EKSAMEN I TMA4245 Statistikk
|
|
|
- Jørn Hagen
- 9 år siden
- Visninger:
Transkript
1 Noregs tekisk aturvitskaplege uiversitet Istitutt for matematiske fag Side 1 av 5 Fagleg kotakt uder eksame: Turid Follestad ( / ) Hugo Hammer ( / ) Eirik Mo ( / ) Heig Omre ( / ) EKSAMEN I TMA4245 Statistikk Torsdag 7. jui 2007 Tid: 09:00 13:00 Tillate hjelpemiddel: Gult A5-ark med eige hadskrive otatar (stempla ved Istitutt for matematiske fag) Tabeller og formler i statistikk (Tapir forlag) K. Rottma: Matematisk formelsamlig Kalkulator: HP30S NYNORSK Sesur: 28. jui 2007 Oppgåve 1 Pegespelet I eit TV-program får eit visst atal deltakarar sjase til å vie eit større pegebeløp. For kvar deltakar består spelet av ei serie påfølgjade ruder, der deltakare i kvar rude får presetert ei oppgåve. For kvar oppgåve deltakare klarer, får ha/ho eit gitt beløp. Spelet blir avslutta år deltakare første gog ikkje klarer oppgåva, og deltakare får då med seg beløpet vue i dei øvrige rudee. Vi føreset at ige deltakar trekker seg frivillig udervegs. La p vere sasyet for IKKJE å klare oppgåva i kvar ekelt rude, og la vidare X vere talet på ruder for ei tilfeldig valt deltakar. Talet på ruder X blir her defiert slik at deltakare går ut etter å ha klart oppgåvee i dei X 1 første rudee, me ikke oppgåva i rude X. Vi føreset at sasyet p er lik for kvar rude og for kvar deltakar, og at resultata for kvar rude er uavhegige.
2 Side 2 av 5 I dee situasjoe er X geometrisk fordelt med parameter p, slik at puktsasyet f(x; p) og de kumulative fordeligsfuksjoe F (x; p) = P (X x) for X er f(x; p) = p(1 p) x 1, x = 1, 2,... F (x; p) = 1 (1 p) x, x = 1, 2,... a) Føreset berre i dette puktet at p = Forklar kvifor X er geometrisk fordelt med parameter p i dee situasjoe. Rek ut sasyet for at deltakare går ut i første rude. Rek ut sasyet for at deltakare er med i spelet år det er gått fem ruder. Kva er sasyet for at ha/ho kjem vidare til iade rude me ikkje klarer oppgåva i iade rude, gitt at deltakare var med i spelet år det var gått fem ruder? Det viser seg at deltakarae jamt over heg med leger e forveta, og det begyer å bli dyrt for TV-selskapet. Dei vil udersøke om dei har feilvurdert vaskegrade, og vil bereke eit aslag for p, som vi o ser på som ukjet. La X 1, X 2,..., X vere talet på ruder for kvar av tilfeldig valde deltakarar, der X i, i = 1,..., er uavhegige og geometrisk fordelte med same parameter p. b) Utlei eit uttrykk for sasysmaksimerigsestimatore (maximum likelihood estimator) for p basert på det tilfeldige utvalet. Kva blir estimatet dersom = 8, og talet på ruder for dei 8 deltakare er 4, 22, 9, 11, 15, 5, 26 og 17? TV-selskapet bruker to persoar, A og B, til å lage oppgåvee. Selskapet øskjer å udersøke om vaskegrade er avhegig av kve av dei som lagar oppgåvee. Dei ser på resultata frå 1 tilfeldig valde deltakarar som har oppgåver frå oppgåvelagar A, og 2 frå oppgåvelagar B. La Z 1 og Z 2 vere talet på deltakarar blat desse som klarer færre e fem oppgåver frå høvesvis oppgåvelagar A og B. Vi føreset at Z 1 og Z 2 er uavhegige. c) Forklar kvifor Z 1 og Z 2 er biomisk fordelte med parametrar ( 1, q 1 ) og ( 2, q 2 ), der q 1 og q 2 er sasyet for å klare færre e fem oppgåver i dei to gruppee. Som estimatorar for q 1 og q 2 skal vi bruke ˆq 1 = Z 1 1 og ˆq 2 = Z 2 2.
3 Side 3 av 5 Utlei eit tilærma 95% kofidesitervall for q 1 q 2 basert på ormaltilærmig til biomisk fordelig. Rek ut itervallet umerisk år 1 = 2 = 64, og observerte verdiar for Z 1 og Z 2 er z 1 = 34 og z 2 = 18. Gir det estimerte kofidesitervallet TV-selskapet grulag for å seie at oppgåvee frå A og B har ulik vaskegrad? Grugi svaret. Oppgåve 2 Radar Ei hameby observerer skip som kjem i mot hama ved å bruke radar. Vi føreset for ekelheits skuld at skipa alltid kjem frå ord. Radare er plassert 1 kilometer vest for hama. Det er øskjeleg å oppdage skip som kjem i mot hama så tidleg som mogleg av praktiske og tryggleiksmessige årsaker. Når skipet første gog blir faga i på radare, observerer Båt X Y Nord Radar 1 km Ham Figur 1: Illustrasjo til oppgave 2. radare vikele Y [0, π/2), som vist i Figur 1. Radare observerer ku vikele Y, og ikkje avstade til skipet. Vikele Y varierer frå skip til skip av mage årsaker. La de kumulative fordeligsfuksjoe til Y vere F (y; β) = P (Y y) = 1 exp { y/β}, y [0, π/2), 1 exp { π/(2β)}
4 Side 4 av 5 der β > 0 er ei parameter. a) Føreset berre i dette puktet at β = π/8. ( Rek ut P Y > π ) ( π, P 4 4 < Y < π ) ( og P Y > π 3 4 Y < π ). 3 b) Vis at sasystettleike f(y; β) til Y er f(y; β) = 1 exp { y/β}, β β exp { π/(2β)} y [0, π/2). Hamebye er meir iteressert i avstade til hama år skipet først blir oppdaga e vikele Y som radare observerer. La X vere dee avstade, som vist i Figur 1. Utlei eit uttrykk for sasystettleike til X. Det blir oppgitt at d dx (ta(x)) = 1 cos 2 (x) og d d (arc ta(x)) = dx dx (ta 1 (x)) = x. 2 Oppgåve 3 Ultralydavbildig med kotrastmiddel Ei måte å oppdage tidleg utviklig av kreftceller i levra på er å studere tettleike av blodkar. Mikroskopiske gassbobler blir tilsett blodet, og blir sett ved å sede ultralyd mot forskjellige delar av levra. Mage gassbobler ei stad gir kraftig høgfrekvet (adreharmoisk) ekko, som idikerer mage blodkar og mogleg kreft. La Y i, i = 1,..., vere styrke på det høgfrekvete ekkoet i desibel (20 log 10 av amplitude) som apparatet registrerer for måligar. Vi vil føresette at måligae Y i er uavhegige og idetisk ormalfordelte, med varias σ 2. a) Føreset berre i dette puktet at σ 2 = og at alle ekkodataee blir skalerte slik at forvetigsverdie til Y i er eksakt 1.0. Rek ut sasyet for at ei ekelt ultralydmålig er større e 1.0. Rek ut sasyet for at avviket i absoluttverdi frå 1.0 i ei ekelt målig er større e Dersom ei tar to uavhegige måligar frå same stad i levra, kva er då sasyet for at gjeomsittet avviker i absoluttverdi meir e 0.02 frå 1.0? Absorbsjo og spreiiig gjer ultralydsigalet svakare frå pukt i levra lagt frå måleapparatet. Vi set opp ei lieær regresjosmodell Y = α + βx + E, med par av måligar (x i, Y i ), i = 1,...,, der Y i er målt som før, og x i er ei kjet forklarigsvariabel basert på djupa i
5 Side 5 av 5 kroppe ekkoet kjem frå. Feila E i er uavhegig ormalfordelte med forvetigsverdi 0.0 og ukjet varias σ 2. Parametrae α og β avheger av fysiologie til pasiete, og er ukjete. Vi vil bruke følgjade estimatorar for α og β: A = α = Ȳ B x, B = β = (x i x)y i (x i x) 2, der Ȳ = 1 Y i og x = 1 x i. Det blir oppgitt at E(B) = β og Var(B) = σ 2 (x i x) 2. b) Utlei uttrykk for E(A), Var(A) og Cov(A, B). Ta med mellomrekig/omformigar du bruker for å kome fram til svara på eklaste form og bruk uta bevis at B og Ȳ er uavhegige. Sasysmaksimerigsestimatore (maximum likelihood estimator) for σ 2 basert på måligar med forskjellige x i er σ 2 = 1 (Y i A Bx i ) 2. Metode er på prøvestadiet og blir berre testa på friske testpersoar. For ei frisk pasiet, skal variase ikkje overstige (For desse persoae er fordeliga av blodkar jam/homoge, og variase i måligae skuldast då berre tilfeldig variasjo i tettleike av gassbobler i blodet.) Dersom resultatet av = 30 uavhegige måligar på ei testperso gir grulag for å forkaste hypotese om at σ 2 = og hevde at σ 2 > , blir testpersoe sedt til ei dyr kreftudersøkig. c) Utlei eit uttrykk for forvetigsverdie til σ 2. Formulér problemstilliga over som ei hypotesetest, og berek kritisk område (forkastigsområde) for σ 2 for teste. La sigifikasivået vere 0.01.
EKSAMEN I TMA4245 Statistikk
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Turid Follestad (98 06 68 80/73 59 35 37) Hugo Hammer (45 21 01 84/73 59 77 74) Eirik
LØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 8 LØSNINGSFORSLAG TILEKSAMEN I FAG TMA440/TMA445 STATISTIKK 0. august 005 Oppgave Smeltepuktsbestemmelse a) Vi jobber i dette
TMA4245 Statistikk Eksamen mai 2017
TMA445 Statistikk Eksame mai 07 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsskisse Oppgave a Når vi reger ut disse tre sasylighetee må ma huske på at de mulige verdiee
Oppgave 1 a) Minste kvadraters metode tilpasser en linje til punktene ved å velge den linja som minimerer kvadratsummen. x i (y i α βx i ) = 0, SSE =
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 2, blokk II Løsigsskisse Oppgave a Miste kvadraters metode tilpasser e lije til puktee ved å velge de lija som
LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004 Oppgave Foruresig X er e stokastisk variabel som agir
211.7% 2.2% 53.0% 160.5% 30.8% 46.8% 17.2% 11.3% 38.7% 0.8%
Prøve-eksame II MET 1190 Statistikk Dato 31. mai 2019 kl 1100-1400 Alle svar skal begrues. Når besvarelse evalueres, blir det lagt vekt på at framgagsmåte og resultat preseteres så klart, presist og kortfattet
EKSAMEN. Oppgavesettet består av 5 oppgaver, hvor vekten til hver oppgave er angitt i prosent i oppgaveteksten. Alle oppgavene skal besvares.
EKSAMEN Emekode: SFB12003 Eme: Metodekurs II: Samfusviteskapelig metode og avedt statistikk Dato: 2.6.2014 Eksamestid: kl. 09.00 til kl. 13.00 Hjelpemidler: Kalkulator Faglærer: Bjørar Karlse Kivedal Eksamesoppgave:
ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5
ÅMA110 Sasylighetsregig med statistikk, våre 2008 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 3. april Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 56
X = 1 5. X i, i=1. som vil være normalfordelt med forventningsverdi E( X) = µ og varians Var( X) = σ 2 /5. En rimelig estimator for variansen er
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 11, blokk II Løsigsskisse Oppgave 1 a) E rimelig estimator for forvetigsverdie µ er gjeomsittet X = 1 X i, som
ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Konfidensintervall, innledning. Kp. 5 Estimering.
ÅMA0 Sasylighetsregig med statistikk våre 006 Kp. 5 Estimerig Estimerig. Målemodelle. Ihold:. (Pukt)Estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (Pukt)Estimerig i målemodelle (kp. 5.3)
ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5
ÅMA110 Sasylighetsregig med statistikk, våre 2008 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 26. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 53
ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 4
ÅMA11 Sasylighetsregig med statistikk, våre 21 Kp. 6, del 4 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 22. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 29 Bjør
MOT310 Statistiske metoder 1, høsten 2011
MOT310 Statistiske metoder 1, høste 2011 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 24. august, 2011 Bjør H. Auestad Itroduksjo og repetisjo 1 / 32 Repetisjo; 9.1,
TMA4245 Statistikk Vår 2015
TMA4245 Statistikk Vår 2015 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 12, blokk II Oppgave 1 Kari har ylig kjøpt seg e y bil. Nå øsker hu å udersøke biles besiforbruk
TMA4245 Statistikk Eksamen 9. desember 2013
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA4245 Statistikk Eksame 9. desember 2013 Oppgave 1 I kortspillet Blackjack får ma de høyeste geviste hvis de to første kortee ma
Repetisjon; 9.1, 9.2, 9.3, 9.4, 9.5, og Repetisjon; 9.1, 9.2, 9.3, 9.4, 9.5, og 9.10
Repetisjo; 9.1, 9.2, 9.3, 9.4, 9.5, og 9.10 og Geerell defiisjo av : Situasjo: Data x 1,...,x ;utfallav:x 1,...,X ; u.i.f. tilfeldige variable Ukjet parameter i fordelige til X i ee: θ Dersom L og U L
Emnenavn: Metode 1, statistikk deleksamen. Eksamenstid: 4 timer. Faglærer: Bjørnar Karlsen Kivedal
EKSAMEN Emekode: SFB10711 Emeav: Metode 1, statistikk deleksame Dato: 10. oktober 2018 Hjelpemidler: Godkjet kalkulator og vedlagt formelsamlig m/tabeller Eksamestid: 4 timer Faglærer: Bjørar Karlse Kivedal
ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Sannsynlighetsregning med statistikk. Kp. 5 Estimering.
ÅMA asylighetsregig med statistikk våre 008 Kp. 5 Estimerig Estimerig. Målemodelle. Ihold:. (ukt)estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (ukt)estimerig i målemodelle (kp. 5.3)
Kapittel 8: Estimering
Kaittel 8: Estimerig Estimerig hadler kort sagt om hvorda å aslå verdie å arametre som,, og dersom disse er ukjete. like arametre sier oss oe om oulasjoe vi studerer (dvs om alle måliger av feomeet som
2. Hypotesetesting i ulike sitausjoner: i. for forventingen, μ, i målemodellen med normalantakelse og kjent varians, σ 2.
Oversikt 1. Hva er hypotesetestig? 2. i ulike sitausjoer: i. for forvetige, μ, med ormalatakelse og kjet varias, σ 2. ii. for forvetige, μ, med stor og ormaltilærmig (variase, σ 2, ukjet). iii. for suksessasylighete,
EKSAMENSOPPGAVE. Mat-1060 Beregningsorientert programmering og statistikk
Fakultet for aturviteskap og tekologi EKSAMENSOPPGAVE Eksame i: (Kode og av) Dato: 05.1.017 Klokkeslett: 09:00-13:00 Sted: Åsgårdv 9 Mat-1060 Beregigsorietert programmerig og statistikk Tillatte hjelpemidler:
LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Oppgave Midtveiseksame a) X er e stokastisk variabel
Lineær regresjonsanalyse (13.4)
2 Kap. 13: Lieær korrelasjos- og regresjosaalyse ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Kap. 13.1-13.3: Lieær korrelasjosaalyse. Disse avsitt er ikke pesum, me de lieære
H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2
TMA4245 Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave 1 Vi øsker å fie ut om et ytt serum ka stase leukemi. 5 mus får serumet, 4
TMA4240 Statistikk Høst 2015
Høst 205 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer, blokk II Løsigsskisse Oppgave a) X bi(, p) fordi: Udersøker uavhegige delar av DNA-strukture. Fi for kvar del
TMA4240 Statistikk Høst 2016
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 8 Løsigsskisse Oppgave 1 a) Simuler 1000 datasett i MATLAB. Hvert datasett skal bestå av 100 utfall fra e ormalfordelig
Kort repetisjon fra kapittel 4. Oppsummering kapittel ST0202 Statistikk for samfunnsvitere. Betinget sannsynlighet og trediagram
2 Kort reetisjo fra kaittel 4 Betiget sasylighet og trediagram Eksemel: Fra e oulasjo av idrettsfolk trekkes e erso tilfeldig og testes for doig. De iteressate hedelsee er D=ersoe er doet, A=teste er ositiv.
EKSAMEN I TMA4245 STATISTIKK Tysdag 21. mai 2013 Tid: 09:00 13:00 (Korrigert )
Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag Side 1 av 5 Nynorsk Fagleg kontakt under eksamen: Håkon Tjelmeland 73593538/48221896 Ola Diserud 93218823 EKSAMEN I TMA4245 STATISTIKK
Emnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard
EKSAMEN Emekode: SFB107111 Emeav: Metode 1, statistikk deleksame Dato: 7. mai 2018 Hjelpemidler: Godkjet kalkulator og vedlagt formelsamlig m/tabeller Eksamestid: 4 timer Faglærer: Has Kristia Bekkevard
ECON240 Statistikk og økonometri
ECON240 Statistikk og økoometri Arild Aakvik, Istitutt for økoomi 1 Mellomregig MKM Model: Y i = a i + bx i + e i MKM-estimator for b: b = = Xi Y i 1 Xi Yi Xi 1 ( X i ) 2 (Xi X)(Y i Ȳi) (Xi X) 2 hvor vi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdelig for tekologi Målform: Bokmål Eksamesdato: 19 des. 2014 Varighet/eksamestid: Emekode: 3 timer TALM1005 Emeav: Statistikk og Økoomi statistikkdele Klasser: Logistikk 1 Kjemi
Statistikk og økonomi, våren 2017
Statistikk og økoomi, våre 07 Obligatorisk oppgave 6 Løsigsforslag Oppgave E terig kastes 0 gager, og det registreres hvor mage 6-ere som oppås i løpet av disse 0 kastee. Vi ka kalle atall 6-ere i løpet
TMA4240 Statistikk Høst 2016
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 11 Løsigsskisse Oppgave 1 a) E rimelig estimator for forvetigsverdie µ er gjeomsittet X = 1 X i, som vil være ormalfordelt
) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013
TMA4240 Statistikk Vår 2008 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b5 Løsigsskisse Oppgave 1 a) X 1,...,X 16 er u.i.f. N(80,18 2 ). Setter Y = X. i) P(X 1 >
Forventningsverdi. MAT0100V Sannsynlighetsregning og kombinatorikk
MAT0100V Sasylighetsregig og kombiatorikk Forvetigsverdi Sasylighetsfordelige til e tilfeldig variabel X gir sasylighete for de ulike verdiee X ka ata Forvetig, varias og stadardavvik Tilærmig av biomiske
ST1201 Statistiske metoder
ST Statistiske metoder Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag - Eksame desember Oppgave a) Dette er e ANOVA-tabell for k-utvalg med k 4 og j 6 for j,,3,4.
ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 4. Hypotesetesting, del 4
ÅMA11 Sasylighetsregig med statistikk, våre 27 Kp. 6, del 4 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 19. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 27 Bjør
LØSNING, EKSAMEN I STATISTIKK, TMA4240, DESEMBER Anta at sann porøsitet er r. Måling med utstyret gir da X n(x; r, 0,03).
LØSNING, EKSAMEN I STATISTIKK, TMA440, DESEMBER 006 OPPGAVE 1 Ata at sa porøsitet er r. Målig med utstyret gir da X (x; r, 0,03). a) ( ) X r P(X > r) P 0,03 > 0 P(Z > 0) 0,5. ( X r P(X r > 0,05) P 0,03
Rep.: generelle begrep og definisjoner Kp. 10.1, 10.2 og 10.3
Kp. 1, oversikt ; oversikt, t- ; oversikt ; stor ; Hypoteseig; ett- og to-utvalg Rep.: geerelle begrep og defiisjoer Kp. 1.1, 1.2 og 1.3 Rep.: ett-utvalgser for μ (...), p Kp. 1 og 1.8 Nytt: ett-utvalgs
Mer om utvalgsundersøkelser
Mer om utvalgsudersøkelser I uderkapittel 3.6 i læreboka gir vi e kort iførig i takegage ved utvalgsudersøkelser. Vi gir her e grudigere framstillig av temaet. Populasjo og utvalg Ved e utvalgsudersøkelse
Løsningsforslag ST2301 øving 3
Løsigsforslag ST2301 øvig 3 Kapittel 1 Exercise 11 Et utvalg på 100 idivider trekkes fra e populasjo med tilfeldig parrig. Det ble observert AA 63 idivider av geotype AA, Aa 27, og aa 10. Lag et 95 % kofidesitervall
Estimering 2. -Konfidensintervall
Estimerig 2 -Kofidesitervall Dekkes av kap. 9.4-9.5, 9.10, 9.12 og forelesigsotatee. Dersom forsøket gjetas mage gager vil (1 α)100% av itervallee [ ˆΘ L, ˆΘ U ] ieholde de ukjete parametere θ (som er
Løsningsforslag Oppgave 1
Løsigsforslag Oppgave 1 a X i µ 0 σ X i µ 0 2 σ 2, i 1,..., er uavhegige og stadard N0, 1 fordelte. Da er, i 1,..., uavhegige og χ 2 -fordelte med e frihetsgrad. Da er summe χ 2 -fordelt med atall frihetsgrader
Eksamensoppgåve i ST1201/ST6201 Statistiske metoder
Institutt for matematiske fag Eksamensoppgåve i ST1201/ST6201 Statistiske metoder Fagleg kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 04. desember 2015 Eksamenstid (frå til): 09:00
STK1100 våren 2017 Estimering
STK1100 våre 017 Estimerig Svarer til sidee 331-339 i læreboka Ørulf Borga Matematisk istitutt Uiversitetet i Oslo 1 Politisk meigsmålig Spør et tilfeldig utvalg på 1000 persoer hva de ville ha stemt hvis
Kap. 9: Inferens om én populasjon
2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)
Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007
Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007 Oppgave 1: Pengespill a) For hver deltaker har vi følgende situasjon: Deltakeren får en serie oppgaver. Hver runde har to mulige utfall: Deltakeren
ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 5 Estimering. Målemodellen.
ÅMA0 Sasylighetsregig med statistikk, våre 0 Kp. 5 Estimerig. Målemodelle. Estimerig. Målemodelle. Ihold:. (Pukt)Estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.). (Pukt)Estimerig i målemodelle
TMA4240 Statistikk 2014
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 2, blokk II Løsigsskisse Oppgave a µ populasjosgjeomsitt, dvs. eit gjeomsitt for alle bilae som køyrer på vegstrekige
Eksamensoppgåve i TMA4245 Statistikk
Institutt for matematiske fag Eksamensoppgåve i TMA4245 Statistikk Fagleg kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato:??. august 2014 Eksamenstid (frå til): 09:00 13:00 Hjelpemiddelkode/Tillatne
Estimering 1 -Punktestimering
Estimerig 1 -Puktestimerig Dekkes av kap. 8, 9.1-9.3 og 9.15/9.14. Vi har til å settpå e rekke forskjellige sasylighetsfordeliger og sett hvorda disse ka brukes til å modellere mage forskjellige typer
KLMED8004 Medisinsk statistikk. Del I, høst Estimering. Tidligere sett på. Eksempel hypertensjon
Tidligere sett på KLMED8004 Medisisk statistikk Del I, høst 008 Estimerig Hvorda kjete sasylighetsfordeliger (biomialfordelig, ormalfordelig) med kjete populasjosparametrer (forvetig, varias osv.) ka gi
Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians
Hypotesetestig / iferes (kap ) Itroduksjo Populasjo og utvalg Statistisk iferes Utvalgsfordelig (samplig distributio) Utvalgsfordelige til gjeomsittet Itroduksjo Vi øsker å få iformasjo om størrelsee i
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdelig for tekologi Målform: Bokmål Eksamesdato: 5 jui 2015 Varighet/eksamestid: Emekode: 3 timer TALM1005 Emeav: Statistikk og Økoomi statistikkdele Klasser: Logistikk 1 Kjemi
Oppgave 1. (i) Hva er sannsynligheten for at det øverste kortet i bunken er et JA-kort?
ECON EKSAMEN 8 VÅR TALLSVAR Oppgave Vi har e kortstokk beståede av 6 kort. På av disse står det skrevet JA på forside mes det står NEI på forside av de adre kortee. Hvis ma får se kortet med bakside vedt
TMA4240 Statistikk Eksamen desember 2015
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Eksamen desember 15 Oppgave 1 La den kontinuerlege stokastiske variabelen X ha fordelingsfunksjon (sannsynstettleik
Løsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2018
Løsigsforsalg til første sett med obligatoriske oppgaver i STK1110 høste 2018 Oppgave 1 (a Et 100(1 α% kofidesitervall for forvetigsverdie µ er gitt ved formel (8.15 på side 403 i læreboka. For situasjoe
Kap. 9: Inferens om én populasjon
2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)
Eksamensoppgåve i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgåve i TMA4240 Statistikk Fagleg kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806
Skrivne og trykte hjelpemiddel samt kalkulator er tillate. Ta med all mellomrekning som trengst for å grunngje svaret.
Eksame 11. mai 2015 Eksamestid 4 timar IR201812 Statistikk og Simulerig Skrive og trykte hjelpemiddel samt kalkulator er tillate. Ta med all mellomrekig som tregst for å grugje svaret. Oppgåve 1......................................................................................
Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering
Eco 130 uke 15 (HG) Poissofordelige og iførig i estimerig 1 Poissofordelige (i) Tilærmig til biomialfordelige. Regel. ( Poissotilærmelse ) Ata Y ~ bi(, p) E( Y ) = p og var( Y ) = p(1 p). Hvis er stor
EKSAMEN. Oppgavesettet består av 5 oppgaver, hvor vekten til hver oppgave er angitt i prosent i oppgaveteksten. Alle oppgavene skal besvares.
EKSAMEN Emekode: SFB12003 Eme: Metodekurs II: Samfusviteskapelig metode og avedt statistikk Dato: 10.12.2014 Eksamestid: kl. 09.00 til kl. 13.00 Hjelpemidler: Kalkulator Faglærer: Bjørar Karlse Kivedal
Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008
Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL. desember 8 EKSAMEN I MATEMATIKK, Utsatt røve Modul 5 studieoeg Tid: 5 timer Ogavesettet er å sider (ikludert formelsamlig).
LØSNING: Eksamen 28. mai 2015
LØSNING: Eksame 28. mai 2015 MAT110 Statistikk 1, vår 2015 Oppgave 1: revisjo ) a) Situasjoe som beskrives i oppgave ka modelleres med e ure. I dee ure er fordelige kjet, M atall bilag med feil og N 100
Løsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2015
Løsigsforsalg til første sett med obligatoriske oppgaver i STK1110 høste 2015 Oppgave 1 (a Et 100(1 α% kofidesitervall for forvetigsverdie µ er gitt ved formel (8.15 på side 403 i læreboka. For situasjoe
Estimering 1 -Punktestimering
Estimerig 1 -Puktestimerig Dekkes av kap. 8, 9.1-9.3 og 9.15/9.14. Vi har til å settpå e rekke forskjellige sasylighetsfordeliger og sett hvorda disse ka brukes til å modellere mage forskjellige typer
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i: STK11 Sasylighetsregig og statistisk modellerig. LØSNINGSFORSLAG Eksamesdag: Fredag 9. jui 217. Tid for eksame: 9. 13.. Oppgavesettet
Konfidensintervall. Notat til STK1110. Ørnulf Borgan, Ingrid K. Glad og Anders Rygh Swensen Matematisk institutt, Universitetet i Oslo.
Kofidesitervall Notat til STK1110 Ørulf Borga, Igrid K. Glad og Aders Rygh Swese Matematisk istitutt, Uiversitetet i Oslo August 2007 Formål E valig metode for å agi usikkerhete til et estimat er å berege
Eksamensoppgave i ST1201/ST6201 Statistiske metoder
Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 20. desember 2016 Eksamenstid (fra til): 09:00
