2. Hypotesetesting i ulike sitausjoner: i. for forventingen, μ, i målemodellen med normalantakelse og kjent varians, σ 2.

Like dokumenter
ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 2

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006

Rep.: generelle begrep og definisjoner Kp. 10.1, 10.2 og 10.3

Hypotesetesting, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 5. Hypotesetesting, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Sannsynlighetsregning med statistikk. Kp. 5 Estimering.

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Oppsummering

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Konfidensintervall, innledning. Kp. 5 Estimering.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 5 Estimering. Målemodellen.

Oppgave 1 Hardheten til en bestemt legering er undersøkt med åtte målinger og resultatene ble (i kg/mm 2 ) som i tabellen til høyre.

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 4. Hypotesetesting, del 4

Repetisjon; 9.1, 9.2, 9.3, 9.4, 9.5, og Repetisjon; 9.1, 9.2, 9.3, 9.4, 9.5, og 9.10

MOT310 Statistiske metoder 1, høsten 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5

Hypotesetesting, del 5

Oppgaver fra boka: Med lik men ukjent varians antatt har vi fra pensum at. t n1 +n 2 2 under H 0 (12 1) (12 1)

X = 1 5. X i, i=1. som vil være normalfordelt med forventningsverdi E( X) = µ og varians Var( X) = σ 2 /5. En rimelig estimator for variansen er

Kap. 9: Inferens om én populasjon. Egenskaper ved t-fordelingen. ST0202 Statistikk for samfunnsvitere. I Kapittel 8 brukte vi observatoren

LØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005

H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2

Oversikt, del 5. Vi har sett på styrkefunksjon for ensidige tester. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke

TMA4240 Statistikk Høst 2015

Statistikk og økonomi, våren 2017

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.

Kapittel 8: Estimering

) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013

Oppgaver fra boka: X 2 X n 1

TMA4240 Statistikk Høst 2016

MOT310 Statistiske metoder 1, høsten 2012

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.

Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians

211.7% 2.2% 53.0% 160.5% 30.8% 46.8% 17.2% 11.3% 38.7% 0.8%

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.

Estimering 2. -Konfidensintervall

Estimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting

Oppgave 1. (i) Hva er sannsynligheten for at det øverste kortet i bunken er et JA-kort?

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

Kap. 9: Inferens om én populasjon

Emnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard

ECON240 Statistikk og økonometri

5 y y! e 5 = = y=0 P (Y < 5) = P (Y 4) = 0.44,

TMA4245 Statistikk Eksamen mai 2017

Kap. 9: Inferens om én populasjon

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004

Konfidensintervall. Notat til STK1110. Ørnulf Borgan, Ingrid K. Glad og Anders Rygh Swensen Matematisk institutt, Universitetet i Oslo.

TMA4240/4245 Statistikk 11. august 2012

Løsningsforslag Oppgave 1

Mer om utvalgsundersøkelser

Kort repetisjon fra kapittel 4. Oppsummering kapittel ST0202 Statistikk for samfunnsvitere. Betinget sannsynlighet og trediagram

TMA4240 Statistikk Høst 2016

Emnenavn: Metode 1, statistikk deleksamen. Eksamenstid: 4 timer. Faglærer: Bjørnar Karlsen Kivedal

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

Løsning TALM1005 (statistikkdel) juni 2017

TMA4240 Statistikk Høst 2009

Løsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2018

TMA4240 Statistikk Eksamen desember 2015

Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians

Løsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2015

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

LØSNING, EKSAMEN I STATISTIKK, TMA4240, DESEMBER Anta at sann porøsitet er r. Måling med utstyret gir da X n(x; r, 0,03).

Forventningsverdi. MAT0100V Sannsynlighetsregning og kombinatorikk

Oppgaven består av 9 delspørsmål, A,B,C,., som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<.. >>.

EKSAMENSOPPGAVE. Mat-1060 Beregningsorientert programmering og statistikk

Oppgave 1 a) Minste kvadraters metode tilpasser en linje til punktene ved å velge den linja som minimerer kvadratsummen. x i (y i α βx i ) = 0, SSE =

Econ 2130 Forelesning uke 11 (HG)

KLMED8004 Medisinsk statistikk. Del I, høst Estimering. Tidligere sett på. Eksempel hypertensjon

STK1100 våren 2017 Estimering

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4

Oversikt over konfidensintervall i Econ 2130

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

Estimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting

TMA4245 Statistikk Eksamen august 2015

TMA4240 Statistikk H2010

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008

Løsningsforslag ST1101/ST6101 kontinuasjonseksamen 2018

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004

Løsningsforslag til eksamen i STK desember 2010

Estimering 1 -Punktestimering

Estimering 1 -Punktestimering

UNIVERSITETET I OSLO

Oversikt over konfidensintervall i Econ 2130

TMA4245 Statistikk Eksamen 9. desember 2013

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting. Kp. 6 Hypotesetesting ...

Kapittel 7: Noen viktige sannsynlighetsfordelinger

Kapittel 7: Noen viktige sannsynlighetsfordelinger

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering

EKSAMEN I TMA4245 Statistikk

Noen vanlige. Indikatorfordeling: 1, dersom suksess. I mange situasjoner kan fenomenet vi ser på. 0, dersom ikke suksess

(Det tas forbehold om feil i løsningsforslaget.) Oppgave 1

betegne begivenheten at det trekkes et billedkort i trekning j (for j=1,2,3), og komplementet til

Transkript:

Oversikt 1. Hva er hypotesetestig? 2. i ulike sitausjoer: i. for forvetige, μ, med ormalatakelse og kjet varias, σ 2. ii. for forvetige, μ, med stor og ormaltilærmig (variase, σ 2, ukjet). iii. for suksessasylighete, p, i biomisk og ormaltilærmig. μ, målemodell, ormalatakelse, kjet varias Målemodelle m/ormalatakelse og kjet σ 2 : måliger: x 1,...,x ; betraktes som utfall av: X 1,...,X, u.i.f. tilfeldige variable E(X i )=μ og Var(X i )=σ 2, i =1,...,. X i ormalfordelt og σ 2 kjet. Test (m/ sig.ivå α) for H : μ = μ mot H 1 : μ<μ Forkast H dersom X μ z α σ 2 Test med Stadardisert teststørrelse: Forkast H dersom X μ σ 2 z α

μ, målemodell, ormalatakelse, kjet varias Eksempel: Hardhet til et spesielt stål blir udersøkt; seks måliger (i kg/mm 2 ): 351, 322, 297, 291, 354, 322. Gjeomsitt: 322.8; Ma er iteressert i om hardhete er lavere e 35 kg/mm 2. Tyder resultatee på at hardhete er lavere e 35? Målemodell med ormalatakelse; kjet varias, σ 2 =25 2. Forvetige, μ: virkelig hardhet Vil teste: H : μ = 35 mot H 1 : μ<35 Lag e test med sigifikasivå 2.5% (eller ev. 5%) μ, målemodell, ormalatakelse, kjet varias Høyresidig alterativhypotese: Test (m/ sig.ivå α) for H : μ = μ mot H 1 : μ>μ Forkast H dersom X μ +z α σ 2 Test med stadardisert teststørrelse: Forkast H dersom X μ z α σ 2

μ, målemodell, ormalatakelse, kjet varias; Eksempel Eksempel: 1 blodsukkerih.måliger: 4.1, 5.1, 4.3, 3.8, 3.7, 5.2, 4.5, 4.8, 3.6, 4.4 Gjeomsitt: 4.35; ormalatakelse med kjet varias lik.5 2 3, 3,5 4, 4,5 5, 5,5 Prikkdiagram over blodsukkermåligee. Problem: Er virkelig blodsukkerihold høyere e 4.? Vi vil teste: H : μ = μ =4 mot H 1 : μ>μ =4 μ, målemodell, ormalatakelse, kjet varias; Eksempel Målemodell med ormalatakelse og med kjet varias (lik.5 2 ) Dersom H er riktig i virkelighete, så er dataee utfall av e ormalfordelig med forvetig 4 og varias.5 2, grø kurve: 3, 3,5 4, 4,5 5, 5,5 Prikkdiagram over blodsukkermåligee og ullfordelige (til X i ee) N(4,.5 2 ) tetthet. Syes det rimelig? Ka det tekes at dataee er utfall av e slik fordelig (eller er det ku rimelig dersom fordelige flyttes mer oppover/til høyre)?

μ, målemodell, ormalatakelse, kjet varias; Eksempel Gjeomsitt av måligee er 4.35. Dersom H er riktig i virkelighete, så er gjeomsittet utfall av e ormalfordelig med forvetig 4 og varias.52 1,blåkurve: Var(X) = σ2 3, 3,5 4, 4,5 5, 5,5 Prikkdiagram over blodsukkermåligee og ullfordelige til X i ee: N(4,.5 2 ) tetthet og til X: N(4,.25) tetthet. Dersom datagjeomsittet er stort i forhold til ullfordelige til X, har vi grulag for å forkaste H og istede tro på at H 1 : μ>μ =4er riktig i virkelighete. μ, målemodell, ormalatakelse, kjet varias; Eksempel Test for: H : μ = μ =4 mot H 1 : μ>μ =4 Test: Forkast H dersom X k Test på stadardisert form: Forkast H dersom 3 2 1 3 3.5 4 4.5 5 Nullfordelig til X: N(4,.25) tetthet..5.4.3 X 4.5 2 1 z α.2.1 Nullfordelig til -3-2 -1 1 2 3 X 4..5 2 : N(, 1) tetthet. 1

μ, målemodell, ormalatakelse, kjet varias; Eksempel Test for: H : μ = μ =4 mot H 1 : μ>μ =4 Test: Forkast H dersom X 4.5 2 1 z α.1-3 -2-1 1 2 )( 3.5.4.3.2 Nullfordelig til X 4..5 2 : N(, 1) tetthet. 1 Dersom vi vil ha test med 5% sigifkasivå: velg α =.5 (z.5 =1.645) Forkastigsområdet er itervallet (1.645, ). Forkast H dersom utfallet av X 4 er i forkastigsområdet..5 2 1 μ, målemodell, ormalatakelse, kjet varias; Eksempel Test (m/ sig.ivå α =.5) for H 1 : μ>μ =4 Forkast H dersom X 4.5 2 1 1.645 Data: utfall av teststørrelse: 4.35 4.5 2 1 =2.21 H : μ = μ =4mot Side 2.21 er i forkastigsområdet (1.645, ) (er større e kritisk verdi = 1.645), forkastes H vi tror på H 1 : μ>4; at virkelig blodsukkerihold er høyere e 4. Lag e test med sigifikasivå.25! ( X form og stadardisert form.)

Oversikt 1. Hva er hypotesetestig? 2. i ulike sitausjoer: i. for forvetige, μ, med ormalatakelse og kjet varias, σ 2. ii. for forvetige, μ, med stor og ormaltilærmig (variase, σ 2, ukjet). iii. for suksessasylighete, p, i biomisk og ormaltilærmig. μ, målemodell, stor og tilærmet ormalfordelig Målemodelle: måliger: x 1,...,x ; betraktes som utfall av: X 1,...,X, u.i.f. tilfeldige variable E(X i )=μ og Var(X i )=σ 2, i =1,...,. σ 2 (og μ ) ukjet; (ige forutsetig om fordelig til X i ee eller om kjet varias) Test (m/ tilærmet sig.ivå α) for H : μ = μ mot H 1 : μ<μ Forkast H dersom X μ S 2 z α Estimator for variase: S 2 = σ 2 = 1 ( 1 i=1 Xi X ) 2

μ, målemodell, stor og tilærmet ormalfordelig Dersom H : μ = μ er riktig i virkelighete ( uder H ), har vi tilærmet at: X μ N(, 1). S 2 Dvs.: ullfordelige til teststørrelse (tilærmet) X μ S 2 er N (, 1)..5.4.3.2.1 α -3-2 -1 1 2 3 ) ( N(, 1) tetthet. Vi forkaster H dersom utfallet av teststørrelse faller i forkastigsområdet, (, z α ). μ, målemodell, stor og tilærmet ormalfordelig, Eksempel Eksempel: Levetid til e type mikroorgaisme er kjet å være 15 dager ormalt. Uder påvirkig av e kjemikalie er levetide til 4 orgaismer registrert; prikkdiagram over datee:, 1, 2, 3, 4, 5, 6, Prikkdiagram over levetidee. Gjeomsitt: 13.68 dager Normalatakelse er urimelig (hvorfor?), og varias ukjet Problem: Er virkelig levetid lavere e 15? Vi vil teste: H : μ = μ =15 mot H 1 : μ<μ =15

μ, målemodell, stor og tilærmet ormalfordelig, Eksempel Målemodelle: dataee er utfall av =4uif. tilfeldige variable X 1,...,X 4 μ = E(X i )=virkelig levetid (med kjemikaliepåvirkig). SGT sier at X N(μ, σ2 ), tilærmet. Estimat av variase, σ 2 : s 2 = 1 4 (x i x) 2 = 225.3 39 Uder H (levetid er virkelig 15), er gjeomsittet (13.68) utfall av tilærmet e ormalfordelig med forvetig 15 og varias 225.3 =5.63, blå 4 kurve: i=1, 1, 2, 3, 4, 5, 6, Bakterielevetidee og ullfordelig til X:N (15, 5.63) tetthet. μ, målemodell, stor og tilærmet ormalfordelig, Eksempel Uder H (levetid er virkelig 15), er gjeomsittet (13.68) utfall av tilærmet e ormalfordelig med forvetig 15 og varias 225.3 =5.63, blåkurve: 4, 1, 2, 3, 4, 5, 6, Bakterielevetidee og ullfordelig til X. Dersom datagjeomsittet, 13.68, er lite i forhold til ullfordelige til X, har vi grulag for å forkaste H og istede tro på at H 1 : μ<15 er riktig i virkelighete. Stadardisert teststørrelse: X 15 ; Nullfordelig N (, 1), til. S 2 4 Små utfall av teststørrelse idikerer at H 1 er riktig i virkelighete..5.4.3.2.1 α -3-2 -1 1 2 3 ) ( N(, 1) tetthet.

μ, målemodell, stor og tilærmet ormalfordelig, Eksempel Vi forkaster H dersom utfallet av teststørrelse faller i forkastigsområdet, (, z α )..2 Sig.ivå 5%: α =.5 z.5 =.1 1.645 = kritisk verdi Utfall: 13.68 15 225.3 4 =.56 > 1.645.5.4.3 α -3-2 -1 1 2 3 ) ( N(, 1) tetthet. Side utfallet av teststørrelse ikke er i forkastigsområdet (-.56 er ikke midre e -1.645), gir ikke dataee grulag for å hevde at H 1 : μ<15. (Dataee gir ikke grulag for å hevde at kjemikaliepåvirket levetid i virkelighete er midre e 15 dager.) μ, målemodell, stor og tilærmet ormalfordelig Test (m/ tilærmet sig.ivå α) for H : μ = μ mot H 1 : μ>μ Forkast H dersom X μ z α S 2 Vi forkaster H dersom utfallet av teststørrelse faller i forkastigsområdet, (z α, )..5.4.3.2.1 α -3-2 -1 1 2 3 )( N(, 1) tetthet.

μ, målemodell, stor og tilærmet ormalfordelig Eksempel: E type tabletter ieholder et stoff R. Iholdet pr. tablett må helst ikke overstige 3 mg. I e kotroll ble iholdet i 5 tilfeldig utvalgte tabletter registrert. Resultat (x 1,...,x 5 ): Gjeomsitt: x =3.7; empirisk stadardavvik: s = 1 5 1 5 i=1 (x i x) 2 =4. Gir dette grulag for å hevde at iholdet av R er mer e 3 mg? Formuler problemet som et hypotesetestigsproblem, og gjeomfør teste! Ev.: Bruk sigifikasivå... Oversikt 1. Geerelt om hypotesetestig 2. i ulike sitausjoer: i. for forvetige, μ, med ormalatakelse og kjet varias, σ 2. ii. for forvetige, μ, med stor og ormaltilærmig (variase, σ 2, ukjet). iii. for suksessasylighete, p, i biomisk og ormaltilærmig.

Geerelt om hypotesetestig Vi ka kokludere feil. To typer feil ka gjøres: type I-feil, ogtype II-feil Virkelighete H riktig H 1 riktig Koklusjo på test: Forkast H I-feil ok! Koklusjo på test: Behold H ok! II-feil Geerelt om hypotesetestig Def.: Sigifikasivå til test = P (forkaste H H riktig) Sigifikasivået er sasylighete at utfallet faller i forkastigsområdet ved e tilfeldighet (og at vi kokluderer med H 1 ), år i virkelghete H er riktig. ph-eks; Forkast H dersom 1 X 6. 1.645 =5.48 Forkastigsområde: (, 1 5.48) Stadardisert teststørrelse: Test: Forkast H dersom X 6. 1 1 z α = 1.645 Fork.omr.: (, 1.645) 1.2.8.4 4 5 6 7 8 Nullfordelig til X: N (6,.1).5.4.3.2.1 α -3-2 -1 1 2 3 )( Nullfordelig, N (, 1)

Geerelt om hypotesetestig Eks.: ph-måliger Det ble av oe hevdet at ma ikke skulle påstå at ph e var lavere e 6. dersom ikke gjeomsittet var lavere e 5.. Dvs. bruke teste: Forkast H dersom X 5. Eller: forkast H dersom X 6. 1 1 3.16 1.4 1.2 1.8.6.4.2 4 4.5 5 5.5 6 6.5 7 7.5 8 N (6,.1) tetthet Hva er sigifikasivået til dee teste? Geerelt om hypotesetestig Sigifikasivå til test = P (forkaste H H riktig) Dvs.: sigifikasivå til test = P (gjøre type I-feil ) Virkelighete H riktig H 1 riktig Koklusjo på test: Forkast H I-feil ok! Koklusjo på test: Behold H ok! II-feil Lavt sig.ivå: lite sasylighet for type I-feil. Type II-feil. Sasylighete for å ikke gjøre type II-feil år H 1 riktig har med testes styrke å gjøre; jf. kp. 6.4 i boke (seiere).

Oversikt 1. Iledig 2. i ulike sitausjoer: i. for forvetige, μ, med ormalatakelse og kjet varias, σ 2. ii. for forvetige, μ, med stor og ormaltilærmig (variase, σ 2, ukjet). iii. for suksessasylighete, p, i biomisk og ormaltilærmig. N (, 1)-kvatiler

p, i biomisk og ormaltilærmig N (, 1)-kvatiler Eksempel: Et bestemt parti hadde 2% oppslutig ved sist valg. Meigsmålig å: 91 av 5 spurte (18.2%) vil stemme på partiet. Problem: Har oppslutige gått ed? Ved sist valg: N stemmebrettigede M stemte på aktuelt parti M/N =.2 Problem: Hva er å M? Hva er å p = M/N? p, i biomisk og ormaltilærmig p = M N : adel som vil stemme partiet å N (, 1)-kvatiler (ukjet parameter) Estimat av p: 91 5 =.182 Er det grulag for å hevde at (virkelig) oppslutig har gått ed? Vi vil teste: H : p =.2 mot H 1 : p<.2

p, i biomisk og ormaltilærmig N (, 1)-kvatiler Vi betrakter resultatet av meigsmålige (91 av 5) som utfall av e tilfeldig variabel Y, der Y B(, p), = 5, p: ukjet adel. (Egetlig: Y hyperg.(m,n,), me til. Y B(, p)) Dersom H er riktig, har Y fordelige B(5,.2):.5.4.3.2.1 7 8 9 1 11 12 13 Blå søyler: B(5,.2)-sasyligheter. Dette beskriver hva som er tekelige utfall uder H p, i biomisk og ormaltilærmig N (, 1)-kvatiler Normaltilærmiger: Når Y B(, p) og p(1 p) 1: Y er tilærmet N (p, p(1 p)) p {}}{ Rød kurve: N ( 1, p(1 p) {}}{.5.4.3.2.1 8 ) tetthet 7 8 9 1 11 12 13 Med p = Y : p N(p, p(1 p) ), og Y p p(1 p) = p p p(1 p) N(, 1), tilærmet.

p, i biomisk og ormaltilærmig N (, 1)-kvatiler Teststørrelse: vi ka bruke p = Y Nullfordelig (tilærmet): N (forvetigsrett estimator for p) (.2,.2(1.2) 5 ) 25 2 15 1 5.1.15.2.25.3 Små verdier/utfall av p idikerer at H 1 : p<.2, erriktig. p, i biomisk og ormaltilærmig N (, 1)-kvatiler Stadardisert teststørrelse: Små verdier/utfall av p, svarer til små verdier/utfall av teststørrelse p.2..2(1.2) 5 Nullfordelig: N (, 1). 25 2 15 1 5.1.15.2.25.3.5.4.3.2.1 α -3-2 -1 1 2 3 ) ( N(, 1) tetthet. Vi forkaster H dersom utfallet av teststørrelse faller i forkastigsområdet, (, z α ).

p, i biomisk og ormaltilærmig N (, 1)-kvatiler Gjeomførig/koklusjo: Vi forkaster H dersom utfallet av teststørrelse faller i forkastigsområdet, (, z α ). Sig.ivå 5%: α =.5 z.5 = 1.645 =.1 α kritisk verdi -3-2 -1 1 2 3 ) (.5.4.3.2 N(, 1) tetthet. Utfall av: p.2.2(1.2) 5 :.182.2.2(1.2) 5 = 1.1 >k= 1.645 Side utfallet av teststørrelse ikke er i forkastigsområdet (-1.1 er ikke midre e -1.645), gir ikke dataee grulag for å hevde at H 1 : p<.2. (Dataee gir ikke grulag for å hevde at partiets oppslutig har gått ed.) p, i biomisk og ormaltilærmig N (, 1)-kvatiler Geerelt Situasjo: Biomisk modell (ev. som tilærmig til hypergeom.) Data: atall suksesser av mulige er registrert. Resultatet betraktes som utfall av de tilfeldige variable Y der Y B(, p) og p er slik at fordelige til Y ka tilærmes med ormalfordelige. La p = Y (estimator for p).

p, i biomisk og ormaltilærmig N (, 1)-kvatiler Vi vil teste: H : p = p mot H 1 : p<p Teststørrelse: p p p (1 p ) Nullfordelig (tilærmet): N (, 1) Små verdier idikerer at H 1 er riktig..5.4.3.2.1 α -3-2 -1 1 2 3 )( Nullfordelig, N (, 1) Test (m/ til. sig.ivå α): forkast H dersom p p p (1 p ) z α p, i biomisk og ormaltilærmig N (, 1)-kvatiler Vi vil teste: H : p = p mot H 1 : p>p Teststørrelse: p p p (1 p ) Nullfordelig (tilærmet): N (, 1) Store verdier idikerer at H 1 er riktig..5.4.3.2.1 α -3-2 -1 1 2 3 )( Nullfordelig, N (, 1) Test (m/ til. sig.ivå α): forkast H dersom p p z α p (1 p )

N (, 1)-kvatiler N (, 1)-kvatiler - kvatile i N(,1) - fordelige skriver vi : som for har seg i z og er det tallet sasylighet til N(,1) - fordelige. høyre N(,1),5,4,3,2,1, -4, -3, -2, -1,, 1, 2, 3, 4, z 27 α.1.5.25.1 z α 1.282 1.645 1.96 2.326 p, i biomisk og ormaltilærmig, eksempel N (, 1)-kvatiler Produksjo av tallerkeer; kvalitetsovervåkig Stikkprøve på 2 tilfeldig valgte tallerkeer tas regelmessig av produksjoe og atall defekte registreres. Normalt: 5% defekte i det lage løp Basert på resultatet av e stikkprøve, vil vi teste: H : p =.5 mot H 1 : p>.5 Lag e test med tilærmet sigifikasivå 5%, og lag e test med tilærmet sigifikasivå 1%. Hva er tilærmet sigifikasivået til teste: Forkast H dersom det er mist 2 defekte i stikkprøve?