer: Miriam Vikan Oversikt over læreverkene som benyttes, ev. andre hovedlæremidler: Faktor 2 Vurdering: a) Karakteren 1 uttrykker at eleven har svært lav

Detaljer

SKJEMA FOR UNDERVISNINGSPLANLEGGING

SKJEMA FOR UNDERVISNINGSPLANLEGGING SKJEMA FOR UNDERVISNINGSPLANLEGGING Fag: Engelsk Tema: London, Uttale Trinn: 8. Trinn Tidsramme: 5 uker Undervisningsplanlegging: Kompetansemål Konkretisering Beherske et ordforråd som dekker en rekke

Detaljer

å gjenkjenne regning i ulike kontekster å kommunisere og argumentere for valg som er foretatt

å gjenkjenne regning i ulike kontekster å kommunisere og argumentere for valg som er foretatt 13. mai 2014 å gjenkjenne regning i ulike kontekster å velge holdbare løsningsmetoder - gjennomføre å kommunisere og argumentere for valg som er foretatt tolke resultater kunne gå tilbake og gjøre nye

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Casio fx 9860

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Casio fx 9860 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Casio fx 9860 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Tallet π.....................................

Detaljer

Eksamen 25.05.2011. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 25.05.2011. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 25.05.2011 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Algebraiske morsomheter Vg1-Vg3 90 minutter

Algebraiske morsomheter Vg1-Vg3 90 minutter Lærerveiledning Passer for: Varighet: Algebraiske morsomheter Vg1-Vg3 90 minutter Algebraiske morsomheter er et skoleprogram hvor elevene kan bruke forskjellige matematiske modeller i praktiske undersøkende

Detaljer

På reise Nivå: Formål: Program: Henvisning til plan: 8. klasse Matematikk i dagliglivet: Tall og algebra: Grafer og funksjoner:

På reise Nivå: Formål: Program: Henvisning til plan: 8. klasse Matematikk i dagliglivet: Tall og algebra: Grafer og funksjoner: På reise Nivå: 8. og 9. klasse Formål: Arbeide med lineære funksjoner og verktøyprogram Program: Regneark, kurvetegningsprogram Henvisning til plan: 8. klasse Matematikk i dagliglivet: registrere og formulere

Detaljer

Geometriske morsomheter 8. 10. trinn 90 minutter

Geometriske morsomheter 8. 10. trinn 90 minutter Lærerveiledning Passer for: Varighet: Geometriske morsomheter 8. 10. trinn 90 minutter Geometriske morsomheter er et skoleprogram hvor elevene får trening i å definere figurer ved hjelp av geometriske

Detaljer

Forslag til kreative øvelser

Forslag til kreative øvelser Forslag til kreative øvelser Her finner dere øvelser dere kan bruke for å trene kreativitet og gjøre elevene trygge i sine respektive grupper. Det er viktig at alle elevene deltar aktivt når dere jobber

Detaljer

Oppdatert august 2014. Helhetlig regneplan Olsvik skole

Oppdatert august 2014. Helhetlig regneplan Olsvik skole Oppdatert august 2014 Helhetlig regneplan Olsvik skole Å regne Skolens er en strategier basis for for livslang å få gode, læring. funksjonelle elever i regning. 1 Vi på Olsvik skole tror at eleven ønsker

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015 Periode 1: UKE 34-38 Tema: Kap.1 «Tall og tallforståelse» sammenligne og omregne hele tall ( ) og tall på standardform,

Detaljer

Forsag til kreative øvelser

Forsag til kreative øvelser Forsag til kreative øvelser Her finner dere en rekke øvelser dere kan bruke for motivere elevene på å jobbe kreativt og gjøre dem trygge i sin gruppe. Gjennom disse øvelsene får elevene mulighet til å

Detaljer

Innføring av potenser og standardform

Innføring av potenser og standardform side 1 Innføring av potenser og standardform Dette er et forslag til et undervisningsopplegg der elevene skal komme fram til skrivemåter for potenser og tall på standardform. Tanken med opplegget er at

Detaljer

Undervisningsopplegg for ungdomstrinnet om koordinatsystemer og rette linjer

Undervisningsopplegg for ungdomstrinnet om koordinatsystemer og rette linjer Undervisningsopplegg for ungdomstrinnet om koordinatsystemer og rette linjer Kilde: www.clipart.com 1 Funksjoner. Lærerens ark Hva sier læreplanen? Funksjoner Mål for opplæringen er at eleven skal kunne

Detaljer

Moro med regning 3. 4. trinn 90 minutter

Moro med regning 3. 4. trinn 90 minutter Lærerveiledning Passer for: Varighet: Moro med regning 3. 4. trinn 90 minutter Moro med regning er et skoleprogram hvor elevene får bruke sin egen kropp til utforsking av tall-området 1 100, samt å addere

Detaljer

Bedre vurderingspraksis. Utprøving av kjennetegn på måloppnåelse i fag. Slik jobber vi i Tana (Seida og Austertana)

Bedre vurderingspraksis. Utprøving av kjennetegn på måloppnåelse i fag. Slik jobber vi i Tana (Seida og Austertana) Bedre vurderingspraksis Utprøving av kjennetegn på måloppnåelse i fag. Slik jobber vi i Tana (Seida og Austertana) Bedre vurderingspraksis Prosjekt Bedre vurderingspraksis skal arbeide for å få en tydeligere

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I SPANSK 10. TRINN SKOLEÅR 2014-2015

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I SPANSK 10. TRINN SKOLEÅR 2014-2015 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I SPANSK 10. TRINN SKOLEÅR 2014-2015 Periode 1: UKE 34 UKE 39 Kunne utnytte egne erfaringer med språklæring i læring av det nye språket. Kunne undersøke

Detaljer

ÅRSPLAN I MATTE 2. TRINN BREIVIKBOTN SKOLE 2011-2012

ÅRSPLAN I MATTE 2. TRINN BREIVIKBOTN SKOLE 2011-2012 ÅRSPLAN I MATTE 2. TRINN BREIVIKBOTN SKOLE 2011-2012 Lærer: Knut Brattfjord Læreverk: Grunntall 2 a og b, av Bakke og Bakke, Elektronisk Undervisningsforlag AS Målene er fra Lærerplanverket for kunnskapsløftet

Detaljer

Spørreskjema for Matematikk

Spørreskjema for Matematikk Spørreskjema for Matematikk Skole Navn på skole:.0 Grunnlagsinformasjon. Alder og kjønn.. Hvor gammel er du? År 0-9 X 0-9 0-9 0-0 Mer enn 0.. Hvilket kjønn er du? Svar Mann X Kvinne.0 Lærerens kompetanse.

Detaljer

Interaktiv tavle i klasserommet. En mulig vei for et didaktisk design

Interaktiv tavle i klasserommet. En mulig vei for et didaktisk design Interaktiv tavle i klasserommet. En mulig vei for et didaktisk design Førstelektor Tor Arne Wølner, Tor Arne Wølner Høgskolen i Vestfold 1 Den besværlig tavlen Fra min tavle til vår tavle Tor Arne Wølner

Detaljer

Eksempeloppgave 2014. MAT1015 Matematikk 2P Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler)

Eksempeloppgave 2014. MAT1015 Matematikk 2P Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler) Eksempeloppgave 2014 MAT1015 Matematikk 2P Ny eksamensordning våren 2015 Ny eksamensordning Del 1: 2 timer (uten hjelpemidler) Del 2: 3 timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:

Detaljer

UNDERVISNINGSOPPLEGG I NORSK

UNDERVISNINGSOPPLEGG I NORSK Den gretne marihøna Dette undervisningsopplegget i skriving er gjennomført mot slutten av skoleåret på 1.trinn. Da har elevene lært seg alle bokstavene, og de har erfaring med å skrive tekster. Opplegget

Detaljer

Regler for: Videregående. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene!

Regler for: Videregående. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! (x²) 1 2 Regler for: getsmart Grå Algebra Videregående 8 _ (x²) 1 2 Algebra 4 (2 2³) 1 4 _ xy (2 2³) 1 4 _ xy (x²) 1 2 _ (2 2³) 1 4 _ xy (x²) 1 2 _ (2 2³) 1 4 _ xy 4 Algebra Algebra _ 8 Det anbefales at

Detaljer

Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Tall og algebra

Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Tall og algebra FAGPLANER Breidablikk ungdomsskole FAG: Matte TRINN: 9.trinn Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Tall og algebra Eleven skal kunne -

Detaljer

Mal for vurderingsbidrag

Mal for vurderingsbidrag Mal for vurderingsbidrag Fag: Engelsk Tema: The body Trinn: 1.trinn Tidsramme:4 undervisningstimer ----------------------------------------------------------------------------- Undervisningsplanlegging

Detaljer

Lokal læreplan i muntlige ferdigheter. Beate Børresen Høgskolen i Oslo

Lokal læreplan i muntlige ferdigheter. Beate Børresen Høgskolen i Oslo Lokal læreplan i muntlige ferdigheter Beate Børresen Høgskolen i Oslo Muntlige ferdigheter i K06 å lytte å snakke å fortelle å forstå å undersøke sammen med andre å vurdere det som blir sagt/gjøre seg

Detaljer

Gjett hva lærer n tenker på: Betydningen av faglig snakk for et utforskende læringsmiljø

Gjett hva lærer n tenker på: Betydningen av faglig snakk for et utforskende læringsmiljø FAGLIG SNAKK OG UTFORSK- ENDE LÆRINGSMILJØ Gjett hva lærer n tenker på: Betydningen av faglig snakk for et utforskende læringsmiljø Hvordan kan du som lærer styre den faglige samtalen for å motivere elevene

Detaljer

Eksempeloppgåve/ Eksempeloppgave September 2010

Eksempeloppgåve/ Eksempeloppgave September 2010 Eksempeloppgåve/ Eksempeloppgave September 2010 MAT1015 Matematikk 2P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk Dagsoversikt Inspirasjon og motivasjon for matematikk Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Matematikk i IKT og uteskole Om digitale ferdigheter i matematikk Presentasjon av ulike

Detaljer

Undervisningsopplegg for ungdomstrinnet om statistikk og sannsynlighet

Undervisningsopplegg for ungdomstrinnet om statistikk og sannsynlighet Undervisningsopplegg for ungdomstrinnet om statistikk og sannsynlighet Kilde: www.clipart.com 1 Statistikk, sannsynlighet og kombinatorikk. Lærerens ark Hva sier læreplanen? Statistikk, sannsynlighet og

Detaljer

DEL 1. a) Grete setter 10 000 kr i banken. Hun får 5 % rente (per år). Grete lar pengene stå urørt i banken i 5 år.

DEL 1. a) Grete setter 10 000 kr i banken. Hun får 5 % rente (per år). Grete lar pengene stå urørt i banken i 5 år. DEL 1 Oppgave 1 a) Grete setter 10 000 kr i banken. Hun får % rente (per år). Grete lar pengene stå urørt i banken i år. 1) Hvor mange penger har Grete i banken etter ett år? Grete vil prøve å regne ut

Detaljer