Forskningsmetoder i menneske-maskin interaksjon

Størrelse: px
Begynne med side:

Download "Forskningsmetoder i menneske-maskin interaksjon"

Transkript

1 Forskningsmetoder i menneske-maskin interaksjon Kapittel 2- Eksperimentell forskning

2 Oversikt Typer atferdsforskning Forskningshypoteser Grunnleggende om eksperimentell forskning Signifikanstesting Begrensninger i eksperimentell forskning

3 Typer atferdsforskning Beskrivende undersøkelser fokuserer på å bygge en nøyaktig beskrivelse av hva som skjer. Relasjonelle undersøkelser gjør det mulig for forskeren å identifisere relasjoner mellom flere faktorer. Imidlertid kan relasjonelle studier sjelden fastslå årsakssammenheng mellom flere faktorer. Eksperimentell forskning tillater etablering av årsakssammenheng.

4 Typer atferdsforskning

5 Forskningshypotese Et eksperiment starter normalt med en prosjekthypotese. En hypotese er en presis problemuttalelse som kan testes gjennom en empirisk undersøkelse. Sammenlignet med en teori, er en hypotese et mindre, mer fokusert, utsagn som kan undersøkes av et enkelt eksperiment.

6 Hypotesetyper Nullhypotesen: sier vanligvis at det er ingen forskjell mellom eksperimentelle behandlinger. Alternativ hypotese: en setning som er gjensidig utelukkende med nullhypotesen. Målet med et eksperiment er å finne statistisk bevis for å avkrefte eller forkaste nullhypotesen og dermed støtte den alternative hypotesen. En hypotese bør angi uavhengige variabler og avhengige variabler.

7 Avehngige og uavhengige variabler Uavhengige variabler (IV) refererer til faktorer som forskerne er interesserte i å studere, eller den mulige "årsaken" av endringen i den avhengige variabelen. IV er uavhengig av en deltakers atferd. IV er vanligvis behandlinger eller forhold som forskerne kan kontrollere. Avhengige variabler (DV) refererer til utfallet eller effekten som forskerne er interessert i. DV er avhengig av en deltakers atferd eller endringer i IVer. DV er vanligvis resultatene som forskerne trenger å måle.

8 Typiske uavhengige variabler I MMI De som er knyttet til teknologi Typer teknologi eller maskiner (apparater, redskaper) Typer design De som forholder seg til brukere: alder, kjønn, erfaring med datamaskiner, profesjon, utdanning, kultur, motivasjon, humør og funksjonshemninger De som er knyttet til brukskonteksten: Fysisk status Bruker status Sosial status

9 Typiske avhengige variabler I MMI Effektivitet: f.eks, oppgavens ferdigstillelsestid, hastighet Nøyaktighet : f.eks, antall feil Subjektiv tilfredshet: f.eks, Likert skala graderingen Enkelhet av læring og retensjon (hukommelse) Fysisk eller kognitiv etterspørsel: f.eks, NASA oppgavemengde indeks NASA task load index

10 Komponenter av eksperimentet Fremgang, eller vilkår: de forskjellige teknikkene, enhetene eller prosedyrene som vi ønsker å sammenligne. Enheter: gjenstanden som blir utsatt for eksperimentell behandling. I MMI forskning er enhetene vanligvis mennesker med spesifikke egenskaper, som kjønn, alder eller dataerfaring. Tildelingsmetode: måten de eksperimentelle enhetene blir tildelt forskjellige behandlinger.

11 Randomisering Randomisering: tilfeldig tildeling av oppdrag til de eksperimentelle enheter eller deltakere. I en helt randomisert eksperiment vil ingen, inkludert forskerne selv, kunne forutsi tilstanden som en deltaker vil bli tildelt. Randomiseringsmetoder Preprosesseringsmetoder Randomiseringsmatrise Software drevet randomisering

12 Signifikanstest Hvorfor trenger vi signifikanstester? Når alle verdiene av elementene i sammenligningsgruppene er kjente, kan du sammenligne dem direkte, og trekke en konklusjon. Ingen signifikanstest er nødvendig ettersom det ikke er usikkerhet involvert. Når befolkningen er stor, kan vi bare prøve et utvalg mennesker fra hele befolkningen. Signifikanstester tillater oss å avgjøre hvor sikre vi er på at resultatene som er observerte fra prøve-utvalget kan generaliseres til hele befolkningen.

13 Type I og Type II feil Alle betydning tester er underlagt risikoen for Type I og Type II feil. En Type I feil (også kalt α feil eller en "falsk positiv") refererer til den feilen å forkaste nullhypotesen når den er sann. En Type II feil (også kalt β feil eller en "falsk negativ") refererer til den feilen å ikke forkaste nullhypotesen når den er usann og dermed bør avvises.

14 Type I og Type II feil

15 Type I og Type II feil Det er generelt antatt at Type I feil er verre enn Type II feil. Statistikere kaller Type I feil en feil som involverer "godtroenhet". En Type I feil kan resultere i en tilstand verre enn den nåværende tilstanden. Type II-feil er feil som involverer "blindhet" En Type II feil kan forårsake at man mister muligheten til å forbedre nåværende tilstand.

16 Kontroll av feil-risiko I statistikk blir sannsynligheten for å gjøre en Type I feil kalt alfa (eller signifikansnivå, p- verdi). Sannsynligheten for å gjøre Type II feil kalles beta. Den statistiske styrken til en test, definert som 1-β, refererer til sannsynligheten for vellykket avvisning av en nullhypotese når den er usann og bør avvises.

17 Kontroll av feilrisiko Alfa og beta er ikke uavhengige verdier. Det å redusere alfa reduserer sjansen for Type I feil, men øker sjansen for Type II feil. I eksperimentell forskning, er det generelt antatt at Type I feil er verre enn Type II feil. En meget lav p-verdi (0,05) er allment brukt som en verdi som kontrollerer forekomsten av Type I feil.

18 Begrensninger av eksperimentell forskning Eksperimentell forskning krever veldefinerte, testbare hypoteser som består av et begrenset antall avhengige og uavhengige variabler. Eksperimentell forskning krever streng kontroll av faktorer som kan påvirke de avhengige variablene. Lab-baserte eksperimenter kan er ofte ikke en god representasjon av brukernes typiske interaksjonsatferd.

19 Slutten av kapittelet Oppsummering Diskusjon Øvelse

20 Individuell oppgave En e-handel har bestilt 3 nye, forskjellige webløsninger. De har bestemt seg å teste de med 30 deltagere og implementere den beste. 1) Hvordan ville du velge de deltagerene? 2) Formuler noen null og alternative hypoteser og gi eksempel på noen fornuftige avhengige og uavhengige variabler. 3) Hvordan ville du tildele oppgavene for deltakerne slik at du ungår feil (læringseffekt og andre) 4) Kan du få noen feil av Type I aller II? Gi eksempel eller forklaring på hvorfor kan du ikke gjøre det.

6.2 Signifikanstester

6.2 Signifikanstester 6.2 Signifikanstester Konfidensintervaller er nyttige når vi ønsker å estimere en populasjonsparameter Signifikanstester er nyttige dersom vi ønsker å teste en hypotese om en parameter i en populasjon

Detaljer

Hypotesetesting: Prinsipper. Frode Svartdal UiTø Januar 2014 Frode Svartdal

Hypotesetesting: Prinsipper. Frode Svartdal UiTø Januar 2014 Frode Svartdal Hypotesetesting: Prinsipper Frode Svartdal UiTø Januar 2014 Frode Svartdal Alt dette er mat for hypotesetesting! Utgangspunkt En antakelse begrunnet i teori Dissonansteori: Hvis, så. En vanlig oppfatning

Detaljer

Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/

Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/ Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator

Detaljer

Komplekse intervensjoner Metodiske utfordringer. Liv Wensaas PhD, RN, Leder for FOU enheten Helse og omsorg Asker kommune

Komplekse intervensjoner Metodiske utfordringer. Liv Wensaas PhD, RN, Leder for FOU enheten Helse og omsorg Asker kommune Komplekse intervensjoner Metodiske utfordringer Liv Wensaas PhD, RN, Leder for FOU enheten Helse og omsorg Asker kommune DISPOSISJON Intervensjonsforskning og helsefag Komplekse intervensjoner Metodiske

Detaljer

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

STUDIEÅRET 2013/2014. Individuell skriftlig eksamen. VTM 200- Vitenskapsteori og metode. Fredag 25. april 2014 kl. 10.00-12.00.

STUDIEÅRET 2013/2014. Individuell skriftlig eksamen. VTM 200- Vitenskapsteori og metode. Fredag 25. april 2014 kl. 10.00-12.00. STUDIEÅRET 2013/2014 Individuell skriftlig eksamen i VTM 200- Vitenskapsteori og metode Fredag 25. april 2014 kl. 10.00-12.00 Hjelpemidler: ingen Eksamensoppgaven består av 5 sider inkludert forsiden Sensurfrist:

Detaljer

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Analysere en observator for å finne ut noe om korresponderende

Detaljer

Kapittel 3: Studieopplegg

Kapittel 3: Studieopplegg Oversikt over pensum Kapittel 1: Empirisk fordeling for en variabel o Begrepet fordeling o Mål for senter (gj.snitt, median) + persentiler/kvartiler o Mål for spredning (Standardavvik s, IQR) o Outliere

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig

Detaljer

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Å analysere en utvalgsobservator for å trekke slutninger

Detaljer

OPPGAVEHEFTE I STK1000 TIL KAPITTEL Regneoppgaver til kapittel 7. X 1,i, X 2 = 1 n 2. D = X 1 X 2. På onsdagsforelesningen påstod jeg at da må

OPPGAVEHEFTE I STK1000 TIL KAPITTEL Regneoppgaver til kapittel 7. X 1,i, X 2 = 1 n 2. D = X 1 X 2. På onsdagsforelesningen påstod jeg at da må OPPGAVEHEFTE I STK000 TIL KAPITTEL 7 Regneoppgaver til kapittel 7 Oppgave Anta at man har resultatet av et randomisert forsøk med to grupper, og observerer fra gruppe, mens man observerer X,, X,2,, X,n

Detaljer

Oppsummering & spørsmål 20. april Frode Svartdal

Oppsummering & spørsmål 20. april Frode Svartdal Oppsummering & spørsmål 20. april 2016 Frode Svartdal Nullhypotese og sånt 119 deltakere Folk som svarer på en test for prokrastinering 40 Histogram of IPS 35 30 25 No of obs 20 15 10 5 0 0.5 1.0 1.5 2.0

Detaljer

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2. Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 17 november 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk Tapir

Detaljer

Effektstørrelse. Tabell 1. Kritiske verdier for Pearson s produkt-moment-korrelasjon med 5% og 1% signifikansnivå. N 5% 1% N 5% 1%

Effektstørrelse. Tabell 1. Kritiske verdier for Pearson s produkt-moment-korrelasjon med 5% og 1% signifikansnivå. N 5% 1% N 5% 1% Thor Arnfinn Kleven Institutt for pedagogikk 19.09.2013 Effektstørrelse Tradisjonelt har signifikanstesting vært fremhevet som den viktigste statistiske analyseformen i pedagogisk og psykologisk forskning.

Detaljer

2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger.

2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger. H12 - Semesteroppgave i statistikk - sensurveiledning Del 1 - teori 1. Gjør rede for resonnementet bak ANOVA. Enveis ANOVA tester om det er forskjeller mellom gjennomsnittene i tre eller flere populasjoner.

Detaljer

STUDIEÅRET 2014/2015. Individuell skriftlig eksamen. VTM 200- Vitenskapsteori og metode. Mandag 13. april 2015 kl. 10.00-12.00.

STUDIEÅRET 2014/2015. Individuell skriftlig eksamen. VTM 200- Vitenskapsteori og metode. Mandag 13. april 2015 kl. 10.00-12.00. STUDIEÅRET 2014/2015 Individuell skriftlig eksamen i VTM 200- Vitenskapsteori og metode Mandag 13. april 2015 kl. 10.00-12.00 Hjelpemidler: ingen Eksamensoppgaven består av 5 sider inkludert forsiden Sensurfrist:

Detaljer

STUDIEÅRET 2012/2013. Utsatt individuell skriftlig eksamen. VTM 200- Vitenskapsteori og metode. Tirsdag 27. august 2013 kl

STUDIEÅRET 2012/2013. Utsatt individuell skriftlig eksamen. VTM 200- Vitenskapsteori og metode. Tirsdag 27. august 2013 kl STUDIEÅRET 2012/2013 Utsatt individuell skriftlig eksamen i VTM 200- Vitenskapsteori og metode Tirsdag 27. august 2013 kl. 10.00-12.00 Hjelpemidler: ingen Eksamensoppgaven består av 5 sider inkludert forsiden

Detaljer

FORSKNINGSMETODE NOEN GRUNNLEGGENDE KONSEPTER

FORSKNINGSMETODE NOEN GRUNNLEGGENDE KONSEPTER INF1500 H 2015 Magnus Li NOEN GRUNNLEGGENDE KONSEPTER VITENSKAPELIG METODE Hva? - Som vi har sett har mennesket en persepsjon som er gjennstand for subjektivitet og snarveier. For å kunne finne ut hva

Detaljer

Forskningsmetoder i menneske-maskin interaksjon (MMI)

Forskningsmetoder i menneske-maskin interaksjon (MMI) Forskningsmetoder i menneske-maskin interaksjon (MMI) Kapittel 1- Introduksjon Forskningshistorie innenfor MMI Den første konferansen ble holdt i 1982 Annet arbeid i feltet fant sted før 1982 Konferanser

Detaljer

Forelesning 23 og 24 Wilcoxon test, Bivariate Normal fordeling

Forelesning 23 og 24 Wilcoxon test, Bivariate Normal fordeling Forelesning 23 og 24 Wilcoxon test, Bivariate Normal fordeling Wilcoxon Signed-Rank Test I uke, bruker vi Z test eller t-test for hypotesen H:, og begge tester er basert på forutsetningen om normalfordeling

Detaljer

Introduction to the Practice of Statistics

Introduction to the Practice of Statistics David S. Moore George P. McCabe Introduction to the Practice of Statistics Fifth Edition Chapter 3: Producing Data Copyright 2005 by W. H. Freeman and Company Produsere data Kap 1: Utforske gitte data

Detaljer

SCRIBE The Single-Case Reporting Guideline In BEhavioural Interventions

SCRIBE The Single-Case Reporting Guideline In BEhavioural Interventions SCRIBE The Single-Case Reporting Guideline In BEhavioural Interventions Børge Strømgren, 2017 SCRIBE Ved årsmøteseminaret i 2014 holdt undertegnede en forelesning med tittelen "Designstandarder i N=1 design",

Detaljer

3. Multidimensjonale tabeller. SOS1120 Kvantitativ metode. Årsaksmodeller. Forelesningsnotater 8. forelesning høsten 2005

3. Multidimensjonale tabeller. SOS1120 Kvantitativ metode. Årsaksmodeller. Forelesningsnotater 8. forelesning høsten 2005 SOS1120 Kvantitativ metode 3. Multidimensjonale tabeller Forelesningsnotater 8. forelesning høsten 2005 Per Arne Tufte Hva skjer når vi inkluderer flere uavhengige variabler i en tabellanalyse? Årsaksmodeller

Detaljer

Krysstabellanalyse (forts.) SOS1120 Kvantitativ metode. 4. Statistisk generalisering. Forelesningsnotater 9. forelesning høsten 2005.

Krysstabellanalyse (forts.) SOS1120 Kvantitativ metode. 4. Statistisk generalisering. Forelesningsnotater 9. forelesning høsten 2005. SOS112 Kvantitativ metode Krysstabellanalyse (forts.) Forelesningsnotater 9. forelesning høsten 25 4. Statistisk generalisering Per Arne Tufte Eksempel: Hypoteser Eksempel: observerte frekvenser (O) Hvordan

Detaljer

Allmenndel - Oppgave 2

Allmenndel - Oppgave 2 Allmenndel - Oppgave 2 Gjør rede for kvalitativ og kvantitativ metode, med vekt på hvordan disse metodene brukes innen samfunnsvitenskapene. Sammenlign deretter disse to metodene med det som kalles metodologisk

Detaljer

Kapittel 10: Hypotesetesting

Kapittel 10: Hypotesetesting Kapittel 10: Hypotesetesting TMA445 Statistikk 10.1, 10., 10.3: Introduksjon, 10.5, 10.6, 10.7: Test for µ i normalfordeling, 10.4: p-verdi Turid.Follestad@math.ntnu.no p.1/19 Estimering og hypotesetesting

Detaljer

Kapittel 9 og 10: Hypotesetesting

Kapittel 9 og 10: Hypotesetesting Kapittel 9 og 1: ypotesetesting ypotesetesting er en standard vitenskapelig fremgangsmåte for å sjekke påstander. Generell problemstilling: Basert på informasjonen i data fra et tilfeldig utvalg ønsker

Detaljer

Gruppe 1 Gruppe 2 Gruppe a) Finn aritmetisk gjennomsnitt, median, modus og standardavvik for gruppe 2.

Gruppe 1 Gruppe 2 Gruppe a) Finn aritmetisk gjennomsnitt, median, modus og standardavvik for gruppe 2. Sensurveiledning Ped 3001 h12 Oppgave 1 Er det sammenheng mellom støtte fra venner og selvaktelse hos ungdom? Dette spørsmålet ønsket en forsker å undersøke. Han samlet data på 9. klassingers opplevde

Detaljer

i x i

i x i TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 11, blokk II Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale

Detaljer

Forelesning 7 Statistiske beskrivelser av enkeltvariabler. Mål for sentraltendens

Forelesning 7 Statistiske beskrivelser av enkeltvariabler. Mål for sentraltendens Forelesning 7 Statistiske beskrivelser av enkeltvariabler Statistiske mål for univariate fordelinger: Sentraltendens Verdien for fordelingens tyngdepunkt Spredning Hvor nært opp til tyngdepunktet ligger

Detaljer

Tema Kvalitativ og kvantitativ forskningsmetode. Forskningsmetode. Kausalitet. Reliabilitet og validitet. Usikkerhet. IA mandag 5/9-2014

Tema Kvalitativ og kvantitativ forskningsmetode. Forskningsmetode. Kausalitet. Reliabilitet og validitet. Usikkerhet. IA mandag 5/9-2014 Kvalitativ og kvantitativ forskningsmetode IA mandag 5/9-2014 Johan Håkon Bjørngaard, Professor Institutt for samfunnsmedisin johan.h.bjorngaard@ntnu.no Name, title of the presentation Forskningsmetode

Detaljer

EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK

EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 12 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK Onsdag

Detaljer

Sensorveiledning: skoleeksamen i SOS Kvantitativ metode

Sensorveiledning: skoleeksamen i SOS Kvantitativ metode Sensorveiledning: skoleeksamen i SOS1120 - Kvantitativ metode Tirsdag 30. mai 2016 (4 timer) Poenggivning og karakter I del 1 gis det ett poeng for hvert riktige svar. Ubesvart eller feil svar gis 0 poeng.

Detaljer

Skoleeksamen i SOS Kvantitativ metode

Skoleeksamen i SOS Kvantitativ metode Skoleeksamen i SOS1120 - Kvantitativ metode Hjelpemidler Ordbok Alle typer kalkulatorer Tirsdag 30. mai 2017 (4 timer) Lærerbok (det er mulig mulig å ha med en annen, tilsvarende pensumbok, som erstatning

Detaljer

Om betydningen av offentlig informasjon om behandlingsbeslutninger.

Om betydningen av offentlig informasjon om behandlingsbeslutninger. Om betydningen av offentlig informasjon om behandlingsbeslutninger. Den nasjonale helseøkonomikonferansen 2013 Solstrand Geir Godager 0: Innledning Utgangspunkt for dagens presentasjon: Laboratorieeksperiment

Detaljer

Komparative design. Forelesning 12 Mer om kvantitative forskningsdesign. Sammenligninger av to eller flere case i rom og tid

Komparative design. Forelesning 12 Mer om kvantitative forskningsdesign. Sammenligninger av to eller flere case i rom og tid Forelesning 12 Mer om kvantitative forskningsdesign Et design eller forskningsopplegg er forskerens plan eller skisse for en undersøkelse Det er viktig å kjenne til mulighetene i de ulike typene design

Detaljer

Notasjon og Tabell 8. ST0202 Statistikk for samfunnsvitere

Notasjon og Tabell 8. ST0202 Statistikk for samfunnsvitere 2 Inferens om varians og standardavvik for ett normalfordelt utvalg (9.4) Inferens om variansen til en normalfordelt populasjon bruker kjikvadrat-fordelingen ( chi-square distribution ) (der kji er den

Detaljer

Forskningsmetoder. INF1050: Gjennomgang, uke 13

Forskningsmetoder. INF1050: Gjennomgang, uke 13 Forskningsmetoder INF1050: Gjennomgang, uke 13 Kompetansemål Forskningsmetoder Hva? Hvorfor? Empiriske forskningsmetoder Eksperiment Case-studier Etnografi Aksjonsforskning Spørreskjema Systematisk litteraturstudie

Detaljer

CAG repetisjoner og gråsonen

CAG repetisjoner og gråsonen Forskningsnyheter om Huntingtons sykdom. I et lettfattelig språk. Skrevet av forskere. Til det globale HS-fellesskapet. Hvor lang er for lang? Nye tanker om "gråsonen" ved Huntington sykdom Kan et middels

Detaljer

Statistikk & dataanalyse: Et eksempel. Frode Svartdal UiT mars 2015

Statistikk & dataanalyse: Et eksempel. Frode Svartdal UiT mars 2015 Statistikk & dataanalyse: Et eksempel Frode Svartdal UiT mars 2015 Eksempel UTGANGSPUNKT Vi antar at den som prokrastinerer (utsetter ting) drøyer med alt mulig som skal gjøres, eksempelvis Venter med

Detaljer

1 8-1: Oversikt. 2 8-2: Grunnleggende hypotesetesting. 3 Section 8-3: Å teste påstander om andeler. 4 Section 8-5: Teste en påstand om gjennomsnittet

1 8-1: Oversikt. 2 8-2: Grunnleggende hypotesetesting. 3 Section 8-3: Å teste påstander om andeler. 4 Section 8-5: Teste en påstand om gjennomsnittet 1 8-1: Oversikt 2 8-2: Grunnleggende hypotesetesting 3 Section 8-3: Å teste påstander om andeler 4 Section 8-5: Teste en påstand om gjennomsnittet Definisjoner Hypotese En hypotese er en påstand om noe

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting. Kp. 6 Hypotesetesting ...

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting. Kp. 6 Hypotesetesting ... ÅMA Sannsynlighetsregning med statistikk, våren 6 Kp. 6 (kp. 6)... Begrep: nullhypotese alternativhypotese ensidig, tosidig teststørrelse (testobservator) nullfordeling kritisk verdi, forkastningsområde

Detaljer

Innhold. Del 1 Grunnleggende begreper og prinsipper... 39

Innhold. Del 1 Grunnleggende begreper og prinsipper... 39 Innhold Kapittel 1 Vitenskap: grunnleggende antakelser... 13 Hva er vitenskap?... 14 Psykologi som vitenskap: tre tradisjoner... 17 Forutsetninger vitenskap bygger på... 21 Siktemål med forsk ning... 22

Detaljer

EKSAMENSOPPGAVE KLH3004 Medisinsk statistikk (Medical statistics) KLMED8004 Medisinsk statistikk, del I (Medical Statistics, Part I)

EKSAMENSOPPGAVE KLH3004 Medisinsk statistikk (Medical statistics) KLMED8004 Medisinsk statistikk, del I (Medical Statistics, Part I) Det medisinske fakultet Institutt for kreftforskning og molekylær medisin EKSAMENSOPPGAVE KLH3004 Medisinsk statistikk (Medical statistics) KLMED8004 Medisinsk statistikk, del I (Medical Statistics, Part

Detaljer

Statistikk & dataanalyse: Et eksempel. Frode Svartdal UiT april 2016

Statistikk & dataanalyse: Et eksempel. Frode Svartdal UiT april 2016 Statistikk & dataanalyse: Et eksempel Frode Svartdal UiT april 2016 Eksempel UTGANGSPUNKT Vi antar at den som prokrastinerer (utsetter ting) drøyer med alt mulig som skal gjøres, eksempelvis Venter med

Detaljer

Definisjoner av begreper Eks.: interesse for politikk

Definisjoner av begreper Eks.: interesse for politikk Måling SOS1120 Kvantitativ metode Forelesningsnotater 5. forelesning høsten 2005 Per Arne Tufte Måling er å knytte teoretiske begreper til empiriske indikatorer Operasjonell definisjon Angir hvordan et

Detaljer

Oppgaver Oppgavetype Vurdering Status 1 ME-417, forside Flervalg Automatisk poengsum Levert. 2 ME-417, oppgave 1 Skriveoppgave Manuell poengsum Levert

Oppgaver Oppgavetype Vurdering Status 1 ME-417, forside Flervalg Automatisk poengsum Levert. 2 ME-417, oppgave 1 Skriveoppgave Manuell poengsum Levert ME-417 1 Vitenskapsteori og kvantitativ metode Kandidat 3698 Oppgaver Oppgavetype Vurdering Status 1 ME-417, forside Flervalg Automatisk poengsum Levert 2 ME-417, oppgave 1 Skriveoppgave Manuell poengsum

Detaljer

Eksamensoppgave i samfunnsfaglig forskningsmetode 16. mai 2003

Eksamensoppgave i samfunnsfaglig forskningsmetode 16. mai 2003 Eksamensoppgave i samfunnsfaglig forskningsmetode 16. mai 03 Oppgave 1 1 Tabell 1 gjengir data fra en spørreundersøkelse blant personer mellom 17 og 66 år i et sannsynlighetsutvalg fra SSB sitt sentrale

Detaljer

EKSAMEN I PSY1001/PSY1011/PSYPRO4111/ PSYKOLOGIENS METODOLOGI HØSTEN 2012 BOKMÅL

EKSAMEN I PSY1001/PSY1011/PSYPRO4111/ PSYKOLOGIENS METODOLOGI HØSTEN 2012 BOKMÅL NTNU Fakultet for samfunnsvitenskap og teknologiledelse Psykologisk institutt EKSAMEN I PSY1001/PSY1011/PSYPRO4111/ PSYKOLOGIENS METODOLOGI HØSTEN 2012 DATO: 14.01.2012 Studiepoeng: 7,5 Sidetall bokmål

Detaljer

TMA4240 Statistikk Høst 2007

TMA4240 Statistikk Høst 2007 TMA4240 Statistikk Høst 2007 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b4 Løsningsskisse Oppgave 1 Eksamen juni 1999, oppgave 3 av 3 a) µ populasjonsgjennomsnitt,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1000 Innføring i anvendt statistikk Eksamensdag: Onsdag 12. oktober 2016 Tid for eksamen: 10.00 12.00 Oppgavesettet er på

Detaljer

Hypotesetesting (kp. 6) ÅMA110 Sannsynlighetsregning med statistikk, våren Tre deler av faget/kurset: 1. Beskrivende statistikk

Hypotesetesting (kp. 6) ÅMA110 Sannsynlighetsregning med statistikk, våren Tre deler av faget/kurset: 1. Beskrivende statistikk ÅMA Sannsynlighetsregning med statistikk, våren 2 Kp. 6 Hypotesetesting Hypotesetesting (kp. 6) Tre deler av faget/kurset:. Beskrivende statistikk 2. Sannsynlighetsteori, sannsynlighetsregning 3. Statistisk

Detaljer

Eksperimentelle design

Eksperimentelle design Eksperimentelle design Frode Svartdal UiTø April 2015 Frode Svartdal Eksperimentelle design Design = plan for en undersøkelse, her eksperiment Eksperimenter har som hensikt å dokumentere at variabler har

Detaljer

STUDIEÅRET 2014/2015. Utsatt individuell skriftlig eksamen. VTM 200- Vitenskapsteori og metode. Tirsdag 25. august 2015 kl. 10.00-12.00.

STUDIEÅRET 2014/2015. Utsatt individuell skriftlig eksamen. VTM 200- Vitenskapsteori og metode. Tirsdag 25. august 2015 kl. 10.00-12.00. STUDIEÅRET 2014/2015 Utsatt individuell skriftlig eksamen i VTM 200- Vitenskapsteori og metode Tirsdag 25. august 2015 kl. 10.00-12.00 Hjelpemidler: ingen Eksamensoppgaven består av 5 sider inkludert forsiden

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 11 Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale begreper

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON2130 - Statistikk 1 Eksamensdag: 19.06.2014 Tid for eksamen: kl. 09:00 12:00 Oppgavesettet er på 4 sider UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Tillatte hjelpemidler: Alle trykte

Detaljer

KVALITATIVE METODER I

KVALITATIVE METODER I KVALITATIVE METODER I Gentikow, Barbara 2005: Hvordan utforsker man medieerfaringer? Kvalitativ metode. Revidert utgave. Kristiansand: IJ-forlaget Grønmo, Sigmund 2004: Samfunnsvitenskapelige metoder,

Detaljer

SJEKKLISTE FOR VURDERING AV EN RANDOMISERT KONTROLLERT STUDIE (RCT)

SJEKKLISTE FOR VURDERING AV EN RANDOMISERT KONTROLLERT STUDIE (RCT) SJEKKLISTE FOR VURDERING AV EN RANDOMISERT KONTROLLERT STUDIE (RCT) FØLGENDE FORHOLD MÅ VURDERES: Kan vi stole på resultatene? Hva forteller resultatene? Kan resultatene være til hjelp i praksis? Under

Detaljer

EKSAMEN I FAG 75510/75515 STATISTIKK 1 Tirsdag 20. mai 1997 Tid: 09:00 14:00

EKSAMEN I FAG 75510/75515 STATISTIKK 1 Tirsdag 20. mai 1997 Tid: 09:00 14:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Håvard Rue 73 59 35 20 Håkon Tjelmeland 73 59 35 20 Bjørn Kåre Hegstad 73 59 35 20

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting, innledning. Kp.

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting, innledning. Kp. ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. 6 Hypotesetesting Hypotesetesting (kp. 6) Tre deler av faget/kurset:. Beskrivende statistikk. Sannsynlighetsteori, sannsynlighetsregning 3. Statistisk

Detaljer

KLH3002 Epidemiologi. Eksamen høsten 2012

KLH3002 Epidemiologi. Eksamen høsten 2012 KLH3002 Epidemiologi Eksamen høsten 2012 1. Insidens andel (Eng. Incidence proportion)avhenger av A. oppfølgingstiden i studien (= follow up time) B. bortfall fra studien (= loss to follow up) C. Både

Detaljer

Vurdering av kvaliteten på undersøkelser om virkninger av trafikksikkerhetstiltak

Vurdering av kvaliteten på undersøkelser om virkninger av trafikksikkerhetstiltak Sammendrag: Vurdering av kvaliteten på undersøkelser om virkninger av trafikksikkerhetstiltak TØI-rapport 984/2008 Forfatter(e): Rune Elvik Oslo 2008, 140 sider Denne rapporten presenterer en undersøkelse

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 11, blokk II I denne øvingen skal vi fokusere på hypotesetesting. Vi ønsker å gi dere

Detaljer

STUDIEÅRET 2012/2013. Individuell skriftlig eksamen. VTM 200- Vitenskapsteori og metode. Onsdag 24. april 2013 kl

STUDIEÅRET 2012/2013. Individuell skriftlig eksamen. VTM 200- Vitenskapsteori og metode. Onsdag 24. april 2013 kl STUDIEÅRET 2012/2013 Individuell skriftlig eksamen i VTM 200- Vitenskapsteori og metode Onsdag 24. april 2013 kl. 10.00-12.00 Hjelpemidler: ingen Eksamensoppgaven består av 5 sider inkludert forsiden Sensurfrist:

Detaljer

Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere

Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis μ 1 og μ. Vi trekker da ett utvalg fra hver populasjon. ST00 Statistikk for

Detaljer

α =P(type I feil) = P(forkast H 0 H 0 er sann) =1 P(220 < X < 260 p = 0.6)

α =P(type I feil) = P(forkast H 0 H 0 er sann) =1 P(220 < X < 260 p = 0.6) TMA4245 Statistikk Vår 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving 4 blokk II Løsningsskisse Oppgave 1 4 personer spurt. Hvis mellom 22 og 26 personer svarer

Detaljer

Eksamensoppgåve i TMA4240 Statistikk

Eksamensoppgåve i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgåve i TMA4240 Statistikk Fagleg kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806

Detaljer

Forskningsmetode for sykepleierutdanningene

Forskningsmetode for sykepleierutdanningene Forskningsmetode for sykepleierutdanningene Boken har mange relevante, og i hovedsak norske eksempler på sykepleieforskning og gir en introduksjon til forskningsmetode for sykepleierutdanninger. Vurdering:

Detaljer

Eksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi

Eksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi Psykologisk institutt Eksamensoppgave i PSY1011/PSYPRO4111 Psykologiens metodologi Faglig kontakt under eksamen: Eva Langvik Tlf.: 73 59 19 60 Eksamensdato: 22.05.2015 Eksamenstid (fra-til): 09:00 13:00

Detaljer

Kapittel 7: Inferens for forventningerukjent standardavvik

Kapittel 7: Inferens for forventningerukjent standardavvik Kapittel 7: Inferens for forventningerukjent standardavvik 7.1: Inferens for forventningen i en populasjon 7.2: Inferens for å sammenligne to forventninger 7.1 Inferens for forventningen i en populasjon

Detaljer

Dato: 2.10.2000 Formål: 25. 28. september. Telefon intervju: Omnibus. Regionsykehuset i Tromsø. Hege Andreassen. Kathrine Steen Andersen.

Dato: 2.10.2000 Formål: 25. 28. september. Telefon intervju: Omnibus. Regionsykehuset i Tromsø. Hege Andreassen. Kathrine Steen Andersen. Prosjektinformasjon Dato: 2.10.00 Formål: Teste befolkningens bruk og holdninger til bruk av Internett i helserelatert sammenheng. Målgruppe/ utvalg: Landsrepresentativt, 1 år + Tidsperiode (feltarbeid):

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK1000 Innføring i anvendt statistikk Eksamensdag: Torsdag 2. desember 2010. Tid for eksamen: 09.00 13.00. Oppgavesettet er på

Detaljer

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

Eksamensoppgave i ST1201/ST6201 Statistiske metoder Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 11. desember 2014 Eksamenstid (fra til): 09:00

Detaljer

INF Introduksjon til design, bruk, interaksjon Evaluering, del 2

INF Introduksjon til design, bruk, interaksjon Evaluering, del 2 INF1500 - Introduksjon til design, bruk, interaksjon Evaluering, del 2 Institutt for Informatikk, 7. november 2011 joshi@ifi.uio.no Oversikt Rask oppsummering Tre tilnærminger for evaluering Kombinasjon

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 9-10 (oversikt): Inferens om én og to populasjoner

ST0202 Statistikk for samfunnsvitere Kapittel 9-10 (oversikt): Inferens om én og to populasjoner ST0202 Statistikk for samfunnsvitere Kapittel 9-10 (oversikt): Inferens om én og to populasjoner Bo Lindqvist Institutt for matematiske fag 2 Inferens med EN populasjon 3 Oppgave: H2002 # 3 I følge Nielsen

Detaljer

SJEKKLISTE FOR VURDERING AV EN RANDOMISERT KONTROLLERT STUDIE (RCT) Målgruppe: studenter og helsepersonell Hensikt: øvelse i kritisk vurdering

SJEKKLISTE FOR VURDERING AV EN RANDOMISERT KONTROLLERT STUDIE (RCT) Målgruppe: studenter og helsepersonell Hensikt: øvelse i kritisk vurdering SJEKKLISTE FOR VURDERING AV EN RANDOMISERT KONTROLLERT STUDIE (RCT) Målgruppe: studenter og helsepersonell Hensikt: øvelse i kritisk vurdering FØLGENDE FORHOLD MÅ VURDERES: Kan vi stole på resultatene?

Detaljer

Frivillig respons utvalg

Frivillig respons utvalg Design av utvalg Andel college-studenter som er konservative? Andel ungdom som ser tv-reklame om ny sportssykkel? Gjennomsnittelig inntekt i en populasjon? Ønsker informasjon om stor populasjon Tid, kostnad:

Detaljer

Introduction to the Practice of Statistics

Introduction to the Practice of Statistics David S. Moore George P. McCabe Introduction to the Practice of Statistics Fifth Edition Chapter 4: Probability: The Study of Randomness Copyright 2005 by W. H. Freeman and Company Statistisk inferens

Detaljer

Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio)

Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio) Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio) Beskrive fordelinger (sentraltendens, variasjon og form): Observasjon y i Sentraltendens

Detaljer

Bootstrapping og simulering Tilleggslitteratur for STK1100

Bootstrapping og simulering Tilleggslitteratur for STK1100 Bootstrapping og simulering Tilleggslitteratur for STK1100 Geir Storvik April 2014 (oppdatert April 2016) 1 Introduksjon Simulering av tilfeldige variable (stokastisk simulering) er et nyttig verktøy innenfor

Detaljer

PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014

PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014 Psykologisk institutt PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014 Skriftlig skoleeksamen fredag 2. mai, 09:00 (4 timer). Kalkulator uten grafisk display og tekstlagringsfunksjon

Detaljer

Studieprogram: PSY100 Årsstudiet i psykologi / Bachelor i kultur- og samfunnspsykologi

Studieprogram: PSY100 Årsstudiet i psykologi / Bachelor i kultur- og samfunnspsykologi Studieprogram: PSY100 Årsstudiet i psykologi / Bachelor i kultur- og samfunnspsykologi Kode/emne/studiepoeng: PSY112 Biologisk og kognitiv psykologi (10 studiepoeng) Dato: Tirsdag 10.02. 2015 Kl: 09:00

Detaljer

Oppgaver Oppgavetype Vurdering Status 1 ME-417, forside Flervalg Automatisk poengsum Levert. 2 ME-417, oppgave 1 Skriveoppgave Manuell poengsum Levert

Oppgaver Oppgavetype Vurdering Status 1 ME-417, forside Flervalg Automatisk poengsum Levert. 2 ME-417, oppgave 1 Skriveoppgave Manuell poengsum Levert ME-417 1 Vitenskapsteori og kvantitativ metode Kandidat 3704 Oppgaver Oppgavetype Vurdering Status 1 ME-417, forside Flervalg Automatisk poengsum Levert 2 ME-417, oppgave 1 Skriveoppgave Manuell poengsum

Detaljer

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 1 Section 4-1: Introduksjon til sannsynlighet 2 Section 4-2: Enkel sannsynlighetsregning 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 4 Section 5-2: Tilfeldige variable 5 Section 5-3: Binomisk

Detaljer

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt. Eksamen i: MET040 Statistikk for økonomer Eksamensdag: 4. juni 2008 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 5 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.

Detaljer

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0 Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir

Detaljer

Forelesning 10 Kjikvadrattesten

Forelesning 10 Kjikvadrattesten verdier Forelesning 10 Kjikvadrattesten To typer av statistisk generalisering: Statistisk hypotesetesting Statistiske hypoteser (H 0 og H 1 ) om populasjonen Finner forkastningsområdet for H 0 ut fra en

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere

Detaljer

Mappeoppgave om sannsynlighet

Mappeoppgave om sannsynlighet Mappeoppgave om sannsynlighet Statistiske eksperimenter Første situasjon Vi kom frem til å bruke Yatzy som et spill vi ønsket å beregne sannsynlighet ut ifra. Vi valgte ut tre like og to par. Etter en

Detaljer

KLH 3002 Epidemiologi Eksamen Høst 2011 Eksaminator: Geir W. Jacobsen, ISM

KLH 3002 Epidemiologi Eksamen Høst 2011 Eksaminator: Geir W. Jacobsen, ISM KLH 3002 Epidemiologi Eksamen Høst 2011 Eksaminator: Geir W. Jacobsen, ISM Oppgaven består av 18 spørsmål, hvorav de første 15 er flervalgsspørsmål (ett poeng per oppgave) - sett ring rundt riktig svar.

Detaljer

Slide 1. Slide 2 Statistisk inferens. Slide 3. Introduction to the Practice of Statistics Fifth Edition

Slide 1. Slide 2 Statistisk inferens. Slide 3. Introduction to the Practice of Statistics Fifth Edition Slide 1 David S. Moore George P. McCabe Introduction to the Practice of Statistics Fifth Edition Chapter 4: Probability: The Study of Randomness 9/22/2010 Copyright 2005 by W. H. Freeman and Company Slide

Detaljer

Forelesning 3. Hvordan kommer vi fram til det gode forskningsspørsmålet? Forskningsspørsmålet kan formuleres med ulik presisjon.

Forelesning 3. Hvordan kommer vi fram til det gode forskningsspørsmålet? Forskningsspørsmålet kan formuleres med ulik presisjon. Forelesning 3 1. Idé 2. Problemstilling Dagens tema 3. Strategi, design 4. Datainnsamling 5. Dataanalyse 6. Rapportering Hvordan kommer vi fram til det gode forskningsspørsmålet? Uklare ideer Litteratursøking

Detaljer

Forelesning 27. MAT1030 Diskret Matematikk. Bevistrær. Bevistrær. Forelesning 27: Trær. Roger Antonsen. 6. mai 2009 (Sist oppdatert: :28)

Forelesning 27. MAT1030 Diskret Matematikk. Bevistrær. Bevistrær. Forelesning 27: Trær. Roger Antonsen. 6. mai 2009 (Sist oppdatert: :28) MAT1030 Diskret Matematikk Forelesning 27: Trær Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 27 6. mai 2009 (Sist oppdatert: 2009-05-06 22:28) MAT1030 Diskret Matematikk 6.

Detaljer

Bærekraftig utvikling - forskerspiren. Maria Sviland, Skolelaboratoriet NTNU

Bærekraftig utvikling - forskerspiren. Maria Sviland, Skolelaboratoriet NTNU Bærekraftig utvikling - forskerspiren Maria Sviland, Skolelaboratoriet NTNU 1 2 Forskerspiren Forskerspiren Kompetansemål etter Vg1 studieforberedende utdanningsprogram ( - Naturfag i vidregående opplæring)

Detaljer

Logikk og vitenskapsteori

Logikk og vitenskapsteori Logikk og vitenskapsteori Logikk og argumentasjon Vitenskapelige idealer, forklaringsmodeller og metoder Verifikasjon og falsifikasjon Vitenskap og kvasi-vitenskap (Logisk positivisme, Popper) Vitenskapelig

Detaljer

Eksamensoppgave i PSYPRO4064 Klinisk psykologi II

Eksamensoppgave i PSYPRO4064 Klinisk psykologi II Psykologisk institutt Eksamensoppgave i PSYPRO4064 Klinisk psykologi II Faglig kontakt under eksamen: Hans Nordahl/Lars Wichstrøm Tlf.: Psykologisk institutt 73 59 19 60 Eksamensdato: 30.05.2014 Eksamenstid

Detaljer

SOS1002 Forelesning 2. Hva er forskning? To hovedtyper av vitenskap

SOS1002 Forelesning 2. Hva er forskning? To hovedtyper av vitenskap SOS1002 Forelesning 2 Hva er forskning? Hva kjennetegner forskningsbaserte forklaringer? Forskningens grunnlagsproblemer 1 Hva er forskning? Den del av vitenskapelig virksomhet som frembringer ny kunnskap,

Detaljer

Kapittel 3. Datainnsamling Dataproduksjon

Kapittel 3. Datainnsamling Dataproduksjon Kapittel 3 Datainnsamling Dataproduksjon Produsere/samle data Kap 1: Utforske og analysere gitte data for en variabel ved hjelp av grafer og tall Kap 2: Analysere sammenhenger mellom gitte data for to

Detaljer

Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010

Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Oppgave 1 a Forventet antall dødsulykker i år i er E(X i λ i. Dermed er θ i λ i E(X i forventet antall dødsulykker per 100

Detaljer

Vurdering av kvaliteten på evalueringsforskning ved hjelp av meta-analyse

Vurdering av kvaliteten på evalueringsforskning ved hjelp av meta-analyse Sammendrag: Vurdering av kvaliteten på evalueringsforskning ved hjelp av meta-analyse TØI rapport 430/1999 Forfatter: Rune Elvik Oslo 1999, 187 sider Temaet for denne avhandlingen er hvordan man kan vurdere

Detaljer