Grunnleggende statistikk. Eva Denison 25. Mai 2016

Størrelse: px
Begynne med side:

Download "Grunnleggende statistikk. Eva Denison 25. Mai 2016"

Transkript

1 Grunnleggende statistikk Eva Denison 25. Mai 2016

2 Agenda Hva er statistikk, og hvorfor trenger vi det? Beskrivende statistikk Statistisk analyse Meta-analyse

3 Hva er statistikk? En måte å kvantitativt beskrive eller analysere fenomener Vi bruker tall Direkte måling Vekt, høyde, blodtrykk, blodprosent, sykelighet, dødelighet Indirekte måling Holdninger, tanker, emosjoner, helserelatert livskvalitet

4 Hvorfor trenger vi statistikk? Vi vil ha kontroll på tilfeldige feil som kan oppstå i løpet av en forskningsstudie Systematiske feil håndteres med studiedesignet!

5 Observasjonsenheter Populasjon Stikkprøve Målemetoder Studiedesign Statistisk analyse P I C O Ufall variabler Resultat

6 Beskrivende statistikk Måleskalaer Kategorisering Dikotom variabel Sykelighet Dødelighet Rangorden Intervall «Kontinuerlig» Ratio Kontinuerlig Fysiologiske funksjoner Beskrives med Antall/prosent Medianverdi Medianverdi/gjennomsnitt Gjennomsnitt

7 Sentraltendens og variasjon Gjennomsnitt Summen av alle målinger delt på antall målinger Standardavvik Det gjennomsnittlige avviket fra gjennomsnittet Viser om det er stor eller liten variasjon Måling ø [cm] Gj.snitt 54.8 St.avvik 2.62

8 Statistisk analyse Forskjell mellom grupper Mellom to/flere grupper et tidspunkt Innen samme gruppe to eller flere tidspunkt Kombinasjon av disse

9 Forskjell mellom grupper kontinuerlige variable Har personer med hypertensjon effekt av å få Pille A sammenlignet med å ikke få Pille A? Gjennomsnitt 160 mmhg Gjennomsnitt 130 mmhg Gjennomsnitt 160 mmhg Gjennomsnitt 160 mmhg Gjennomsnittsforskjell i utvalget er 30 mmhg

10 P-verdier og konfidensintervall 95 % konfidensintervall: basert på din stikkprøve er det ganske usannsynlig (5%) at populasjonen har en effekt som ligger utenfor det aktuelle intervallet P-verdi: sannsynligheten for å observere denne eller en mer ekstrem effekt i din stikkprøve gitt at nullhypotesen er rett

11 Forskjell mellom grupper kontinuerlige variable Pille A senker blodtrykket med i gjennomsnitt 30 mmhg sammenlignet med ingen pille. For å hvordan vi skal vurdere dette må vi se gjennomsnittsforskjellen opp mot variasjonen i utvalget: Stor variasjon Liten variasjon p-verdi > 0,05 <0,05 95% CI mmhg mmhg

12 Forskjell mellom grupper dikotome variable Har Pille A effekt på risiko for hjerteinfarkt hos personer med hypertensjon sammenlignet med ingen pille? 18/64 fikk hjerteinfarkt 29/65 fikk hjerteinfarkt

13 Risikobegreper Risiko Risikoforskjell (absolutt risikoreduksjon) Risikoratio Relativ risikoreduksjon Oddsratio Number needed to treat Number needed to harm Hazard ratio

14 Risiko risiko for et uheldig utfall = risiko i kontrollgruppen Hjerteinfarkt Behandling: a / (a+b) Kontroll: c / (c+d) Behandling a c b d Hjerteinfarkt Total 18 / 64 = 0.28 = 28% 29 / 65 = 0.45 = 45% Behandling

15 Risikoforskjell (absolutt risikoreduksjon) (RD, ARR) Andel pasienter som ikke får ett ugunstig utfall Hjerteinfarkt c (c+d) - a (a+b) Behandling a c b d Hjerteinfarkt Total 45% - 28% = 17% Behandling

16 Risiko ratio (RR) Andelen av den opprinnelige risikoen for hjerteinfarkt (uten behandling) som fortsatt finnes når pasienter får behandling (Pille A) Hjerteinfarkt Risiko ratio = a / (a+b) c / (c+d) Behandling a c b d Hjerteinfarkt Total Risiko ratio = 18 / / 65 = 0.63 Behandling

17 Relativ risikoreduksjon (RRR) Andelen av den opprinnelige risikoen som forsvinner som følge av behandling Hjerteinfarkt Relativ risikoreduksjon = 1 relativ risiko Behandling a c b d Hjerteinfarkt Total Relativ risikoreduksjon = = 0.37 Behandling

18 Oddsratio (OR) Andelen av den opprinnelige oddsen for hjerteinfarkt (uten behandling) som fortsatt finnes når pasienter får behandling (Pille A) Hjerteinfarkt Oddsratio = a / b c / d Behandling a c b d Hjerteinfarkt Total Oddsratio 18 / 46 = = / 36 Behandling

19 Number needed to treat (NNT) Antall pasienter som må behandles for å forhindre et ugunstig utfall NNT = 100 / risikoforskjell (uttrykt i %) NNT = 100 / 17 = 6 Number needed to harm (NNH) Antall pasienter som må behandles for å få et ugunstig utfall Dersom det forventes at 5 av 100 (5%) pasienter vil oppleve tretthet av en viss medisin i et visst tidsrom, trengs behandling av 20 pasienter for at 1 (5%) skal oppleve tretthet Hazard ratio Veid gjennomsnitt av RR for ulike tidspunkter i løpet av en oppfølgingsperiode

20 Meta-analyse En sammenstilling av resultater fra flere tidligere studier. Summerer tidligere forskning om et fenomen Gir en bedre og sikrere helhetsbilde over forskningen

21 Meta-analyse Effektmål i meta-analyse For kontinuerlige data Mean difference (MD) Standardized mean difference (SMD) For dikotome data Risiko ratio (RR) Risikoforskjell (RD, ARR) Odds ratio (OR) Alle med 95 % konfidensintervall

22 Meta-analyse Forest plot kontinuerlige data Forest plot dikotome data

23 a) Hver enkeltstudie estimerte relativ risiko for den aktuelle populasjonen b) Meta-analysen kombinerte resultatene av sju enkeltstudier c) Den totale relative risikoen var mer presis enn noen av enkeltstudiene hver for seg d) Resultatene av meta-analysen kan generaliseres til en bredere populasjon enn noen av enkeltstudiene hver for seg

24 Statistikk er et verktøy som hjelper deg med å vurdere betydningen av tilfeldige feil, men må brukes riktig signifikans er ikke ensbetydende med at tilfeldige feilkilder ikke påvirker resultatet p-verdier og konfidensintervall er blinde for systematiske feilkilder

Sta$s$kk En måte å beskrive og analysere fenomener kvan$ta$vt Eva Denison

Sta$s$kk En måte å beskrive og analysere fenomener kvan$ta$vt Eva Denison Sta$s$kk En måte å beskrive og analysere fenomener kvan$ta$vt Eva Denison Formål Kunnskap om sta$s$kk som verktøy for kri$sk vurdering av studier. Agenda En kort oversikt med eksempler Sammenheng mellom

Detaljer

Sta$s$kk En måte å beskrive og analysere fenomener kvan$ta$vt Eva Denison 16. November 2016

Sta$s$kk En måte å beskrive og analysere fenomener kvan$ta$vt Eva Denison 16. November 2016 Sta$s$kk En måte å beskrive og analysere fenomener kvan$ta$vt Eva Denison 16. November 2016 Formål Kunnskap om sta$s$kk som verktøy for kri$sk vurdering av studier. Agenda En kort oversikt med eksempler

Detaljer

SJEKKLISTE FOR VURDERING AV EN RANDOMISERT KONTROLLERT STUDIE (RCT) Målgruppe: studenter og helsepersonell Hensikt: øvelse i kritisk vurdering

SJEKKLISTE FOR VURDERING AV EN RANDOMISERT KONTROLLERT STUDIE (RCT) Målgruppe: studenter og helsepersonell Hensikt: øvelse i kritisk vurdering SJEKKLISTE FOR VURDERING AV EN RANDOMISERT KONTROLLERT STUDIE (RCT) Målgruppe: studenter og helsepersonell Hensikt: øvelse i kritisk vurdering FØLGENDE FORHOLD MÅ VURDERES: Kan vi stole på resultatene?

Detaljer

Hvordan forstå meta-analyse

Hvordan forstå meta-analyse Hvordan forstå meta-analyse Nettverkskonferansen i kunnskapsbasert praksis 2016 Professor Birgitte Espehaug, Senter for kunnskapsbasert praksis Workshop 05.04.2016 og 06.04.2016 Agenda Kort introduksjon

Detaljer

Kunnskapsesenterets Bruk og tolkning nye PPT-mal av meta-analyser. Jan Odgaard-Jensen, statistiker

Kunnskapsesenterets Bruk og tolkning nye PPT-mal av meta-analyser. Jan Odgaard-Jensen, statistiker Kunnskapsesenterets Bruk og tolkning nye PPT-mal av meta-analyser Jan Odgaard-Jensen, statistiker Formål og innhold Grunnleggende definisjoner Hva er en meta-analyse? Hva er formål med meta-analyser Forutsetninger

Detaljer

04.01.2012. Epidemiologi. Hvorfor lære epidemiologi? Mål på forekomst av sykdom. Hva brukes epidemiologi til? The study of the occurrence of illness

04.01.2012. Epidemiologi. Hvorfor lære epidemiologi? Mål på forekomst av sykdom. Hva brukes epidemiologi til? The study of the occurrence of illness Epidemiologi The study of the occurrence of illness Hva brukes epidemiologi til? finne årsaker til sykdom Miljø (forbygging) genetikk samspill mellom faktorer vurdere effekt av intervensjoner (frukt, trening,

Detaljer

6.2 Signifikanstester

6.2 Signifikanstester 6.2 Signifikanstester Konfidensintervaller er nyttige når vi ønsker å estimere en populasjonsparameter Signifikanstester er nyttige dersom vi ønsker å teste en hypotese om en parameter i en populasjon

Detaljer

Kunnskapsesenterets Bruk og tolkning av meta-analyser. nye PPT-mal. Jan Odgaard-Jensen, statistiker

Kunnskapsesenterets Bruk og tolkning av meta-analyser. nye PPT-mal. Jan Odgaard-Jensen, statistiker Kunnskapsesenterets Bruk og tolkning av meta-analyser nye PPT-mal Jan Odgaard-Jensen, statistiker Formål og innhold Grunnleggende definisjoner Hva er en meta-analyse og hva er formålet? Forutsetninger

Detaljer

Kunnskapsesenterets Bruk og tolkning nye PPT-mal av meta-analyser. Jan Odgaard-Jensen, statistiker

Kunnskapsesenterets Bruk og tolkning nye PPT-mal av meta-analyser. Jan Odgaard-Jensen, statistiker Kunnskapsesenterets Bruk og tolkning nye PPT-mal av meta-analyser Jan Odgaard-Jensen, statistiker Formål og innhold Hva er en meta-analyse Hva er formål med meta-analyser Forutsetninger for å gjennomføre

Detaljer

Statistikk er begripelig

Statistikk er begripelig Statistikk er begripelig men man må begynne med ABC ANOVA ANOVA er brukt til å sammenligne gjennomsnittsverdier Slik er det, selv om det er Analysis of Variance man sier BIVARIAT Bivariat analyse er godt

Detaljer

Oppsummering & spørsmål 20. april Frode Svartdal

Oppsummering & spørsmål 20. april Frode Svartdal Oppsummering & spørsmål 20. april 2016 Frode Svartdal Nullhypotese og sånt 119 deltakere Folk som svarer på en test for prokrastinering 40 Histogram of IPS 35 30 25 No of obs 20 15 10 5 0 0.5 1.0 1.5 2.0

Detaljer

Epidemiologi - en oppfriskning. Epidemiologi. Viktige begreper 12.04.2015. Deskriptiv beskrivende. Analytisk årsaksforklarende. Ikke skarpt skille

Epidemiologi - en oppfriskning. Epidemiologi. Viktige begreper 12.04.2015. Deskriptiv beskrivende. Analytisk årsaksforklarende. Ikke skarpt skille Epidemiologi - en oppfriskning Epidemiologi Deskriptiv beskrivende Hyppighet og fordeling av sykdom Analytisk årsaksforklarende Fra assosiasjon til kausal sammenheng Ikke skarpt skille Viktige begreper

Detaljer

Epidemiologi - en oppfriskning. En kort framstilling. Er det behov for kunnskaper om epidemiologi?

Epidemiologi - en oppfriskning. En kort framstilling. Er det behov for kunnskaper om epidemiologi? Epidemiologi - en oppfriskning En kort framstilling Dere kan finne en kort gjennomgang av epidemiologifaget i et kapittel som jeg skrev i en bok. Jacobsen BK. Epidemiologi. I: Kvantitativ forskningsmetodologi

Detaljer

Epidemiologi. Læringsmål. Hva brukes epidemiologi til? The study of the occurrence of illness. Læren om sykdommers utbredelse og årsaker

Epidemiologi. Læringsmål. Hva brukes epidemiologi til? The study of the occurrence of illness. Læren om sykdommers utbredelse og årsaker Epidemiologi The study of the occurrence of illness Læren om sykdommers utbredelse og årsaker Johan Håkon Bjørngaard Professor, Institutt for samfunnsmedisin, NTNU Læringsmål Insidensrater og insidensandel

Detaljer

Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/

Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/ Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator

Detaljer

KATEGORISKE DATA- TABELLANALYSE ANALYSE AV. Tron Anders Moger. 3. Mai 2005

KATEGORISKE DATA- TABELLANALYSE ANALYSE AV. Tron Anders Moger. 3. Mai 2005 ANALYSE AV KATEGORISKE DATA- TABELLANALYSE 3. Mai 2005 Tron Anders Moger Forrige gang: Snakket om kontinuerlige data, dvs data som måles på en kontinuerlig skala Hypotesetesting med t-tester evt. ikkeparametriske

Detaljer

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger Intro til hypotesetesting Analyse av kontinuerlige data 21. april 2005 Tron Anders Moger Seksjon for medisinsk statistikk, UIO 1 Repetisjon fra i går: Normalfordelingen Variasjon i målinger kan ofte beskrives

Detaljer

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

Læringsmål. Epidemiologi. Insidensrater og insidensandel Relative og absolutte risikomål Statistisk slutning. P verdi versus konfidensintervall

Læringsmål. Epidemiologi. Insidensrater og insidensandel Relative og absolutte risikomål Statistisk slutning. P verdi versus konfidensintervall Epidemiologi The study of the occurrence of illness Læringsmål Insidensrater og insidensandel Relative og absolutte risikomål Statistisk slutning P verdi versus konfidensintervall Studier av sykdommers

Detaljer

Forskningsmetoder. Måling, målefeil. Frode Svartdal. UiTø V-2011. Frode Svartdal 26.01.2011 FRODE SVARTDAL 1

Forskningsmetoder. Måling, målefeil. Frode Svartdal. UiTø V-2011. Frode Svartdal 26.01.2011 FRODE SVARTDAL 1 Forskningsmetoder Måling, målefeil Frode Svartdal UiTø V-2011 Frode Svartdal 26.01.2011 FRODE SVARTDAL 1 Variabler Variabel noe (av psykologisk interesse) som varierer Motsatt: Konstant Eksempler: Kjønn,

Detaljer

Statistikk i klinikken. Arild Vaktskjold 2015

Statistikk i klinikken. Arild Vaktskjold 2015 Statistikk i klinikken Arild Vaktskjold 2015 Kvantitativ forskningsmetode Alt tallfestes, selv kvalitative iakttakelser Målenivå Tall kan klassifiseres forskjellig Målte tallverdier kan anvendes med nøyaktighet

Detaljer

Kompendium. Samfunnsmedisin - Kurs H Forskningsmetode og kunnskapshåndtering mars 2017

Kompendium. Samfunnsmedisin - Kurs H Forskningsmetode og kunnskapshåndtering mars 2017 Kompendium Samfunnsmedisin - Kurs H Forskningsmetode og kunnskapshåndtering 27. - 31. mars 2017 1 Mandag 27/3: Hva er evidens? Viktige begreper: Kunnskap, evidens forskning. Syn på kunnskap: Objektiv/Subjektiv

Detaljer

Forskningsmetoder. Data: Måling og målefeil. Frode Svartdal. UiTø 16.01.2014 FRODE SVARTDAL 1 V-2014. Frode Svartdal

Forskningsmetoder. Data: Måling og målefeil. Frode Svartdal. UiTø 16.01.2014 FRODE SVARTDAL 1 V-2014. Frode Svartdal Forskningsmetoder Data: Måling og målefeil Frode Svartdal UiTø V-2014 Frode Svartdal 16.01.2014 FRODE SVARTDAL 1 Variabler Variabel noe (av psykologisk interesse) som varierer Motsatt: Konstant Eksempler:

Detaljer

Hvordan Kunnskapsesenterets

Hvordan Kunnskapsesenterets Foredrag på seminaret Rehabilitering av brystkreftpasienter, 11. mars 2009 Hvordan Kunnskapsesenterets jobber vi med en systematisk nye PPT-mal oversikt Lene K. Juvet, (prosjektleder) Forsker, PhD. Hvorfor

Detaljer

regresjonsmodeller multippel logistisk regresjon logistisk regresjon prediksjon vs assosiasjon den logistisk funksjonen (2)

regresjonsmodeller multippel logistisk regresjon logistisk regresjon prediksjon vs assosiasjon den logistisk funksjonen (2) Innføring i medisinsk statistikk del 2 regresjonsmodeller Hvorfor vil man bruke regresjonsmodeller? multippel logistisk regresjon. predikere et utfall (f.eks. sykdom, død, blodtrykk) basert på et sett

Detaljer

Løsningsforslag Til Statlab 5

Løsningsforslag Til Statlab 5 Løsningsforslag Til Statlab 5 Jimmy Paul September 6, 007 Oppgave 8.1 Vi skal se på ukentlige forbruk av søtsaker blant barn i et visst område. En pilotstudie gir at standardavviket til det ukentige forbruket

Detaljer

Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

Vedlegg 3 Sjekkliste for Bruk av skjema i oppfølgning av diabetes

Vedlegg 3 Sjekkliste for Bruk av skjema i oppfølgning av diabetes Vedlegg 3 Sjekkliste for Bruk av skjema i oppfølgning av diabetes Er formålet med oversikten klart formulert? Ja, oversikten undersøker om allmennlegers bruk av skjemaer for registrering av klinisk data

Detaljer

Kapittel 3: Studieopplegg

Kapittel 3: Studieopplegg Oversikt over pensum Kapittel 1: Empirisk fordeling for en variabel o Begrepet fordeling o Mål for senter (gj.snitt, median) + persentiler/kvartiler o Mål for spredning (Standardavvik s, IQR) o Outliere

Detaljer

SJEKKLISTE FOR VURDERING AV EN RANDOMISERT KONTROLLERT STUDIE (RCT)

SJEKKLISTE FOR VURDERING AV EN RANDOMISERT KONTROLLERT STUDIE (RCT) SJEKKLISTE FOR VURDERING AV EN RANDOMISERT KONTROLLERT STUDIE (RCT) FØLGENDE FORHOLD MÅ VURDERES: Kan vi stole på resultatene? Hva forteller resultatene? Kan resultatene være til hjelp i praksis? Under

Detaljer

Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 2013. Skrevet av Stian Lydersen 16 januar 2013

Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 2013. Skrevet av Stian Lydersen 16 januar 2013 1 Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 013. Skrevet av Stian Lydersen 16 januar 013 Vi antar at vårt utvalg er et tilfeldig og representativt utvalg for

Detaljer

Regional forskingskonferanse for Psykiatri og rusfeltet Vår 2013. Olav M. Linaker PH, St. Olavs Hospital/INM, NTNU

Regional forskingskonferanse for Psykiatri og rusfeltet Vår 2013. Olav M. Linaker PH, St. Olavs Hospital/INM, NTNU Regional forskingskonferanse for Psykiatri og rusfeltet Vår 2013 Olav M. Linaker PH, St. Olavs Hospital/INM, NTNU Effektiv forskning Dette møtet skal handle om å gjøre forskningsarbeidet vårt effektivt

Detaljer

Profil Lavpris Supermarked Hypermarked Totalt. Coop Prix 4 4. Coop Extra 13 5. Coop Mega 7 7. Coop Obs 5 13. Rimi 24 24. Ica Supermarked 7 7

Profil Lavpris Supermarked Hypermarked Totalt. Coop Prix 4 4. Coop Extra 13 5. Coop Mega 7 7. Coop Obs 5 13. Rimi 24 24. Ica Supermarked 7 7 Vedlegg 1 - Regresjonsanalyser 1 Innledning og formål (1) Konkurransetilsynet har i forbindelse med Vedtak 2015-24, (heretter "Vedtaket") utført kvantitative analyser på data fra kundeundersøkelsen. I

Detaljer

Fordelinger, mer om sentralmål og variasjonsmål. Tron Anders Moger

Fordelinger, mer om sentralmål og variasjonsmål. Tron Anders Moger Fordelinger, mer om sentralmål og variasjonsmål Tron Anders Moger 20. april 2005 1 Forrige gang: Så på et eksempel med data over medisinerstudenter Lærte hvordan man skulle få oversikt over dataene ved

Detaljer

Systematiske oversikter Meta-analyser Cochrane collaboration Internettressurser

Systematiske oversikter Meta-analyser Cochrane collaboration Internettressurser Hege Kornør 01.10.2009 GA02 A1.1001 Auditorium Domus Odontologica Kunnskapsesenterets nye PPT-mal Systematiske oversikter Meta-analyser Cochrane collaboration Internettressurser Plan 1300 Forelesning 1400

Detaljer

Effektstørrelse. Tabell 1. Kritiske verdier for Pearson s produkt-moment-korrelasjon med 5% og 1% signifikansnivå. N 5% 1% N 5% 1%

Effektstørrelse. Tabell 1. Kritiske verdier for Pearson s produkt-moment-korrelasjon med 5% og 1% signifikansnivå. N 5% 1% N 5% 1% Thor Arnfinn Kleven Institutt for pedagogikk 19.09.2013 Effektstørrelse Tradisjonelt har signifikanstesting vært fremhevet som den viktigste statistiske analyseformen i pedagogisk og psykologisk forskning.

Detaljer

SJEKKLISTE FOR VURDERING AV EN KOHORTSTUDIE

SJEKKLISTE FOR VURDERING AV EN KOHORTSTUDIE SJEKKLISTE FOR VURDERING AV EN KOHORTSTUDIE Målgruppe: studenter og helsepersonell Hensikt: øvelse i kritisk vurdering FØLGENDE FORHOLD MÅ VURDERES: Kan vi stole på resultatene? Hva forteller resultatene?

Detaljer

Statistikk & dataanalyse: Et eksempel. Frode Svartdal UiT mars 2015

Statistikk & dataanalyse: Et eksempel. Frode Svartdal UiT mars 2015 Statistikk & dataanalyse: Et eksempel Frode Svartdal UiT mars 2015 Eksempel UTGANGSPUNKT Vi antar at den som prokrastinerer (utsetter ting) drøyer med alt mulig som skal gjøres, eksempelvis Venter med

Detaljer

Statistisk beskrivelse av enkeltvariabler. SOS1120 Kvantitativ metode. Disposisjon. Datamatrisen. Forelesningsnotater 6. forelesning høsten 2005

Statistisk beskrivelse av enkeltvariabler. SOS1120 Kvantitativ metode. Disposisjon. Datamatrisen. Forelesningsnotater 6. forelesning høsten 2005 SOS110 Kvantitativ metode Forelesningsnotater 6 forelesning høsten 005 Statistisk beskrivelse av enkeltvariabler (Univariat analyse) Per Arne Tufte Disposisjon Datamatrisen Variabler Datamatrisen Frekvensfordelinger

Detaljer

MASTER I IDRETTSVITENSKAP 2014/2016. Individuell skriftlig eksamen. STA 400- Statistikk. Fredag 13. mars 2015 kl. 10.00-12.00

MASTER I IDRETTSVITENSKAP 2014/2016. Individuell skriftlig eksamen. STA 400- Statistikk. Fredag 13. mars 2015 kl. 10.00-12.00 MASTER I IDRETTSVITENSKAP 2014/2016 Individuell skriftlig eksamen i STA 400- Statistikk Fredag 13. mars 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator Eksamensoppgaven består av 10 sider inkludert forsiden

Detaljer

Verdens statistikk-dag.

Verdens statistikk-dag. Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator

Detaljer

Kunnskapsesenterets Cochrane collaboration

Kunnskapsesenterets Cochrane collaboration Hege Kornør 04.11.2009 GA01 2010 Store Auditorium, Domus Medica Systematiske oversikter Meta-analyser Kunnskapsesenterets Cochrane collaboration nye PPT-mal Internettressurser Plan 1300 Forelesning 1400

Detaljer

Statistikk & dataanalyse: Et eksempel. Frode Svartdal UiT april 2016

Statistikk & dataanalyse: Et eksempel. Frode Svartdal UiT april 2016 Statistikk & dataanalyse: Et eksempel Frode Svartdal UiT april 2016 Eksempel UTGANGSPUNKT Vi antar at den som prokrastinerer (utsetter ting) drøyer med alt mulig som skal gjøres, eksempelvis Venter med

Detaljer

Summary of findings (SoF) tabell

Summary of findings (SoF) tabell Summary of findings (SoF) tabell Resultat-tabell som viser kvaliteten på dokumentasjonen på tvers av utfallsmål PICO-spørsmål 1.6: Hva er effekten av kontinuerlig monitorering av fysiologiske og nevrologiske

Detaljer

Tema Kvalitativ og kvantitativ forskningsmetode. Forskningsmetode. Kausalitet. Reliabilitet og validitet. Usikkerhet. IA mandag 5/9-2014

Tema Kvalitativ og kvantitativ forskningsmetode. Forskningsmetode. Kausalitet. Reliabilitet og validitet. Usikkerhet. IA mandag 5/9-2014 Kvalitativ og kvantitativ forskningsmetode IA mandag 5/9-2014 Johan Håkon Bjørngaard, Professor Institutt for samfunnsmedisin johan.h.bjorngaard@ntnu.no Name, title of the presentation Forskningsmetode

Detaljer

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0 Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir

Detaljer

Page 1 EN DAG PÅ HELSESTASJONEN. Lises klassevenninnner. Formelen: Du har en hypotese om vanlig høyde

Page 1 EN DAG PÅ HELSESTASJONEN. Lises klassevenninnner. Formelen: Du har en hypotese om vanlig høyde 1 E DAG PÅ HELSESTASJOE Lises klassevenninnner Lise er veldig liten Hva gjør at du sier at hun er liten? Du har en hypotese om vanlig høyde Du har en hypotese om vanlig høyde Du sammenligner Lises høyde

Detaljer

Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080.

Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080. EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 28. FEBRUAR 2005 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 4 OPPGAVER PÅ

Detaljer

MASTER I IDRETTSVITENSKAP 2014/2016. Utsatt individuell skriftlig eksamen. STA 400- Statistikk. Mandag 24. august 2015 kl. 10.00-12.

MASTER I IDRETTSVITENSKAP 2014/2016. Utsatt individuell skriftlig eksamen. STA 400- Statistikk. Mandag 24. august 2015 kl. 10.00-12. MASTR I IDRTTSVITNSKAP 2014/2016 Utsatt individuell skriftlig eksamen i STA 400- Statistikk Mandag 24. august 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator ksamensoppgaven består av 10 sider inkludert

Detaljer

PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014

PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014 Psykologisk institutt PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014 Skriftlig skoleeksamen fredag 2. mai, 09:00 (4 timer). Kalkulator uten grafisk display og tekstlagringsfunksjon

Detaljer

7.2 Sammenligning av to forventinger

7.2 Sammenligning av to forventinger 7.2 Sammenligning av to forventinger To-utvalgs z-observator To-utvalgs t-prosedyrer To-utvalgs t-tester To-utvalgs t-konfidensintervall Robusthet To-utvalgs t-prosedyrerår variansene er like Sammenlikning

Detaljer

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

Bruk data fra tabellen over (utvalget) og opplysninger som blir gitt i oppgavene og svar på følgende spørsmål:

Bruk data fra tabellen over (utvalget) og opplysninger som blir gitt i oppgavene og svar på følgende spørsmål: Frafall fra videregende skole (VGS) er et stort problem. Bare ca 70% av elevene som begynner p VGS fullfører og bestr i løpet av 5 r. For noen elever er skolen s lite attraktiv at de velger slutte før

Detaljer

Oppgaver til Studentveiledning 3 MET 3431 Statistikk

Oppgaver til Studentveiledning 3 MET 3431 Statistikk Oppgaver til Studentveiledning 3 MET 3431 Statistikk 24. april 2012 kl 17.15-20.15 i B2 Handelshøyskolen BI 2 Oppgaver 1. Eksamensoppgaver: Eksamen 01/06/2011: Oppgave 1-7. Eksamensoppgaven fra 06/2011

Detaljer

Krysstabellanalyse (forts.) SOS1120 Kvantitativ metode. 4. Statistisk generalisering. Forelesningsnotater 9. forelesning høsten 2005.

Krysstabellanalyse (forts.) SOS1120 Kvantitativ metode. 4. Statistisk generalisering. Forelesningsnotater 9. forelesning høsten 2005. SOS112 Kvantitativ metode Krysstabellanalyse (forts.) Forelesningsnotater 9. forelesning høsten 25 4. Statistisk generalisering Per Arne Tufte Eksempel: Hypoteser Eksempel: observerte frekvenser (O) Hvordan

Detaljer

STUDIEÅRET 2012/2013. Utsatt individuell skriftlig eksamen. VTM 200- Vitenskapsteori og metode. Tirsdag 27. august 2013 kl

STUDIEÅRET 2012/2013. Utsatt individuell skriftlig eksamen. VTM 200- Vitenskapsteori og metode. Tirsdag 27. august 2013 kl STUDIEÅRET 2012/2013 Utsatt individuell skriftlig eksamen i VTM 200- Vitenskapsteori og metode Tirsdag 27. august 2013 kl. 10.00-12.00 Hjelpemidler: ingen Eksamensoppgaven består av 5 sider inkludert forsiden

Detaljer

Hypotesetesting: Prinsipper. Frode Svartdal UiTø Januar 2014 Frode Svartdal

Hypotesetesting: Prinsipper. Frode Svartdal UiTø Januar 2014 Frode Svartdal Hypotesetesting: Prinsipper Frode Svartdal UiTø Januar 2014 Frode Svartdal Alt dette er mat for hypotesetesting! Utgangspunkt En antakelse begrunnet i teori Dissonansteori: Hvis, så. En vanlig oppfatning

Detaljer

KLH 3002 Epidemiologi Eksamen Høst 2011 Eksaminator: Geir W. Jacobsen, ISM

KLH 3002 Epidemiologi Eksamen Høst 2011 Eksaminator: Geir W. Jacobsen, ISM KLH 3002 Epidemiologi Eksamen Høst 2011 Eksaminator: Geir W. Jacobsen, ISM Oppgaven består av 18 spørsmål, hvorav de første 15 er flervalgsspørsmål (ett poeng per oppgave) - sett ring rundt riktig svar.

Detaljer

Bivariate analyser. Analyse av sammenhengen mellom to variabler. H 0 : Ingen sammenheng H 1 : Sammenheng

Bivariate analyser. Analyse av sammenhengen mellom to variabler. H 0 : Ingen sammenheng H 1 : Sammenheng Bivariate analyser Analyse av sammenhengen mellom to variabler H : Ingen sammenheng H 1 : Sammenheng Hvis den ene variabelen er kategorisk er en slik analyse det samme som å sammenligne grupper. Ulike

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere

Detaljer

Gruppe 1 Gruppe 2 Gruppe a) Finn aritmetisk gjennomsnitt, median, modus og standardavvik for gruppe 2.

Gruppe 1 Gruppe 2 Gruppe a) Finn aritmetisk gjennomsnitt, median, modus og standardavvik for gruppe 2. Sensurveiledning Ped 3001 h12 Oppgave 1 Er det sammenheng mellom støtte fra venner og selvaktelse hos ungdom? Dette spørsmålet ønsket en forsker å undersøke. Han samlet data på 9. klassingers opplevde

Detaljer

Sammendrag. Innledning

Sammendrag. Innledning Sammendrag Innledning Omtrent 80 prosent av alle hjerneslag er iskemiske, et resultat av blokkering av oksygentilførselen til hjernen. Dersom det ikke blir påvist intrakraniell blødning og det ikke foreligger

Detaljer

Repeterte målinger. Repeterte målinger. Eirik Skogvoll

Repeterte målinger. Repeterte målinger. Eirik Skogvoll Repeterte målinger Eirik Skogvoll Førsteamanuensis dr.med. Enhet for anvendt klinisk forskning (AKF) Det medisinske fakultet, februar 2009 1 Repeterte målinger Mer eller mindre synonymt med... Repeated

Detaljer

STUDIEÅRET 2012/2013. Individuell skriftlig eksamen. VTM 200- Vitenskapsteori og metode. Onsdag 24. april 2013 kl

STUDIEÅRET 2012/2013. Individuell skriftlig eksamen. VTM 200- Vitenskapsteori og metode. Onsdag 24. april 2013 kl STUDIEÅRET 2012/2013 Individuell skriftlig eksamen i VTM 200- Vitenskapsteori og metode Onsdag 24. april 2013 kl. 10.00-12.00 Hjelpemidler: ingen Eksamensoppgaven består av 5 sider inkludert forsiden Sensurfrist:

Detaljer

Repeated Measures Anova.

Repeated Measures Anova. Repeated Measures Anova. Vi bruker oppgave-5 som eksempel. I en evalueringsstudie av en terapeutisk intervensjon valgte man et pre-post med kontrollgruppe design. Alle personer ble undersøkt tre ganger

Detaljer

EKSAMEN I PSY1001/PSY1011/PSYPRO4111/ PSYKOLOGIENS METODOLOGI HØSTEN 2012 BOKMÅL

EKSAMEN I PSY1001/PSY1011/PSYPRO4111/ PSYKOLOGIENS METODOLOGI HØSTEN 2012 BOKMÅL NTNU Fakultet for samfunnsvitenskap og teknologiledelse Psykologisk institutt EKSAMEN I PSY1001/PSY1011/PSYPRO4111/ PSYKOLOGIENS METODOLOGI HØSTEN 2012 DATO: 14.01.2012 Studiepoeng: 7,5 Sidetall bokmål

Detaljer

Logistisk regresjon 2

Logistisk regresjon 2 Logistisk regresjon 2 SPSS Utskrift: Trivariat regresjon a KJONN UTDAAR Constant Variables in the Equation B S.E. Wald df Sig. Exp(B) -,536,3 84,56,000,25,84,08 09,956,000,202 -,469,083 35,7,000,230 a.

Detaljer

Oppgaver til Studentveiledning 4 MET 3431 Statistikk

Oppgaver til Studentveiledning 4 MET 3431 Statistikk Oppgaver til Studentveiledning 4 MET 3431 Statistikk 8. mai 2012 kl 17.15-20.15 i B2 Handelshøyskolen BI 2 Oppgaver 1. Eksamensoppgaver: Eksamen 22/11/2011: Oppgave 1-7. Eksamensoppgaven fra 11/2011 er

Detaljer

Metaanalyse. Metaanalyse. Hvorfor metaanalyse. Metaanalyse. Kritikken har vært betydelig. Valg av aktuelle studier

Metaanalyse. Metaanalyse. Hvorfor metaanalyse. Metaanalyse. Kritikken har vært betydelig. Valg av aktuelle studier Metaanalyse Metaanalyse Pål Romundstad Statistisk analyse av resultater fra flere separate studier kombinere resultater fra ulike studier for om mulig identifisere konsistens og divergens En observasjonsstudie

Detaljer

Eksamensoppgave i ST3001

Eksamensoppgave i ST3001 Det medisinske fakultet Institutt for kreftforskning og molekylær medisin Eksamensoppgave i ST3001 Onsdag 16. desember 2010, kl. 9.00 13:00 ntall studiepoeng: 7.5 Tillatte hjelpemidler: Kalkulator og alle

Detaljer

Logistisk regresjon 1

Logistisk regresjon 1 Logistisk regresjon Hovedideen: Binær logistisk regresjon håndterer avhengige, dikotome variable Et hovedmål er å predikere sannsynligheter for å ha verdien på avhengig variabel for bestemte (sosiale)

Detaljer

Kurs i kunnskapshåndtering å finne, vurdere, bruke og formidle forskningsbasert kunnskap i praksis. Hege Kornør og Ida-Kristin Ørjasæter Elvsaas

Kurs i kunnskapshåndtering å finne, vurdere, bruke og formidle forskningsbasert kunnskap i praksis. Hege Kornør og Ida-Kristin Ørjasæter Elvsaas Kurs i kunnskapshåndtering å finne, vurdere, bruke og formidle forskningsbasert kunnskap i praksis 16.mars 2007 Hege Kornør og Ida-Kristin Ørjasæter Elvsaas Nasjonalt kunnskapssenter for helsetjenesten

Detaljer

Forelesning 23 og 24 Wilcoxon test, Bivariate Normal fordeling

Forelesning 23 og 24 Wilcoxon test, Bivariate Normal fordeling Forelesning 23 og 24 Wilcoxon test, Bivariate Normal fordeling Wilcoxon Signed-Rank Test I uke, bruker vi Z test eller t-test for hypotesen H:, og begge tester er basert på forutsetningen om normalfordeling

Detaljer

Forelesning 17 Logistisk regresjonsanalyse

Forelesning 17 Logistisk regresjonsanalyse Forelesning 17 Logistisk regresjonsanalyse Logistiske regresjons er den mest brukte regresjonsanalysen når den avhengige variabelen er todelt Metoden kan brukes til å: teste hypoteser om variablers effekt

Detaljer

Statistikk 1. Nico Keilman. ECON 2130 Vår 2014

Statistikk 1. Nico Keilman. ECON 2130 Vår 2014 Statistikk 1 Nico Keilman ECON 2130 Vår 2014 Pensum Kap 1-7.3.6 fra Løvås «Statistikk for universiteter og høgskoler» 3. utgave 2013 (eventuelt 2. utgave) Se overspringelsesliste på emnesiden Supplerende

Detaljer

Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio)

Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio) Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio) Beskrive fordelinger (sentraltendens, variasjon og form): Observasjon y i Sentraltendens

Detaljer

Kunnskapsbasert fysioterapi - kritisk vurdering av et randomisert kontrollert forsøk, RCT

Kunnskapsbasert fysioterapi - kritisk vurdering av et randomisert kontrollert forsøk, RCT Fysioterapeuten nr. 6/2000: Kritisk vurdering av studier, critical appraisal, er tema for denne artikkelen. Dette er femte artikkel i en serie om kunnskapsbasert fysioterapi. De fire første sto i FYSIOTERAPEUTEN

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Kapittel 7: Utvalgsfordeling Bo Lindqvist Institutt for matematiske fag 2 Fra kapittel 1: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg

Detaljer

TMA4240 Statistikk H2015

TMA4240 Statistikk H2015 TMA4240 Statistikk H2015 Ett utvalg: estimere forventningsverdi og intervall [9.4] Student-t fordeling [8.6] Quiz fra SME og konfidensintervall Mette Langaas Institutt for matematiske fag, NTNU wiki.math.ntnu.no/emner/tma4240/2015h/start/

Detaljer

Prosjektbeskrivelsen består av

Prosjektbeskrivelsen består av Kvantitative hovedoppgaver: prosjektbeskrivelsen og litt om metode og utforming Knut Inge Fostervold Prosjektbeskrivelsen består av Vitenskapelig bakgrunn og problemformulering (ca 2 sider) Design og metode

Detaljer

Group-based parent-training programmes for improving emotional and behavioural adjustment in children from birth to three years old

Group-based parent-training programmes for improving emotional and behavioural adjustment in children from birth to three years old Group-based parent-training programmes for improving emotional and behavioural adjustment in children from birth to three years old Sammendrag fra pågående oppdatering av Cochrane-oversikt på oppdrag for

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig

Detaljer

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2. Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 17 november 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk Tapir

Detaljer

1 Section 6-2: Standard normalfordelingen. 2 Section 6-3: Anvendelser av normalfordelingen. 3 Section 6-4: Observator fordeling

1 Section 6-2: Standard normalfordelingen. 2 Section 6-3: Anvendelser av normalfordelingen. 3 Section 6-4: Observator fordeling 1 Section 6-2: Standard normalfordelingen 2 Section 6-3: Anvendelser av normalfordelingen 3 Section 6-4: Observator fordeling 4 Section 6-5: Sentralgrenseteoremet Oversikt Kapittel 6 Kontinuerlige tilfeldige

Detaljer

Vitenskapelige sannheter og andre sannsynligheter. Bjørn Hofmann Seksjon for medisinsk etikk

Vitenskapelige sannheter og andre sannsynligheter. Bjørn Hofmann Seksjon for medisinsk etikk Vitenskapelige sannheter og andre sannsynligheter Bjørn Hofmann Seksjon for medisinsk etikk Vitenskapelig sannhet og usikkerhet Hvordan presenteres vitenskapelige sannheter? Hva er sannhet? Sannhetens

Detaljer

(b) På slutten av dagen legger sekretæren inn all innsamlet informasjon i en ny JMP datafil. Hvor mange rader og søyler(kolonner) har datafila?

(b) På slutten av dagen legger sekretæren inn all innsamlet informasjon i en ny JMP datafil. Hvor mange rader og søyler(kolonner) har datafila? Institutt for samfunnsøkonomi Skriftlig eksamen i: MET 34311 Statistikk Eksamensdato: 01.06.11, kl. 09.00-14.00 Tillatte hjelpemidler: Alle + BI-definert eksamenskalkulator : TEXAS INTRUMENTS BA II Plus

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Fra første forelesning: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av

Detaljer

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt.

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt. EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir forlag) OPPGAVESETTET

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1000 Innføring i anvendt statistikk Eksamensdag: Onsdag 12. oktober 2016 Tid for eksamen: 10.00 12.00 Oppgavesettet er på

Detaljer

Eksamensoppgave i ST3001

Eksamensoppgave i ST3001 Det medisinske fakultet Institutt for kreftforskning og molekylær medisin Eksamensoppgave i ST3001 fredag 25. mai 2012, kl. 9.00 13:00 Antall studiepoeng: 7.5 Tillatte hjelpemidler: Kalkulator og alle

Detaljer

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Analysere en observator for å finne ut noe om korresponderende

Detaljer

Medikamenter mot osteoporose. Og hvor effektive er de? Lars Grøvle

Medikamenter mot osteoporose. Og hvor effektive er de? Lars Grøvle Medikamenter mot osteoporose Og hvor effektive er de? Lars Grøvle Osteoporose gir i seg selv ingen symptomer Alt dreier seg om å forhindre brudd Relativ risikoreduksjon (RR) Absolutt risikoreduksjon Number

Detaljer

Fra første forelesning:

Fra første forelesning: 2 Fra første forelesning: ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag opulasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av populasjonen

Detaljer

Utvalgsfordelinger. Utvalg er en tilfeldig mekanisme. Sannsynlighetsregning dreier seg om tilfeldige mekanismer.

Utvalgsfordelinger. Utvalg er en tilfeldig mekanisme. Sannsynlighetsregning dreier seg om tilfeldige mekanismer. Utvalgsfordelinger Vi har sett at utvalgsfordelinger til en statistikk (observator) er fordelingen av verdiene statistikken tar ved mange gjenttatte utvalg av samme størrelse fra samme populasjon. Utvalg

Detaljer

Metaanalyse. Metaanalyse. Hvorfor metaanalyse. Metaanalyse. Kritikken har vært betydelig. Valg av aktuelle studier

Metaanalyse. Metaanalyse. Hvorfor metaanalyse. Metaanalyse. Kritikken har vært betydelig. Valg av aktuelle studier Metaanalyse Metaanalyse Statistisk analyse av resultater fra flere separate studier Statistisk analyse av resultater fra flere separate studier kombinere resultater fra ulike studier for om mulig identifisere

Detaljer

I enkel lineær regresjon beskrev linja. μ y = β 0 + β 1 x

I enkel lineær regresjon beskrev linja. μ y = β 0 + β 1 x Multiple regresjon Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable.det er fortsatt en responsvariabel. Måten dette gjøre på er nokså naturlig. Prediktoren

Detaljer

Kapittel 9 og 10: Hypotesetesting

Kapittel 9 og 10: Hypotesetesting Kapittel 9 og 1: ypotesetesting ypotesetesting er en standard vitenskapelig fremgangsmåte for å sjekke påstander. Generell problemstilling: Basert på informasjonen i data fra et tilfeldig utvalg ønsker

Detaljer

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Å analysere en utvalgsobservator for å trekke slutninger

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 9-10 (oversikt): Inferens om én og to populasjoner

ST0202 Statistikk for samfunnsvitere Kapittel 9-10 (oversikt): Inferens om én og to populasjoner ST0202 Statistikk for samfunnsvitere Kapittel 9-10 (oversikt): Inferens om én og to populasjoner Bo Lindqvist Institutt for matematiske fag 2 Inferens med EN populasjon 3 Oppgave: H2002 # 3 I følge Nielsen

Detaljer

Sentralverdi av dataverdi i et utvalg Vi tenker oss et utvalg med datapar. I vårt eksempel har vi 5 datapar.

Sentralverdi av dataverdi i et utvalg Vi tenker oss et utvalg med datapar. I vårt eksempel har vi 5 datapar. Statistisk behandling av kalibreringsresultatene Del 4. v/ Rune Øverland, Trainor Elsikkerhet AS Denne artikkelserien handler om statistisk behandling av kalibreringsresultatene. Dennne artikkelen tar

Detaljer