Praktisk betongdimensjonering



Like dokumenter
B8 STATISK MODELL FOR AVSTIVNINGSSYSTEM

Seismisk dimensjonering av prefab. konstruksjoner

BWC MEMO 724a. Søyler i front Innfesting i bærende vegg Eksempel

Varige konstruksjoner Konstruktive konsekvenser av alkalireaksjoner Fagdag 31 mai 2016

Elgeseter bru. Elgeseter bru. Elgeseter bru bygd Betongbru i 9 spenn lengde 200 m

Herdnende betong. Daniela Bosnjak. Fredrikstad,

4.4.5 Veiledning i valg av søyledimensjoner I det følgende er vist veiledende dimensjoner på søyler for noen typiske

Alkaliereaksjoner, fenomen, tilstand og lastvirkning.

6. og 7. januar PRAKTISK BETONGDIMENSJONERING

EKSAMEN I EMNE TKT4116 MEKANIKK 1

Schöck Isokorb type D 70

Schöck Isokorb type Q, QP, Q+Q, QP+QP

Oppgavehefte i MEK Faststoffmekanikk

Vedlegg 1.5 SPENNBETONG SPENNBETONG 1

Praktisk betongdimensjonering

9.2 TRE-ETASJES KONTOR- OG FORRETNINGSBYGG Dette beregningseksemplet viser praktisk beregning av knutepunktene i et kontor- og forretningsbygg.

Emnekode: IRB22013 Emnenavn: Konstruksjonsteknikk 2. Eksamenstid: kl Faglærer: Jaran Røsaker (betong) Siri Fause (stål)

(7) Betong under herding. Egenskapsutvikling, volumstabilitet, mekaniske egenskaper (basert på kap. 3.3 i rev NB29)

122 C6 DIMENSJONERING AV FORBINDELSER

5.1.2 Dimensjonering av knutepunkter

EKSAMEN I EMNE TKT4116 MEKANIKK 1

Schöck Isokorb type K

Prosjektering MEMO 551 EN KORT INNFØRING

BSF EN KORT INNFØRING

B10 ENKELT SØYLE BJELKE SYSTEM

C13 SKIVER 275. Tabell C Skjærkapasitet til svært glatt og urisset støpt fuge. Heft og øvre grense.

EKSAMEN I EMNE TKT4116 MEKANIKK 1

Følgende systemer er aktuelle: Innspente søyler, rammesystemer, skivesystemer og kombinasjonssystemer. Se mer om dette i bind A, punkt 3.2.

Statiske Beregninger for BCC 800

Vanntette betongkonstruksjoner

Dato: Siste rev.: Dok. nr.: EKSEMPEL

Teknologidagane oktober (1) Betongen skal sikres gode herdebetingelser og beskyttes i tidlig fase:

Dato: Siste rev.: Dok. nr.: EKSEMPEL

BWC 30-U UTKRAGET BALKONG - INNSPENT I PLASSTØPT DEKKE BEREGNING AV FORANKRINGSPUNKT

D4 BRANNTEKNISK DIMENSJONERING AV ELEMENTER

EKSAMEN I EMNE TKT4116 MEKANIKK 1 Onsdag 23. mai 2007 Kl

Schöck Isokorb type K

C3 DEKKER. Figur C 3.1. Skjæroverføring mellom ribbeplater. Figur C 3.2. Sveiseforbindelse for tynne platekanter.

Statiske Beregninger for BCC 250

BUBBLEDECK. Beregning, dimensjonering og utførelse av biaksiale hulldekkelementer. Veileder for Rådgivende ingeniører

7.2 RIBBEPLATER A7 ELEMENTTYPER OG TEKNISKE DATA 109

MEMO 703a. Søyler i front - Innfesting i plasstøpt dekke Standard armering

D4 BRANNTEKNISK DIMENSJONERING AV ELEMENTER

C11 RIBBEPLATER 231. Figur C Ribbeplater med strekkbånd. a) Strekkbånd i bjelken. b) Strekkbånd på opplegget. c) Strekkbånd på dekket

UNDERSØKTE KONSTRUKSJONER I HEDMARK

FLISLAGTE BETONGELEMENTDEKKER

Forankring av antennemast. Tore Valstad NGI

Limtre Bjelkelags- og sperretabeller

H5 DIMENSJONERINGSEKSEMPLER

Nedbrytningsmekanismer, reparasjon og vedlikehold av betongkonstruksjoner

Dato: Siste rev.: Dok. nr.:

5.5.5 Kombinasjon av ortogonale lastretninger Seismisk last på søylene Dimensjonering av innersøyle

5.2.2 Dimensjonering av knutepunkter

Ekstra formler som ikke finnes i Haugan

Utnyttelse stålbjelke Vegard Fossbakken Stålbrudagen 2013

E K S A M E N. MEKANIKK 1 Fagkode: ITE studiepoeng

Vedlegg 1 - Prosjektdirektiv

Beregning etter Norsok N-004. Platekonstruksjoner etter NORSOK N-004 / DNV-RP-C201

I! Emne~ode: j Dato: I Antall OPf9aver Antall vedlegg:

Eksempel D Kontorbygg i innlandsstrøk D14 BESTANDIGHET AV BETONGELEMENTKONSTRUKSJONER - MILJØ OG UTFØRELSE

Alkalireaksjoner i betongdammer

C1 GENERELT 15. Tilslag. Relativ fuktighet. Miljø. Temperatur. Svinn. Spennkraft Forspenningstap Kryp. Belastning Spennvidde

SØYLER I FRONT INNFESTING I PLASSTØPT DEKKE, BEREGNING AV DEKKE OG BALKONGARMERING

BWC 30-U UTKRAGET BALKONG - INNSPENT I PLASSTØPT DEKKE FORANKRINGSARMERING

RIB Rev Fork Anmerkning Navn. Sweco Norge

B12 SKIVESYSTEM 141. Figur B Oppriss av veggskive. Plassering av skjøtearmering for seismisk påkjenning.

INNHOLDSFORTEGNELSE. BETONexpress - eksempler betongbjelker. 1. BJELKE-001, Bjelketverrsnitt med bøyningsmoment og skjærkraft

0,5 ν f cd [Tabell B 16.5, svært glatt, urisset]

Steni 2. b eff. Øvre flens Steg h H Nedre flens

4.3.4 Rektangulære bjelker og hyllebjelker

Tetting av dam med ny betongplate en sikker løsning?

MARIDALSVEIEN 205 RAPPORT OM SETNINGSSKADER

NOTAT til ANBUDSFASE FR HÅ/MH FR REV. DATO BESKRIVELSE UTARBEIDET AV KONTROLLERT AV GODKJENT AV

Lyd- og vibrasjonsdemping

MEMO 734. Søyler i front - Innfesting i stålsøyle i vegg Eksempel

EKSAMEN I EMNE TKT4116 MEKANIKK 1

EKSAMEN TKT 4122 MEKANIKK 2 Onsdag 4. desember 2013 Tid: kl

Vanntette betongkulverter i Bjørvika og på Skansen

Skogbrukets Kursinstitutt Landbruks- og matdepartementet. Etterregning av typetegninger for landbruksvegbruer, revidert 1987 Landbruksdepartementet.

! EmnekOde: i SO 210 B. skriftlige kilder. Enkel ikkeprogrammerbar og ikkekommuniserbar kalkulator.

Dimensjonering MEMO 54c Armering av TSS 41

Alkalireaksjoners effekt på betongbruers konstruktive tilstand

05 Betong. Prosjektnummer Prosjektnavn GE20 Lillestrøm hensetting Prosjektfil GE20 Lillestrøm hensetting Beskrivelse

Dimensjonering av fleretasjes trehus. Harald Landrø, Tresenteret

Bruksanvisning. Slik skal fremtiden bygges. Nå også NBI-godkjent for fiberarmert betong. Kan lastes ned på

C14 FASADEFORBINDELSER 323

MULTICONSULT. Oslo Bussterminal Skader oppservert ved befaring

VTF Nord Norge 3. september Repvåg Kraftlag. Dam Ørretvatn. Status og hva skjer videre.

Byggeprinsipp SMARTBLOC SYSTEM II Tegning under er garasje ferdig utstøpt

C12 HULLDEKKER. Figur C Øvre grenselast. Ill. til tabell C 12.6.

C9 BEREGNINGSEKSEMPLER FOR SØYLE- OG BJELKEFORBINDELSER

B18 TRYKKOVERFØRING I FORBINDELSER

recostal type RSH Skjøtejernskassetter med trapesprofil

Historikk. 2 av Opprinnelig versjon VERSJON DATO VERSJONSBESKRIVELSE PROSJEKTNOTATNR VERSJON 1.0

C2 BJELKER. Fra figuren kan man utlede at fagverksmodellen kan bare benyttes når Ø (h h u 1,41 y 1 y 2 y 3 ) / 1,71

Hva er en sammensatt konstruksjon?

Seismisk dimensjonering av pelefundamenter

M U L T I C O N S U L T

Transkript:

6. og 7. januar Praktisk betongdimensjonering 3&4 Tor Kristian Sandaker, Norconsult AS www.betong.net www.rif.no

TEKNA - Kursdagene 2015: ved Tor Kristian Sandaker, Norconsult Innholdsfortegnelse: Statisk ubestemte konstruksjoner Temperatur (svinn og kryp) Opprissing Deformasjoner Alkalireaksjoner i betong Setninger fjell/løsmasser Momentomlagring / omfordeling Bevegelsesfuger Regneeksempler Norsk Betongforening - RIF - (3) 2015-01-06 3

Hva er en statisk ubestemt konstruksjon? -ql 2 /8 q l Bjelke innspent i én ende (q l 2 /8) To-felts bjelke q l Bjelke innspent i begge ender Fler-felts bjelke Norsk Betongforening - RIF - (3) 2015-01-06 4 Statisk ubestemte konstruksjoner Rammekonstruksjon Skive med åpning Skallkonstruksjon løse ut opplagerreaksjoner er greit å beregne stavkrefter krever mer løse ut opplagerreaksjoner er greit å beregne indre spenninger krever mer utfordring å beregne - løse ut - opplagerreaksjoner og indre krefter Norsk Betongforening - RIF - (3) 2015-01-06 5

Statisk ubestemte konstruksjoner Administrasjonsbygg Grødaland - Jæren Arkitektonisk uttrykk skal ivaretas Bidrag fra statiker for å løse bæring Norsk Betongforening - RIF - (3) 2015-01-06 6 Statiske modell - Beregningsforutsetninger Etasjeskillerne modellert som skiveelementer og ikke tildelt vertikallast i analysen Vertikallasten er lagt direkte på stålbjelkene én-veis plater i etasjeskillerene Etasjeskillerne er kun modellert for å kunne simulere virkningen av byggets stive horisontalskiver mht. vindkrefter. Skivekrefter i dekkene tas ned i stålkryss m/rundstål og trykkstive RHS-diagonaler i vegger og heissjakt. I tillegg vil arkene på hver side bidra til avstivning, effekten av det kommer automatisk inn i den statiske 3-D modellen. Norsk Betongforening - RIF - (3) 2015-01-06 7

Statisk ubestemte konstruksjoner Administrasjonsbygg Grødaland - Jæren Statisk modell i StaadPro. Stålrammer (sperrer) oppsveist i dimensjon HE240A c/c 5,0 m (S355J2) Søyler RHS150x100x8 (S355J2H) Sperrene er opplagt på søyler og utkraget i enkelte partier i møte med arkene. Forskjellig takhelning på hver side. Arkene kompliserer generelt den praktiske detaljeringen. Takåsene er HE200A, forutsatt bolteforbundet til sperrene. Stålbjelkene utføres med oppsveiste hatteprofiler typisk, med 200-hulldekker som etasjeskillere. Norsk Betongforening - RIF - (3) 2015-01-06 8 Statikk Kontinuerlig bjelke (~ én-veis dekke) over flere felt Like spennvidder: l (m) Jevnt fordelt belastning : q (kn/m) Ant. felt Opplagerreaksjon R B Bøyemoment første felt M 1 Bøyemoment første innv. støtte B M B Skjærkraft første innv. støtte V 1B 3 1,100 pl 0,080 pl 2 0,100 pl 2-0,600 pl 4 1,143 pl 0,077 pl 2 0,107 pl 2-0,607 pl 5 1,132 pl 0,078 pl 2 0,105 pl 2-0,605 pl A B C M 1 M B V 1B Støtte: q l2 /12 = 0,0833 Felt (innv.): q l2 /24 = 0,0417 Fire felt: Bøyemomentet over første støtte ca. 28 % større enn ved neste støtte(r)! Bøyemoment i første felt blir 85 % større enn innvendige felt! Opplagerreaksjonen ved støtte B blir 14, 3 % større enn q l! Norsk Betongforening - RIF - (3) 2015-01-06 9

Tvangskrefter Bevegelser i konstruksjonen fra tvangsforskyvninger som; temperatur svinn&kryp alkalireaksjoner setninger belastning fra tilstøtende konstruksjoner "påførte deformasjoner" Norsk Betongforening - RIF - (3) 2015-01-06 10 Temperatur generelt Urisset tverrsnitt Betong: A c = b x h Stivhet: k c = E c A c /l N l N A = b x h Risset tverrsnitt Betongen risser, stivheten reduseres! Armering: A s = sum armering ok. og uk. N N Stivhet: k s = E s A s / l + bidrag fra "tension stiffening" dvs. heft mellom armering og betong mellom riss h EC2 pkt. 5.8.6: k = EA/l l F δ h Norsk Betongforening - RIF - (3) 2015-01-06 11

Temperatur - Effekt av opprissing (bruksgrensetilstanden) EC2 7.4.3 omhandler effekten av stivhetsøkning grunnet heft mot armering mellom rissene. (Ligning 7.9) CEB-FIP Model Code 2010 Volume 2: Figuren viser et prismeformet betongtverrsnitt med påført økende aksialdeformasjon. Over risset: Armeringen må bære hele aksialkraften Til side for rissene: Kraften overføres og fordeles delvis til betongen Ved avstanden l s,max til begge sider fra risset: Uforstyrret situasjon Flere riss oppstår ved økende belastning, det blir tettere mellom rissene. Norsk Betongforening - RIF - (3) 2015-01-06 12 Temperatur - Effekt av opprissing (bruksgrensetilstanden) CEB-FIP Model Code 2010 Volume 2 "tidligere" ; Forenklet last-tøyningssammenheng for et symmetrisk armert tverrsnitt med aksial strekkbelastning. Bidraget σ sr omtales som "tension stiffening": Identisk med en del av "telleren" i ligning (7.9) i EC2. Norsk Betongforening - RIF - (3) 2015-01-06 13

Temperatur - Effekt av opprissing (bruksgrensetilstanden) Urisset tverrsnitt Stivhet i aksialretning, regner vanligvis: k = EA/l Tverrsnittsareal, A c = b x h Termisk utvidelseskoeffisient for betong: α = 1,0 10-5 Antar følgende: A c = 0,3 x 0,5 = 0,15 m 2 Lengde bjelke 5,0 m Temperaturreduksjon T = -20 o C E-modul betong: B35, dvs. E cm = 34 GPa (= 34 10 9 N/m 2 ) Beregner aksial stekk-kraft som følge av temperaturreduksjonen ("fjær-analogi"); Aksialkraft: N temp = k c l = E c A c /l ε l der ε = α T = 1,0 10-5 20 N temp = (34 10 9 0,15 / 5. ) 1,0 10-5 20 5,0 = 1020 kn (k c = E c A c /l = 1,02 10 9 N/m) Betong tar ikke strekk, beregner armeringsbehov: A s = N temp / f sd = 1020 000 / 434 = 2 350 mm 2 Norsk Betongforening - RIF - (3) 2015-01-06 14 Temperatur - Effekt av opprissing (bruksgrensetilstanden) Risset tverrsnitt Antar "stabilisert opprissing Benytter figur 7.2 i EC2 for å beregne effektivt tverrsnitt A ct,eff Uten forspenningsarmering får vi; ρ eff = A s / A ct,eff der h eff = 2,5(h-d) = 125 mm (på inn fra hver side!) Antar: A s = 2x3 ø20 = 1885 mm 2 ρ eff = 1885 / (300 x 2 x 125) = 0,025 σ sr = 3,2 / 0,025 (1 + 210/34 0,025) = 147,7 MPa ( σ sr / E s = 0,0007 ) Norsk Betongforening - RIF - (3) 2015-01-06 15

Risset tverrsnitt Stivhet i aksialretning, regner vanligvis: k s = E s A s /l Antar: A s = 2x3 ø20 = 1885 mm 2 k s = 210000 1885 / 5.0 = 0,079 10 9 N/m ( k s / k c = 0,079 / 1,02 100 = 7,7 % ) Uten korreksjon for "tension stiffening" N temp = (0,079 10 9 ) 1,0 10-5 20 5 = 79,2 kn (~7,7 % av "full stivhet" betong) Korreksjon for "tension stiffening" Spenning i armering; σ s = N temp / A s = 79 200 / 1885 = 42,0 MPa Beregner for holdet mellom korrigert spenning og ukorrigert, ψ = (σ s + k t σ sr ) / σ s = (42 + 0,6 147,7) / 42 = 3,11 k t tilsv. faktor β i Model Code; lastvarighet Korrigert aksialstivhet k ' s = 0,079 10 9 3,11 = 0,246 10 9 Korrigert aksialkraft: N ' temp = 246 kn (~24,0 % ifht. "full stivhet" betong) Norsk Betongforening - RIF - (3) 2015-01-06 16 Alkalireaksjon i betong (AR) Frem til 1980, antakelse i Norge om at dette ikke var noe problem Kontinuerlig forskning siste 15 år (+) Alkalireaktivt tilslag (SiO 2) Skyldes reaksjon mellom alkalireaktivt tilslag og alkalier i sementen. Langsomme alkalireaksjoner: Kvartsholdige bergarter Hurtige alkalireaksjoner: Amorf SiO 2 eller svært finkorning kvarts i tilslaget Reaksjonsprosess betinger tilstedeværelse av vann. Alkalier (Na +, K + ) Krav til; - tilslag - sement Vann (H 2O) (RF > ca. 80 %) Skader: - i form av volumutvidelse - krakeleringsriss i overflaten - opprissing - reduksjon av betongens strekkfasthet og E-modul - i betongen ved ekspansjon - lettere vanninntrenging - letter inntrengning av klorider - fryse-tine skader Grindkonstruksjon - kraftverk Norsk Betongforening - RIF - (3) 2015-01-06 17

Alkalireaksjon i betong (AR) Tappeluker i dammer - alkalireaksjoner i pilarer Luker kiles - må skjæres i sidekant mot pilar Luke: 10-15 m i lengde Pilarer av betong: ~ 2 m i tykkelse Luker skjæres 10-15 mm på hver side Ekspansjon betong : 1-1,5 % Norsk Betongforening - RIF - (3) 2015-01-06 18 Alkalireaksjon i betong (AR) Kontorbygg i Oslo (fra 1960-tallet) Bygget generelt plasstøpt og med plasstøpte plater i etasjeskillere Alkali-reaksjoner trolig over grunnet uttørking og innendørs konstruksjon med generelt tørt klima Støttevegger, 5-6 m høye, kan "vokse" opptil 3-4 cm, dvs. 0,5 %. Norsk Betongforening - RIF - (3) 2015-01-06 19

Alkalireaksjon i betong (AR) Hellefoss kraftverk Problem: Aggregatene kommer ut av stilling over tid Utvikling av vibrasjoner i kraftverksbygget, ulyder oppstår Generatorer må rettes opp med 6-8 års mellomrom Kostbart å stoppe kraftproduksjonen over noen uker Lengdesnitt i vannvei Tromme med nedre konus, geometri mot fjell "Sparkekrefter" mot vederlag FEM-modell Simulering av volum-ekspansjon i massive betongtverrsnitt Norsk Betongforening - RIF - (3) 2015-01-06 20 Alkalireaksjon i betong (AR) Hellefoss kraftverk Hovedspenninger (strekke) i maskinsaldekket Følger omkretsen rundt aggregatet Norsk Betongforening - RIF - (3) 2015-01-06 21

Alkalireaksjon i betong (AR) Hellefoss kraftverk Registrerte riss i betongdekket Norsk Betongforening - RIF - (3) 2015-01-06 22 Alkalireaksjon i betong (AR) Elgeseter bru (Teknologidagene i Trondheim 2010 v/statens Vegvesen) Ekspansjon i lengderetning: Størrelsesorden 0,1% Gir store resulterende horisontale forskyvninger over 200 m lengde Norsk Betongforening - RIF - (3) 2015-01-06 23

Setninger - Påførte deformasjoner 350 mm Antatt ramme; l = 7,0 m h = 5,0 m y h Som en platekonstruksjon inn i planet. x l l Enkel FEM analyse basert på FemDesign. Ramme modellert med bjelkeelementer. Tverrsnitt: b x h = 1000 x 350 Egenvekt: 25 x 0,35 x 1,0 = 8,75 kn/m Norsk Betongforening - RIF - (3) 2015-01-06 24 Egenvekt Bøyemoment Midtstøtte M = 44,33 knm ~ ql 2 /9,67 Bøyemomentet om utvendig hjørne fra horisontal opplagerreaksjon nede; RF x = 18,43 / 5 = 3,686 kn Skjærkraft Midtstøtte: V = ql /2 + (44,22-18,43)/7,0 = 30,62 + 3,68 = 34,306 kn Aksialkraft Sø. under midtstøtte: N = 2 x 34,31 = 68,6 kn Aksialkraft i horisontal bjelke tilsv. skjærkraften i utvendige søyler (bjelker) Norsk Betongforening - RIF - (3) 2015-01-06 25

Egenvekt Deformasjon (mm) Avhenger av valgt E-modul **** Ser på effekt av vertikal deformasjon, setning, i midtstøtte. Eksempelvis grunnet ujevne stivhetsforhold under stripefundamentene. Antar vert = 5 mm Ifht. konstruksjonens høyde tilsvarer dette: 0,005 / 5,0 = 0,1 % Norsk Betongforening - RIF - (3) 2015-01-06 26 Opptredende krefter etter påført deformasjon Bøyemoment Vesentlig endring i statisk oppførsel mht. fordeling av bøyemomenter; dominerende bøyemomenter i hjørnene, 3 ganger større bøyemoment over midtstøtte skifter fortegn Skjærkraft Er den deriverte av bøyemomentet, vesentlige endringer i det statiske bildet. Aksialkraft Reduksjon av aksialkraft i midtstøtte (søyle), økning i sidesøyler. Norsk Betongforening - RIF - (3) 2015-01-06 27

Setninger - Påførte deformasjoner Øvre plate (tak) i ramme, resultater Tilstand Rammehjørne Felt Midtstøtte Bøyemoment [knm] Egenvekt 18,4 23,0 44,2 Egenvekt og påført deformasjon 56,2 36,5-11,6 Endring: 3,05 1,59-4,81 Skjærkraft [kn] 26,9-34,3 40,3-20,9 Endring: 1,50 0,60 Norsk Betongforening - RIF - (3) 2015-01-06 28 Setninger - Påførte deformasjoner Søyler, resultater. Resulterende aksialkraft endres ikke, men fordelingen Tilstand Aksialkraft i søyletopp [kn] Utvendige søyler Midtsøyle Egenvekt 26,9 68,6 Egenvekt og påført deformasjon 46,3 41,8 ; Omtrentlig utbalansert Endring: 1,49 (1,19) *) 0,61 (-0,76) *) *) Bunn av søyle (vegg) ved opplager Konklusjon: Det beregnes vesentlige endringer i kraftfordeling i rammen basert på en moderat deformasjon Norsk Betongforening - RIF - (3) 2015-01-06 29

Setning som påført temperatur Kald side 350 mm Antar temperaturreduksjon i midtsøyle T = - 20 o C ε = α T = 1,0 10-5 T h Tøyning : ε = L / L Med L = 1 mm beregnes temperatur til; l l T = ε / α = L / L / α = 0,001 / 5,0 / 1,0 10-5 = -20 o C Ikke utenkelig med temperaturendringer på opp i mot 30-40 grader. Norsk Betongforening - RIF - (3) 2015-01-06 30 Påførte deformasjoner - Fjell og løsmasser 350 mm Setning pga. varierende stivhet i underlaget. h Antar tilsvarende som for lastbildet med deformasjon i midtstøtte, l l Antatt bergkontur Sidestøtte forskyves 5 mm vertikalt nedover. Antatte løsmasser Norsk Betongforening - RIF - (3) 2015-01-06 31

Påførte deformasjoner - Fjell og løsmasser Opptredende krefter etter påført deformasjon Bøyemoment M Legg merke til at resultatet er symmetrisk mht. opptredende bøyemomenter og skjærkrefter. Skjærkraft V Norsk Betongforening - RIF - (3) 2015-01-06 32 Påførte deformasjoner - Fjell og løsmasser Opptredende krefter etter påført deformasjon (5 mm) Aksialkraft N NB! Resulterende vertikalkraft er uendret, midtstøtten tar vesentlig mer av lasten (her omtrentlig hele) Deformasjon Resulterende (mm) Norsk Betongforening - RIF - (3) 2015-01-06 33

Fuger i bygg Motivasjon for å velge fuger, behovet må utredes! Velges normalt for å ivareta påførte deformasjoner som kan oppstå i hovedsak fra temperatur, svinn og kryp. i) Oppdeling av hele bygget i selvstendige konstruktive enheter Hensikten med å benytte konstruktive fuger er for å unngå utilsiktede riss og ukontrollert oppsprekking, og for å styre bevegelsene i bygget på en kontrollert måte. Genererer mer prosjekteringsarbeid for RIB! Men: Kostbart; Doble søyler, doble bjelker Ekstra avstivende skiver og sjakter Feil plassering eller dårlig gjennomtenkt plassering av avstivende kjerner og vertikale skiver kan resultere i store volumkrefter og uakseptabel og ukontrollert oppsprekking, selv i bygg der fuger er prosjektert! En kan reparere mange fliser ifht. kostnaden med å dele opp bygget i separate enheter! Norsk Betongforening - RIF - (3) 2015-01-06 34 Betongelementboken (bind B, pkt. 8.5) Anbefalt maksimal lengde mellom fuger Plassering av fuger i forhold til avstivende konstruksjonsdeler Norsk Betongforening - RIF - (3) 2015-01-06 35

ii) Oppdeling av enkeltvise konstruksjonsdeler Vi skiller mellom støpeskjøter og fuger! Hovedhensikt med fuger: Å unngå ukontrollert opprissing pga. svinn og temperatur, dvs. tillate bevegelser i konstruksjonen Ulempe med fuger: Konstruksjonsdelen kan få redusert kapasitet Vanskelig å få utført vanntett, medfører behov for tettingstiltak Andre grunner for oppdeling, bruk av støpeskjøter, kan være: Støpetekniske hensyn, støpeetapper Men: Vanskelig å utføre vanntett, behov for injeksjon i ettertid En stor fordel å redusere omfanget av kaldskjøter Norsk Betongforening - RIF - (3) 2015-01-06 36 Det er viktig å skille mellom riss/oppsprekking grunnet svinn og riss/oppsprekking grunnet temperatur. Svinn: Temperatur: Riss oppstår i utgangspunktet på/fra overflaten. Stort sett i ok. dekke for gulv på grunn grunnet ensidig uttørking. For tynnere tverrsnitt vil svinnet være dominerende mht. fare for mulig opprissing i tidligfase. Armeringen svinner ikke, denne kan bidra til å holde igjen. En beregningsteknisk metode er å redusere betongens strekkfasthet grunnet den innlagte armeringens motstand mot sammentrykning. For massive tverrsnitt er herdetemperaturen dominerende. Gjennomgående samme temperaturutvikling gjennom tverrsnittet. Oppsprekking med gjennomgående riss. En klarer ikke å kontrollere herdefasen med bruk av fuger, krever i så fall en konstruksjon (stripefundament, såle) på friksjonsfritt underlag og fugeavstand kanskje maksimalt 5-6 m. Vanlig fugeavstand er langt større, 15-20 m, kanskje opp mot 40 m. Fokus bør rettes mot tiltak i herdefasen som: avkjøling (is i tilslaget) kjølerør (kostbart) lav-varme betong (flygeaske) Norsk Betongforening - RIF - (3) 2015-01-06 37

Å legge inn fuger i en konstruksjon støpt mot fjell har ingen hensikt for å unngå riss! Husk: For tynne tverrsnitt, legg inn ekstra horisontalarmering i nedre deler av veggen for å fordele svinnrissene bedre. Her er det gjerne også større fastholdingskrefter. Velg finfordelt armering med redusert diameter og senteravstand i stedet for stor diameter og stor senteravstand. Veggen støpes gjerne i etterkant av sålen. Veggstøpen blir hengende igjen på oppstikkende armering. For tykke tverrsnitt; - tilnærmet samme termiske utvidelseskoeffisient for betong og armering - volumøkning i herde/avbindingsfasen - tverrsnittet henger igjen på oppstikkende armering ved avkjøling Norsk Betongforening - RIF - (3) 2015-01-06 38