Løsningsforslag for øvningsoppgaver: Kapittel 9

Størrelse: px
Begynne med side:

Download "Løsningsforslag for øvningsoppgaver: Kapittel 9"

Transkript

1 Løsningsforslag for øvningsoppgaver: Kapittel 9 Jon Walter Lundberg a) Hva er en elastisk pendel? Definer svingetida, perioden, frekvensen, utslaget og amlituden til en slik pendel. Definisjonene på elastisk pendel, periode, frekvens utslag og amlitude står beskrevet på side 230, i Rom Stoff Tid: Forkurs. b) Om en bestemt elastisk pendel ble det sakt: To sekunder seinere var pendelen i samme svingetilstand. Hva menes med svingetilstand? Når en pendel har samme svingetilstand betyr det at den har samme utslag og samme fartsretning som tidligere Bestem frekvensen til disse periodiske fenomenene: f = 1 T, T = periode a) At jorda roterer om seg selv T = = 86400s 1 f = = 0, 116µHz 86400s 1

2 b) Storeviseren på klokka f = 1 = 27, 78mHz (60 60) c) Sentrifugen i vaskemaskinen når den gjr 1200 omdreininger per minutt d) Nomal hjerterytme f = = 20Hz Normal hjerterytme kan være alt fra 50 til 100 slag per minut. Utrykk: f herte = 1 slag/min En bølge beveger seg på et tau. Et bestemt punkt på tauet bruker 0, 21s på å bevege seg fra maksimalt utslag til null utslag. Bølgelengden er 1, 6m. Finn perioden, frekvensen og bølgefaren. λ = 1, 6m periode: Når tauet har gått fra høyeste punkt har det nådd 1 av veien. 4 Den går fra maksimal utslag til null til negativt maksimal utslag tilbake til null tilbake til maksimal utslag. T = 4 0, 21s = 0, 84s frekvens: f = 1 T f = 1 = 1, 19Hz 0, 84s 2

3 bølgefart: v = fλ = λ T v = fλ = 1, 6m 0, 84s = 1, 9m s 9.10 En tversbølge på ei fjær går mot høyre. Punktet A på fjæra har svingetida 0, 18s. Bølgelengden er 1, 5m. På figuren har bølgen sitt største positive utslag i A. a) Hva er svingetida til punketet B? Alle punkter på bølgen har samme svinge tid. Svingetid a = Svingetid b = 0, 18s b) Hvilken bevegelsesretning har punktene A, B og C ved tidspnktet figuren viser? c) Regn ut bølgefarten. v = λ T = 1, 5m 0, 18s = 8, 33m s 9.12 Flaggermus er nattaktive dyr. For å orientere seg sender de ut ultralydsignaler som de mottar ekkoet fra med sine store, følsomme ører. Ved hjelp av denne teknikken danner de seg et meget godt bilde av omivelsene - akkurat som et skip gjør ved hjelp av radar. I denne oppgaven setter vi lydfarten i luft til 340 m s. 3

4 a) Når flaggermusa skal finne avstanden til et bytte, bruker den tidsforskjellen mellom den lyden den sendte ut, og lyden som blir reflektert. Hvor stor er tidsforskjellen dersom avstanden er 6m? v = s t t = s v v = 340 m s Lyden må reflekteres tilbake til flaggermusa, derfor blir s = 2 6m = 12m t = 12m 340 m s = 0, 0353s b) En flaggermusart kan benytte ultralyd med frekvensen 83kH.z Hvilken bølgelengde svarer det til? f = Hz v = 340 m s v = fλ λ = v f λ = 340 m s Hz = 4, 1mm 9.15 Bølger brer seg ut fra to bølgekilder, S 1 og S 2, som svinger i takt. Veiforskjellen til et punkt P er 1, 5λ. a) Tegn figur. 4

5 b) Hva vil det si at veiforskjellen til 1, 5λ S 2 P S 1 P = (n )λ er vilkåret for utslokning. Dette betyr at det er minimale bølgeutslag. c) Hva er svingetilstanden i punktet P? Det forekommer full utslokning i punkt P, og det betyr at punket er i ro To høyttalere svinger i fase og sender ut like lydbølger. En person er til å begynne med like langt fra begge høyttalerne. Så flytter hun seg parallelt med linja mellom høyttalerne til hun hører et tydelig lydminimum. Astanden til høyttalerne er da 3, 0m og 2, 4m. Lydfarten i lufta er 342 m s. Hvilken frekvens har lyden? Variabler: V = 342 m s S 2 P = 3, 0m, S 1 P = 2, 4m n = 0 Utslag = minimalt 5

6 Formler: S 2 P S 1 P = (n )λ v = fλ λ = v f Utregning: 3m 2, 4m = ( )λ 0, 6m = 1 2 λ 0, 6m 1 2 = λ = 1, 2m λ = 324 m s 1, 2m = 285Hz 9.20 Grønt lys med bølgelengden 540nm treffer en dobbeltspalte. Avstanden mellom spaltene er 5, 00µm. Beregn retningsvinkelen θ 3 for lysmaksimum av 3. orden. variabler: d sin(θ n ) = nλ λ = m d = m n = 3 utregning: d sin(θ n ) = nλ sin(θ n ) = nλ d sin(θ 3 ) = (3)( m) ( m) sin 1 (0, 324) = 18, 9 = 0, 324 6

7 Er maksimum av 10. orden mulig for denne oppstillingen? sin(θ 10 ) = (10)( m) ( m) = 1, 08 sin 1 (1, 08) = Det er ikke mulig Et gitter har 500 linjer per millimeter. Vi holder gitteret foran øyet og ser gjennom det mot en linjeformet natriumlampe som er plassert like foran en vegg 2, 00m fra oss. a) Finn gitterkonstanten. d = 1mm 500 = m b) Hva er bølgelengden for lyset når vi observerer en avstand på 1, 23m mellom de to 1.-ordensbildene av lampa ved veggen? n = 1, λ =? tan(θ) = 0, 615m 2m = 0, 3075 tan 1 (0, 3075) = 17, 1 n = 1 d sin(θ 1 ) = λ ( )(sin(17.1 )) = λ λ = 5, m = 588nm

8 To høyttalere A og B som står 3, 0m fra hverandre, er koplet til en tonegenerator. Høyttalerne står ute og langt fra bygninger. Se figuren nedenfor. En student som står i punktet O 10m fra midtpunktet på lina mellom høttalerne, hører et lydmaksimum. Så går studenten langs linja OX til lyden avtar til et minimum i punktet X. Det første lydminimmet er altså i punktet X. a) Hva er veiforskjellen mellom lydbølgene fra A og B? pythagoras setning : a 2 + b 2 = c 2 AB 2 + AX 2 = BX 2 AB 2 + AX 2 = BX (3m) 2 + (10m) 2 = BX BX = 10, 44m AX BX = 0, 44m b) Hvor mange bølgelengder er denne veiforskjellen? Siden det første lydminimumet er i punktet X er veiforskjelllen 0, 5. 8

9 c) Hvor stor er bølgelengden til lydbølgene? λ = 2 0, 44m = 0, 88m d) Hva er frekvensen ti lydbølgene hvis lydfarten i luft er 340 m s? v = fλ f = v λ f = 340 m s = 386, 4Hz 0, 88m a) Hva er betingelsene for å kunne observere tydelig bøyning av bølgen gennom en åpning? Blågrønt lys med bølgelengden 500nm blir sendt mot en dobbeltspalte med spalteavstanden 1, 2mm. Bølgeåpningen må være om lag like stor som bølgelengden. b) Hva blir avstanden mellom de to lyse linjene av 1. orden på en skjerm som står 5, 4m fra dobbletspalten? Avstanden mellom to maksimum av 1. orden er det dobbelte av avstanden y1 mellom 0. orden og 1. ordens maksimum. Retningsvinkelen 1 finner vi ved hjelp av interferens- formelen: 9

10 d sin(θ n ) = nλ n = 1 sin(θ 1 ) = λ d sin(θ 1 ) = ( m) 1, = 4, sin 1 (4, ) = 0, tan(θ 1 ) = y 1 L y 1 = tan(θ 1 )(L) y 1 = tan(0, )(5, 4m) = 2, 258mm Avstanden mellom de to 1.ordens lysstripene på sjermen er da: 2 y 1 = 2 2, 258mm = 4, 516mm c) Hva skjer med lysstripene på skjermen hvis vi bytter ut det blågrønne lyset med rødt lys? Med det blågrønne lyset ser vi på skjermen et mønster avlyse striper. Den lyssterkeste stripa ligger på linjen rett fram(nulte orden), se den øverste figuren nedenfor. Med rødt lys ser vi et mønster av samme type som med det blågrønne lyset. Men siden rødt lys har større bølgelengde enn blågrønt lys blir avstanden mellom stripene nå større. 10

11 d) Med et gitter får vi også et mønster av lyse striper på skjermen, men nå er de lyse stripene mye smalere og mer lyssterke. Se figuren nedenfor. e) Et gitter har 6000 linjer per centimeter. Monokromatisk lyys med bølgelengden 600nm blir sendt vinkelrett inn mot gitterflaten. Hvor mange lysstriper kan vi se på skjermen? Gitterkonstant = 1cm 6000 = 1, m Vi setter vinkelen til 90 for å finne ut hvor mange ordner vi kan se. d sin(θ) = nλ n = d sin(θ) λ n = 1, sin(90 ) = 2, 778 m n kommer ikke over 3 det betyr at 2 er det høyeste ordenstallet. Det betyr at vi får en stripe av 0. orden, to stiper av 1. orden og to striper av 2. orden. Når vi legger de sammen sitter vi igjen med 5 striper. 11

16 Bølger. 16.1 Bølgebevegelse. 134 16 Bølger 16.106 16.101 16.102 + 16.107 16.108 16.109 + 16.103 16.104 16.105

16 Bølger. 16.1 Bølgebevegelse. 134 16 Bølger 16.106 16.101 16.102 + 16.107 16.108 16.109 + 16.103 16.104 16.105 134 16 Bølger 16 Bølger 16.1 Bølgebevegelse 16.101 Et lodd som henger i en snor, blir trukket ut til siden og så sluppet. Da svinger loddet fram og tilbake som en planpendel. Tida for ti hele svingninger

Detaljer

a) Hva var satellittens gjennomsnittlige fart? Gi svaret i m/s. Begrunn svaret.

a) Hva var satellittens gjennomsnittlige fart? Gi svaret i m/s. Begrunn svaret. Sensurveiledning Emnekode: LGU51007 Semester: HØST År: 2015 Emnenavn: Naturfag 1 emne 1 Eksamenstype: Ordinær deleksamen 7. desember 2015 3 timer skriftlig eksamen Oppgaveteksten: Oppgave A. (15 av 120

Detaljer

Bølgeslag. Livet skal være et bølgeslag i evighedsrytmer begravet. At ta alt, at gi alt, at glide i ét med havet. Piet Hein

Bølgeslag. Livet skal være et bølgeslag i evighedsrytmer begravet. At ta alt, at gi alt, at glide i ét med havet. Piet Hein Bølgeslag Livet skal være et bølgeslag i evighedsrytmer begravet. At ta alt, at gi alt, at glide i ét med havet. Piet Hein 2 Lys og bølger 13 2 Lys og bølger Vi har alle kost oss på stranda en fin sommerdag

Detaljer

2.201 Interferens med vannbølger

2.201 Interferens med vannbølger RST 1 2 Lys og bølger 3 2.201 Interferens med vannbølger I denne øvingen skal du observere hva som skjer når bølger møter hindringer undersøke hva formen på hindringen har å si for endringer i bølge mønsteret

Detaljer

Fysikk & ultralyd www.radiolog.no Side 1

Fysikk & ultralyd www.radiolog.no Side 1 Side 1 LYD Lyd er mekaniske bølger som går gjennom et medium. Hørbar lyd har mellom 20 og 20.000 svingninger per sekund (Hz) og disse bølgene overføres ved bevegelser i luften. Når man for eksempel slår

Detaljer

Obligatorisk oppgave nr 4 FYS-2130. Lars Kristian Henriksen UiO

Obligatorisk oppgave nr 4 FYS-2130. Lars Kristian Henriksen UiO Obligatorisk oppgave nr 4 FYS-2130 Lars Kristian Henriksen UiO 23. februar 2015 Diskusjonsoppgaver: 3 Ved tordenvær ser vi oftest lynet før vi hører tordenen. Forklar dette. Det finnes en enkel regel

Detaljer

Bølgeegenskaper til lys

Bølgeegenskaper til lys Bølgeegenskaper til lys Alexander Asplin og Einar Baumann 30. oktober 2012 1 Forord Denne rapporten er skrevet som et ledd i lab-delen av TFY4120. Forsøket ble utført under oppsyn av vitenskapelig assistent

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVEITETET I OLO Det matematisk-naturvitenskapelige fakultet Midtveisksamen i: FY1000 Eksamensdag: 17. mars 2016 Tid for eksamen: 15.00-18.00, 3 timer Oppgavesettet er på 6 sider Vedlegg: Formelark (2

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Midtveisksamen i: FYS1000 Eksamensdag: 27. mars 2014 Tid for eksamen: 15.00-17.00, 2 timer Oppgavesettet er på 6 sider Vedlegg: Formelark

Detaljer

Hensikt I dette forsøket skal brytningsindeksen bestemmes for en sylindrisk linse ut fra målinger av brytningsvinkler og bruk av Snells lov.

Hensikt I dette forsøket skal brytningsindeksen bestemmes for en sylindrisk linse ut fra målinger av brytningsvinkler og bruk av Snells lov. FORSØK I OPTIKK Oppgaven består av 3 forsøk Forsøk 1: Bestemmelse av brytningsindeks Hensikt I dette forsøket skal brytningsindeksen bestemmes for en sylindrisk linse ut fra målinger av brytningsvinkler

Detaljer

Løsningsforslag. for. eksamen. fysikk forkurs. 3 juni 2002

Løsningsforslag. for. eksamen. fysikk forkurs. 3 juni 2002 Løsningsforslag for eksamen fysikk forkurs juni 00 Løsningsforslag eksamen forkurs juni 00 Oppgave 1 1 7 a) Kinetisk energi Ek = mv, v er farten i m/s. Vi får v= m/s= 0m/s, 6 1 1 6 slik at Ek = mv = 900kg

Detaljer

SENSURVEILEDNING FYSIKKDEL: Oppgave 1 (15 %) Oppgave 2 (20 %) EMNEKODE OG NAVN SEMESTER/ ÅR/ EKSAMENSTYPE. 6 timers skriftlig eksamen

SENSURVEILEDNING FYSIKKDEL: Oppgave 1 (15 %) Oppgave 2 (20 %) EMNEKODE OG NAVN SEMESTER/ ÅR/ EKSAMENSTYPE. 6 timers skriftlig eksamen SENSURVEILEDNING EMNEKODE OG NAVN Naturfag 1, Na130-E SEMESTER/ ÅR/ EKSAMENSTYPE 6 timers skriftlig eksamen Fysikk er 50 %, Biologi 50 % FYSIKKDEL: Oppgave 1 (15 %) Et kompetansemål etter 10. trinn under

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 12. juni 2017 Tid for eksamen: 9.00-13.00, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).

Detaljer

TENTAMEN I FYSIKK FORKURS FOR INGENIØRHØGSKOLE

TENTAMEN I FYSIKK FORKURS FOR INGENIØRHØGSKOLE HØGSKOLEN I SØR-TRØNDELAG ADELING FOR TEKNOLOGI HØGSKOLEN I SØR-TRØNDELAG TENTAMEN I FYSIKK FORKURS FOR INGENIØRHØGSKOLE Dato: Onsdag 07.05.08 arighet: 09.00-14.00 Klasser: 1FA 1FB 1FC 1FD Faglærere: Guri

Detaljer

2. Teoretisk grunnlag

2. Teoretisk grunnlag 1 1. Innledning Denne rapporten baserer seg på laboratorieforsøket «Bølgeegenskaper i Lys» der vi, som tittelen tilsier, har sett på bølgeegenskaper i lys. Dette ble gjort ved hjelp av en laser og forskjellige

Detaljer

NTNU Fakultet for lærer- og tolkeutdanning

NTNU Fakultet for lærer- og tolkeutdanning NTNU Fakultet for lærer- og tolkeutdanning Emnekode(r): LGU51007 Emnenavn: Naturfag 1 5-10, emne 1 Studiepoeng: 15 Eksamensdato: 26. mai 2016 Varighet/Timer: Målform: Kontaktperson/faglærer: (navn og telefonnr

Detaljer

Løsningsforslag til øving 12

Løsningsforslag til øving 12 FY12/TFY416 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 28. Løsningsforslag til øving 12 Oppgave 1 a) Hovedmaksima får vi i retninger som tilsvarer at både teller og nevner blir null, dvs φ = nπ, der

Detaljer

UTSETT EKSAMEN VÅREN 2006 SENSORTEORI. Klasse OM2 og KJK2

UTSETT EKSAMEN VÅREN 2006 SENSORTEORI. Klasse OM2 og KJK2 SJØKRIGSSKOLEN Lørdag 16.09.06 UTSETT EKSAMEN VÅREN 2006 Klasse OM2 og KJK2 Tillatt tid: 5 timer Hjelpemidler: Formelsamling Sensorteori KJK2 og OM2 Teknisk formelsamling Tabeller i fysikk for den videregående

Detaljer

Løsningsforslag til FYS2130-konte-eksamen august 2015

Løsningsforslag til FYS2130-konte-eksamen august 2015 Løsningsforslag til FYS2130-konte-eksamen august 2015 Oppgave 1 a) Beskriv en plan, planpolarisert (lineært polarisert) elektromagnetisk bølge matematisk. (Skal ikke utledes!) Forklar hvilke detaljer i

Detaljer

Eksamen FY0001 Brukerkurs i fysikk Torsdag 3. juni 2010

Eksamen FY0001 Brukerkurs i fysikk Torsdag 3. juni 2010 NTNU Institutt for Fysikk Eksamen FY0001 Brukerkurs i fysikk Torsdag 3. juni 2010 Kontakt under eksamen: Tor Nordam Telefon: 47022879 / 73593648 Eksamenstid: 4 timer (09.00-13.00) Hjelpemidler: Tabeller

Detaljer

Den gule flekken er det området på netthinnen som har flest tapper, og her ser vi skarpest og best i dagslys.

Den gule flekken er det området på netthinnen som har flest tapper, og her ser vi skarpest og best i dagslys. Netthinnen inneholder to typer sanseceller: staver og tapper. Når lyset treffer dem, dannes det nerveimpulser som går videre til hjernen gjennom synsnerven. Det området på netthinnen hvor synsnervene går

Detaljer

Fysikkdag for Sørreisa sentralskole. Lys og elektronikk. Presentert av: Fysikk 1. Teknologi og forskningslære. Physics SL/HL (IB)

Fysikkdag for Sørreisa sentralskole. Lys og elektronikk. Presentert av: Fysikk 1. Teknologi og forskningslære. Physics SL/HL (IB) Fysikkdag for Sørreisa sentralskole Tema Lys og elektronikk Presentert av: Fysikk 1 Teknologi og forskningslære Og Physics SL/HL (IB) Innhold Tidsplan... 3 Post 1: Elektrisk motor... 4 Post 2: Diode...

Detaljer

Løsningsforslag til eksamen i FYS1000, 13/6 2016

Løsningsforslag til eksamen i FYS1000, 13/6 2016 Løsningsforslag til eksamen i FYS1000, 13/6 2016 Oppgave 1 a) Sola skinner både på snøen og på treet. Men snøen er hvit og reflekterer det meste av sollyset. Derfor varmes den ikke så mye opp. Treet er

Detaljer

Løsningsforslag til EKSAMEN

Løsningsforslag til EKSAMEN Løsningsforslag til EKSAMEN Emnekode: ITD0 Emne: Fysikk og kjemi Dato: 9. April 04 Eksamenstid: kl.: 9:00 til kl.: 3:00 Hjelpemidler: 4 sider (A4) ( ark) med egne notater. Ikke-kummuniserende kalkulator.

Detaljer

EKSAMEN FAG TFY4160 BØLGEFYSIKK OG FAG FY1002 GENERELL FYSIKK II Onsdag 8. desember 2004 kl Bokmål. K. Rottmann: Matematisk formelsamling

EKSAMEN FAG TFY4160 BØLGEFYSIKK OG FAG FY1002 GENERELL FYSIKK II Onsdag 8. desember 2004 kl Bokmål. K. Rottmann: Matematisk formelsamling Side 1 av 11 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Førsteamanuensis Knut Arne Strand Telefon: 73 59 34 61 EKSAMEN FAG TFY416 BØLGEFYSIKK OG

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FY 5 - Svingninger og bølger Eksamensdag: 5. januar 4 Tid for eksamen: Kl. 9-5 Tillatte hjelpemidler: Øgrim og Lian: Størrelser

Detaljer

Fullstendig fasit 7 Bølger og stråler rundt oss 7.1 Bølger 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 7.1.9 7.1.10 7.1.11 7.1.12 7.2 Lyd 7.2.

Fullstendig fasit 7 Bølger og stråler rundt oss 7.1 Bølger 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 7.1.9 7.1.10 7.1.11 7.1.12 7.2 Lyd 7.2. 7 Bølger og stråler rundt oss 7.1 Bølger 7.1.1 En bølgebevegelse er svingninger som brer seg. Når en lydbølge brer seg, er det molekylene i det stoffet bølgen brer seg i, som svinger. 7.1.2 Se figuren

Detaljer

År: Et legeme på et skråplan. Gravitasjonskraften (G) er tegnet som en lang pil, og dekomponert i to krefter G x og G y.

År: Et legeme på et skråplan. Gravitasjonskraften (G) er tegnet som en lang pil, og dekomponert i to krefter G x og G y. Sensurveiledning Emnekode: LGU51007 Semester: høst År: 2016 Emnenavn: Naturfag 1 (5-10) emne 1, deleksamen fysikk Eksamenstype: ordinær, individuell skriftlig Oppgaveteksten: Oppgave 1 (12 av 36 poeng)

Detaljer

Bokmål. Eksamensinformasjon. Del 2 skal leveres inn etter 5 timer. verktøy som tillater kommunikasjon.

Bokmål. Eksamensinformasjon. Del 2 skal leveres inn etter 5 timer. verktøy som tillater kommunikasjon. Eksamen 19.05.2009 MAT1003 Matematikk 2P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen:

Detaljer

TFY4106 Fysikk Eksamen August 2015

TFY4106 Fysikk Eksamen August 2015 TFY4106 Fysikk Eksamen August 2015 1) Hyttegulvet skal renoveres, og du trenger planker med dimensjon (tverrsnitt) 48 mm 148 mm og massetetthet 400 kg/m 3. Du har en tilhenger som tåler et lass på 600

Detaljer

Michelson Interferometer

Michelson Interferometer Michelson Interferometer Hensikt Bildet ovenfor viser et sa kalt Michelson interferometer, der laserlys sendes inn mot en bikonveks linse, før det treffer et delvis reflekterende speil og splittes i to

Detaljer

Norges Informasjonstekonlogiske Høgskole

Norges Informasjonstekonlogiske Høgskole Oppgavesettet består av 10 (ti) sider. Norges Informasjonstekonlogiske Høgskole RF3100 Matematikk og fysikk Side 1 av 10 Tillatte hjelpemidler: Kalkulator, vedlagt formelark Varighet: 3 timer Dato: 11.desember

Detaljer

Oblig 11 - Uke 15 Oppg 1,3,6,7,9,10,12,13,15,16,17,19

Oblig 11 - Uke 15 Oppg 1,3,6,7,9,10,12,13,15,16,17,19 Oblig 11 - Uke 15 Oppg 1,3,6,7,9,10,12,13,15,16,17,19 Dersom du oppdager feil i løsningsforslaget, vennligst gi beskjed til Arnt Inge og Maiken. Takk! Oppgave 1 Youngs dobbeltspalteeksperiment med lyd?

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Midtveiseksamen i: FYS1000 Eksamensdag: 29. mars 2012 Tid for eksamen: 15:00-17:00, 2 timer Oppgavesettet er på 6 sider inkludert forsiden

Detaljer

Fysikk 3FY AA6227. Elever og privatister. 26. mai 2000. Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag

Fysikk 3FY AA6227. Elever og privatister. 26. mai 2000. Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag E K S A M E N EKSAMENSSEKRETARIATET Fysikk 3FY AA6227 Elever og privatister 26. mai 2000 Bokmål Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag Les opplysningene på neste

Detaljer

Løsningsforslag til øving 11

Løsningsforslag til øving 11 FY2/TFY46 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 2. Løsningsforslag til øving Oppgave a) Hovedmaksima får vi i retninger som tilsvarer at både teller og nevner blir null, dvs φ = nπ, der n =,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 13. juni 2016 Tid for eksamen: 9.00-13.00, 4 timer Oppgavesettet er på 6 sider Vedlegg: Formelark (2 sider).

Detaljer

Mandag 04.09.06. Institutt for fysikk, NTNU TFY4160/FY1002: Bølgefysikk Høsten 2006, uke 36

Mandag 04.09.06. Institutt for fysikk, NTNU TFY4160/FY1002: Bølgefysikk Høsten 2006, uke 36 Institutt for fsikk, NTNU TFY4160/FY1002: Bølgefsikk Høsten 2006, uke 36 Mandag 04.09.06 Del II: BØLGER Innledning Bølger er forplantning av svingninger. Når en bølge forplanter seg i et materielt medium,

Detaljer

ORDINÆR EKSAMEN 14. desember 2011 Sensur faller innen 05.januar 2012

ORDINÆR EKSAMEN 14. desember 2011 Sensur faller innen 05.januar 2012 Individuell skriftlig eksamen i Naturfag 1, Na130-E 30 studiepoeng ORDINÆR EKSAMEN 14. desember 2011 Sensur faller innen 05.januar 2012 BOKMÅL. Resultatet blir tilgjengelig på studentweb første virkedag

Detaljer

Matematikk og fysikk RF3100

Matematikk og fysikk RF3100 DUMMY Matematikk og fysikk RF3100 Løsningsforslag, Øving 11 8mai 201 Tidsfrist: 18mai 201 klokken 1400 Oppgave 1 Obs: I denne oppgaven reperesenterer vi vektorer med 1 n-matriser, altså radvektorer I hele

Detaljer

Løsningsforslag for øvningsoppgaver: Kapittel 4

Løsningsforslag for øvningsoppgaver: Kapittel 4 Løsningsforslag for øvningsoppgaver: Kapittel 4 Jon Walter Lundberg.0.05 4.04 Kari og Per trekker i hver sin ende av et tau. Per får en stund godt tak og trekker tauet og Kari etter seg med konstant fart.

Detaljer

Bølgeegenskaper til lys

Bølgeegenskaper til lys Bølgeegenskaper til lys Laboratorieøvelse i TFY4120 Ina Molaug og Anders Leirpoll 14.10.2011 1 Forord Denne rapporten er skrevet som et ledd i laboratorie-delen av TFY4120. Forsøket ble utført under oppsyn

Detaljer

Løsningsforslag til eksamen i FYS1000, 14/8 2015

Løsningsforslag til eksamen i FYS1000, 14/8 2015 Løsningsforslag til eksamen i FYS000, 4/8 205 Oppgave a) For den første: t = 4 km 0 km/t For den andre: t 2 = = 0.4 t. 2 km 5 km/t + 2 km 5 km/t Den første kommer fortest fram. = 0.53 t. b) Dette er en

Detaljer

EKSAMEN VÅREN 2006 SENSORTEORI. Klasse OM2 og KJK2

EKSAMEN VÅREN 2006 SENSORTEORI. Klasse OM2 og KJK2 SJØKRIGSSKOLEN Tirsdag 30.05.06 EKSAMEN VÅREN 2006 Klasse OM2 og KJK2 Tillatt tid: 5 timer Hjelpemidler: Formelsamling Sensorteori KJK2 og OM2 Teknisk formelsamling Tabeller i fysikk for den videregående

Detaljer

BACHELOR I IDRETTSVITENSKAP MED SPESIALISERING I IDRETTSBIOLOGI 2011/2013. Individuell skriftlig eksamen i IBI 225- Fysikk og målinger

BACHELOR I IDRETTSVITENSKAP MED SPESIALISERING I IDRETTSBIOLOGI 2011/2013. Individuell skriftlig eksamen i IBI 225- Fysikk og målinger BACHELOR I IDRETTSVITENSKAP MED SPESIALISERING I IDRETTSBIOLOGI 2011/2013 Individuell skriftlig eksamen i IBI 225- Fysikk og målinger Onsdag 30. november 2011 kl. 10.00-12.00 Hjelpemidler: kalkulator Formelsamling

Detaljer

AST1010 En kosmisk reise. Forelesning 4: Fysikken i astrofysikk, del 1

AST1010 En kosmisk reise. Forelesning 4: Fysikken i astrofysikk, del 1 AST1010 En kosmisk reise Forelesning 4: Fysikken i astrofysikk, del 1 Innhold Mekanikk Termodynamikk Elektrisitet og magnetisme Elektromagnetiske bølger Mekanikk Newtons bevegelseslover Et legeme som ikke

Detaljer

FLERVALGSOPPGAVER I NATURFAG - FYSIKK

FLERVALGSOPPGAVER I NATURFAG - FYSIKK FLERVALGSOPPGAVER I NATURFAG - FYSIKK Naturfag fysikk 1 Hvor mye strøm går det i en leder når man belaster lysnettet som har en spenning på 220 V med en effekt på 2 200 W? A) 100 A B) 10 A C) 1,0 A D)

Detaljer

Løsningsforslag til EKSAMEN

Løsningsforslag til EKSAMEN Løsningsforslag til EKSAMEN Emnekode: ITD0 Emne: Fysikk og kjemi Dato: 30. April 03 Eksamenstid: kl.: 9:00 til kl.: 3:00 Hjelpemidler: 4 sider (A4) ( ark) med egne notater. Ikke-kummuniserende kalkulator.

Detaljer

Noen presiseringer mhp Diskret Fourier Transform. Relevant for oblig 1.

Noen presiseringer mhp Diskret Fourier Transform. Relevant for oblig 1. FYS2130 Våren 2008 Noen presiseringer mhp Diskret Fourier Transform. Relevant for oblig 1. Vi har på forelesning gått gjennom foldingsfenomenet ved diskret Fourier transform, men ikke vært pinlig nøyaktige

Detaljer

Oppgaver i naturfag 19-åringer, fysikkspesialistene

Oppgaver i naturfag 19-åringer, fysikkspesialistene Oppgaver i naturfag 19-åringer, fysikkspesialistene I TIMSS 95 var elever i siste klasse på videregående skole den eldste populasjonen som ble testet. I naturfag ble det laget to oppgavetyper: en for alle

Detaljer

FYS2140 Kvantefysikk, Oblig 2. Lars Kristian Henriksen Gruppe 3

FYS2140 Kvantefysikk, Oblig 2. Lars Kristian Henriksen Gruppe 3 FYS2140 Kvantefysikk, Oblig 2 Lars Kristian Henriksen Gruppe 3 6. februar 2015 Obliger i FYS2140 merkes med navn og gruppenummer! Denne obligen har oppgaver som tar for seg fotoelektrisk effekt, Comptonspredning

Detaljer

Fysikkonkurranse 1. runde 6. - 17. november 2000

Fysikkonkurranse 1. runde 6. - 17. november 2000 Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning Fysikkonkurranse 1. runde 6. - 17. november 000 Hjelpemidler: Tabeller og formler i fysikk og matematikk Lommeregner Tid: 100

Detaljer

Beskrivende statistikk.

Beskrivende statistikk. Obligatorisk oppgave i Statistikk, uke : Beskrivende statistikk. 1 Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke I løpet av uken blir løsningsforslag lagt ut

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Kontinuasjonseksamen i: FYS 1000 Eksamensdag: 16. august 2012 Tid for eksamen: 09.00 13.00, 4 timer Oppgavesettet er på 5 sider inkludert

Detaljer

De vikagste punktene i dag:

De vikagste punktene i dag: AST1010 En kosmisk reise Forelesning 4: Fysikken i astrofysikk, del 1 De vikagste punktene i dag: Mekanikk: KraF, akselerasjon, massesenter, spinn Termodynamikk: Temperatur og trykk Elektrisitet og magneasme:

Detaljer

1Store og små tall. Mål. Grunnkurset K 1

1Store og små tall. Mål. Grunnkurset K 1 Store og små tall Mål Når du er ferdig med grunnkurset, skal du kunne regne med store tall skrive store og små tall ved hjelp av prefikser skrive store og små tall på standardform regne med tall på standardform

Detaljer

EKSAMEN VÅREN 2007 SENSORTEORI. Klasse OM2

EKSAMEN VÅREN 2007 SENSORTEORI. Klasse OM2 SJØKRIGSSKOLEN Tirsdag 29.05.07 EKSAMEN VÅREN 2007 Klasse OM2 Tillatt tid: 5 timer Hjelpemidler: Formelsamling Sensorteori KJK2 og OM2 Tabeller i fysikk for den videregående skole Formelsamling i matematikk

Detaljer

Jernbaneverket TELE Kap.: 9.b Hovedkontoret Regler for prosjektering Utgitt: 01.01.99 Sjekklister for installasjon av SCANET mobilstasjon Rev.

Jernbaneverket TELE Kap.: 9.b Hovedkontoret Regler for prosjektering Utgitt: 01.01.99 Sjekklister for installasjon av SCANET mobilstasjon Rev. Radioanlegg Side: 1 av 7 1 HENSIKT OG OMFANG... 2 2 PROSEDYRESJEKKLISTE FOR INSTALLASJON OG START UP, SET UP AV SCANET TOGRADIO MOBILSTASJON... 3 3 SJEKK INSTALLASJON AV SCANET MOBILSTASJON... 4 4 COMMISSIONING

Detaljer

Innholdsfortegnelse. 3. Formål med oppgaven og Om meg Utstyr og fremgangsmåte, ideen Resultater. 10. Oppsummering og konklusjon.

Innholdsfortegnelse. 3. Formål med oppgaven og Om meg Utstyr og fremgangsmåte, ideen Resultater. 10. Oppsummering og konklusjon. 1 Innholdsfortegnelse 3. Formål med oppgaven og Om meg. 4-6. Utstyr og fremgangsmåte, ideen. 7-9. Resultater 10. Oppsummering og konklusjon. 2 Formål med oppgaven. Formålet med oppgaven er å gjøre ett

Detaljer

AST1010 En kosmisk reise

AST1010 En kosmisk reise AST1010 En kosmisk reise Forelesning 4: Fysikken i astrofysikk, del 1 Mekanikk Termodynamikk Innhold Elektrisitet og magnecsme ElektromagneCske bølger 1 Mekanikk Newtons bevegelseslover Et legeme som ikke

Detaljer

Fysikkolympiaden 1. runde 28. oktober 8. november 2013

Fysikkolympiaden 1. runde 28. oktober 8. november 2013 Norsk Fysikklærerforening i saarbeid ed Skolelaboratoriet Universitetet i Oslo Fysikkolypiaden 1. runde 8. oktober 8. noveber 013 Hjelpeidler: Tabell og forelsalinger i fysikk og ateatikk Loeregner Tid:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Midtveiseksamen i: FYS1000 Eksamensdag: 31. mars 2011 Tid for eksamen: 15:00-17:00, 2 timer Oppgavesettet er på 6 sider Vedlegg:

Detaljer

Fysikkolympiaden 1. runde 25. oktober 5. november 2004

Fysikkolympiaden 1. runde 25. oktober 5. november 2004 Nosk Fysikklæefoening Nosk Fysisk Selskaps fagguppe fo undevisning Fysikkolympiaden 1. unde 5. oktobe 5. novembe 004 Hjelpemidle: abell og fomelsamlinge i fysikk og matematikk Lommeegne id: 100 minutte

Detaljer

Universitetet i Stavanger Institutt for petroleumsteknologi

Universitetet i Stavanger Institutt for petroleumsteknologi Universitetet i Stavanger Institutt for petroleumsteknologi Side 1 av 6 Faglig kontakt under eksamen: Professor Ingve Simonsen Telefon: 470 76 416 Eksamen i PET110 Geofysikk og brønnlogging Mar. 09, 2015

Detaljer

Kommentarer til Oppgave 1b) og e) av Yvonne Rinne & Arnt Inge Vistnes

Kommentarer til Oppgave 1b) og e) av Yvonne Rinne & Arnt Inge Vistnes Kommentarer til Oppgave 1b) og e) av Yvonne Rinne & Arnt Inge Vistnes Oppgave 1 b) Oppgave 1b) var litt forvirrende for de fleste, og jeg har derfor valgt å skrive litt om hva som egentlig skjer når en

Detaljer

Rekurrens. MAT1030 Diskret matematikk. Rekurrens. Rekurrens. Eksempel. Forelesning 16: Rekurrenslikninger. Dag Normann

Rekurrens. MAT1030 Diskret matematikk. Rekurrens. Rekurrens. Eksempel. Forelesning 16: Rekurrenslikninger. Dag Normann MAT1030 Diskret matematikk Forelesning 16: likninger Dag Normann Matematisk Institutt, Universitetet i Oslo INGEN PLENUMSREGNING 6/3 og 7/3 5. mars 008 MAT1030 Diskret matematikk 5. mars 008 Mandag ga

Detaljer

Løsningsforslag Eksamen M1 Onsdag 14.desember 2005

Løsningsforslag Eksamen M1 Onsdag 14.desember 2005 Løsningsforslag Eksamen M Onsdag.desember 005 Her følger et kort løsningsforslag, med forbehold om at det kan ha sneket seg inn enkelte feil... Oppgave (0) a) V basskasse dm 5,5dm 5,0dm 75,dm 75, l Basskassen

Detaljer

Denne ligninga beskriver en udempet harmonisk oscillator. Torsjons-svingning. En stav er festet midt på en tråd som er festet i begge ender.

Denne ligninga beskriver en udempet harmonisk oscillator. Torsjons-svingning. En stav er festet midt på en tråd som er festet i begge ender. Side av 6 Periodiske svingninger (udempede) Masse og fjær, med fjærkonstant k. Massen glir på friksjonsfritt underlag. Newtons. lov gir: mx kx dvs. x + x 0 hvor ω0 k m som gir løsning: xt () C cos t +

Detaljer

Løsningsforslag heldagsprøve våren 2012 1T

Løsningsforslag heldagsprøve våren 2012 1T Løsningsforslag heldagsprøve våren 01 1T DEL 1 OPPGAVE 1 a1) Skriv så enkelt som mulig x 9 x 6 Vi må faktorisere både teller og nevner. Så kan vi forkorte felles faktorer. Da får vi: x 9 x x 6 a) 4a4 b

Detaljer

Krefter, Newtons lover, dreiemoment

Krefter, Newtons lover, dreiemoment Krefter, Newtons lover, dreiemoment Tor Nordam 13. september 2007 Krefter er vektorer En ting som beveger seg har en hastighet. Hastighet er en vektor, som vi vanligvis skriver v. Hastighetsvektoren har

Detaljer

. Følgelig er csc 1 ( 2) = π 4. sinθ = 3

. Følgelig er csc 1 ( 2) = π 4. sinθ = 3 NTNU Institutt for matematiske fag TMA4100 Matematikk 1 høsten 011 Løsningsforslag - Øving Avsnitt.7 99 Vi deriverer to ganger: = A 1 cos(ln) B1 sin(ln) = A 1 cos(ln) A 1 sin(ln)+b 1 sin(ln) B 1 cos(ln)

Detaljer

Instrument för målning av komprimeringen i grunnen. CompactoBar ALFA-040-050N/0827

Instrument för målning av komprimeringen i grunnen. CompactoBar ALFA-040-050N/0827 Instrument för målning av komprimeringen i grunnen CompactoBar ALFA-040-050N/0827 Innhold Innhold...1 1 Innledning...2 2 Slå på...2 3 Innstilling...2 3.1 Start CMV...2 3.2 Displayets lysstyrke...2 4 Start/stopp

Detaljer

Løsningsforslag til prøveeksamen i FYS 2130 Svingninger og bølger. Våren 2008 (Foreløpig bare for oppgave 1 og 2 (Feil i 1b og 2f rettet opp).

Løsningsforslag til prøveeksamen i FYS 2130 Svingninger og bølger. Våren 2008 (Foreløpig bare for oppgave 1 og 2 (Feil i 1b og 2f rettet opp). Løsningsforslag til prøveeksamen i FYS 230 Svingninger og bølger. Våren 2008 (Foreløpig bare for oppgave og 2 (Feil i b og 2f rettet opp).) Oppgave a En ren stående bølge kan vi tenke oss er satt sammen

Detaljer

Fysikk - Forkurs for ingeniørutdanning

Fysikk - Forkurs for ingeniørutdanning Emne FIN130_1, BOKMÅL, 2014 HØST, versjon 31.mai.2015 23:43:31 Fysikk - Forkurs for ingeniørutdanning Emnekode: FIN130_1, Vekting: 0 studiepoeng Tilbys av: Det teknisk-naturvitenskapelige fakultet, Institutt

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (14 poeng) a) Skriv så enkelt som mulig x x 5 10x 5 b) Løs likningen x 1 3 1 c) Skriv så enkelt som mulig a a 1 4 3 4 a 3 a d) Gitt ABC ovenfor. AB 5,0, AC 3,0 og BC 4,0.

Detaljer

Løsningsforslag for øvningsoppgaver: Kapittel 12

Løsningsforslag for øvningsoppgaver: Kapittel 12 Løsningsforslag for øvningsoppgaver: Kapittel 2 Jon Walter Lundberg 20.04.205 Viktige formler: Kirchhoffs. lov: Ved et forgreiningspunkt i en strømkrets er summen av alle strømene inn mot forgreiningspunktet

Detaljer

Eksamen 27.01.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 27.01.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 27.01.2012 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) Dag Temperatur Mandag 4 ºC Tirsdag 10 ºC Onsdag 1 ºC Torsdag 5 ºC Fredag 6 ºC Lørdag Tabellen ovenfor viser hvordan temperaturen har variert i løpet av noen dager.

Detaljer

INNHOLD. Radiobølger..3 Omvandlere..7 Oscillator...12 Modulasjon. 14 Sender og mottaker..17 Elektronrør...20 Oscilloskop..25 TV..

INNHOLD. Radiobølger..3 Omvandlere..7 Oscillator...12 Modulasjon. 14 Sender og mottaker..17 Elektronrør...20 Oscilloskop..25 TV.. 1 INNHOLD Radiobølger..3 Omvandlere..7 Oscillator.....12 Modulasjon. 14 Sender og mottaker..17 Elektronrør....20 Oscilloskop..25 TV..26 Oppgaver 28 2 Radio Antenne-ledning Radiobølger Sendinger produseres

Detaljer

INF 1040 Digital representasjon 2007 Utkast til - Obligatorisk oppgave nr 2

INF 1040 Digital representasjon 2007 Utkast til - Obligatorisk oppgave nr 2 INF 40 Digital representasjon 2007 Utkast til - Obligatorisk oppgave nr 2 Utlevering: onsdag 17. oktober 2007, kl. 17:00 Innlevering: fredag 2. november 2007, kl. 23:59:59 Formaliteter Besvarelsen skal

Detaljer

Enkel introduksjon til kvantemekanikken

Enkel introduksjon til kvantemekanikken Kapittel Enkel introduksjon til kvantemekanikken. Kort oppsummering. Elektromagnetiske bølger med bølgelengde og frekvens f opptrer også som partikler eller fotoner med energi E = hf, der h er Plancks

Detaljer

Løsningsforslag eksamen høsten 2010. DEL 1: Uten hjelpemidler. Oppgave 1

Løsningsforslag eksamen høsten 2010. DEL 1: Uten hjelpemidler. Oppgave 1 Løsningsforslag eksamen høsten 2010 DEL 1: Uten hjelpemidler Oppgave 1 a) Løs likningssystemet y 4 3 y 8 y 4 y 4. Setter inn i den andre likninga: 3 4 8, får 3 y 4 3 1 3 y 1 b) Løs likningen 1 4 2 2 5

Detaljer

Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Juni 2011

Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Juni 2011 NTNU Institutt for Fysikk Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Juni 011 Oppgave 1 a) Figur A. Tyngdeakselerasjonen er konstant, altså den endrer seg ikke med tiden. b) Vi finner farten

Detaljer

FYS 2150.ØVELSE 15 POLARISASJON

FYS 2150.ØVELSE 15 POLARISASJON FYS 2150.ØVELSE 15 POLARISASJON Fysisk institutt, UiO 15.1 Polarisasjonsvektorene Vi skal i denne øvelsen studere lineært og sirkulært polarisert lys. En plan, lineært polarisert lysbølge beskrives ved

Detaljer

Hvordan blir det holografiske bildet registrert, og hvorfor ser vi noe?

Hvordan blir det holografiske bildet registrert, og hvorfor ser vi noe? 1 Hvordan blir det holografiske bildet registrert, og hvorfor ser vi noe? Olav Skipnes Cand real 2 Innhold Hvordan blir det holografiske bildet registrert?... 3 Bildet av et punkt... 3 Interferens...4

Detaljer

FYSIKK-OLYMPIADEN

FYSIKK-OLYMPIADEN Norsk Fysikklærerforening I samarbeid med Skolelaboratoriet, Fysisk institutt, UiO FYSIKK-OLYMPIADEN 05 06 Andre runde:. februar 06 Skriv øverst: Navn, fødselsdato, e-postadresse og skolens navn Varighet:

Detaljer

Generell trigonometri

Generell trigonometri 7 Generell trigonometri 7.1 et utvidede vinkelbegrepet Oppgave 7.110 Tegn vinklene i grunnstilling. a) 30 b) 120 c) 210 d) 300 Oppgave 7.111 Tegn vinklene i grunnstilling. a) 45 b) 360 c) 540 d) 720 Oppgave

Detaljer

Komfyrvakt SPISEC 2.1

Komfyrvakt SPISEC 2.1 Varsler Bryter Tilbakestiller Bruks- og monteringsanvisning Komfyrvakt SPISEC 2.1 Salg og support Arcus Vita As tlf: 53 75 77 50 post@arcus-vita.no www.arcus-vita.no Utviklet og produsert av: Cabinova

Detaljer

FY1001/TFY4145 Mekanisk Fysikk Eksamen 18. desember 2015 BOKMÅL Side 1 av 28

FY1001/TFY4145 Mekanisk Fysikk Eksamen 18. desember 2015 BOKMÅL Side 1 av 28 FY1001/TFY4145 Mekanisk Fysikk Eksamen 18. desember 2015 BOKMÅL Side 1 av 28 1) Ei lita metallkule slippes (dvs med null starthastighet) fra fjerde etasje i Realfagbygget. Hvor lang tid tar det før kula

Detaljer

Bølgerenna p. Hensikt. varierende frekvens og amplitude kan genereres via en signalgenerator og

Bølgerenna p. Hensikt. varierende frekvens og amplitude kan genereres via en signalgenerator og Bølgerenna Hensikt Bølgerenna p a bildet ovenfor brukes til a studere vannbølger. Bølger med varierende frekvens og amplitude kan genereres via en signalgenerator og en motor. Det er blant annet mulig

Detaljer

Løsningsforslag til MEF1000 Material og energi - Kapittel 2 Høsten 2006

Løsningsforslag til MEF1000 Material og energi - Kapittel 2 Høsten 2006 Løsningsforslag til MEF1000 Material og energi - Kapittel 2 Høsten 2006 Utarbeidet av A. E. Gunnæs. Revidert (TN) Aug. 06. Øvelse 2-4* a) Totale bevegelsemengde til de to bilene er P = 0 siden vi adderer

Detaljer

Løsningsforslag til prøve i fysikk

Løsningsforslag til prøve i fysikk Løsningsforslag til prøve i fysikk Dato: 17/4-2015 Tema: Kap 11 Kosmologi og kap 12 Elektrisitet Kap 11 Kosmologi: 1. Hva menes med rødforskyvning av lys fra stjerner? Fungerer på samme måte som Doppler-effekt

Detaljer

Interferensmodell for punktformede kilder

Interferensmodell for punktformede kilder Interferensmodell for punktformede kilder Hensikt Oppsettet pa bildet besta r av to transparenter med identiske sirkelmønstre, og brukes til a illustrere interferens mellom to koherente punktkilder. 1

Detaljer

FYS2140 Kvantefysikk, Obligatorisk oppgave 2. Nicolai Kristen Solheim, Gruppe 2

FYS2140 Kvantefysikk, Obligatorisk oppgave 2. Nicolai Kristen Solheim, Gruppe 2 FYS2140 Kvantefysikk, Obligatorisk oppgave 2 Nicolai Kristen Solheim, Gruppe 2 Obligatorisk oppgave 2 Oppgave 1 a) Vi antar at sola med radius 6.96 10 stråler som et sort legeme. Av denne strålingen mottar

Detaljer

Løsningsforslag eksamen MAT111 Grunnkurs i Matematikk I høsten 2009

Løsningsforslag eksamen MAT111 Grunnkurs i Matematikk I høsten 2009 Løsningsforslag eksamen MAT Grunnkurs i Matematikk I høsten 9 OPPGAVE (a) Vi har w = + ( ) =. I et komplekse plan ligger w i 4. kvarant og vinkelen θ mellom tallet og en relle aksen har tan θ =, vs. at

Detaljer

Om flo og fjære og kunsten å veie Månen

Om flo og fjære og kunsten å veie Månen Om flo og fjære og kunsten å veie Månen Jan Myrheim Institutt for fysikk NTNU 28. mars 2012 Innhold Målt flo og fjære i Trondheimsfjorden Teori for tidevannskrefter Hvordan veie Sola og Månen Friksjon

Detaljer

Heldagsprøve R2. Våren Onsdag 6. Mai Løsningsskisser - Versjon Del 1 - Uten hjelpemidler - 3 timer. Oppgave 1.

Heldagsprøve R2. Våren Onsdag 6. Mai Løsningsskisser - Versjon Del 1 - Uten hjelpemidler - 3 timer. Oppgave 1. Heldagsprøve R Våren 015 Onsdag 6. Mai 09.00-14.00 Løsningsskisser - Versjon 1.05.15 Del 1 - Uten hjelpemidler - timer Oppgave 1 Deriver funksjonene: a) fx tanx Kjerneregel: fx tanu, u x f 1 x cos u x

Detaljer

RF5100 Lineær algebra Leksjon 10

RF5100 Lineær algebra Leksjon 10 RF5100 Lineær algebra Leksjon 10 Lars Sydnes, NITH 11. november 2013 I. LITT OM LYS OG FARGER GRUNNLEGGENDE FORUTSETNINGER Vi ser objekter fordi de reflekterer lys. Lys kan betraktes som bølger / forstyrrelser

Detaljer

Løsningsforslag til Øving 3 Høst 2010

Løsningsforslag til Øving 3 Høst 2010 TEP5: Fluidmekanikk Løsningsforslag til Øving 3 Høst 2 Oppgave 2.32 Vi skal finne vannhøyden H i røret. Venstre side (A) er fylt med vann og 8cm olje; SG =,827 = ρ olje /ρ vann. Høyre side (B) er fylt

Detaljer