1 Sannsynlighetsrgning
|
|
|
- Sidsel Rønning
- 10 år siden
- Visninger:
Transkript
1 1 Sannsynlighetsrgning 1.1 Det er 13 grønne og 18 røde baller i en eske. Vi trekker ut to baller etter hverandre. a) Hva er sannsynligheten for å få to grønne baller? Svar: P(g 1, g 2 ) = p(g 1 ) p(g 2 g 1 ) = = = 0.17 b) Hva er sannsynligheten for å få grønn ball på første trekk og rød ball på andre trekk? Svar: P(g 1, r 2 ) = p(g 1 ) p(r 2 g 1 ) = = = 0.25 c) Hva er sannsynligheten for å få to røde baller? Svar: P(r 1, r 2 ) = p(r 1 ) p(r 2 r 1 ) = = = 0.33 d) Hva er sannsynligheten for å få en ball fra hver farge? Svar:P(g 1, r 2 ) + P(r 1, g 2 ) = P(g 1 ) P(r 2 g 1 ) + P(r 1 ) P(g 2 r 1 ) = = =
2 1.2 Det er 11 grønne og 13 røde baller i en eske. Vi trekker ut to baller etter hverandre. a) Hva er sannsynligheten for å få to grønne baller? Svar: P(g 1, g 2 ) = p(g 1 ) p(g 2 g 1 ) = = = 0.20 b) Hva er sannsynligheten for å få grønn ball på første trekk og rød ball på andre trekk? Svar: P(g 1, r 2 ) = p(g 1 ) p(r 2 g 1 ) = = = 0.26 c) Hva er sannsynligheten for å få to røde baller? Svar: P(r 1, r 2 ) = p(r 1 ) p(r 2 r 1 ) = = = 0.28 d) Hva er sannsynligheten for å få en ball fra hver farge? Svar:P(g 1, r 2 ) + P(r 1, g 2 ) = P(g 1 ) P(r 2 g 1 ) + P(r 1 ) P(g 2 r 1 ) = = =
3 1.3 Det er 5 grønne og 13 røde baller i en eske. Vi trekker ut to baller etter hverandre. a) Hva er sannsynligheten for å få to grønne baller? Svar: P(g 1, g 2 ) = p(g 1 ) p(g 2 g 1 ) = = = 0.07 b) Hva er sannsynligheten for å få grønn ball på første trekk og rød ball på andre trekk? Svar: P(g 1, r 2 ) = p(g 1 ) p(r 2 g 1 ) = = = 0.21 c) Hva er sannsynligheten for å få to røde baller? Svar: P(r 1, r 2 ) = p(r 1 ) p(r 2 r 1 ) = = = 0.51 d) Hva er sannsynligheten for å få en ball fra hver farge? Svar:P(g 1, r 2 ) + P(r 1, g 2 ) = P(g 1 ) P(r 2 g 1 ) + P(r 1 ) P(g 2 r 1 ) = = =
4 1.4 Du kaster en terning to ganger. Viktig utgangspunkt: For to terninger er det totalt 36 ulike mulighter!! (1, 1)(1, 2)(1, 3)(1, 4)(1, 5)(1, 6) (3, 1)(3, 2)(3, 3)(3, 4)(3, 5)(3, 6) (4, 1)(4, 2)(4, 3)(4, 4)(4, 5)(4, 6) a) Hva er sannsynligheten for å få en 5 er på første terning? Svar: Gunstige utfall med 5 på første terning: P(første terning viser 5) = 6 36 = 0.17 b) Hva er sannsynligheten for at sum antall øyne er lik 2? Svar: For sum = 2 er gunstige utfall: (1, 1) Konklusjon: Det er 1 muliheter for denne hendelsen. P(s = 2) = 1 36 = 0.03 c) Hva er sannsynligheten for å få minst en 5 er? Svar: Gunstige utfall for minst en 5 er: (1, 5), (5, 1), (2, 5), (5, 2), (3, 5), (5, 3), (4, 5), (5, 4), (5, 5), (6, 5), (5, 6) Konklusjon: Det er 11 muliheter for denne hendelsen. P(minst en 5 er) = = 0.31 d) Hva er sannsynligheten for at sum antall øyne er høyest 4? Svar: Legg merke til at sum antall øyne er høyest 4 består av: sum = 2 : som er (1, 1) sum = 3 : som er (1, 2), (2, 1) sum = 4 : som er (1, 3), (2, 2), (3, 1) P(sum høyest 4) = 6 36 =
5 1.5 Du kaster en terning to ganger. Viktig utgangspunkt: For to terninger er det totalt 36 ulike mulighter!! (1, 1)(1, 2)(1, 3)(1, 4)(1, 5)(1, 6) (3, 1)(3, 2)(3, 3)(3, 4)(3, 5)(3, 6) (4, 1)(4, 2)(4, 3)(4, 4)(4, 5)(4, 6) a) Hva er sannsynligheten for å få en 2 er på første terning? Svar: Gunstige utfall med 2 på første terning: P(første terning viser 2) = 6 36 = 0.17 b) Hva er sannsynligheten for at sum antall øyne er lik 3? Svar: For sum = 3 er gunstige utfall: (1, 2), (2, 1) Konklusjon: Det er 2 muliheter for denne hendelsen. P(s = 3) = 2 36 = 0.06 c) Hva er sannsynligheten for å få minst en 6 er? Svar: Gunstige utfall for minst en 6 er: (1, 6), (6, 1), (2, 6), (6, 2), (3, 6), (6, 3), (4, 6), (6, 4), (5, 6), (6, 5), (6, 6) Konklusjon: Det er 11 muliheter for denne hendelsen. P(minst en 6 er) = = 0.31 d) Hva er sannsynligheten for at sum antall øyne er høyest 5? Svar: Legg merke til at sum antall øyne er høyest 5 består av: sum = 2 : som er (1, 1) sum = 3 : som er (1, 2), (2, 1) sum = 4 : som er (1, 3), (2, 2), (3, 1) sum = 5 : som er (1, 4), (2, 3), (3, 2), (4, 1) Konklusjon: Det er 10 muliheter for denne hendelsen. P(sum høyest 5) = =
6 1.6 Du kaster en terning to ganger. Viktig utgangspunkt: For to terninger er det totalt 36 ulike mulighter!! (1, 1)(1, 2)(1, 3)(1, 4)(1, 5)(1, 6) (3, 1)(3, 2)(3, 3)(3, 4)(3, 5)(3, 6) (4, 1)(4, 2)(4, 3)(4, 4)(4, 5)(4, 6) a) Hva er sannsynligheten for å få en 6 er på første terning? Svar: Gunstige utfall med 6 på første terning: P(første terning viser 6) = 6 36 = 0.17 b) Hva er sannsynligheten for at sum antall øyne er lik 3? Svar: For sum = 3 er gunstige utfall: (1, 2), (2, 1) Konklusjon: Det er 2 muliheter for denne hendelsen. P(s = 3) = 2 36 = 0.06 c) Hva er sannsynligheten for å få minst en 2 er? Svar: Gunstige utfall for minst en 2 er: (1, 2), (2, 1), (2, 2), (3, 2), (2, 3), (4, 2), (2, 4), (5, 2), (2, 5), (6, 2), (2, 6) Konklusjon: Det er 11 muliheter for denne hendelsen. P(minst en 2 er) = = 0.31 d) Hva er sannsynligheten for at sum antall øyne er høyest 3? Svar: Legg merke til at sum antall øyne er høyest 3 består av: sum = 2 : som er (1, 1) sum = 3 : som er (1, 2), (2, 1) Konklusjon: Det er 3 muliheter for denne hendelsen. P(sum høyest 3) = 3 36 =
Statistikk og økonomi, våren 2017
Statistikk og økonomi, våren 207 Obligatorisk oppgave 3 Løsningsforslag Oppgave Produsenten av en type bærbar datamaskin har registrert at sannsynligheten er 0.2 for at tastaturet svikter, 0.09 for at
Sannsynlighet 1T, Prøve 2 løsning
Sannsynlighet T, Prøve 2 løsning Del Tid: 60 min Hjelpemidler: Skrivesaker Oppgave Du snurrer et lykkehjul som stanser tilfeldig på én av bokstavene. Se figuren ovenfor. a) Hvor mange mulige utfall finnes
DAG 2 1. Hans og Grete er til sammen 63 år. Hans er dobbelt så gammel som det Grete var da Hans var så gammel som Grete er nå. Hvor gammel er Hans?
SETT 12 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. Hvilket av følgende tall er delelig med 9? A) 309 B) 456 C) 696 D) 783 E) 939 2. To esker inneholder to røde og to hvite kuler hver. Vi tar en tilfeldig
TRINN 1: HVA ER ET SET?
ALDER: 8 år til voksen ANTALL SPILLERE: 2 til 4 FORMÅL MED SPILLET: Å skåre flest poeng. Skår poeng ved å lage SET med din terning og de som allerede er på brettet. Jo flere SET du lager, jo flere poeng
Sannsynlighet i uniforme modeller. Addisjon av sannsynligheter
Sannsynlighet i uniforme modeller. Addisjon av sannsynligheter Fagstoff Listen [] Hendelse En hendelse i en sannsynlighetsmodell består av ett eller flere utfall. Vi ser på det tilfeldige forsøket «kast
Prøve 6 1T 24.02.12 80 minutter. Alle hjelpemidler
Prøve 6 T 24.02.2 80 minutter. Alle hjelpemidler Oppgave I boks A er det 6 svarte og 2 hvite kuler. I boks B er det 8 svarte og 4 hvite kuler. Vi trekker en kule fra en av krukkene. a) va er sannsynligheten
6. kurskveld Ila, 7. juni - 06 Statistikk og sannsynlighet
. kurskveld Ila, 7. juni - 0 Statistikk og sannsynlighet Sannsynlighet og kombinatorikk Sannsynlighet er noe vi omgir oss med nesten daglig. Vi spiller Lotto og andre spill, og håper vi har flaks og vinner.
1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger
1 Section 4-1: Introduksjon til sannsynlighet 2 Section 4-2: Enkel sannsynlighetsregning 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 4 Section 5-2: Tilfeldige variable 5 Section 5-3: Binomisk
TMA4240 Statistikk 2014
TMA0 Statistikk 0 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer, blokk I Løsningsskisse Oppgave Hendelsene A og B er ikke disjunkte, det vil si at de kan ha
Mappeoppgave om sannsynlighet
Mappeoppgave om sannsynlighet Statistiske eksperimenter Første situasjon Vi kom frem til å bruke Yatzy som et spill vi ønsket å beregne sannsynlighet ut ifra. Vi valgte ut tre like og to par. Etter en
Tall i arbeid Påbygging Kapittel 2 Sannsynlighetsregning Løsninger til innlæringsoppgavene
Tall i arbeid Påbygging Kapittel 2 Sannsynlighetsregning Løsninger til innlæringsoppgavene 2.4 a Du kan få 1, 2, 3, 4, 5 eller 6 øyne på terningen. Utfallsrommet er U = {1,2,3,4,5,6}. b Hvert av de seks
STK1100 våren Betinget sannsynlighet og uavhengighet. Svarer til avsnittene 2.4 og 2.5 i læreboka
STK1100 våren 2017 Betinget sannsynlighet og uavhengighet Svarer til avsnittene 2.4 og 2.5 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Eksempel 1 Vi vil først ved hjelp av et eksempel
STK1100 våren 2017 Kombinatorikk
STK1100 våren 2017 Kombinatorikk Svarer til avsnitt 2.3 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Uniform sannsynlighetsmodell Et stokastisk forsøk har N utfall. Det er de mulige
Trekking uten tilbakelegging. Disjunkte hendelser (4.5) Forts. ST0202 Statistikk for samfunnsvitere
2 Trekking uten tilbakelegging ST0202 Statistikk for samfunnsvitere o Lindqvist Institutt for matematiske fag En bolle inneholder 7 kuler, 5 gule (Y) og to røde (). To kuler trekkes uten tilbakelegging,
Forelesning 4, kapittel 3. : 3.4: Betinget sannsynlighet.
Forelesning 4, kapittel 3. : 3.4: Betinget sannsynlighet. Eksempel 1 (begrunnelse for definisjonen av betinget sannsynlighet): Hendelse A er "sum minst 8 på kast med 2 terninger" P(A) = 15/36 P(A) < 1/2
1T kapittel 4 Sannsynlighet Løsninger til innlæringsoppgavene
1T kapittel 4 Sannsynlighet Løsninger til innlæringsoppgavene 4.4 a Du kan få 1, 2, 3, 4, 5 eller 6 øyne på terningen. Utfallsrommet er U = {1,2,3,4,5,6}. b Hvert av de seks utfallene har samme sannsynlighet.
INNHOLD. Matematikk for ungdomstrinnet
INNHOLD STATISTIKK... 2 FREKVENS... 2 RELATIV FREKVENS... 2 FREKVENSTABELL... 2 KLASSEDELING... 3 SØYLEDIAGRAM (STOLPEDIAGRAM)... 3 LINJEDIAGRAM... 4 SEKTORDIAGRAM... 4 HISTOGRAM... 4 FRAMSTILLING AV DATA...
STK1100 våren Kombinatorikk = = Uniform sannsynlighetsmodell. Et stokastisk forsøk har N utfall. Det er de mulige utfallene for forsøket.
ST1100 våren 2017 ombinatorikk Uniform sannsynlighetsmodell Et stokastisk forsøk har N utfall. Det er de mulige utfallene for forsøket. Vi antar at de N utfallene er like sannsynlige. Svarer til avsnitt
Betinget sannsynlighet, total sannsynlighet og Bayes setning Kap. 4.5 STK1000 H11
Betinget sannsynlighet, total sannsynlighet og Bayes setning Kap. 4.5 STK1000 H11 På bakgrunn av materiale fra Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Vi vil først ved hjelp av et eksempel
9.5 Uavhengige hendinger
9. Uavhengige hendinger Vi kaster en terning to ganger og innfører hendingene A: Det første kastet gir sekser B: Det andre kastet gir sekser Om vi får sekser på det første kastet, endrer ikke det sannsynligheten
µ = E(X) = Ʃ P(X = x) x
Redigerte høydepunkt fra forrige episode 3.2: Punktsannsynlighet og kumulativ sannsynlighet punktsannsynlighet: sanns. for at en stok. var. X har en viss verdi x; P(X = x) kumulativ sannsynlighet: sanns.
ENT3R. Oppgavehefte. Basert på tidligere eksamener for 10. klasse. Tommy Odland 2/4/2014
ENT3R Oppgavehefte Basert på tidligere eksamener for 10. klasse Tommy Odland 2/4/2014 Dette er et oppgavehefte med oppgaver inspirert fra tidligere eksamener for 10. klassinger. Målet er at heftet skal
Sannsynlighet 1P, Prøve 2
Sannsynlighet 1P, Prøve 2 Del 1 Tid: 90 min Hjelpemidler: Skrivesaker Oppgave 1 Du snurrer et lykkehjul som stanser tilfeldig på en av bokstavene. Se figuren ovenfor. a) Hvor mange mulige utfall finnes
MULTIPLE CHOICE ST0103 BRUKERKURS I STATISTIKK September 2016
MULTIPLE CHOICE ST0103 BRUKERKURS I STATISTIKK September 2016 SETT RING RUNDT DET RIKTIGE SVARET FOR HVER OPPGAVE. Oppgave 1 Stokastisk forsøk Stokastiske forsøk karakteriseres ved to av følgende egenskaper.
Total sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk = Vi kan skrive en hendelse B som en disjunkt
MAT000V Sannsynlighetsregning og kombinatorikk Total sannsynlighet Vi kan skrive en hendelse B som en disjunkt union av A B og A B Total sannsynlighet og Bayes' setning Kombinatorikk Ordnede utvalg med
Betinget sannsynlighet, total sannsynlighet og Bayes setning Kapittel 4.5
Betinget sannsynlighet, total sannsynlighet og Bayes setning Kapittel 4.5 På bakgrunn av materiale fra Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Vi vil først ved hjelp av et eksempel se
Regler for: Ungdomstrinnet. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene!
(x²) 1 2 Regler for: getsmart Grå Ungdomstrinnet 8 _ (x²) 1 2 4 (x²) 1 2 _ (x²) 1 2 _ 4 _ 8 Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Sjekk
Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I
Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I 4 Kombinatorikk Vi må lære tellemetoder når valgtrær, som vi brukte tidligere, blir for store og vanskelig å håndtere.
Betinget sannsynlighet, total sannsynlighet og Bayes setning
etinget sannsynlighet, total sannsynlighet og ayes setning Vi vil først ved hjelp av et eksempel se intuitivt på hva betinget sannsynlighet betyr: Vi legger fire røde kort og to svarte kort i en bunke
1T eksamen våren 2018 løsningsforslag
1T eksamen våren 018 løsningsforslag DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1
GJENNOMGANG LES BARE OM DERE VIL HA LØSNINGEN!
GJENNOMGANG LES BARE OM DERE VIL HA LØSNINGEN! Du trodde du hadde et idiotsikkert system for juks, men det var dessverre ikke tilfelle. Var dine planer hemmet av den korte forberedelsestiden, uforsiktighet
4.4 Sum av sannsynligheter
4.4 Sum av sannsynligheter Nina trekker kort fra en vanlig kortstokk med 52 kort. Vi innfører hendingene H: Kortet er en hjerter S: Kortet er en spar Det er 13 hjerter og 13 spar i stokken. Sannsynligheten
Sannsynlighetsregning
Sannsynlighetsregning Per G. Østerlie Thora Storm vgs [email protected] 5. april 203 Hva og hvorfor? Hva? Vi får høre at det er sannsynlig at et eller annet kommer til å skje. Sannsynligheten for å
Sannsynlighet for alle.
Sannsynlighet for alle. Signe Holm Knudtzon Høgskolen i Buskerud og Vestfold Novemberkonferansen 2015 Novemberkonferansen 2015 Signe Holm Knudtzon. HBV. Sannsynlighet for alle 1 Sannsynlighet for alle.
ST0202 Statistikk for samfunnsvitere [4]
ST0202 Statistikk for samfunnsvitere [4] Kapittel 4: Sannsynlighet 4.4: Disjunkte hendelser, 4.5: Uavhengige hendelser 4.6: Er disjunkthet og uavhengighet relatert til hverandre? Bruk av sannsynlighetsregning
STK1100 våren Betinget sannsynlighet og uavhengighet. Vi trenger en definisjon av betinget sannsynlighet! Eksempel 1
STK00 våren 07 Betinget sannsynlighet og uavhengighet Esempel Vi vil først ved hjelp av et esempel se intuitivt på hva betinget sannsynlighet betyr. Vi legger fire røde ort og to svarte ort i en bune.
Oppgaver. Innhold. Sannsynlighet 1P, 1T og 2P-Y
Oppgaver Innhold 3.1 Hva er sannsynlighet?... 2 3.2 Addisjon av sannsynligheter. Gunstige og mulige utfall... 5 3.3 Beregne sannsynligheter ved å bruke tabeller... 9 3.4 Beregne sannsynligheter ved å bruke
Læringsmiljø Hadeland. Felles skoleutviklingsprosjekt for Gran, Lunner og Jevnaker. Vurderingsbidrag
Vurderingsbidrag Fag: Matematikk Tema: Sannsynlighet Trinn: 10 Tidsramme: 10 12 timer ----------------------------------------------------------------------------- Undervisningsplanlegging Konkretisering
Datainnsamling, video av forelesning og referansegruppe
Datainnsamling, video av forelesning og referansegruppe Datainnsamling Om du ikkje alt har gjort det: https://wiki.math.ntnu.no/tma4240/2015h/start Video http://video.adm.ntnu.no/serier/55d47b463d96a Referansegruppe
Løsninger. Innhold. Sannsynlighet 1P, 1T og 2P-Y
Løsninger Innhold 3. Hva er sannsynlighet?... 2 3.2 Addisjon av sannsynligheter. Gunstige og mulige utfall... 3.3 Beregne sannsynligheter ved å bruke tabeller... 2 3.4 Beregne sannsynligheter ved å bruke
Niels Henrik Abels matematikkonkurranse 2014 2015
Niels Henrik Abels matematikkonkurranse 204 205 Første runde. november 204 Ikke bla om før læreren sier fra! Abelkonkurransens første runde består av 20 flervalgsoppgaver som skal løses i løpet av 00 minutter.
TMA4240 Statistikk Høst 2015
TMA0 Statistikk Høst 0 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer, blokk I Løsningsskisse Oppgave Hendelsene A og B er ikke disjunkte, det vil si at de kan
Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk
MAT000V Sannsynlighetsregning og kombinatorikk Tilfeldige variabler og sannsynlighetsfordelinger Hypergeometrisk fordeling Binomisk fordeling Ørnulf Borgan Matematisk institutt Universitetet i Oslo Tilfeldige
Oppgaver. Innhold. Sannsynlighet Vg1P
Oppgaver Innhold Modul 1. Hva er sannsynlighet?... 2 Modul 2. Addisjon av sannsynligheter. Gunstige og mulige utfall... 6 Modul 3. Beregne sannsynligheter ved å bruke tabeller... 10 Modul 4. Beregne sannsynligheter
ST1101/ST6101 Sannsynlighetsregning og statistikk Vår 2019
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag ST1101/ST6101 Sannsynlighetsregning og statistikk Vår 201 Oppgaver fra boka 2.6.1 En kjemiker vil observere effekten av 2 ulike
Quiz, 4 Kombinatorikk og sannsynlighet
Quiz, 4 Kombinatorikk og sannsynlighet Innhold 4.1 Begreper i sannsynlighetsregning... 2 4.2 Addisjon av sannsynligheter... 6 4.3 Produktsetningen for sannsynlighet... 12 4.4 Kombinatorikk og sannsynlighetsberegning...
Sannsynlighetsregning
Sannsynlighetsregning Eksamensoppgaver Våren 2015 OPPGAVE 4 (UTEN HJELPEMIDLER) Tenk deg at du har ti bananer i skapet. Fem av dem er gule, tre er grønne, og to er blitt brune. Du tar tilfeldig to bananer.
Legg merke til at summen av sannsynlighetene for den gunstige hendelsen og sannsynligheten for en ikke gunstig hendelse, er lik 1.
Sannsynlighet Barn spiller spill, vedder og omgir seg med sannsynligheter på andre måter helt fra de er ganske små. Vi spiller Lotto og andre spill, og håper vi har flaks og vinner. Men hvor stor er sannsynligheten
ØVINGER 2017 Løsninger til oppgaver. 3.1 Myntkast For et enkelt myntkast har vi to mulige utfall, M og K. Utfallsrommet blir
ØVINGER 017 Løsninger til oppgaver Øving 3.1 Myntkast For et enkelt myntkast har vi to mulige utfall, M og K. Utfallsrommet blir S = {M, K}. Med to etterfølgende myntkast blir utfallsrommet S = {MM, MK,
Kapittel 10. Sannsynlighetsregning
Kapittel 10. Sannsynlighetsregning Sannsynlighet handler om å finne ut hvor ofte noe vil skje i en prosess som kan gjentas mange ganger. Kapitlet handler blant annet om dette: Hva er sannsynlighet. Beregne
Kompetansemål Hva er sannsynlighet?... 2
3 Sannsynlighet Innhold Kompetansemål... 2 3. Hva er sannsynlighet?... 2 Utfall og utfallsrom... 3 Tilfeldig forsøk... 3 Definisjon av sannsynlighet... 5 Sannsynlighetsmodeller... Andre eksempler på tilfeldige
Tall: Hovedområdet tall og algebra handler om å utvikle tallforståing og innsikt i hvordan tall og tallbehandling inngår i
Lærebok: Tusen Millioner, Gjerdrum Skovdahl Tallbok (rutebok i A5 format) Barn lærer matematikk gjennom spill, leik, utforsking aktiv samhandling. Språkets betydning er veldig viktig for å forstå matematikk.
Sannsynlighetsregning
Sannsynlighetsregning 1 Sannsynlighet Mål for opplæringa er at eleven skal kunne formulere, eksperimentere med og drøfte enkle uniforme og ikkje-uniforme sannsynsmodellar berekne sannsyn ved hjelp av systematiske
Regler for: Videregående. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene!
(x²) 1 2 Regler for: getsmart Grå Algebra Videregående 8 _ (x²) 1 2 Algebra 4 (2 2³) 1 4 _ xy (2 2³) 1 4 _ xy (x²) 1 2 _ (2 2³) 1 4 _ xy (x²) 1 2 _ (2 2³) 1 4 _ xy 4 Algebra Algebra _ 8 Det anbefales at
42 elever sykler til skolen hver dag, mens 30 tar bussen. 26 går og 10 blir kjørt med bil. Da kan vi lage et diagram som gir en oversikt.
elever sykler til skolen hver dag, mens 0 tar bussen. går og 10 blir kjørt med bil. Da kan vi lage et diagram som gir en oversikt. 7 Hm, er det så mange satellitter over år?! Statistikk MÅL I dette kapitlet
MAT0100V Sannsynlighetsregning og kombinatorikk
MAT000V Sannsynlighetsregning og kombinatorikk Uordnet utvalg uten tilbakelegging (repetisjon) Tilfeldige variabler og sannsynlighetsfordelinger Hypergeometrisk fordeling Binomisk fordeling Ørnulf Borgan
KOMBINATORIKK OG SANNSYNLIGHET 4 MER ØVING
Oppgave 1 En dag lurer du på hva du skal ha på deg. Du ser i skapet og ser at det ligger 3 bukser, en lys og en mørk olabukse og en grå bukse. Du leter etter en genser og finner fire forskjellige gensere.
Fagdag 5-08.01.09. 2) Du skal fylle ut en tippekupong. På hvor mange måter kan dette gjøres?
Fagdag Plan Fagdag - 08.01.0 1,2 time: Repetisjon kapittel 3 - Sannsynlighet Oppgaver Teori (lesestoff) 3, time: Arbeide med.1 og.2: 16, 17, 18, 1 3, time: Ekstra vurdering før terminoppgjør Repetisjon
2.3: Kombinatorikk 2.4: Sannsynlighet, og Monte Carlo simulering. Foreleses onsdag 25. august 2010
TMA4240 Statistikk H2010 2.3: Kombinatorikk 2.4: Sannsynlighet, og Monte Carlo simulering. Mette Langaas Foreleses onsdag 25. august 2010 2 Sist - Kap 0 Hva er statistikk, og hvorfor skal du lære det?
A) 12 B) 13 C) 14 D) 15 E) 16
SETT 21 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. En bonde skal sette opp et gjerde rundt et trekantet område med sider 20 m, 20 m og 30 m. Han planlegger å sette opp stolper med 5 meters avstand
Oppgaver i sannsynlighetsregning 3
Oppgaver i sannsynlighetsregning 3 Oppgave 1 Vi har et lykkehjul med 8 like sektorer som er nummerert fra 1 til 8. Du har valgt sektor nummer 3. a) Tenk deg at du snurrer lykkehjulet en gang. Hva er sjansen
Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk
MAT000V Sannsynlighetsregning og kombinatorikk Tilfeldige variabler og sannsynlighetsfordelinger (repetisjon) Hypergeometrisk fordeling (repetisjon) Binomisk fordeling Forventningsverdi Tilfeldige variabler
TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger
TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger Binomisk fordeling* ( ) n b(x; n, p) = p x (1 p) n x = x ( ) n p x q n x, x x = 0, 1, 2,..., n Fenomén: i) n forsøk. ii) Suksess/fiasko
TMA4240 Statistikk H2010
TMA4240 Statistikk H2010 2.5: Addisjonsregler (union) 2.6: Betinget sannsynlighet 2.7: Multiplikasjonsregler (snitt) 2.8: Bayes regel (starte litt) Mette Langaas Foreleses mandag 30. august 2010 2 Kapittel
Løsninger. Innhold. Sannsynlighet Vg1P
Løsninger Innhold Modul. Hva er sannsynlighet?... 2 Modul 2. Addisjon av sannsynligheter. Gunstige og mulige utfall... 7 Modul 3. Beregne sannsynligheter ved å bruke tabeller... 3 Modul 4. Beregne sannsynligheter
Eksamen 27.05.2008. MAT1003 Matematikk 2P Elevar/Elever, Privatistar/Privatister. Nynorsk/Bokmål
Eksamen 27.05.2008 MAT1003 Matematikk 2P Elevar/Elever, Privatistar/Privatister Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del 2: Vedlegg: 5 timer Del
JULETENTAMEN, 9. KLASSE, 2015. FASIT
JULETENTAMEN, 9. KLASSE, 2015. FASIT DELPRØVE 1. OPPGAVE 1.1: 367 + 254 = 621 c: 67. 88 536 536 = 5896 e: 18,4-9,06 = 9,34 24,8 + 7,53 = 32,33 d: 3,2 : 0,8 = 32 : 8 = 4 32 f: 12 2. 5 2 = 12 2. 25 = 12
Innledning kapittel 4
Innledning kapittel 4 Sannsynlighet og tilfeldighet Basert på materiale fra Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Deterministiske fenomener Almanakk for Norge viser: når det er fullmåne
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Fra første forelesning: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av
Så kaster neste spiller og gjør det samme. Den som kommer nærmest får 1 poeng. Er begge like nært får ingen poeng.
REGNING DE FIRE REGNINGSARTENE: Når tallbegrepet er godt innarbeidet, og elevene forstår posisjonssystemet, begynner arbeidet med de fire regningsartene: sum (+), differens (-), multiplikasjon ( ) og divisjon(:).
Familiematematikk MATTEPAKKE. 1. Trinn. May Renate Settemsdal og Ingvill Merete Stedøy
Familiematematikk MATTEPAKKE 1. Trinn May Renate Settemsdal og Ingvill Merete Stedøy Aktiviteter Hvor mange? Sorter og tell alle tingene som er i kofferten. Hva er det flest av? Hva er det færrest av?
Løsning del 1 utrinn Høst 13
//06 Løsning del utrinn Høst - matematikk.net Løsning del utrinn Høst Contents DEL EN Oppgave + 679 = 0 89 78 = 8 c) 7,, 6 = 6, 6 d) : 0, = 0 : = 80 Oppgave 78 dl = 7,8 L, mil = kilometer = 000 m c), t
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Kapittel 7: Utvalgsfordeling Bo Lindqvist Institutt for matematiske fag 2 Fra kapittel 1: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg
Sannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere
2 Sannsynligheten for en hendelse (4.2) Sannsynligheten for en hendelse sier oss hvor ofte vi forventer at hendelsen inntreffer, dvs. den forventede relative frekvens av hendelsen. ST0202 Statistikk for
Oppgaver i sannsynlighetsregning 1
Oppgaver i sannsynlighetsregning 1 Oppgave 1 Forklar hva som menes med en uniform sannsynlighetsmodell. Gi minst et eksempel på en uniform sannsynlighetsmodell. Begrunn hvorfor den er uniform. Gi også
Blue Riband REGATTAREGLER
REGATTAREGLER Blue Riband Kofferten innholder: 1 spillebrett 1 terning 12 brikker i 6 ulike farger (6 spillebrikker og 6 brikker for å samle redningsbøyene på) 30 lastebrikker i ulike farger 40 redningsbøyer
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Kapittel 4: Sannsynlighetsregning Bo Lindqvist Institutt for matematiske fag 2 Sannsynligheten for en hendelse (4.1) Sannsynligheten for en hendelse sier oss hvor ofte
DEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 y (kroner) x (antall stoler) a) Grafen viser hva det koster for en fabrikk å produsere x stoler. Hva blir kostnadene per stol dersom bedriften produserer 50 stoler? 4
ÅMA110 Sannsynlighetsregning med statistikk, våren 2011
ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 Kp. 2 Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige
Forsøk med sannsynlighetsregning/fra forsøk til sannsynlighet
Sannsynlighet Sannsynligheter angis som 1. (desimal)tall fra 0 til 1, der 0 angir at noe aldri vil skje og at 1 angir at noe vil skje hver gang 2. prosent mellom 0 og 100 %, der 0 % angir at noe aldri
Statistikk, sannsynlighet og kombinatorikk
NY GIV, januar/februar 2011 Oslo, Trondheim og Stavanger Statistikk, sannsynlighet og kombinatorikk Astrid Bondø NSMO 17-Feb-11 Sentralmål Eksempler fra eksamen Statistikkspill Eksempler på oppgaver Sannsynlighet
DEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) I en vase står det 20 tulipaner. 25 % av tulipanene er hvite, 1 5 Hvor mange tulipaner er røde? er gule, og resten er røde. Oppgave 2 (2 poeng) Tabellen nedenfor
RINGENES HERRE - HUSKELISTE FOR TURREKKEFØLGE
46233i07 2/8/02 8:4 pm Page FORSTERKNING RINGENES HERRE - HUSKELISTE FOR TURREKKEFØLGE. Ta én bataljon for hvert 3. territorium du har. 2. Ta ytterligere bataljoner for områder du okkuperer helt. 3. Bytt
Løsningsforslag for eksamen i MAT1003 Matematikk 2P Privatister - 27.05.2008. eksamensoppgaver.org
Løsningsforslag for eksamen i MAT1003 Matematikk 2P Privatister - 27.05.2008 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2P er gratis, og
3 x 3 ruter. Hvilke matematiske utfordringer finnes det i et spillebrett på 3x3 ruter? Her er noen eksempler på spill og problemløsningsoppgaver
3 x 3 ruter Hvilke matematiske utfordringer finnes det i et spillebrett på 3x3 ruter? Her er noen eksempler på spill og problemløsningsoppgaver som kan brukes i matematikktimene. Magisk kvadrat Du har
Kapittel 2: Sannsynlighet [ ]
Kapittel 2: Sannsynlighet [2.3-2.5] TMA4240 Statistikk (F2 og E7) 2.3, 2.4, 2.5: Kombinatorikk og sannsynlighet [18.august 2004] [email protected] p.1/21 Produktregel for valgprosess TEO 2.1
TERNINGER. - variasjon i matematikkundervisningen. Astrid Bondø NSMO. 18-Aug-13
TERNINGER - variasjon i matematikkundervisningen Astrid Bondø NSMO 18-Aug-13 Siffer blir tall Lamis skriftserie: Et ess i ermet Bruk en vanlig 6-er terning eller en 0-9 terning. Kast terningene. Du får
Kapittel 9. Sannsynlighetsregning
Kapittel 9. Sannsynlighetsregning Sannsynlighet handler om å finne ut hvor ofte noe vil skje i en prosess som kan gjentas mange ganger. Kapitlet handler blant annet om dette: Hva er sannsynlighet. Beregne
Regler for: getsmart Grønn. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene!
-6 Regler for: getsmart Grønn Hele tall 3 4 Hele tall 8-6 -6 3-6 3 8 Hele tall Hele tall 3 4 Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Sjekk
1. En murstein veier 3 kg pluss en halv murstein. Hvor mye veier en murstein? A) 4,5 kg B) 6 kg C) 7,5 kg D) 9 kg E) Umulig å avgjøre
OPPGAVER FRA ABELS HJØRNE I DAGBLADET SETT 2 DAG 1 1. En murstein veier 3 kg pluss en halv murstein. Hvor mye veier en murstein? A) 4,5 kg B) 6 kg C) 7,5 kg D) 9 kg E) Umulig å avgjøre 2. Dersom det tresifrede
Spillet der du erobrer verden
Spillet der du erobrer verden 2004 Hasbro. Med enerett. Distributed in the Nordic region by Hasbro Nordic, Ejby Industrivej 40, DK-2600 Glostrup, Denmark. www.hasbro.co.uk 040414538107 KO M M A N D O I
ST0103 Brukerkurs i statistikk Høst 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag ST0103 Brukerkurs i statistikk Høst 2014 Løsningsforslag Øving 1 2.1 Frekvenstabell For å lage en frekvenstabell må vi telle
Kapittel 2: Sannsynlighet
Kapittel 2: Sannsynlighet 2.1, 2.2: Utfallsrom og hendelser 2.3, 2.4: Kombinatorikk og sannsynlighet 2.5, 2.6, 2.7: Regneregler, betinget sanns. 2.8: Bayes regel Eirik Mo Institutt for matematiske fag,
Matteoppgaver i Minecraft
Matteoppgaver i Minecraft Oppgavehåndbok av Tobias Andersen Mattemestring 2016 Oppgaveguide: Linjeduel (2 spillere) Krav: Minst 2 terninger, en datamaskin med minecraft som deltagerne bruker sammen eller
