Hypotesetesting: Prinsipper. Frode Svartdal UiTø Januar 2014 Frode Svartdal

Størrelse: px
Begynne med side:

Download "Hypotesetesting: Prinsipper. Frode Svartdal UiTø Januar 2014 Frode Svartdal"

Transkript

1 Hypotesetesting: Prinsipper Frode Svartdal UiTø Januar 2014 Frode Svartdal

2 Alt dette er mat for hypotesetesting! Utgangspunkt En antakelse begrunnet i teori Dissonansteori: Hvis, så. En vanlig oppfatning Belønning øker prestasjon Noe vi tror er feil Læring kan bare skje hvis vi forstår læringsbetingelsene Motstridende funn a) Forventning om belønning øker motivasjon vs. b) Forventning om belønning reduserer motivasjon

3 Utgangspunkt II Ikke veldig interessant. Alle vet dette! Hypotesen må ha interesse! Belønning øker motivasjon Noen ganger vil belønning redusere motivasjon Interessant!

4 Hypotesetesting: Generelt Hvordan testes hypoteser? Formulere en testbar påstand (f.eks. en implikasjon fra en teori) Gjennomføre en relevant undersøkelse (eksperiment, observasjon, ) Avgjøre om resultatet støtter hypotesen Statistisk Innholdsmessig

5 Eksempel: Dissonansteori (Festinger) Dissonans = ubehagelig aktivering som følge av konflikt Eksempel: Jeg røyker Jeg vet at det er farlig å røyke Dissonans

6 Dissonansteori: Festinger A Lesson In Cognitive Dissonance

7 Eksempel: Dissonansteori Festinger & Carlsmith, 1959 Utfører kjedelig oppgave i en time Får betalt lite vs. mye Sier til nestemann at oppgaven var artig (dvs. lyve) Mening om oppgaven måles

8 Eksempel: Dissonansteori Festinger & Carlsmith, 1958 Dissonans-betingelse: (a) Du utfører kjedelig oppgave i en time (b) Du får lite betalt Dissonans (c) Din mening om jobben måles Hypotese?

9 Eksempel: Dissonansteori Festinger & Carlsmith, 1958 Dissonans-betingelse: (a) Du utfører kjedelig oppgave i en time (b) Du får bra betalt (c) Din mening om jobben måles Hypotese? Ikke dissonans

10 Festinger & Carlsmith, 1958 Oppfatning av oppgaven Ikke dissonans Dissonans Oppfatning av oppgaven korrigert for effekten av dissonans

11 Hypotesetesting Design og prosedyre OK: Fp-er er tilfeldig fordelt i gruppene (dvs. variasjon mellom fp-er er ikke systematisk relatert til manipulasjonen) eksperimentsituasjonen er den samme for alle prosedyren er den samme for alle

12 Hypotesetesting: Statistisk R HØY-gruppe LAV-gruppe Uavhengig variabel Høy betaling: FP mottar 100 kr Lav betaling: FP mottar 10 kr Avhengig variabel Vurdering av oppgaven ( ): -0,1 Vurdering av oppgaven ( ): 1,4

13 Hypotesetesting: Statistisk Uavhengig variabel Avhengig variabel Eksperimentgruppe Høy betaling Snittskåre: -0,1 R Kontrollgruppe Lav betaling Snittskåre: 1,4 Ingen forskjell Tid Ingen forskjell?

14 Hypotesetesting: Statistisk Eksempel: Eksperiment med to grupper Nullhypotesen: Utvalgene kommer fra samme populasjon. Vi sjekker: Hvor sannsynlig er det at den observerte forskjellen mellom utvalgene kan oppstå, gitt at utvalgene kommer fra samme populasjon? Forskningshypotesen: Utvalgene kommer ikke fra samme populasjon.

15 Hypotesetesting: Statistisk Hvis den observerte forskjellen er svært usannsynlig, forkaster vi 0-hypotesen Grense: 5 av 100 tilfeller (0,05) Avvisning av 0-hypotesen innebærer en indirekte aksept av forskningshypotesen Forskningshypotesen bevises IKKE

16 Hypotesetesting: Statistisk Statistisk konklusjons-validitet: Er konklusjonen vi trekker fra utvalget holdbar? Trusler: Lav power: Vi oppdager ikke en mulig effekt. Typisk årsak: for få deltakere Brudd på statistiske forutsetninger Fisking i data: Vi leter etter effekter Lite reliable mål Lite reliable prosedyrer

17 Hypotesetesting: Statistisk Eksperimentgr. mean = -0,1 Kontrollgr. mean = 1,4 Hvordan kan man avgjøre om den observerte forskjellen, er så stor at vi må forkaste 0-hypotesen? Statistisk test som sammenligner to gruppegjennomsnitt t-test: Hvor stor er variasjonen mellom gruppene (gruppeforskjell)? Hvor stor er variasjonen innen gruppene? Hvor mange deltakere har vi i hver gruppe?

18 Hypotesetesting: Statistisk Populasjon Randomisert utvelgelse Generalisering YTRE VALIDITET Utvalg Randomisert fordeling Eksp.gr. Kontr.gr. Resultat INDRE VALIDITET Funn

19 Hypotesetesting: Innholdsmessig Er hypotesen rimelig? Er operasjonaliseringene av variablene rimelige? Høy = 100 kr Lav = 10 kr Er oppgaven som blir utført faktisk kjedelig? Er undersøkelsen gjennomført på en betryggende måte (design)? Er det nok med bare 2 nivåer av UV (100 vs. 10)? Hva med en kontrollgruppe som ikke får betalt? Foreligger det trusler mot vår slutning om effekt (confounding variabler)? Viktig!! Har vi kontroll over relevante variabler? Er deltakere tilfeldig fordelt til grupper (randomisering)? Kritisk for eksperimenter!!! Finnes det alternative fortolkninger av funnet????

20 Hypotesetesting Mao: Selv om vi får støtte for vår hypotese statistisk, betyr ikke dette automatisk at hypotesen støttes teoretisk Statistisk hypotesetesting: Mekanisk prosess Teoretisk hypotesetesting: Kompleks slutning

21 Dataanalyse Beskrive en variabel (et sett av skårer) Eksempel: Gjennomsnitt Beskrive relasjoner mellom to variabler Eksempel: Korrelasjon (r) Beskrive relasjoner mellom flere sett av skårer (konsistens) Cronbachs alfa Bestemme om to gruppegjennomsnitt er signifikant forskjellige Eksempel: T-test Bestemme om flere gruppegjennomsnitt er signifikant forskjellige Eksempel: Variansanalyse

22 Hypotesetesting: p og effektstørrelse To viktige aspekter ved et funn: Signifikans: Hvor reliabelt er funnet? Hvis vi gjentar undersøkelsen, vil vi få samme utfall? Effektstørrelse: Hvor stor effekt snakker vi om? Er (et signifikant) utfall praktisk/teoretisk interessant?

23 Hypotesetesting: p og effektstørrelse Signifikans Hvor reliabelt er funnet? Jo svakere et funn er, desto flere deltakere trengs for å påvise det som signifikant Ikke nødvendigvis noen styrke ved en undersøkelse at man har mange deltakere Aspirin redusert risiko for hjerteinfarkt deltakere trengs for å påvise effekten Mørketid vinterdepresjon deltakere

24 Hypotesetesting: p og effektstørrelse Effektstørrelse Cohen: The degree to which a phenomenon exists. Hvor sterkt slår effekten ut? Hvor sterk er sammenhengen? Signifikans (p) sier ikke nødvendigvis så mye om styrke Samme effektstørrelse kan bety ulike ting i ulike kontekster: Redusert fart: Nesten null betydning for den enkelte; 15 menneskeliv spart i løpet av et år i Norge

25 Hypotesetesting: Falsifikasjon To utfall mulig: Vi aksepterer 0-hypotesen ( gruppene kommer fra samme populasjon ) forskningshypotesen forkastes Vi forkaster 0-hypotesen ( gruppene kommer ikke fra samme populasjon ) forskningshypotesen støttes

26 Hypotesetesting Wason (1977): Falsifiserende vs. bekreftende strategi i hypotesetesting Bekreftende evidens er forenlig med et stort antall hypoteser eller teorier Falsifiserende evidens vil utelukke i alle fall noen hypoteser Dvs.: Falsifiserende evidens er ofte mer informativ om verden enn bekreftende evidens

27 Hypotesetesting Faktisk Vår beslutning Aktivering fører til bedre læring Aktivering fører ikke til bedre læring Aktivering fører faktisk ikke til bedre læring Type 1-feil Vi forkaster 0-hypotesen når vi egentlig skulle beholdt den OK Aktivering fører faktisk til bedre læring OK Type 2-feil Vi aksepterer 0-hypotesen når vi egentlig skulle forkastet den

28 Hypotesetesting Type 1-feil Vi har vært for snille akseptert noe vi egentlig skulle forkastet Løsning: Skjerp kravet til hva som aksepteres (p = ). Alfanivå Problem: Vi kan bli for strenge, slik at vi øker sjansen for Type 2-feil

29 Hypotesetesting Type 2-feil Vi har vært for strenge forkastet noe vi egentlig skulle akseptert Løsning: Øk power i undersøkelsen gjør det mer sannsynlig at vi vil oppdage en effekt hvis den er der (i praksis: øk antall deltakere)

30 Hypotesetesting i praksis Faktisk Dommeren: Uskyldig Skyldig Tiltalte er skyldig Type 1-feil Forkaster 0-hypotesen når hun egentlig skulle beholdt den JUSTISMORD Tiltalte er ikke skyldig OK Type 2-feil Aksepterer 0-hypotesen når hun egentlig skulle forkastet den OK

31 Hypotesetesting i praksis Faktisk Frisk Kreft Legen: Du har kreft Du er frisk Type 1-feil Forkaster 0-hypotesen når hun egentlig skulle beholdt den IKKE SÅ FARLIG OK OK Type 2-feil Aksepterer 0-hypotesen når hun egentlig skulle forkastet den KATASTROFE

Eksperimentelle design

Eksperimentelle design Eksperimentelle design Frode Svartdal UiTø April 2015 Frode Svartdal Eksperimentelle design Design = plan for en undersøkelse, her eksperiment Eksperimenter har som hensikt å dokumentere at variabler har

Detaljer

Oppsummering & spørsmål 20. april Frode Svartdal

Oppsummering & spørsmål 20. april Frode Svartdal Oppsummering & spørsmål 20. april 2016 Frode Svartdal Nullhypotese og sånt 119 deltakere Folk som svarer på en test for prokrastinering 40 Histogram of IPS 35 30 25 No of obs 20 15 10 5 0 0.5 1.0 1.5 2.0

Detaljer

Statistikk & dataanalyse: Et eksempel. Frode Svartdal UiT mars 2015

Statistikk & dataanalyse: Et eksempel. Frode Svartdal UiT mars 2015 Statistikk & dataanalyse: Et eksempel Frode Svartdal UiT mars 2015 Eksempel UTGANGSPUNKT Vi antar at den som prokrastinerer (utsetter ting) drøyer med alt mulig som skal gjøres, eksempelvis Venter med

Detaljer

Statistikk & dataanalyse: Et eksempel. Frode Svartdal UiT april 2016

Statistikk & dataanalyse: Et eksempel. Frode Svartdal UiT april 2016 Statistikk & dataanalyse: Et eksempel Frode Svartdal UiT april 2016 Eksempel UTGANGSPUNKT Vi antar at den som prokrastinerer (utsetter ting) drøyer med alt mulig som skal gjøres, eksempelvis Venter med

Detaljer

Innhold. Del 1 Grunnleggende begreper og prinsipper... 39

Innhold. Del 1 Grunnleggende begreper og prinsipper... 39 Innhold Kapittel 1 Vitenskap: grunnleggende antakelser... 13 Hva er vitenskap?... 14 Psykologi som vitenskap: tre tradisjoner... 17 Forutsetninger vitenskap bygger på... 21 Siktemål med forsk ning... 22

Detaljer

Forskningsmetoder i menneske-maskin interaksjon

Forskningsmetoder i menneske-maskin interaksjon Forskningsmetoder i menneske-maskin interaksjon Kapittel 2- Eksperimentell forskning Oversikt Typer atferdsforskning Forskningshypoteser Grunnleggende om eksperimentell forskning Signifikanstesting Begrensninger

Detaljer

Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/

Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/ Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator

Detaljer

PSY 1002 Statistikk og metode. Frode Svartdal April 2016

PSY 1002 Statistikk og metode. Frode Svartdal April 2016 PSY 1002 Statistikk og metode Frode Svartdal April 2016 GANGEN I HYPOTESETESTING 1. Formuler en hypotese «Man får bedre karakterer hvis man leser pensum» 2. Formuler motstykket, nullhypotesen H 0 «Man

Detaljer

6.2 Signifikanstester

6.2 Signifikanstester 6.2 Signifikanstester Konfidensintervaller er nyttige når vi ønsker å estimere en populasjonsparameter Signifikanstester er nyttige dersom vi ønsker å teste en hypotese om en parameter i en populasjon

Detaljer

Forskningsmetoder. Måling, målefeil. Frode Svartdal. UiTø V-2011. Frode Svartdal 26.01.2011 FRODE SVARTDAL 1

Forskningsmetoder. Måling, målefeil. Frode Svartdal. UiTø V-2011. Frode Svartdal 26.01.2011 FRODE SVARTDAL 1 Forskningsmetoder Måling, målefeil Frode Svartdal UiTø V-2011 Frode Svartdal 26.01.2011 FRODE SVARTDAL 1 Variabler Variabel noe (av psykologisk interesse) som varierer Motsatt: Konstant Eksempler: Kjønn,

Detaljer

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

Forskningsmetoder. Data: Måling og målefeil. Frode Svartdal. UiTø 16.01.2014 FRODE SVARTDAL 1 V-2014. Frode Svartdal

Forskningsmetoder. Data: Måling og målefeil. Frode Svartdal. UiTø 16.01.2014 FRODE SVARTDAL 1 V-2014. Frode Svartdal Forskningsmetoder Data: Måling og målefeil Frode Svartdal UiTø V-2014 Frode Svartdal 16.01.2014 FRODE SVARTDAL 1 Variabler Variabel noe (av psykologisk interesse) som varierer Motsatt: Konstant Eksempler:

Detaljer

STUDIEÅRET 2013/2014. Individuell skriftlig eksamen. VTM 200- Vitenskapsteori og metode. Fredag 25. april 2014 kl. 10.00-12.00.

STUDIEÅRET 2013/2014. Individuell skriftlig eksamen. VTM 200- Vitenskapsteori og metode. Fredag 25. april 2014 kl. 10.00-12.00. STUDIEÅRET 2013/2014 Individuell skriftlig eksamen i VTM 200- Vitenskapsteori og metode Fredag 25. april 2014 kl. 10.00-12.00 Hjelpemidler: ingen Eksamensoppgaven består av 5 sider inkludert forsiden Sensurfrist:

Detaljer

EKSAMEN I PSY1001/PSY1011/PSYPRO4111/ PSYKOLOGIENS METODOLOGI HØSTEN 2012 BOKMÅL

EKSAMEN I PSY1001/PSY1011/PSYPRO4111/ PSYKOLOGIENS METODOLOGI HØSTEN 2012 BOKMÅL NTNU Fakultet for samfunnsvitenskap og teknologiledelse Psykologisk institutt EKSAMEN I PSY1001/PSY1011/PSYPRO4111/ PSYKOLOGIENS METODOLOGI HØSTEN 2012 DATO: 14.01.2012 Studiepoeng: 7,5 Sidetall bokmål

Detaljer

STUDIEÅRET 2014/2015. Individuell skriftlig eksamen. VTM 200- Vitenskapsteori og metode. Mandag 13. april 2015 kl. 10.00-12.00.

STUDIEÅRET 2014/2015. Individuell skriftlig eksamen. VTM 200- Vitenskapsteori og metode. Mandag 13. april 2015 kl. 10.00-12.00. STUDIEÅRET 2014/2015 Individuell skriftlig eksamen i VTM 200- Vitenskapsteori og metode Mandag 13. april 2015 kl. 10.00-12.00 Hjelpemidler: ingen Eksamensoppgaven består av 5 sider inkludert forsiden Sensurfrist:

Detaljer

Effektstørrelse. Tabell 1. Kritiske verdier for Pearson s produkt-moment-korrelasjon med 5% og 1% signifikansnivå. N 5% 1% N 5% 1%

Effektstørrelse. Tabell 1. Kritiske verdier for Pearson s produkt-moment-korrelasjon med 5% og 1% signifikansnivå. N 5% 1% N 5% 1% Thor Arnfinn Kleven Institutt for pedagogikk 19.09.2013 Effektstørrelse Tradisjonelt har signifikanstesting vært fremhevet som den viktigste statistiske analyseformen i pedagogisk og psykologisk forskning.

Detaljer

2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger.

2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger. H12 - Semesteroppgave i statistikk - sensurveiledning Del 1 - teori 1. Gjør rede for resonnementet bak ANOVA. Enveis ANOVA tester om det er forskjeller mellom gjennomsnittene i tre eller flere populasjoner.

Detaljer

Slutninger fra data FRODE SVARTDAL UIT 2015

Slutninger fra data FRODE SVARTDAL UIT 2015 Slutninger fra data FRODE SVARTDAL UIT 2015 Tre viktige sider 1) Verifikasjon Hvordan man sikrer seg at funn er holdbare 2) Generalisering I hvilken grad gjelder et funn ut over den situasjon der funnet

Detaljer

STUDIEÅRET 2014/2015. Utsatt individuell skriftlig eksamen. VTM 200- Vitenskapsteori og metode. Tirsdag 25. august 2015 kl. 10.00-12.00.

STUDIEÅRET 2014/2015. Utsatt individuell skriftlig eksamen. VTM 200- Vitenskapsteori og metode. Tirsdag 25. august 2015 kl. 10.00-12.00. STUDIEÅRET 2014/2015 Utsatt individuell skriftlig eksamen i VTM 200- Vitenskapsteori og metode Tirsdag 25. august 2015 kl. 10.00-12.00 Hjelpemidler: ingen Eksamensoppgaven består av 5 sider inkludert forsiden

Detaljer

Fra idé til publikasjon

Fra idé til publikasjon Forskningsprosessen Fra idé til publikasjon Frode Svartdal UiTø Januar 2014 Frode Svartdal 16.01.2014 FRODE SVARTDAL 1 Forskningsprosessen 16.01.2014 FRODE SVARTDAL 2 De skritt man tar for å sikre at påstander

Detaljer

FORSKNINGSMETODE NOEN GRUNNLEGGENDE KONSEPTER

FORSKNINGSMETODE NOEN GRUNNLEGGENDE KONSEPTER INF1500 H 2015 Magnus Li NOEN GRUNNLEGGENDE KONSEPTER VITENSKAPELIG METODE Hva? - Som vi har sett har mennesket en persepsjon som er gjennstand for subjektivitet og snarveier. For å kunne finne ut hva

Detaljer

Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder

Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Psykologisk institutt Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Faglig kontakt under eksamen: Eva Langvik Tlf.: Psykologisk institutt 73591960 Eksamensdato: 21.5.2013

Detaljer

Eksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi

Eksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi Psykologisk institutt Eksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi Faglig kontakt under eksamen: Eva Langvik Tlf.: 73 59 19 60 Eksamensdato: 22.05.2015 Eksamenstid (fra-til): 09:00 13:00

Detaljer

Definisjoner av begreper Eks.: interesse for politikk

Definisjoner av begreper Eks.: interesse for politikk Måling SOS1120 Kvantitativ metode Forelesningsnotater 5. forelesning høsten 2005 Per Arne Tufte Måling er å knytte teoretiske begreper til empiriske indikatorer Operasjonell definisjon Angir hvordan et

Detaljer

Kapittel 10: Hypotesetesting

Kapittel 10: Hypotesetesting Kapittel 10: Hypotesetesting TMA445 Statistikk 10.1, 10., 10.3: Introduksjon, 10.5, 10.6, 10.7: Test for µ i normalfordeling, 10.4: p-verdi Turid.Follestad@math.ntnu.no p.1/19 Estimering og hypotesetesting

Detaljer

1 10-2: Korrelasjon. 2 10-3: Regresjon

1 10-2: Korrelasjon. 2 10-3: Regresjon 1 10-2: Korrelasjon 2 10-3: Regresjon Example Krysser y-aksen i 1: b 0 = 1 Stiger med 2 hver gang x øker med 1: b 1 = 2 Formelen til linja er derfor y = 1 + 2x Eksempel Example Vi lar fem personer se en

Detaljer

Eksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi

Eksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi Psykologisk institutt Eksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi Faglig kontakt under eksamen: Ingvild Saksvik-Lehouillier Tlf.: 73 59 19 60 Eksamensdato: 30. mai 2016 Eksamenstid (fra-til):

Detaljer

Kapittel 9 og 10: Hypotesetesting

Kapittel 9 og 10: Hypotesetesting Kapittel 9 og 1: ypotesetesting ypotesetesting er en standard vitenskapelig fremgangsmåte for å sjekke påstander. Generell problemstilling: Basert på informasjonen i data fra et tilfeldig utvalg ønsker

Detaljer

Eksamensoppgave i PSY1011/4111 Psykologiens metodologi

Eksamensoppgave i PSY1011/4111 Psykologiens metodologi Psykologisk institutt Eksamensoppgave i PSY1011/4111 Psykologiens metodologi Faglig kontakt under eksamen: Eva Langvik Tlf.: 73 59 19 60 Eksamensdato: 11. desember 2015 Eksamenstid (fra-til): 09:00-13:00

Detaljer

Krysstabellanalyse (forts.) SOS1120 Kvantitativ metode. 4. Statistisk generalisering. Forelesningsnotater 9. forelesning høsten 2005.

Krysstabellanalyse (forts.) SOS1120 Kvantitativ metode. 4. Statistisk generalisering. Forelesningsnotater 9. forelesning høsten 2005. SOS112 Kvantitativ metode Krysstabellanalyse (forts.) Forelesningsnotater 9. forelesning høsten 25 4. Statistisk generalisering Per Arne Tufte Eksempel: Hypoteser Eksempel: observerte frekvenser (O) Hvordan

Detaljer

Komplekse intervensjoner Metodiske utfordringer. Liv Wensaas PhD, RN, Leder for FOU enheten Helse og omsorg Asker kommune

Komplekse intervensjoner Metodiske utfordringer. Liv Wensaas PhD, RN, Leder for FOU enheten Helse og omsorg Asker kommune Komplekse intervensjoner Metodiske utfordringer Liv Wensaas PhD, RN, Leder for FOU enheten Helse og omsorg Asker kommune DISPOSISJON Intervensjonsforskning og helsefag Komplekse intervensjoner Metodiske

Detaljer

Prosjektbeskrivelsen består av

Prosjektbeskrivelsen består av Kvantitative hovedoppgaver: prosjektbeskrivelsen og litt om metode Knut Inge Fostervold Prosjektbeskrivelsen består av Vitenskapelig bakgrunn og problemformulering (ca 2 sider) Design og metode (ca 2-3

Detaljer

1 9-3: Sammenligne gjennomsnitt for to uavhengige stikkprøver. 2 9-4: Sammenligne gjennomsnitt for to relaterte stikkprøver

1 9-3: Sammenligne gjennomsnitt for to uavhengige stikkprøver. 2 9-4: Sammenligne gjennomsnitt for to relaterte stikkprøver 1 9-3: Sammenligne gjennomsnitt for to uavhengige stikkprøver 2 9-4: Sammenligne gjennomsnitt for to relaterte stikkprøver 3 Oppvarming til kap 10: Rette linjer Sammenligne to populasjoner Data fra to

Detaljer

Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio)

Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio) Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio) Beskrive fordelinger (sentraltendens, variasjon og form): Observasjon y i Sentraltendens

Detaljer

Prosjektbeskrivelsen består av

Prosjektbeskrivelsen består av Kvantitative hovedoppgaver: prosjektbeskrivelsen og litt om metode og utforming Knut Inge Fostervold Prosjektbeskrivelsen består av Vitenskapelig bakgrunn og problemformulering (ca 2 sider) Design og metode

Detaljer

Forelesning 10 Kjikvadrattesten

Forelesning 10 Kjikvadrattesten verdier Forelesning 10 Kjikvadrattesten To typer av statistisk generalisering: Statistisk hypotesetesting Statistiske hypoteser (H 0 og H 1 ) om populasjonen Finner forkastningsområdet for H 0 ut fra en

Detaljer

I dag. Problemstilling. 2. Design og begreper. MEVIT januar Tanja Storsul

I dag. Problemstilling. 2. Design og begreper. MEVIT januar Tanja Storsul 2. Design og begreper MEVIT 2800 24. januar 2012 Tanja Storsul I dag Problemstilling Forskningsdesign Enheter, variabler, verdier Reliabilitet og validitet Univers, utvalg og generalisering Kvalitative

Detaljer

STUDIEÅRET 2012/2013. Utsatt individuell skriftlig eksamen. VTM 200- Vitenskapsteori og metode. Tirsdag 27. august 2013 kl

STUDIEÅRET 2012/2013. Utsatt individuell skriftlig eksamen. VTM 200- Vitenskapsteori og metode. Tirsdag 27. august 2013 kl STUDIEÅRET 2012/2013 Utsatt individuell skriftlig eksamen i VTM 200- Vitenskapsteori og metode Tirsdag 27. august 2013 kl. 10.00-12.00 Hjelpemidler: ingen Eksamensoppgaven består av 5 sider inkludert forsiden

Detaljer

Sammenlikninger av gjennomsnitt. SOS1120 Kvantitativ metode. Kan besvare to spørsmål: Sammenlikning av to gjennomsnitt

Sammenlikninger av gjennomsnitt. SOS1120 Kvantitativ metode. Kan besvare to spørsmål: Sammenlikning av to gjennomsnitt SOS1120 Kvantitativ metode Forelesningsnotater 10. forelesning høsten 2005 Per Arne Tufte Sammenlikninger av gjennomsnitt Sammenlikner gjennomsnittet på avhengig variabel for ulike grupper av enheter Kan

Detaljer

Introduction to the Practice of Statistics

Introduction to the Practice of Statistics David S. Moore George P. McCabe Introduction to the Practice of Statistics Fifth Edition Chapter 3: Producing Data Copyright 2005 by W. H. Freeman and Company Produsere data Kap 1: Utforske gitte data

Detaljer

3. Multidimensjonale tabeller. SOS1120 Kvantitativ metode. Årsaksmodeller. Forelesningsnotater 8. forelesning høsten 2005

3. Multidimensjonale tabeller. SOS1120 Kvantitativ metode. Årsaksmodeller. Forelesningsnotater 8. forelesning høsten 2005 SOS1120 Kvantitativ metode 3. Multidimensjonale tabeller Forelesningsnotater 8. forelesning høsten 2005 Per Arne Tufte Hva skjer når vi inkluderer flere uavhengige variabler i en tabellanalyse? Årsaksmodeller

Detaljer

Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 2013. Skrevet av Stian Lydersen 16 januar 2013

Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 2013. Skrevet av Stian Lydersen 16 januar 2013 1 Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 013. Skrevet av Stian Lydersen 16 januar 013 Vi antar at vårt utvalg er et tilfeldig og representativt utvalg for

Detaljer

Eksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi

Eksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi Psykologisk institutt Eksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi Faglig kontakt under eksamen: Eva Langvik Tlf.: 73 59 19 60 Eksamensdato: 08.12.2014 Eksamenstid (fra-til): 09:00 13:00

Detaljer

Forelesning 23 og 24 Wilcoxon test, Bivariate Normal fordeling

Forelesning 23 og 24 Wilcoxon test, Bivariate Normal fordeling Forelesning 23 og 24 Wilcoxon test, Bivariate Normal fordeling Wilcoxon Signed-Rank Test I uke, bruker vi Z test eller t-test for hypotesen H:, og begge tester er basert på forutsetningen om normalfordeling

Detaljer

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger Intro til hypotesetesting Analyse av kontinuerlige data 21. april 2005 Tron Anders Moger Seksjon for medisinsk statistikk, UIO 1 Repetisjon fra i går: Normalfordelingen Variasjon i målinger kan ofte beskrives

Detaljer

2. Forskningsdesign og sentrale begreper. I dag. Forskningsdesign: Valg i forskningsprosessen. MEVIT 2800 25. januar 2011.

2. Forskningsdesign og sentrale begreper. I dag. Forskningsdesign: Valg i forskningsprosessen. MEVIT 2800 25. januar 2011. 2. Forskningsdesign og sentrale begreper MEVIT 2800 25. januar 2011 Tanja Storsul I dag Forskningsdesign Enheter, variabler, verdier Reliabilitet og validitet Univers, utvalg og generalisering Kvalitative

Detaljer

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Analysere en observator for å finne ut noe om korresponderende

Detaljer

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Å analysere en utvalgsobservator for å trekke slutninger

Detaljer

Tema Kvalitativ og kvantitativ forskningsmetode. Forskningsmetode. Kausalitet. Reliabilitet og validitet. Usikkerhet. IA mandag 5/9-2014

Tema Kvalitativ og kvantitativ forskningsmetode. Forskningsmetode. Kausalitet. Reliabilitet og validitet. Usikkerhet. IA mandag 5/9-2014 Kvalitativ og kvantitativ forskningsmetode IA mandag 5/9-2014 Johan Håkon Bjørngaard, Professor Institutt for samfunnsmedisin johan.h.bjorngaard@ntnu.no Name, title of the presentation Forskningsmetode

Detaljer

Regional forskingskonferanse for Psykiatri og rusfeltet Vår 2013. Olav M. Linaker PH, St. Olavs Hospital/INM, NTNU

Regional forskingskonferanse for Psykiatri og rusfeltet Vår 2013. Olav M. Linaker PH, St. Olavs Hospital/INM, NTNU Regional forskingskonferanse for Psykiatri og rusfeltet Vår 2013 Olav M. Linaker PH, St. Olavs Hospital/INM, NTNU Effektiv forskning Dette møtet skal handle om å gjøre forskningsarbeidet vårt effektivt

Detaljer

Grunnleggende statistikk. Eva Denison 25. Mai 2016

Grunnleggende statistikk. Eva Denison 25. Mai 2016 Grunnleggende statistikk Eva Denison 25. Mai 2016 Agenda Hva er statistikk, og hvorfor trenger vi det? Beskrivende statistikk Statistisk analyse Meta-analyse Hva er statistikk? En måte å kvantitativt beskrive

Detaljer

Sensorveiledning SOS1120 vår

Sensorveiledning SOS1120 vår Sensorveiledning SOS1120 vår 2003 1 Oppgave 1: a) MÅL: Test av evne til å vurdere samsvaret (validiteten) mellom en operasjonell definisjon og en teoretisk variabel. Spørsmålet måler et sentralt aspekt

Detaljer

Oppgaver til Studentveiledning 3 MET 3431 Statistikk

Oppgaver til Studentveiledning 3 MET 3431 Statistikk Oppgaver til Studentveiledning 3 MET 3431 Statistikk 24. april 2012 kl 17.15-20.15 i B2 Handelshøyskolen BI 2 Oppgaver 1. Eksamensoppgaver: Eksamen 01/06/2011: Oppgave 1-7. Eksamensoppgaven fra 06/2011

Detaljer

Kurs i kunnskapshåndtering å finne, vurdere, bruke og formidle forskningsbasert kunnskap i praksis. Hege Kornør og Ida-Kristin Ørjasæter Elvsaas

Kurs i kunnskapshåndtering å finne, vurdere, bruke og formidle forskningsbasert kunnskap i praksis. Hege Kornør og Ida-Kristin Ørjasæter Elvsaas Kurs i kunnskapshåndtering å finne, vurdere, bruke og formidle forskningsbasert kunnskap i praksis 16.mars 2007 Hege Kornør og Ida-Kristin Ørjasæter Elvsaas Nasjonalt kunnskapssenter for helsetjenesten

Detaljer

Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

Vurdering av kvaliteten på undersøkelser om virkninger av trafikksikkerhetstiltak

Vurdering av kvaliteten på undersøkelser om virkninger av trafikksikkerhetstiltak Sammendrag: Vurdering av kvaliteten på undersøkelser om virkninger av trafikksikkerhetstiltak TØI-rapport 984/2008 Forfatter(e): Rune Elvik Oslo 2008, 140 sider Denne rapporten presenterer en undersøkelse

Detaljer

Mer om hypotesetesting

Mer om hypotesetesting Mer om hypotesetesting I underkapittel 36 i læreboka gir vi en kort innføring i tankegangen ved hypotesetesting Vi gir her en grundigere framstilling av temaet Problemstilling Vi forklarer problemstillingen

Detaljer

Econ 2130 uke 16 (HG)

Econ 2130 uke 16 (HG) Econ 213 uke 16 (HG) Hypotesetesting I Løvås: 6.4.1 6, 6.5.1-2 1 Testing av µ i uid modellen (situasjon I Z-test ). Grunnbegreper. Eksempel. En lege står overfor følgende problemstilling. Standardbehandling

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere

Detaljer

1 8-1: Oversikt. 2 8-2: Grunnleggende hypotesetesting. 3 Section 8-3: Å teste påstander om andeler. 4 Section 8-5: Teste en påstand om gjennomsnittet

1 8-1: Oversikt. 2 8-2: Grunnleggende hypotesetesting. 3 Section 8-3: Å teste påstander om andeler. 4 Section 8-5: Teste en påstand om gjennomsnittet 1 8-1: Oversikt 2 8-2: Grunnleggende hypotesetesting 3 Section 8-3: Å teste påstander om andeler 4 Section 8-5: Teste en påstand om gjennomsnittet Definisjoner Hypotese En hypotese er en påstand om noe

Detaljer

Oppgaver til Studentveiledning 4 MET 3431 Statistikk

Oppgaver til Studentveiledning 4 MET 3431 Statistikk Oppgaver til Studentveiledning 4 MET 3431 Statistikk 8. mai 2012 kl 17.15-20.15 i B2 Handelshøyskolen BI 2 Oppgaver 1. Eksamensoppgaver: Eksamen 22/11/2011: Oppgave 1-7. Eksamensoppgaven fra 11/2011 er

Detaljer

Utvalgsstørrelse, styrke

Utvalgsstørrelse, styrke Utvalgsstørrelse, styrke Lise Lund Håheim DDS, PhD Professor II, Forskerlinjen, UiO Seniorforsker, Nasjonalt kunnskapssenter for helsetjenesten, Oslo Seniorforsker, Institutt for oral biologi, UiO Introduksjonskurset,

Detaljer

effekter av forebyggende psykisk helsearbeid i videregående skole et longitudinelt intervensjonsstudie med Solomons design Bærum DPS

effekter av forebyggende psykisk helsearbeid i videregående skole et longitudinelt intervensjonsstudie med Solomons design Bærum DPS effekter av forebyggende psykisk helsearbeid i videregående skole et longitudinelt intervensjonsstudie med Solomons design Bærum DPS foredragets oppbygning: innledning intervensjon bakgrunn/metode/design

Detaljer

Atferdseksperiment og ferdighetstrening

Atferdseksperiment og ferdighetstrening Atferdseksperiment og ferdighetstrening Innledning Atferdseksperiment, eksponeringer og ferdighetstrening er blant de mest effektive tiltak vi har. Det fordrer at de gjøres med en bevissthet og en tanke

Detaljer

Eksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi

Eksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi Psykologisk institutt Eksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi Faglig kontakt under eksamen: Ingvild Saksvik-Lehouillier Tlf.: 73 59 19 60 Eksamensdato:15. desember 2016 Eksamenstid:

Detaljer

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0 Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir

Detaljer

Tabell 1: Antallet besøkende pasienter og gjennomsnittlig ventetid i minutter (fiktive data).

Tabell 1: Antallet besøkende pasienter og gjennomsnittlig ventetid i minutter (fiktive data). Viktige modeller og begrep Når du skal lese forskningsartikler, kan det være nyttig at du kjenner navnet på noen viktige modeller og begreper. Tekst: Hugo Lewi Hammer og Ketil Gundro Bruberg I de tidligere

Detaljer

MASTER I IDRETTSVITENSKAP 2014/2016. Individuell skriftlig eksamen. STA 400- Statistikk. Fredag 13. mars 2015 kl. 10.00-12.00

MASTER I IDRETTSVITENSKAP 2014/2016. Individuell skriftlig eksamen. STA 400- Statistikk. Fredag 13. mars 2015 kl. 10.00-12.00 MASTER I IDRETTSVITENSKAP 2014/2016 Individuell skriftlig eksamen i STA 400- Statistikk Fredag 13. mars 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator Eksamensoppgaven består av 10 sider inkludert forsiden

Detaljer

(b) På slutten av dagen legger sekretæren inn all innsamlet informasjon i en ny JMP datafil. Hvor mange rader og søyler(kolonner) har datafila?

(b) På slutten av dagen legger sekretæren inn all innsamlet informasjon i en ny JMP datafil. Hvor mange rader og søyler(kolonner) har datafila? Institutt for samfunnsøkonomi Skriftlig eksamen i: MET 34311 Statistikk Eksamensdato: 01.06.11, kl. 09.00-14.00 Tillatte hjelpemidler: Alle + BI-definert eksamenskalkulator : TEXAS INTRUMENTS BA II Plus

Detaljer

Om betydningen av offentlig informasjon om behandlingsbeslutninger.

Om betydningen av offentlig informasjon om behandlingsbeslutninger. Om betydningen av offentlig informasjon om behandlingsbeslutninger. Den nasjonale helseøkonomikonferansen 2013 Solstrand Geir Godager 0: Innledning Utgangspunkt for dagens presentasjon: Laboratorieeksperiment

Detaljer

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt. Eksamen i: MET040 Statistikk for økonomer Eksamensdag: 4. juni 2008 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 5 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.

Detaljer

i x i

i x i TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 11, blokk II Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale

Detaljer

EKSAMEN I SOS1120 KVANTITATIV METODE 6. DESEMBER 2007 (4 timer)

EKSAMEN I SOS1120 KVANTITATIV METODE 6. DESEMBER 2007 (4 timer) EKSAMEN I SOS1120 KVANTITATIV METODE 6. DESEMBER 2007 (4 timer) Bruk av ikke-programmerbar kalkulator er tillatt under eksamen. Utover det er ingen hjelpemidler tillatt. Sensur faller torsdag 3. Januar

Detaljer

Kort overblikk over kurset sålangt

Kort overblikk over kurset sålangt Kort overblikk over kurset sålangt Kapittel 1: Deskriptiv statististikk for en variabel Kapittel 2: Deskriptiv statistikk for samvariasjon mellom to variable (regresjon) Kapittel 3: Metoder for å innhente

Detaljer

SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2002

SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2002 SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2002 Generell informasjon Dette er den siste eksamensoppgaven under overgangsordningen mellom gammelt og nytt pensum i SVSOS107. Eksamensoppgaven

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting. Kp. 6 Hypotesetesting ...

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting. Kp. 6 Hypotesetesting ... ÅMA Sannsynlighetsregning med statistikk, våren 6 Kp. 6 (kp. 6)... Begrep: nullhypotese alternativhypotese ensidig, tosidig teststørrelse (testobservator) nullfordeling kritisk verdi, forkastningsområde

Detaljer

Diskusjonsoppgaver Hvilke fordeler oppnår man ved analytisk evaluering sammenliknet med andre tilnærminger?

Diskusjonsoppgaver Hvilke fordeler oppnår man ved analytisk evaluering sammenliknet med andre tilnærminger? Definisjonsteori Hva er de tre hovedtilnærmingene til evaluering? Nevn de seks stegene i DECIDE. (blir gjennomgått neste uke) Gi et eksempel på en måte å gjøre indirekte observasjon. Hva ligger i begrepene

Detaljer

STUDIEÅRET 2012/2013. Individuell skriftlig eksamen. VTM 200- Vitenskapsteori og metode. Onsdag 24. april 2013 kl

STUDIEÅRET 2012/2013. Individuell skriftlig eksamen. VTM 200- Vitenskapsteori og metode. Onsdag 24. april 2013 kl STUDIEÅRET 2012/2013 Individuell skriftlig eksamen i VTM 200- Vitenskapsteori og metode Onsdag 24. april 2013 kl. 10.00-12.00 Hjelpemidler: ingen Eksamensoppgaven består av 5 sider inkludert forsiden Sensurfrist:

Detaljer

Gruppe 1 Gruppe 2 Gruppe a) Finn aritmetisk gjennomsnitt, median, modus og standardavvik for gruppe 2.

Gruppe 1 Gruppe 2 Gruppe a) Finn aritmetisk gjennomsnitt, median, modus og standardavvik for gruppe 2. Sensurveiledning Ped 3001 h12 Oppgave 1 Er det sammenheng mellom støtte fra venner og selvaktelse hos ungdom? Dette spørsmålet ønsket en forsker å undersøke. Han samlet data på 9. klassingers opplevde

Detaljer

Forskningsmetode for sykepleierutdanningene

Forskningsmetode for sykepleierutdanningene Forskningsmetode for sykepleierutdanningene Boken har mange relevante, og i hovedsak norske eksempler på sykepleieforskning og gir en introduksjon til forskningsmetode for sykepleierutdanninger. Vurdering:

Detaljer

OPPGAVEHEFTE I STK1000 TIL KAPITTEL Regneoppgaver til kapittel 7. X 1,i, X 2 = 1 n 2. D = X 1 X 2. På onsdagsforelesningen påstod jeg at da må

OPPGAVEHEFTE I STK1000 TIL KAPITTEL Regneoppgaver til kapittel 7. X 1,i, X 2 = 1 n 2. D = X 1 X 2. På onsdagsforelesningen påstod jeg at da må OPPGAVEHEFTE I STK000 TIL KAPITTEL 7 Regneoppgaver til kapittel 7 Oppgave Anta at man har resultatet av et randomisert forsøk med to grupper, og observerer fra gruppe, mens man observerer X,, X,2,, X,n

Detaljer

7.2 Sammenligning av to forventinger

7.2 Sammenligning av to forventinger 7.2 Sammenligning av to forventinger To-utvalgs z-observator To-utvalgs t-prosedyrer To-utvalgs t-tester To-utvalgs t-konfidensintervall Robusthet To-utvalgs t-prosedyrerår variansene er like Sammenlikning

Detaljer

SOS1120 Kvantitativ metode. Regresjonsanalyse. Lineær sammenheng II. Lineær sammenheng I. Forelesningsnotater 11. forelesning høsten 2005

SOS1120 Kvantitativ metode. Regresjonsanalyse. Lineær sammenheng II. Lineær sammenheng I. Forelesningsnotater 11. forelesning høsten 2005 SOS1120 Kvantitativ metode Regresjonsanalyse Forelesningsnotater 11. forelesning høsten 2005 Per Arne Tufte Lineær sammenheng I Lineær sammenheng II Ukelønn i kroner 4000 3500 3000 2500 2000 1500 1000

Detaljer

Medarbeiderundersøkelsen 2014

Medarbeiderundersøkelsen 2014 10. NOVEMBER 2014 Medarbeiderundersøkelsen 2014 Regresjonsanalyser Analyse Analysen er en måte å finne ut hvilke nærværsfaktorer i undersøkelsen som har sterkest sammenheng med resultatfaktorene Analysene

Detaljer

Hypotesetesting av λ og p. p verdi.

Hypotesetesting av λ og p. p verdi. Forelesning 7, kapittel 6 Hypotesetesting av λ og p. p verdi. Det som gjøres i denne forelesningen er nær opptil det vi gjorde da vi konstruerte z test for µ, og styrkefunksjon for denne. I tillegg til

Detaljer

3.A IKKE-STASJONARITET

3.A IKKE-STASJONARITET Norwegian Business School 3.A IKKE-STASJONARITET BST 1612 ANVENDT MAKROØKONOMI MODUL 5 Foreleser: Drago Bergholt E-post: Drago.Bergholt@bi.no 11. november 2011 OVERSIKT - Ikke-stasjonære tidsserier - Trendstasjonaritet

Detaljer

AVLSDATA FRA FØLLFESTIVALEN DEL 1 av Unn Reierstad, cand.scient (NLH/UMB), veterinær (NVH) / RR Reierstad Ridehest

AVLSDATA FRA FØLLFESTIVALEN DEL 1 av Unn Reierstad, cand.scient (NLH/UMB), veterinær (NVH) / RR Reierstad Ridehest AVLSDATA FRA FØLLFESTIVALEN DEL 1 av Unn Reierstad, cand.scient (NLH/UMB), veterinær (NVH) / RR Reierstad Ridehest MATERIALE & METODER : AVLSLÆRE For ethvert dyr er P = GEN + ENV, der P, GEN og ENV er

Detaljer

Hypotesetesting (kp. 6) ÅMA110 Sannsynlighetsregning med statistikk, våren Tre deler av faget/kurset: 1. Beskrivende statistikk

Hypotesetesting (kp. 6) ÅMA110 Sannsynlighetsregning med statistikk, våren Tre deler av faget/kurset: 1. Beskrivende statistikk ÅMA Sannsynlighetsregning med statistikk, våren 2 Kp. 6 Hypotesetesting Hypotesetesting (kp. 6) Tre deler av faget/kurset:. Beskrivende statistikk 2. Sannsynlighetsteori, sannsynlighetsregning 3. Statistisk

Detaljer

PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014

PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014 Psykologisk institutt PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014 Skriftlig skoleeksamen fredag 2. mai, 09:00 (4 timer). Kalkulator uten grafisk display og tekstlagringsfunksjon

Detaljer

Logistisk regresjon 2

Logistisk regresjon 2 Logistisk regresjon 2 SPSS Utskrift: Trivariat regresjon a KJONN UTDAAR Constant Variables in the Equation B S.E. Wald df Sig. Exp(B) -,536,3 84,56,000,25,84,08 09,956,000,202 -,469,083 35,7,000,230 a.

Detaljer

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 1 Section 4-1: Introduksjon til sannsynlighet 2 Section 4-2: Enkel sannsynlighetsregning 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 4 Section 5-2: Tilfeldige variable 5 Section 5-3: Binomisk

Detaljer

MASTER I IDRETTSVITENSKAP 2014/2016. Utsatt individuell skriftlig eksamen. STA 400- Statistikk. Mandag 24. august 2015 kl. 10.00-12.

MASTER I IDRETTSVITENSKAP 2014/2016. Utsatt individuell skriftlig eksamen. STA 400- Statistikk. Mandag 24. august 2015 kl. 10.00-12. MASTR I IDRTTSVITNSKAP 2014/2016 Utsatt individuell skriftlig eksamen i STA 400- Statistikk Mandag 24. august 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator ksamensoppgaven består av 10 sider inkludert

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting, innledning. Kp.

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting, innledning. Kp. ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. 6 Hypotesetesting Hypotesetesting (kp. 6) Tre deler av faget/kurset:. Beskrivende statistikk. Sannsynlighetsteori, sannsynlighetsregning 3. Statistisk

Detaljer

Evolusjonen - egentlig vitenskap?

Evolusjonen - egentlig vitenskap? Evolusjonen - egentlig vitenskap? Forskning vil si å bytte ut en form for uvitenhet med en annen Sannhet uforanderlig, absolutt Vitenskapelig kunnskap under stadig forandring Ingenting i naturvitenskapen

Detaljer

Fastlegenes roller og oppgaver i folkehelsearbeidet: Om motivasjons- og endringsarbeid

Fastlegenes roller og oppgaver i folkehelsearbeidet: Om motivasjons- og endringsarbeid Fastlegenes roller og oppgaver i folkehelsearbeidet: Om motivasjons- og endringsarbeid Eirik Abildsnes Ass. kommuneoverlege Kristiansand Postdoktor Universitetet i Bergen Varsleren Treffer de fleste Lav

Detaljer

Innhold. 1 Introduksjon... 17

Innhold. 1 Introduksjon... 17 Innhold 1 Introduksjon......................................... 17 Hva boken handler om........................................ 18 Et kjernepunkt: utforming av problemstilling................. 19 Nytten

Detaljer

Kunnskapsesenterets Bruk og tolkning nye PPT-mal av meta-analyser. Jan Odgaard-Jensen, statistiker

Kunnskapsesenterets Bruk og tolkning nye PPT-mal av meta-analyser. Jan Odgaard-Jensen, statistiker Kunnskapsesenterets Bruk og tolkning nye PPT-mal av meta-analyser Jan Odgaard-Jensen, statistiker Formål og innhold Grunnleggende definisjoner Hva er en meta-analyse? Hva er formål med meta-analyser Forutsetninger

Detaljer

Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder

Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Psykologisk institutt Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Faglig kontakt under eksamen: Martin Rasmussen Tlf.: 73 59 19 60 Eksamensdato: 04.06.2014 Eksamenstid

Detaljer

Kp. 13. Enveis ANOVA

Kp. 13. Enveis ANOVA -tabell Bjørn H. Auestad Kp. 13: Én-faktor eksperiment 1 / 13 Kp. 13: Én-faktor -tabell 13.1 Analysis-of-Variance Technique 13.2 The Strategy of Experimental Design 13.3 One-Way Analysis of Variance: Completely

Detaljer