Trekking uten tilbakelegging. Disjunkte hendelser (4.5) Forts. ST0202 Statistikk for samfunnsvitere
|
|
- Else Viken
- 8 år siden
- Visninger:
Transkript
1 2 Trekking uten tilbakelegging ST0202 Statistikk for samfunnsvitere o Lindqvist Institutt for matematiske fag En bolle inneholder 7 kuler, 5 gule (Y) og to røde (). To kuler trekkes uten tilbakelegging, dvs. at det først trekkes en og at det så trekkes en til uten å legge den første tilbake. La A = den første kulen er gul (Y) = den andre kulen er gul (Y) Da er P(begge kulene er gule) =P(Aog)=P(A) P( A) = = Forts. 4 Disjunkte hendelser (4.5) To disjunkte (gjensidig utelukkende) hendelser: endelser definert slik at dersom en av hendelsene inntreffer, kan den andre ikke inntreffe. dvs. P(A og)=0 eller med Venn-diagram: P(en av hver farge) =P(Y)+P(Y )= = = P(to røde) =P() = = 2 42
2 vis vi har flere enn 2 hendelser, kalles disse parvis disjunkte ( mutually exclusive ) hvis hvert par av dem er disjunkte etter definisjonen på forrige slide. Eksempel: etrakt et eksperiment der to terninger blir kastet. Tre hendelser er definert: A: Summen av tallene på terningene er 7 : Summen av tallene på terningene er 10 C: egge terningene viser samme tall. Er disse tre hendelsene parvis disjunkte? A: Summen av tallene på terningene er 7 : Summen av tallene på terningene er 10 C: egge terningene viser samme tall. A og er disjunkte. A og C er disjunkte. og C er ikke disjunkte, fordi ogc=(5, 5) De tre hendelsene er dermed ikke parvis disjunkte (selv om alle tre ikke kan inntreffe samtidig). 7 Den spesielle addisjonsregelen Illustrasjon av den spesielle addisjonsregelen: For disjunkte hendelser A og gjelder P(A eller ) =P(A)+P() Denne regelen kan generaliseres: For parvis disjunkte hendelser A,, C... E gjelder P(A eller eller C eller... eller E) =P(A)+P()+P(C)+...+P(E) er er A og disjunkte, og vi har: P(A eller ) =P(A)+P()
3 Eksempel: Kast to terninger. va er sannsynligheten for at summen er 7 (hendelse A) eller at terningene er like (hendelse )? endelse A (grønn) og (blå) er disjunkte (inntreffer A kan ikke inntreffe og motsatt, se figur under). egelen over gir da P(A eller ) =P(A)+P() = = Uavhengige hendelser (4.6) Oppgave: Et par terninger blir kastet. endelsene er A=summen er 7, C=to like, E=summen er 8. a) vilke par av hendelser er disjunkte? b) Finn sannsynlighetene P(A eller C), P(A eller E), og P(C eller E) To hendelser A og er uavhengige hendelser hvis det at A har inntruffet (eller ikke har inntruffet) ikke påvirker sannsynligheten for at skal inntreffe, dvs. eller P(A) =P(A ) =P(A ) P() =P( A) =P( Ā) der er komplementet til, dvs. hendelsen at ikke inntreffer. Dersom den ene av linjene er oppfylt vil alltid den andre være det også. endelser som ikke er uavhengige, kalles avhengige.
4 usk den generell multiplikasjonsregel: P(A og)=p(a)p( A) Dersom A og er uavhengige, har vi P( A) =P(), så vi får: Den spesielle multiplikasjonsregel: P(A og)=p(a)p() Dette kan generaliseres til tilfellet med mer enn to uavhengige hendelser: For uavhengige hendelser A,, C... E gjelder P(A ogogcog... og E) =P(A) P() P(C)... P(E) 14 Eksempler på uavhengighet Kast en terning og en mynt. A er at terningen gir en 6er, er at mynten lander på Kron (). vorfor er P( A) =P()? va blir P(A og)? Kast en mynt to ganger. A er at mynten lander på i første kast, er at mynten lander på i andre kast. vorfor er P( A) =P()? va blir P(A og)? Trekk to kort fra en kortstokk, der kortet legges tilbake og det stokkes og trekkes et nytt. A er at det er en spar i første trekning, er at det er en hjerter i andre trekning. va er nå P(A), P( A) og P()? va blir P(A og)? Ville disse hendelsene være uavhengige dersom du ikke la tilbake det første kortet før du trakk det andre? 15 Trekking med tilbakelegging En bolle inneholder 7 kuler, 5 gule (Y) og to røde (). To kuler trekkes med tilbakelegging, dvs. at det først trekkes en kule, så legges denne tilbake, og det trekkes en kule til. La A = den første kulen er gul (Y) = den andre kulen er gul (Y) 16 Example 4.25 i boka En student blir trukket tilfeldig fra en populasjon bestående av 200 studenter hvorav 140 studerer fulltid (80 kvinner og 60 menn) og 60 studerer deltid (40 kvinner og 20 menn). La hendelse A være at studenten studerer fulltid og hendelse C at studenten er kvinne. a) Er hendelsene A og C uavhengige? b) Finn P(A og C) ved multiplikasjonsregelen Da er P(begge kulene er gule) =P(Aog)=P(A) P( A) = = siden vi nå har at: P( A) = 5 7 = P() er altså A og uavhengige.
5 A=fulltid C=kvinne P(A C) = P(A) = n(a) n(s) = = 0.7 P(C) = n(c) n(s) = = 0.6 n(a ogc) n(c) = = 0.67 A og C er avhengige siden P(A C) P(C). P(A ogc)=p(c)p(a C) = = = 0.4 P(A og C) kan også finnes direkte ved P(A ogc)= n(a ogc) n(s) = = Formel for betinget sannsynlighet Ved å stokke om på generell multiplikasjonsregel, P(A og)=p(a) P( A) får vi et uttrykk for sannsynligheten for hendelsen A gitt at hendelsen har inntruffet: P(A og) P( A) = P(A) Oppgave (eksamen høst 2005): va er sannsynligheten for at summen av to terninger er større enn eller lik 10 gitt at minst en av terningene er 6? A) 1/4 ) C) 5/11 D) 6/11 E)
6 21 Uavhengighet og disjunkthet (4.7) Uavhengighet og disjunkthet er begreper som ofte blandes. La A og være to hendelser med positive sannsynligheter P(A) og P(). AtAog er disjunkte, betyr at de ikke kan inntreffe samtidig, dvs. at P(A og)=0 AtA og er uavhengige betyr at sannsynligheten for ikke endrer seg dersom vi vet om A har inntruffet, dvs. at vi har Oppgave: Dersom P(A)=0.3 og P()=0.4 og A og er uavhengige hendelser. va er sannsynlighetene a) P(A og ) b) P( A) c) P(A ) P(A og)=p(a)p( A) =P(A)P() Men dette kan ikke være 0 da både P(A) og P() er positive. To hendelser kan defor ikke både være disjunkte og uavhengige. Oppgave: Trekk et kort fra en standard kortstokk. Definer tre hendelser A=kortet er knekt,dame eller konge =kortet er rødt C=kortet er hjerter Er følgende par av hendelser uavhengige? a)aog b)aogc c) og C Oppgave: Trekk et kort fra en standard kortstokk bortsett fra at kløver 2 mangler. Definer tre hendelser A=kortet er knekt,dame eller konge =kortet er rødt C=kortet er hjerter Er følgende par av hendelser uavhengige? a)aog b)aogc c) og C
7 25 ruk av sannsynlighetsregning La oss bruke reglene vi har vært igjennom. Eksempel: En boks inneholder en rød, en blå og en hvit kule. Trekk to kuler uten tilbakelegging. Utfallene og deres sannsynligheter kan finnes ved hjelp av et sannsynlighetstre. Sannsynligheten for et utfall finnes ved å multiplisere (betingede) sannsynligheter langs grenene: P(,)=P()P( ) osv. Sannsynligheten for en hendelse finnes ved å summere sannsynlighetene for de utfall som hører til hendelsen. Gren Utfall P (,) 1/6 (,) 1/6 (,) 1/6 (,) 1/6 (,) 1/6 (,) 1/6 Sannsynligheten for gren 1: P(, ) =P()P( ) = = 1/6 Sannsynligheten for hendelsen en rød og en blå kule : Gren 1 og gren 3 gir en rød og en blå kule, så addisjonsregelen gir: P(en rød og en blå kule) =1/6 + 1/6 = Gren Utfall P (,) 1/6 (,) 1/6 (,) 1/6 (,) 1/6 (,) 1/6 (,) 1/6 28 Eksempel: Kvalitetskontroll En produsent produserer en artikkel. I gjennomsnitt er 20% av artiklene defekte. ver artikkel blir kontrollert før den sendes ut. Kontrolløren feilklassifiserer artikkelen 10% av gangene. vilken andel av artiklene blir klassifisert som feilfrie? Definer følgende hendelser: G: Artikkelen er feilfri D: Artikkelen er defekt CG: Artikkelen er klassisfisert feilfri av kontrollør CD: Artikkelen er klassifisert defekt av kontrollør Tegn et trediagram.
8 G D Gren Utfall P CG 1 (G,CG) 0.72 CD CG CD (G,CD) 0.08 (D,CG) 0.02 (D,CD) 0.18 Artikkelen blir klassisfisert feilfri for gren 1 og gren 3. Dermed summeres sannsynligheten for gren 1 og gren 3: P(CG) = = Eksempel (forts.) Anta at bare artikler som blir klassifisert som feilfrie blir utsendt. va er andelen av feilfrie artikler blant de utsendte artiklene? P(G CG) = P(G ogcg) P(CG) = = Så kvalitetskontrollen øker andelen av feilfrie artikler fra 80% til 97.3%. 31 Loven om total sannsynlighet La A og Ā være komplementære hendelser, mens er en annen hendelse. Da er: P() =P( oga)+p( ogā) = P( A)P(A)+P( Ā)P(Ā) 32 ayes formel P(A og) P(A ) = = P() P(A)P( A) = P(A)P( A)+P(Ā)P( Ā) ved generell multiplikasjonsregel i teller og loven om total sannsynlighet i nevner.
9 33 Testing for sykdom En person testes for en bestemt sykdom. S= personen har sykdommen T= testen er positiv For medisinske tester kjenner man: P(T S): sannsynligheten for at testen slår ut positivt, gitt at personen er syk (sensitiviteten til testen). Ønskes høyest mulig. P( T S): sannsynligheten for at testen slår ut negativt, gitt at personen er frisk (spesifisitet). Ønskes høyest mulig Interessant for pasienten: P(S T ): sannsynligheten for at du er syk, gitt at du har fått en positiv test. P( S T ): sannsynligheten for at du er frisk, gitt at du har fått en negativ test. 34 Eksempel: IV-test va er sannsynligheten for at en person med positiv IV-test virkelig er IV-smittet? Anta Sensitivitet av testen: P(T S)= 0.98 Spesifisitet av testen: P( T S)= P(S T ) finnes ved P(S ogt) P(T S)P(S) P(S T )= = P(T ) P(T S)P(S)+P(T S)P( S) P(T S)P(S) = P(T S)P(S)+(1 P( T S))(1 P(S)) Svaret er avhengig av forekomsten av IV i populasjonen, P(S): P(S) P(S T) P(S) = = (Dagbladet febr 2003, 1900 smittet av IV i Norge (av ), dvs ca 0.5 promille.) Dette gir et problem ved masseunderskelser. De fleste av personene med positiv prøve kan faktisk være friske. 36 Eksempel: Dopingtesting En viss type doping forekommer i 1% av populasjonen. Testen kan påvise dette i 95% av tilfellene hvor personen er dopet, men påviser det også feilaktig i 2% av tilfelllene hvor personen ikke er dopet. va er sannsynlighenten for at personen er dopet om testen er positiv? La D=personen er dopet A=testen er positiv
10 P(D)=0.01 P(D )=0.99 D D P(A D)=0.95 P(A D)=0.05 P(A D )=0.02 P(A D )=0.98 Gren Utfall P A 1 (D,A) A A A (D,A ) (D,A) (D,A ) P(D oga) P(D A) = = P(A) P(D)P(A D) = P(D)P(A D)+P(D )P(A D ) = p = p 1 + p = 0.32
ST0202 Statistikk for samfunnsvitere [4]
ST0202 Statistikk for samfunnsvitere [4] Kapittel 4: Sannsynlighet 4.4: Disjunkte hendelser, 4.5: Uavhengige hendelser 4.6: Er disjunkthet og uavhengighet relatert til hverandre? Bruk av sannsynlighetsregning
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Sannsynligheten for en hendelse (4.2) Sannsynligheten for en hendelse sier oss hvor ofte vi forventer at hendelsen inntreffer,
DetaljerSannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere
2 Sannsynligheten for en hendelse (4.2) Sannsynligheten for en hendelse sier oss hvor ofte vi forventer at hendelsen inntreffer, dvs. den forventede relative frekvens av hendelsen. ST0202 Statistikk for
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Kapittel 4: Sannsynlighetsregning Bo Lindqvist Institutt for matematiske fag 2 Sannsynligheten for en hendelse (4.1) Sannsynligheten for en hendelse sier oss hvor ofte
DetaljerSannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere
2 Sannsynligheten for en hendelse (4.2) Sannsynligheten for en hendelse sier oss hvor ofte vi forventer at hendelsen inntreffer, dvs. den forventede relative frekvens av hendelsen. ST0202 Statistikk for
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Loven om total sannsynlighet La A og Ā være komplementære hendelser, mens B er en annen hendelse. Da er: P(B) =P(B oga)+p(b
DetaljerLoven om total sannsynlighet. Bayes formel. Testing for sykdom. ST0202 Statistikk for samfunnsvitere
2 Loven om total sannsynlighet La A og Ā være komplementære hendelser, mens B er en annen hendelse. Da er: P(B) P(B oga)+p(b ogā) P(B A)P(A)+P(B Ā)P(Ā) ST0202 Statistikk for samfunnsvitere Bo Lindqvist
DetaljerKapittel 2: Sannsynlighet
Kapittel 2: Sannsynlighet 2.1, 2.2: Utfallsrom og hendelser 2.3, 2.4: Kombinatorikk og sannsynlighet 2.5, 2.6, 2.7: Regneregler, betinget sanns. 2.8: Bayes regel Eirik Mo Institutt for matematiske fag,
DetaljerBetinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet!
MAT000V Sannsynlighetsregning og kombinatorikk Betinget sannsynlighet Vi repeterer først et eksempel fra samlingen for sist uke Betinget sannsynlighet og uavhengige hendelser Produktsetningen Total sannsynlighet
DetaljerSANNSYNLIGHETSREGNING
SANNSYNLIGHETSREGNING Er tilfeldigheter tilfeldige? Når et par får vite at de skal ha barn, vurderes sannsynligheten for pike eller gutt normalt til rundt 50/50. Det kan forklare at det fødes omtrent like
DetaljerUtfallsrom og hendelser. Disjunkte hendelser. Kapittel 2: Sannsynlighet. Eirik Mo Institutt for matematiske fag, NTNU
3 Utfallsrom og hendelser Kapittel 2: Sannsynlighet 2., 2.2: Utfallsrom og hendelser 2.3, 2.4: Kombinatorikk og sannsynlighet 2.5, 2.6, 2.7: Regneregler, betinget sanns. 2.8: Bayes regel DEF 2. Ufallsrom:
DetaljerTMA4240 Statistikk H2010
TMA4240 Statistikk H2010 2.8: Bayes regel 3.1: Stokastisk variabel 3.2: Diskrete sannsynlighetsfordelinger 3.3: Kontinuerlige sannsynlighetsfordelinger Mette Langaas Foreleses onsdag 1. september 2010
DetaljerMULTIPLE CHOICE ST0103 BRUKERKURS I STATISTIKK September 2016
MULTIPLE CHOICE ST0103 BRUKERKURS I STATISTIKK September 2016 SETT RING RUNDT DET RIKTIGE SVARET FOR HVER OPPGAVE. Oppgave 1 Stokastisk forsøk Stokastiske forsøk karakteriseres ved to av følgende egenskaper.
DetaljerBetinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet!
MAT000V Sannsynlighetsregning og kombinatorikk Betinget sannsynlighet og uavhengige hendelser Produktsetningen Total sannsynlighet og Bayes' setning Betinget sannsynlighet Vil repeterer først et eksempel
DetaljerKapittel 2: Sannsynlighet [ ]
Kapittel 2: Sannsynlighet [2.6-2.8] TMA4240 Statistikk (F2 og E7) 2.6, 2.7, 2.8: Betinget sannsynlighet [23.august 2004] Ole.Petter.Lodoen@math.ntnu.no p.1/18 Oppsummering fra 2.1-2.5 FENOMEN Eksperiment
DetaljerTema 1: Hendelser, sannsynlighet, kombinatorikk Kapittel ST1101 (Gunnar Taraldsen) :19
Tema 1: Hendelser, sannsynlighet, kombinatorikk Kapittel 2.1-2.7 ST1101 (Gunnar Taraldsen) 2019-01-12 17:19 Sentrale definisjoner og regneregler Definisjoner: Stokastisk forsøk, utfallsrom, hendelser (snitt,
DetaljerBetinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet!
MAT0100V Sannsynlighetsregning og kombinatorikk Betinget sannsynlighet og uavhengige hendelser Produktsetningen Total sannsynlighet og Bayes' setning Betinget sannsynlighet Vil repeterer først et eksempel
DetaljerStatistikk og økonomi, våren 2017
Statistikk og økonomi, våren 207 Obligatorisk oppgave 3 Løsningsforslag Oppgave Produsenten av en type bærbar datamaskin har registrert at sannsynligheten er 0.2 for at tastaturet svikter, 0.09 for at
DetaljerBetinget sannsynlighet, total sannsynlighet og Bayes setning
etinget sannsynlighet, total sannsynlighet og ayes setning Vi vil først ved hjelp av et eksempel se intuitivt på hva betinget sannsynlighet betyr: Vi legger fire røde kort og to svarte kort i en bunke
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2011
ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 Kp. 2 Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2010
ÅM0 Sannsynlighetsregning med statistikk, våren 00 Kp. Sannsynlighetsregning (sannsynlighetsteori).5 (kp..5) - innledning Eks.: Et terningkast; {,, 3, 4, 5, 6}. Ved bruk av uniform modell: hvert utfall
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2007
ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 2 Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2011
ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 Kp. 2 Sannsynlighetsregning i (sannsynlighetsteori) t i) 2.5 Betinget sannsynlighet 1 Betinget sannsynlighet (kp. 2.5) - innledning Eks.: Et terningkast;
Detaljer4.4 Sum av sannsynligheter
4.4 Sum av sannsynligheter Nina trekker kort fra en vanlig kortstokk med 52 kort. Vi innfører hendingene H: Kortet er en hjerter S: Kortet er en spar Det er 13 hjerter og 13 spar i stokken. Sannsynligheten
DetaljerOppgave 1 dvs 2 kort med samme verdi og 3 kort med ulike andre verdier. 4 verdier paret kan ta, og de to kortene i paret kan velges på måter.
TMA0 Statistikk Vår 008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer Løsningsskisse Oppgave a Ett par, dvs kort med samme verdi og kort med ulike andre verdier.
DetaljerBetinget sannsynlighet, total sannsynlighet og Bayes setning Kapittel 4.5
Betinget sannsynlighet, total sannsynlighet og Bayes setning Kapittel 4.5 På bakgrunn av materiale fra Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Vi vil først ved hjelp av et eksempel se
DetaljerSannsynlighetsregning
Sannsynlighetsregning Per G. Østerlie Thora Storm vgs per.osterlie@stfk.no 5. april 203 Hva og hvorfor? Hva? Vi får høre at det er sannsynlig at et eller annet kommer til å skje. Sannsynligheten for å
DetaljerKapittel 4: Betinget sannsynlighet
Kapittel 4: Betinget sannsynlighet Ofte vil kunnskap om at en hendelse har inntruffet påvirke sannsynligheten for en annen hendelse. Definisjon: Den betingede sannsynligheten for A gitt B er: P(A B) P(A
DetaljerBetinget sannsynlighet, Total sannsynlighet og Bayes setning
Betinget sannsynlighet, Total sannsynlighet og Bayes setning Innhold: Produktsetning, avhengighet, betinget sannsynlighet (.2,.) Setningen om total sannsynlighet (.4) Bayes setning (.4) Disse tingene henger
DetaljerSannsynlighetsregning og kombinatorikk
Sannsynlighetsregning og kombinatorikk Introduksjon Formålet med sannsynlighet og kombinatorikk er å kunne løse problemer i statistikk, somoftegårutpååfattebeslutninger i situasjoner der tilfeldighet rår.
DetaljerBetinget sannsynlighet, total sannsynlighet og Bayes setning Kap. 4.5 STK1000 H11
Betinget sannsynlighet, total sannsynlighet og Bayes setning Kap. 4.5 STK1000 H11 På bakgrunn av materiale fra Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Vi vil først ved hjelp av et eksempel
DetaljerOppgaver. Innhold. Sannsynlighet 1P, 1T og 2P-Y
Oppgaver Innhold 3.1 Hva er sannsynlighet?... 2 3.2 Addisjon av sannsynligheter. Gunstige og mulige utfall... 5 3.3 Beregne sannsynligheter ved å bruke tabeller... 9 3.4 Beregne sannsynligheter ved å bruke
Detaljer6 Sannsynlighetsregning
MATEMATIKK: 6 Sannsynlighetsregning 6 Sannsynlighetsregning 6.1 Forsøk. Utfallsrom. Sannsynlighet (sjanse). Sannsynlighetsmodell Ved ett kast med en terning vet vi at terningen vil vise enten ett, to,
DetaljerSannsynlighetsregning og Statistikk
Sannsynlighetsregning og Statistikk Leksjon 2. Leksjon 2 omhandler begreper og regneregler for sannsynligheter. Dette er behandlet i kapittel 3.1 og 3.2 i læreboka. Du bør når du har fullført leksjon 2
Detaljer1 Sannsynlighetsrgning
1 Sannsynlighetsrgning 1.1 Det er 13 grønne og 18 røde baller i en eske. Vi trekker ut to baller etter hverandre. a) Hva er sannsynligheten for å få to grønne baller? Svar: P(g 1, g 2 ) = p(g 1 ) p(g 2
DetaljerFasit. Grunnbok. Kapittel 5. Bokmål
Fasit Grunnbok Kapittel 5 Bokmål Kapittel 5 Fra erfaring til sannsynlighet 5. a P = 3 5.2 a P = 2 5.3 B har rett 5.4 a P = 4 b P = 4 b P = 2 b c P = 7 c P = 5 2 c d P = 25 d P = 5 2 5.5 a b Den eksperimentelle
Detaljer- Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking av et lottotall o.l.
SANNSYNLIGHETSREGNING Terminologi Kombinatorikk Stokastisk Utfallsrom / utfall (enkeltutfall) - Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking
DetaljerForelesning 4, kapittel 3. : 3.4: Betinget sannsynlighet.
Forelesning 4, kapittel 3. : 3.4: Betinget sannsynlighet. Eksempel 1 (begrunnelse for definisjonen av betinget sannsynlighet): Hendelse A er "sum minst 8 på kast med 2 terninger" P(A) = 15/36 P(A) < 1/2
DetaljerTMA4240 Statistikk H2010
TMA4240 Statistikk H2010 2.5: Addisjonsregler (union) 2.6: Betinget sannsynlighet 2.7: Multiplikasjonsregler (snitt) 2.8: Bayes regel (starte litt) Mette Langaas Foreleses mandag 30. august 2010 2 Kapittel
DetaljerBetingede sannsynligheter Fra spøkefull Monty Hall til alvorsfull kreftdiagnostikk
Betingede sannsynligheter Fra spøkefull Monty Hall til alvorsfull kreftdiagnostikk Solve Sæbø IKBM, UMB Innhold The Monty Hall game Vinner du bilen eller geita? Den statistiske begrunnelsen for riktig
DetaljerTMA4240 Statistikk Høst 2015
TMA0 Statistikk Høst 0 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer, blokk I Løsningsskisse Oppgave Hendelsene A og B er ikke disjunkte, det vil si at de kan
DetaljerFagdag 5-08.01.09. 2) Du skal fylle ut en tippekupong. På hvor mange måter kan dette gjøres?
Fagdag Plan Fagdag - 08.01.0 1,2 time: Repetisjon kapittel 3 - Sannsynlighet Oppgaver Teori (lesestoff) 3, time: Arbeide med.1 og.2: 16, 17, 18, 1 3, time: Ekstra vurdering før terminoppgjør Repetisjon
DetaljerOppgaver. Innhold. Sannsynlighet Vg1P
Oppgaver Innhold Modul 1. Hva er sannsynlighet?... 2 Modul 2. Addisjon av sannsynligheter. Gunstige og mulige utfall... 6 Modul 3. Beregne sannsynligheter ved å bruke tabeller... 10 Modul 4. Beregne sannsynligheter
DetaljerSlide 1. Slide 2 Statistisk inferens. Slide 3. Introduction to the Practice of Statistics Fifth Edition
Slide 1 David S. Moore George P. McCabe Introduction to the Practice of Statistics Fifth Edition Chapter 4: Probability: The Study of Randomness 9/22/2010 Copyright 2005 by W. H. Freeman and Company Slide
DetaljerØVINGER 2017 Løsninger til oppgaver. 3.1 Myntkast For et enkelt myntkast har vi to mulige utfall, M og K. Utfallsrommet blir
ØVINGER 017 Løsninger til oppgaver Øving 3.1 Myntkast For et enkelt myntkast har vi to mulige utfall, M og K. Utfallsrommet blir S = {M, K}. Med to etterfølgende myntkast blir utfallsrommet S = {MM, MK,
DetaljerECON Statistikk 1 Forelesning 3: Sannsynlighet. Jo Thori Lind
ECON2130 - Statistikk 1 Forelesning 3: Sannsynlighet Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Hva er sannsynlighet? 2. Grunnleggende regler for sannsynlighetsregning 3. Tilfeldighet i datamaskinen
DetaljerIntroduction to the Practice of Statistics
David S. Moore George P. McCabe Introduction to the Practice of Statistics Fifth Edition Chapter 4: Probability: The Study of Randomness Copyright 2005 by W. H. Freeman and Company Statistisk inferens
DetaljerTMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger
TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger Binomisk fordeling* ( ) n b(x; n, p) = p x (1 p) n x = x ( ) n p x q n x, x x = 0, 1, 2,..., n Fenomén: i) n forsøk. ii) Suksess/fiasko
Detaljer10.4 Sannsynligheter ved flere i utvalget (kombinatorikk)
10. er ved flere i utvalget (kombinatorikk) Så langt i framstillingen har vi diskutert den språklige siden, den matematiske tolkningen av sannsynlighetsbegrepet og presentert ulike modeller som kan anvendes
DetaljerForelesning 3, kapittel 3. : 3.2: Sannsynlighetsregning. Kolmogoroffs aksiomer og bruk av disse.
Forelesning 3, kapittel 3. : 3.2: Sannsynlighetsregning. Kolmogoroffs aksiomer og bruk av disse. Den klassiske definisjonen (uniform modell) av sannsynlighet for en hendelse A i et utfallsrom S er at sannsynligheten
DetaljerKapittel 4: Betinget sannsynlighet
Kapittel 4: Betinget sannsynlighet Ofte vil kunnskap om at en hendelse har inntruffet påvirke sannsynligheten for en annen hendelse. Terningkast. ={1,2,3,4,5,6}. A= odde ={1,3,5}. B= mindre enn 4 = {1,2,3}.
DetaljerTMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger : Uniform, binomisk, hypergeometrisk fordeling
TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger 5.1-5.4: Uniform, binomisk, hypergeometrisk fordeling Mette Langaas 2 Arbeidshverdag etter endt studium Studere et fenomen (f.eks.
DetaljerLøsninger. Innhold. Sannsynlighet 1P, 1T og 2P-Y
Løsninger Innhold 3. Hva er sannsynlighet?... 2 3.2 Addisjon av sannsynligheter. Gunstige og mulige utfall... 3.3 Beregne sannsynligheter ved å bruke tabeller... 2 3.4 Beregne sannsynligheter ved å bruke
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2008
ÅMA0 Sannsynlighetsregning med statistikk, våren 008 Kp. Sannsynlighetsregning (sannsynlighetsteori).5 Betinget sannsynlighet Betinget sannsynlighet (kp..5) - innledning Eks.: Et terningkast; {,, 3, 4,
Detaljer1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger
1 Section 4-1: Introduksjon til sannsynlighet 2 Section 4-2: Enkel sannsynlighetsregning 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 4 Section 5-2: Tilfeldige variable 5 Section 5-3: Binomisk
DetaljerTMA4240 Statistikk Høst 2013
TMA0 Statistikk Høst 0 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer, blokk I Løsningsskisse Oppgave Et venn-diagram for (A [ B) 0 = A 0 \ B 0 er vist i figur.
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2011
ÅMA0 Sannsynlighetsregning med statistikk, våren 0 Kp. 3 Diskrete tilfeldige variable Noen viktige sannsynlighetsmodeller Noen viktige sannsynlighetsmodeller ( Sanns.modell : nå betyr det klasse/type sanns.fordeling.
DetaljerSTK1100 våren Betinget sannsynlighet og uavhengighet. Svarer til avsnittene 2.4 og 2.5 i læreboka
STK1100 våren 2017 Betinget sannsynlighet og uavhengighet Svarer til avsnittene 2.4 og 2.5 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Eksempel 1 Vi vil først ved hjelp av et eksempel
DetaljerNotat kombinatorikk og sannsynlighetregning
Notat kombinatorikk og sannsynlighetregning av Peer Andersen Peer Andersen 2010 1 SANNSYNLIGHETSREGNING MED FLERE TRINN Sannsynlighetsregning med et trinn kan være situasjoner der vi spør hva sjansen er
DetaljerTMA4240 Statistikk 2014
TMA0 Statistikk 0 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer, blokk I Løsningsskisse Oppgave Hendelsene A og B er ikke disjunkte, det vil si at de kan ha
DetaljerMAT0100V Sannsynlighetsregning og kombinatorikk
MAT000V Sannsynlighetsregning og kombinatorikk Uordnet utvalg uten tilbakelegging (repetisjon) Tilfeldige variabler og sannsynlighetsfordelinger Hypergeometrisk fordeling Binomisk fordeling Ørnulf Borgan
DetaljerTall i arbeid Påbygging Kapittel 2 Sannsynlighetsregning Løsninger til innlæringsoppgavene
Tall i arbeid Påbygging Kapittel 2 Sannsynlighetsregning Løsninger til innlæringsoppgavene 2.4 a Du kan få 1, 2, 3, 4, 5 eller 6 øyne på terningen. Utfallsrommet er U = {1,2,3,4,5,6}. b Hvert av de seks
DetaljerOppgave 1 a) Antall måter å velge ut k elementer fra en populasjon på n er gitt av binomialkoeffisienten
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 2, blokk I Løsningsskisse Oppgave 1 a) Antall måter å velge ut k elementer fra en populasjon på n er gitt
DetaljerB A. Figur 1: Venn-diagram for(a B) = A B
TM Statistikk Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer Løsningsskisse Oppgave Et venn-diagram for = er vist i figur. Hendelsen er hele det skraverte området,
DetaljerBetinget sannsynlighet
Betinget sannsynlighet Multiplikasjonsloven for sannsynligheter (s. 49 i bok): P( AB ) = P( A B ) P(B) Veldig viktig verktøy for å finne sannsynligheter for snitt. (Bevises ved rett fram manipulering av
DetaljerTMA4240 Statistikk Høst 2015
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 3, blokk I Løsningsskisse Oppgave 1 Hvis hendelsene A og B er uavhengige, vil enhver kunnskap om hvorvidt A har
DetaljerStatistikk 1 kapittel 3
Statistikk 1 kapittel 3 Nico Keilman ECON 2130 Vår 2014 Kapittel 3 Sannsynlighetsregning Formål: å kvantifisere usikkerhet ved hjelp av sannsynligheter Viktige begreper stokastisk forsøk: et forsøk der
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Tilfeldige variable (5.2) Dersom vi til hvert utfall av eksperimentet tilordner et tall, har vi laget en tilfeldig variabel.
DetaljerTilfeldige variable (5.2)
Tilfeldige variable (5.) Dersom vi til hvert utfall av eksperimentet tilordner et tall, har vi laget en tilfeldig variabel. Tilfeldig variabel: En variabel som har en numerisk verdi for hvert utfall i
Detaljer9.5 Uavhengige hendinger
9. Uavhengige hendinger Vi kaster en terning to ganger og innfører hendingene A: Det første kastet gir sekser B: Det andre kastet gir sekser Om vi får sekser på det første kastet, endrer ikke det sannsynligheten
DetaljerSannsynlighet 1T, Prøve 2 løsning
Sannsynlighet T, Prøve 2 løsning Del Tid: 60 min Hjelpemidler: Skrivesaker Oppgave Du snurrer et lykkehjul som stanser tilfeldig på én av bokstavene. Se figuren ovenfor. a) Hvor mange mulige utfall finnes
DetaljerLøsninger. Innhold. Sannsynlighet Vg1P
Løsninger Innhold Modul. Hva er sannsynlighet?... 2 Modul 2. Addisjon av sannsynligheter. Gunstige og mulige utfall... 7 Modul 3. Beregne sannsynligheter ved å bruke tabeller... 3 Modul 4. Beregne sannsynligheter
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Kapittel 5: Sannsynlighetsfordelinger for diskrete variabler Bo Lindqvist Institutt for matematiske fag 2 Tilfeldige variabler (5.1) Dersom vi til hvert utfall av eksperimentet
DetaljerSannsynlighet (Kap 3)
Sannsynlighet (Kap 3) Medisinsk statistikk Del I 3 sept. 2008 Eirik Skogvoll, 1.amanuensis/ overlege Hva er sannsynlighet? Grunnleggende sannsynlighetsregning 1 Brystkreft (Eks. 3.1) Forekomst av brystkreft
DetaljerBlokk1: Sannsynsteori
Blokk1: Sannsynsteori Statistikk er vitskapen om læring frå data, og måling, kontroll og kommunikasjon av usikkerheit (Davians Louis, Science, 2012). Vi lærer frå data ved å spesifisere ein statistisk
DetaljerStatistikk 1 kapittel 3
Statistikk 1 kapittel 3 Nico Keilman ECON 2130 Vår 2016 Kapittel 3 Sannsynlighetsregning Formål: å kvantifisere usikkerhet ved hjelp av sannsynligheter Viktige begreper stokastisk forsøk: et forsøk der
DetaljerKapittel 4: Sannsynlighet - Studiet av tilfeldighet
Kapittel 4: Sannsynlighet - Studiet av tilfeldighet Vi så i forrige kapittel at utvalgsfordeling til en statistikk (observator) er fordelingen av verdiene til statistikken over alle utvalg av samme størrelse
DetaljerFormelsamling i medisinsk statistikk
Formelsamling i medisinsk statistikk Versjon av 6. mai 208 Dette er en formelsamling til O. O. Aalen (red.): Statistiske metoder i medisin og helsefag, Gyldendal, 208. Gjennomsnitt x = n (x + x 2 + x 3
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Kapittel 7: Utvalgsfordeling Bo Lindqvist Institutt for matematiske fag 2 Fra kapittel 1: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 11: Anvendelser av kjikvadratfordelingen: Kjikvadrattester Situasjon: Et tilfeldig utvalg av n individer er trukket
DetaljerTestobservator for kjikvadrattester
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 11: Anvendelser av kjikvadratfordelingen: Kjikvadrattester Situasjon: t tilfeldig utvalg av n individer er trukket
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Fra første forelesning: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av
DetaljerForelesning 6, kapittel 3. : 3.6: Kombinatorikk.
Forelesning 6, kapittel 3. : 3.6: Kombinatorikk. Kombinatorikk betyr her: Formler for opptelling av antall kombinasjoner. Generelt er denne grenen av matematikk videre, og omfatter blant annet grafteori.
DetaljerFølgelig vil sannsynligheten for at begge hendelsene inntreffer være null,
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 3, blokk I Løsningsskisse Oppgave 1 Hvis hendelsene A og B er uavhengige, vil enhver kunnskap om hvorvidt A har
DetaljerPrøve 6 1T 24.02.12 80 minutter. Alle hjelpemidler
Prøve 6 T 24.02.2 80 minutter. Alle hjelpemidler Oppgave I boks A er det 6 svarte og 2 hvite kuler. I boks B er det 8 svarte og 4 hvite kuler. Vi trekker en kule fra en av krukkene. a) va er sannsynligheten
Detaljer1T kapittel 4 Sannsynlighet Løsninger til innlæringsoppgavene
1T kapittel 4 Sannsynlighet Løsninger til innlæringsoppgavene 4.4 a Du kan få 1, 2, 3, 4, 5 eller 6 øyne på terningen. Utfallsrommet er U = {1,2,3,4,5,6}. b Hvert av de seks utfallene har samme sannsynlighet.
DetaljerTilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk
MAT000V Sannsynlighetsregning og kombinatorikk Tilfeldige variabler og sannsynlighetsfordelinger Hypergeometrisk fordeling Binomisk fordeling Ørnulf Borgan Matematisk institutt Universitetet i Oslo Tilfeldige
DetaljerTestobservator for kjikvadrattester
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 11: Anvendelser av kjikvadratfordelingen: Kjikvadrattester Situasjon: Et tilfeldig utvalg av n individer er trukket
DetaljerFra første forelesning:
2 Fra første forelesning: ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag opulasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av populasjonen
DetaljerEmnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard
EKSAMEN Emnekode: SFB107111 Emnenavn: Metode 1, statistikk deleksamen Dato: 16. mai 2017 Hjelpemidler: Godkjent kalkulator og vedlagt formelsamling m/tabeller Eksamenstid: 4 timer Faglærer: Hans Kristian
DetaljerTotal sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk = Vi kan skrive en hendelse B som en disjunkt
MAT000V Sannsynlighetsregning og kombinatorikk Total sannsynlighet Vi kan skrive en hendelse B som en disjunkt union av A B og A B Total sannsynlighet og Bayes' setning Kombinatorikk Ordnede utvalg med
DetaljerLitt mer om den hypergeometriske fordelingen og dens tilnærming av binomisk fordeling.
1 ECON 2130 HG mars 2015 Litt mer om den hypergeometriske fordelingen og dens tilnærming av binomisk fordeling. Grunnen til dette supplementet er dels at forholdet mellom hypergeometrisk og binomisk fordeling
DetaljerSannsynlighet løsninger
Sannsynlighet løsninger Innhold 3.1 Pascals talltrekant... 2 3.2 Kombinatorikk... 5 3.3 Sannsynlighetsberegninger... 10 3.4 Hypergeometrisk sannsynlighetsmodell... 12 3.5 Binomisk sannsynlighetsmodell...
DetaljerQuiz, 4 Kombinatorikk og sannsynlighet
Quiz, 4 Kombinatorikk og sannsynlighet Innhold 4.1 Begreper i sannsynlighetsregning... 2 4.2 Addisjon av sannsynligheter... 6 4.3 Produktsetningen for sannsynlighet... 12 4.4 Kombinatorikk og sannsynlighetsberegning...
DetaljerSannsynlighetsregning
Kapittel 3: Sannsynlighetsregning Definisjoner: Noen grunnleggende begrep. Stokastisk forsøk: Et forsøk/eksperiment der det er tilfeldig hva utfallet blir. Utfallsrom, S: Mengden av alle mulige utfall
Detaljer6. kurskveld Ila, 7. juni - 06 Statistikk og sannsynlighet
. kurskveld Ila, 7. juni - 0 Statistikk og sannsynlighet Sannsynlighet og kombinatorikk Sannsynlighet er noe vi omgir oss med nesten daglig. Vi spiller Lotto og andre spill, og håper vi har flaks og vinner.
DetaljerST1101/ST6101 Sannsynlighetsregning og statistikk Vår 2019
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag ST1101/ST6101 Sannsynlighetsregning og statistikk Vår 201 Oppgaver fra boka 2.6.1 En kjemiker vil observere effekten av 2 ulike
DetaljerNotater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I
Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I 4 Kombinatorikk Vi må lære tellemetoder når valgtrær, som vi brukte tidligere, blir for store og vanskelig å håndtere.
DetaljerStatistikk 1 kapittel 5
Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2015 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel om en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like
DetaljerStatistikk 1 kapittel 5
Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2016 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel med en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like
Detaljer