Utfallsrom og hendelser. Disjunkte hendelser. Kapittel 2: Sannsynlighet. Eirik Mo Institutt for matematiske fag, NTNU
|
|
- Jorun Løkken
- 8 år siden
- Visninger:
Transkript
1 3 Utfallsrom og hendelser Kapittel 2: Sannsynlighet 2., 2.2: Utfallsrom og hendelser 2.3, 2.4: Kombinatorikk og sannsynlighet 2.5, 2.6, 2.7: Regneregler, betinget sanns. 2.8: Bayes regel DEF 2. Ufallsrom: mengden av alle mulige resultater (utfall) av et stokastisk forsøk. DEF 2.2 Hendelse: delmengde av utfallsrommet. DEF 2.3 A =Komplementet til en hendelse A: (også brukt A, A c, A) alle utfall i S som ikke er i A. A ={e S e / A}. DEF 2.4: (A B)=Snittet av to hendelser A og B: alle utfall som både er i A og i B. DEF 2.6: (A B)=Unionen av to hendelser A og B: alle utfall som er i A eller i B eller i begge. Eirik Mo Institutt for matematiske fag, NTNU FENOMEN Eksperiment Utfall Utfallsrom Eksperiment. Utfall. 4 Disjunkte hendelser (mutually exclusive) DEF 2.5: To hendelser A og B er disjunkte hvis snittet er tomt: A B=. Viktig egenskap når vi skal regne med sannsynligheter for hendelser (og ofte på eksamen skal man vise om to hendelser er disjunkte!) Eksperiment Utfall Hendelse
2 5 7 Regneregler Multihendelser Kommutativ lov: A B = B A Assosiativ lov: (A B) C Distributiv lov: A (B C) = A (B C) = (A B) (A C) La S være utfallsrom og A, A 2,..., A n S, n hendelser. Minst en hendelse: A A 2 A n = n i= A i Alle hendelser: A A 2 A n = n i= A i 6 8 De Morgans lov Hva er de fargelagte områdene? (A B) = A B (A B) = A B C B A D
3 9 Produktregel for valgprosess [2.3] Permutasjoner TEO 2. Produktregel: Hvis en operasjon kan utføres på n måter, og for hver av disse en annen operasjon kan utføres på n 2 måter, så kan de to operasjonene utføres på n n 2 måter. TEO 2.2 Den generaliserte produktregel: En valgprosess har k trinn. I det første trinnet er det n valgmuligheter, i det andre trinnet er det n 2 muligheter,..., i det siste trinnet er et n k muligheter. Da er det tilsammen n n 2...n k valgmuligheter. DEF 2.7 Permutasjon: En permutasjon er en ordning av alle, eller en delmengde av alle elementer. TEO 2.3: n elementer kan ordnes i rekkefølge på n! = n (n ) 2 måter. TEO 2.5: n elementer kan ordnes i rekkefølge i en sirkel på (n )! = (n ) 2 måter. 0 Ordnede utvalg 2 Ikke-ordnede utvalg MED tilbakelegging: Fra en mengde med n elementer kan vi lage n n n = n r ordnede utvalg på r elementer når utvelgingen skjer med tilbakelegging. UTEN tilbakelegging, TEO 2.4: Fra en mengde med n elementer kan vi lage n (n ) (n 2) (n r + ) n P r ordnede utvalg på r elementer når utvelgingen skjer uten tilbakelegging. TEO 2.8 Uordnet utvalg uten tilbakelegging: Fra en mengde med n elementer kan vi lage ( n r) = n (n ) (n 2) (n r+) r! = n! r!(n r)! = nc r uordnede utvalg på r elementer når utvelgingen skjer uten tilbakelegging.
4 3 Ikke-ordnede utvalg: Alternativ utledning Fra de n ulike elementene a, a 2,..., a n skal vi lage to grupper med hhv. r og n r medlemmer. Hvor mange måter, K, kan det gjøres hvis vi ikke tar hensyn til ordningen innen de to gruppene? anta at vi har EN slik gruppering som gir r a-er (n r) a-er Det er r! mulige måter å ordne de r a-ene på venstre side på og (n r)! mulige måter å ordne de (n r) a-ene på høyre side på. Dvs. totalt r!(n r)! måter. Vi gjør dette med alle K grupperinger, og det er det samme som å permutere de n opprinnelige elementene, dvs K r!(n r)! = n! Dermed K = n! r!(n r)! 5 Ikke-ordnede utvalg i r celler Generalisering av ikke-ordnede utvalg i 2 celler (de r vi har valgt og de (n r) vi ikke har valgt). TEO 2.7: Vi kan dele en mengde med n elementer inn i r celler med n elementer i første celle, n 2 elemeter i andre ( celle,..., og n r elementer i rte celle, på n ) n,n 2,...,n r = n! n!n 2! n r! måter, der n = n + n n r. TEO 2.6: Antall ordninger av n objekter, der n er av type, n 2 n! er av type 2,... og n k er av type k, er n!n 2! n k!. (Sier det samme som TEO 2.7). Multinomisk koeffisient: ( n n,n 2,...,n r ) 4 Binomisk koeffisient og Pascals trekant Binomisk koeffisient: ( ) n r = n! r!(n r)!. 6 Oppsummering kombinatorikk På hvor mange måter kan man trekke r elementer fra n når trekningen skjer med/uten tilbakelegging når ordningen betyr/ikke betyr noe? ordnet ikke-ordnet med tilbakelegg. n r ikke pensum n! uten tilbakelegg. (n r)! = ( n ) np r r = n! r!(n r)! = nc r ( n r) finnes i rad n på plass r.
5 7 2.4 Sannsynlighet for hendelse Kast to terninger Første terning ,,2,3,4,5,6 2 2, 2,2 2,3 2,4 2,5 2,6 Andre 3 3, 3,2 3,3 3,4 3,5 3,6 terning 4 4, 4,2 4,3 4,4 4,5 4,6 5 5, 5,2 5,3 5,4 5,5 5,6 6 6, 6,2 6,3 6,4 6,5 6,6 Merk av i tabellen over og finn sannsynligheten for følgende hendelser:. A: samme antall øyne for begge terninger 2. B: sum antall øyne 0 3. C: minst en sekser Figur fra Xeni Dimakos, Norsk Regnesentral 8 20 Sannsynlighet for hendelse [2.4] DEF 2.8 (modifisert) Et sannsynlighetsmål, P, på et utfallsrom, S, er en reell funksjon definert på hendelser i S, slik at 0 P(A), A S P(S) = P( ) = 0 DEF 2.9 Hvis resultatet av et eksperiment er ett av N like sannsynlige utfall (uniform sannsynlighetsmodell), og hvis nøyaktig n av disse gir hendelsen A, så er sannsynligheten til A Alternativt om sannsynlighet Sannsynlighet kan være en subjektiv betraktning. Sannsynligheten for at Vålerenga vinner serien i Sannsynligheten for at du får A på eksamen i TMA4245. Relativ frekvens konvergerer mot sannsynlighet Chevalier de Mere s problem: er det mer sannsynlig å få. minst en sekser i fire kast med en terning, eller 2. minst en dobbel-sekser i 24 kast med to terninger? de Mere mente (fra empiriske data) at ) var større enn 2). P(A) = n N = antall gunstige utfall for A antall mulige utfall
6 2 demere: relativ frekvens minst en sekser i fire kast med en terning minst en dobbel-sekser i 24 kast med to terninger 23 demere: relativ frekvens minst en sekser i fire kast med en terning minst en dobbel-sekser i 24 kast med to terninger Relativ frekvens Antall gjentak 22 demere: relativ frekvens minst en sekser i fire kast med en terning minst en dobbel-sekser i 24 kast med to terninger Relativ frekvens Relativ frekvens Antall gjentak 24 demere: ulike startpunkt Antall gjentak
7 25 Addisjonssetninger [2.5] Fortsettelse: kast to terninger Første terning ,,2,3,4,5,6 2 2, 2,2 2,3 2,4 2,5 2,6 Andre 3 3, 3,2 3,3 3,4 3,5 3,6 terning 4 4, 4,2 4,3 4,4 4,5 4,6 5 5, 5,2 5,3 5,4 5,5 5,6 6 6, 6,2 6,3 6,4 6,5 6,6 Følgende hendelser er definert: A: samme antall øyne for begge terninger, P(A) = 6 B: sum antall øyne 0, P(B) = 6 C: minst en sekser, P(C) = 36 Finn sannsynligheten for A B : samme antall øyne og/eller sum 0 A B C : samme antall øyne og/eller sum 0 og/eller minst en sekser. 27 Disjunkte hendelser TEO 2.0: Hvis A og B er to hendelser, så er P(A B) = P(A) + P(B) P(A B) Korrolar : Hvis A og B er disjunkte er P(A B) = P(A) + P(B) Korrolar 2: Hvis A, A 2, A 3,..., A n er disjunkte hendelser, så er P(A A 2 A n ) = P(A ) + P(A 2 ) + + P(A n ) A4 A5 A6 An A3 A2 A9 A A7 A8 S 26 Addisjonssetningen TEO 2.: Hvis A, B og C er tre hendelser, så er P(A B C) = P(A) + P(B) + P(C) P(A B) P(A C) P(B C) + P(A B C) 28 Partisjon av utfallsrommet Korrolar 3: Hvis A, A 2, A 3,..., A n er en partisjon av utfallsrommet S, da er P(A A 2 A n ) = P(A )+P(A 2 )+ +P(A n ) = P(S) = TEO 2.2: Hvis A og A er komplementære hendelser, så er P(A) + P(A ) = A4 A3 A5 A6 A0 A2 A9 A A7 A8 S
8 29 Eksamen 5.august 2004, 2a 30 Vi ser på dødsfall om natten ved sykehjemmet Aftensol. Ved sykehjemmet er det tre sykepleiere i rene nattevaktstillinger, Anne, Bernt og Cecilie. Hver natt er en av dem på vakt gjennom hele natten, og det er da ingen andre ansatte tilstede ved hjemmet. Anne jobber i 00% nattevaktstilling, mens Bernt og Cecilie jobber i 50% nattevaktstillinger. Vi ser på en tilfeldig valgt natt og definerer følgende hendelser: A = Anne er på vakt, B = Bernt er på vakt, C = Cecilie er på vakt, D = det skjer et dødsfall. Anta at alle dødsfall skjer naturlig. Det er da rimelig å gå ut fra at sannsynligheten for dødsfall er den samme uansett hvilken sykepleier som er på vakt, dvs. at P(D A) = P(D B) = P(D C). Anta at den felles verdi for disse er Eksamen 5.august 2004, 2a 3 Oppsummering fra FENOMEN Eksperiment Utfall Utfallsrom Eksperiment. Eksperiment Utfall. Utfall Hendelse ordnet ikke-ordnet med tilbakelegg. n r ikke pensum uten tilbakelegg. n! n = n! (n r)! r r!(n r)! Sannsynlighet: egenskaper, gunstige vs. mulige, relativ Sannsynlighet for mer enn en hendelse frekvens Betinget sannsynlighet [2.6]. Tegn de 4 hendelsene definert på forrige side i et venndiagram. 2. Hva er sannsynlighetene P(A), P(B) og P(C)? 3. Finn P(D). 4. Er hendelsene D og C uavhengige? Begrunn svaret. DEF 2.9: Den betingede sannsynligheten for B, gitt A, skrives P(B A), og er definert som P(B A) = P(A B) P(A) hvis P(A) > 0 TEO 2.3: Hvis både hendelsene A og B kan inntreffe i et eksperiment, så er P(A B) = P(A) P(B A)
9 33 Biltilsynet: utslipp fra bil Biltilsynet har satt tall på følgende hendelser: E: overstige hydrokarbongrensen, P(E)=0.32 F: overstige karbonoksydgrensen, P(F)=0.4 E F: overstige både hydrokarbon- og karbonoksydgrensen, P(E F)=0.8 E 0.8 F 0.32 Velg ut en tilfeldig bil i Norge, og register utslipp Hva er sannsynligheten for at bilen du undersøker overskrider karbonoksydgrensen, gitt at du allerede vet at den overskrider hydrokarbongrensen? Hva er sannsynligheten for at bilen du undersøker overskrider hydrokarbongrensen, gitt at du allerede vet at den overskrider karbonoksydgrensen? 0.4 S 34 Uavhengige hendelser 36 Venndiagram for uavhengige hendelser DEF 2.0: To hendelser A og B er uavhengige hvis og bare hvis P(B A) = P(B) eller P(A B) = P(A) Ellers, så er A og B avhengige hendelser. TEO 2.4: To hendelser A og B er uavhengige hvis og bare hvis P(A B) = P(A) P(B) Hendelsen A: høyde a og lengde l, P(A) = a l h l. Hendelsen B: høyde h og lengde b, P(B) = h b. h l Hendelsen A B: høyde a og lengde b, P(A B) = a b. h l Ved uavhengighet er P(A B) = P(A) P(B), og vi har P(A) P(B) = a l h l h b h l = a b. h l
10 37 Multihendelser TEO 2.5: Hvis hendelsene A, A 2,..., A k kan inntreffe i et eksperiment, så er P(A A 2 A k ) = P(A ) P(A 2 A ) P(A 3 A A 2 ) P(A k A A 2 A k ) Hvis hendelsene A, A 2,..., A k er uavhengige, så er P(A A 2 A k ) = P(A ) P(A 2 ) P(A 3 ) P(A k ) 39 Idrettsutøvere Idrettsutøvere kan deles inn i tre kategorier: De som doper seg nå (2%) De som har dopet seg tidligere (4 %) De som aldri har dopet seg (84 %) La sannsynligheten for positiv dopingtest for de tre gruppene være hhv. 80 %, 6 % og 3 %. a) Hva er sannsynligheten for at en tilfeldig valgt idrettsutøver gir positiv test? b) Hva er sannsynligheten for at en idrettsutøver som avlegger positiv dopingtest, virkelig er dopet? 38 Chevalier demere de Mere mente (fra empiriske data) at ) var større enn 2):. minst en sekser på fire kast med en terning, eller 2. minst en dobbel-sekser på 24 kast med to terninger? Løsning:. P(minst en sekser på fire kast med en terning)= ( 5 6 )4 = P(minst en dobbelt-sekser på 24 kast)=-( )24 = Total sannsynlighet [2.8] TEO 2.6: Total sannsynlighet Hvis hendelsene B, B 2,..., B k gir en partisjon (oppdeling) av utfallsrommet S, slik at P(B i ) 0 for i =,..., k, da har vi for hver hendelse A i S k k P(A) = P(B i A) = P(B i )P(A B i ) i= i= B4 B3 B5 B6 A B0 B2 B9 B B7 B8 S Figur fra og les mer i Cartoon Guide to Statistics
11 4 Bayes regel 43 Sykdom og test TEO 2.7: Bayes regel Hvis hendelsene B, B 2,..., B k gir en partisjon (oppdeling) av utfallsrommet S, slik at P(B i ) 0 for i =,..., k, da har vi for hver hendelse A i S hvor P(A) 0 at P(B r A) = for r =, 2,..., k. = P(B r A) P(A) = P(B r A) P k i= P(B i A) P(A B r )P(B r ) P k i= P(A B i)p(b i ) S= syk person T= positiv test For legemidler vet man: P(T S): sannsynligheten for at testen slår ut positivt, gitt at personen er syk (sensitiviteten til testen). Ønskes høyest mulig. P(T S ): sannsynligheten for at testen slår ut negativt, gitt at personen er frisk. (spesifisitet). Ønskes høyest mulig Interessant for pasienten: P(S T): sannsynligheten for at du er syk, gitt at du har fått en positiv test. P(S T ): sannsynligheten for at du er frisk, gitt at du har fått en negativ test. 42 Tykkelse av veidekke Før en seksjon av en ny vei er godkjent for bruk inspiseres tykkelsen av veidekket ved hjelp av ultralyd. For et 20 cm dekke, gjøres dette hver 60 meter. Hver 60 meter seksjon vil aksepteres hvis den målte tykkelsen er minst 9cm. Anta at 90% av seksjonenene følger forskriftene (de er faktisk tykkere enn 9cm) Men, en ultralydmåling er dessverre bare 80% sikker, dvs. 80% sjanse for at målingen viser 9cm gitt at tykkelsen i virkeligheten er 9cm, og at det er 80% sjanse for at målingen viser <9cm, gitt at tykkelsen i virkeligheten er <9cm. Vi ser på en tilfeldig valgt seksjon av veien som er blitt godkjent for bruk. Hva er sannsynligheten for at seksjonen virkelig er laget etter forskriftene, gitt at den er blitt godkjent for bruk? 44 HIV-test Hva er sannsynligheten for at en person med positiv HIV-test virkelig er HIV-smittet? Anta Sensitivitet av testen: P(T S)= 0.98 Spesifisitet av testen: P(T S )= 0.995, dvs. P(T S ) = = Svaret er avhengig av forekomsten av HIV i populasjonen: P(S) = = = = = = 00 P(S T) P(S) = = (Dagbladet febr 2003, 900 smittet av HIV i Norge (av ), dvs 0.5 promille.) Dette gir et problem ved masseundersøkelser. De fleste av personene med positiv prøve kan faktisk være friske.
12 45 TV-debatt (Eksamensoppgave fra HiSør-Trøndelag 998) Et politisk spørsmål blir tatt opp i en TV-debatt. Et stykke ut i debatten stiller programlederen det samme spørsmålet til seerne. Vi ser heretter bare på de seerne som har en oppfatning om spørsmålet. De som mener ja oppfordres til å ringe et bestemt telefonnummer og de som mener nei et annet nummer. Vi antar i denne oppgaven at 70% av seerne mener ja og 30% mener nei. Vi antar videre at sannsynligheten for at en tilfeldig ja-seer ringer inn, er 0.05, og sannsynligheten for at en tilfeldig nei-seer ringer inn, er 0.0. La J være hendelsen at en seer mener ja, og R være hendelsen at han ringer. 46 TV-debatt (forts.) a) Formuler de fire opplysningene som sannsynligheter (betingede og ubetingede) for J og R. Bestem P(R). b) Hvor stor andel av innringerne mener ja? Gir resultatet et riktig bilde av seernes oppfatning?
Kapittel 2: Sannsynlighet
Kapittel 2: Sannsynlighet 2.1, 2.2: Utfallsrom og hendelser 2.3, 2.4: Kombinatorikk og sannsynlighet 2.5, 2.6, 2.7: Regneregler, betinget sanns. 2.8: Bayes regel Eirik Mo Institutt for matematiske fag,
DetaljerKapittel 2: Sannsynlighet [ ]
Kapittel 2: Sannsynlighet [2.6-2.8] TMA4240 Statistikk (F2 og E7) 2.6, 2.7, 2.8: Betinget sannsynlighet [23.august 2004] Ole.Petter.Lodoen@math.ntnu.no p.1/18 Oppsummering fra 2.1-2.5 FENOMEN Eksperiment
DetaljerKapittel 2: Sannsynlighet [ ]
Kapittel 2: Sannsynlighet [2.3-2.5] TMA4240 Statistikk (F2 og E7) 2.3, 2.4, 2.5: Kombinatorikk og sannsynlighet [18.august 2004] Ole.Petter.Lodoen@math.ntnu.no p.1/21 Produktregel for valgprosess TEO 2.1
DetaljerTMA4240 Statistikk H2010
TMA4240 Statistikk H2010 2.5: Addisjonsregler (union) 2.6: Betinget sannsynlighet 2.7: Multiplikasjonsregler (snitt) 2.8: Bayes regel (starte litt) Mette Langaas Foreleses mandag 30. august 2010 2 Kapittel
Detaljer2.3: Kombinatorikk 2.4: Sannsynlighet, og Monte Carlo simulering. Foreleses onsdag 25. august 2010
TMA4240 Statistikk H2010 2.3: Kombinatorikk 2.4: Sannsynlighet, og Monte Carlo simulering. Mette Langaas Foreleses onsdag 25. august 2010 2 Sist - Kap 0 Hva er statistikk, og hvorfor skal du lære det?
DetaljerTMA4240 Statistikk H2010
TMA4240 Statistikk H2010 2.3: Kombinatorikk 2.4: Sannsynlighet, og Monte Carlo simulering. Mette Langaas Foreleses onsdag 25. august 2010 2 Sist - Kap 0 Hva er statistikk, og hvorfor skal du lære det?
DetaljerTMA4240 Statistikk H2010
TMA4240 Statistikk H2010 2.8: Bayes regel 3.1: Stokastisk variabel 3.2: Diskrete sannsynlighetsfordelinger 3.3: Kontinuerlige sannsynlighetsfordelinger Mette Langaas Foreleses onsdag 1. september 2010
DetaljerTema 1: Hendelser, sannsynlighet, kombinatorikk Kapittel ST1101 (Gunnar Taraldsen) :19
Tema 1: Hendelser, sannsynlighet, kombinatorikk Kapittel 2.1-2.7 ST1101 (Gunnar Taraldsen) 2019-01-12 17:19 Sentrale definisjoner og regneregler Definisjoner: Stokastisk forsøk, utfallsrom, hendelser (snitt,
DetaljerMULTIPLE CHOICE ST0103 BRUKERKURS I STATISTIKK September 2016
MULTIPLE CHOICE ST0103 BRUKERKURS I STATISTIKK September 2016 SETT RING RUNDT DET RIKTIGE SVARET FOR HVER OPPGAVE. Oppgave 1 Stokastisk forsøk Stokastiske forsøk karakteriseres ved to av følgende egenskaper.
DetaljerST0202 Statistikk for samfunnsvitere [4]
ST0202 Statistikk for samfunnsvitere [4] Kapittel 4: Sannsynlighet 4.4: Disjunkte hendelser, 4.5: Uavhengige hendelser 4.6: Er disjunkthet og uavhengighet relatert til hverandre? Bruk av sannsynlighetsregning
DetaljerKapittel 2, Sannsyn. Definisjonar og teorem på lysark, eksempel og tolking på tavla. TMA september 2016 Ingelin Steinsland
Kapittel 2, Sannsyn 2.1 Utfallsrom Onsdag 2.2 Hendingar Onsdag 2.3 Telle mogeleg utfall: I dag 2.4 Sannsyn for ei hending: Onsdag 2.5 Addetive reglar: Onsdag 2.6 Betinga sannsyn, uavhengighet og produktregelen
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2007
ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 2 Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige
DetaljerLoven om total sannsynlighet. Bayes formel. Testing for sykdom. ST0202 Statistikk for samfunnsvitere
2 Loven om total sannsynlighet La A og Ā være komplementære hendelser, mens B er en annen hendelse. Da er: P(B) P(B oga)+p(b ogā) P(B A)P(A)+P(B Ā)P(Ā) ST0202 Statistikk for samfunnsvitere Bo Lindqvist
DetaljerBlokk1: Sannsynsteori
Blokk1: Sannsynsteori Statistikk er vitskapen om læring frå data, og måling, kontroll og kommunikasjon av usikkerheit (Davians Louis, Science, 2012). Vi lærer frå data ved å spesifisere ein statistisk
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2011
ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 Kp. 2 Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige
DetaljerTrekking uten tilbakelegging. Disjunkte hendelser (4.5) Forts. ST0202 Statistikk for samfunnsvitere
2 Trekking uten tilbakelegging ST0202 Statistikk for samfunnsvitere o Lindqvist Institutt for matematiske fag En bolle inneholder 7 kuler, 5 gule (Y) og to røde (). To kuler trekkes uten tilbakelegging,
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Loven om total sannsynlighet La A og Ā være komplementære hendelser, mens B er en annen hendelse. Da er: P(B) =P(B oga)+p(b
DetaljerSannsynlighetsregning og kombinatorikk
Sannsynlighetsregning og kombinatorikk Introduksjon Formålet med sannsynlighet og kombinatorikk er å kunne løse problemer i statistikk, somoftegårutpååfattebeslutninger i situasjoner der tilfeldighet rår.
DetaljerSannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere
2 Sannsynligheten for en hendelse (4.2) Sannsynligheten for en hendelse sier oss hvor ofte vi forventer at hendelsen inntreffer, dvs. den forventede relative frekvens av hendelsen. ST0202 Statistikk for
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Kapittel 4: Sannsynlighetsregning Bo Lindqvist Institutt for matematiske fag 2 Sannsynligheten for en hendelse (4.1) Sannsynligheten for en hendelse sier oss hvor ofte
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Sannsynligheten for en hendelse (4.2) Sannsynligheten for en hendelse sier oss hvor ofte vi forventer at hendelsen inntreffer,
DetaljerSannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere
2 Sannsynligheten for en hendelse (4.2) Sannsynligheten for en hendelse sier oss hvor ofte vi forventer at hendelsen inntreffer, dvs. den forventede relative frekvens av hendelsen. ST0202 Statistikk for
DetaljerFagdag 5-08.01.09. 2) Du skal fylle ut en tippekupong. På hvor mange måter kan dette gjøres?
Fagdag Plan Fagdag - 08.01.0 1,2 time: Repetisjon kapittel 3 - Sannsynlighet Oppgaver Teori (lesestoff) 3, time: Arbeide med.1 og.2: 16, 17, 18, 1 3, time: Ekstra vurdering før terminoppgjør Repetisjon
DetaljerSANNSYNLIGHETSREGNING
SANNSYNLIGHETSREGNING Er tilfeldigheter tilfeldige? Når et par får vite at de skal ha barn, vurderes sannsynligheten for pike eller gutt normalt til rundt 50/50. Det kan forklare at det fødes omtrent like
Detaljersannsynlighet for hendelse = antall ganger hendelsen inntreffer antall forsøk
Forrige forelesning oppsummert på 90 sekunder "stokastisk forsøk": myntkast, terningkast, trekking av kort,... utfallsrom: alle de mulige utfallene av et stokastisk forsøk eksempel på utfallsrom: kaster
DetaljerBetingede sannsynligheter Fra spøkefull Monty Hall til alvorsfull kreftdiagnostikk
Betingede sannsynligheter Fra spøkefull Monty Hall til alvorsfull kreftdiagnostikk Solve Sæbø IKBM, UMB Innhold The Monty Hall game Vinner du bilen eller geita? Den statistiske begrunnelsen for riktig
DetaljerStatistikk 1 kapittel 3
Statistikk 1 kapittel 3 Nico Keilman ECON 2130 Vår 2016 Kapittel 3 Sannsynlighetsregning Formål: å kvantifisere usikkerhet ved hjelp av sannsynligheter Viktige begreper stokastisk forsøk: et forsøk der
DetaljerForelesning 4, kapittel 3. : 3.4: Betinget sannsynlighet.
Forelesning 4, kapittel 3. : 3.4: Betinget sannsynlighet. Eksempel 1 (begrunnelse for definisjonen av betinget sannsynlighet): Hendelse A er "sum minst 8 på kast med 2 terninger" P(A) = 15/36 P(A) < 1/2
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren Grunnbegrep. Grunnbegrep, sannsynligheten for et utfall
ÅM110 Sannsynlighetsregning med statistikk, våren 006 Kp. Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige utfallen
DetaljerStatistikk 1 kapittel 3
Statistikk 1 kapittel 3 Nico Keilman ECON 2130 Vår 2014 Kapittel 3 Sannsynlighetsregning Formål: å kvantifisere usikkerhet ved hjelp av sannsynligheter Viktige begreper stokastisk forsøk: et forsøk der
DetaljerDatainnsamling, video av forelesning og referansegruppe
Datainnsamling, video av forelesning og referansegruppe Datainnsamling Om du ikkje alt har gjort det: https://wiki.math.ntnu.no/tma4240/2015h/start Video http://video.adm.ntnu.no/serier/55d47b463d96a Referansegruppe
DetaljerKapittel 2: Sannsynlighet
Kapittel 2: Sannsynlighet Definisjoner: Noen grunnleggende begrep. Stokastisk forsøk: Et forsøk/eksperiment der det er tilfeldig hva utfall blir. Utfallsrom, : Mengden av alle mulige utfall av et stokastisk
DetaljerKapittel 4: Betinget sannsynlighet
Kapittel 4: Betinget sannsynlighet Ofte vil kunnskap om at en hendelse har inntruffet påvirke sannsynligheten for en annen hendelse. Terningkast. ={1,2,3,4,5,6}. A= odde ={1,3,5}. B= mindre enn 4 = {1,2,3}.
DetaljerSannsynlighet i uniforme modeller. Addisjon av sannsynligheter
Sannsynlighet i uniforme modeller. Addisjon av sannsynligheter Fagstoff Listen [] Hendelse En hendelse i en sannsynlighetsmodell består av ett eller flere utfall. Vi ser på det tilfeldige forsøket «kast
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2010
ÅM0 Sannsynlighetsregning med statistikk, våren 00 Kp. Sannsynlighetsregning (sannsynlighetsteori).5 (kp..5) - innledning Eks.: Et terningkast; {,, 3, 4, 5, 6}. Ved bruk av uniform modell: hvert utfall
DetaljerTMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger : Uniform, binomisk, hypergeometrisk fordeling
TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger 5.1-5.4: Uniform, binomisk, hypergeometrisk fordeling Mette Langaas 2 Arbeidshverdag etter endt studium Studere et fenomen (f.eks.
DetaljerHøgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen
Høgskolen i Telemark Institutt for økonomi og informatikk FORMELSAMLING 6005 Statistikk I Til bruk ved eksamen Per Chr. Hagen . Sannsynlighetsregning. Regneregler Komplementsetningen: Addisjonssetningen:
Detaljer- Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking av et lottotall o.l.
SANNSYNLIGHETSREGNING Terminologi Kombinatorikk Stokastisk Utfallsrom / utfall (enkeltutfall) - Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking
DetaljerFølgelig vil sannsynligheten for at begge hendelsene inntreffer være null,
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 3, blokk I Løsningsskisse Oppgave 1 Hvis hendelsene A og B er uavhengige, vil enhver kunnskap om hvorvidt A har
DetaljerSannsynlighetsregning
Kapittel 3: Sannsynlighetsregning Definisjoner: Noen grunnleggende begrep. Stokastisk forsøk: Et forsøk/eksperiment der det er tilfeldig hva utfallet blir. Utfallsrom, S: Mengden av alle mulige utfall
DetaljerBetinget sannsynlighet, Total sannsynlighet og Bayes setning
Betinget sannsynlighet, Total sannsynlighet og Bayes setning Innhold: Produktsetning, avhengighet, betinget sannsynlighet (.2,.) Setningen om total sannsynlighet (.4) Bayes setning (.4) Disse tingene henger
DetaljerSTK1100 våren 2017 Kombinatorikk
STK1100 våren 2017 Kombinatorikk Svarer til avsnitt 2.3 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Uniform sannsynlighetsmodell Et stokastisk forsøk har N utfall. Det er de mulige
DetaljerSannsynlighetsregning og Statistikk
Sannsynlighetsregning og Statistikk Leksjon 2. Leksjon 2 omhandler begreper og regneregler for sannsynligheter. Dette er behandlet i kapittel 3.1 og 3.2 i læreboka. Du bør når du har fullført leksjon 2
DetaljerSannsynlighet (Kap 3)
Sannsynlighet (Kap 3) Medisinsk statistikk Del I 3 sept. 2008 Eirik Skogvoll, 1.amanuensis/ overlege Hva er sannsynlighet? Grunnleggende sannsynlighetsregning 1 Brystkreft (Eks. 3.1) Forekomst av brystkreft
DetaljerSTK1100 våren Betinget sannsynlighet og uavhengighet. Svarer til avsnittene 2.4 og 2.5 i læreboka
STK1100 våren 2017 Betinget sannsynlighet og uavhengighet Svarer til avsnittene 2.4 og 2.5 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Eksempel 1 Vi vil først ved hjelp av et eksempel
DetaljerSTK1100 våren Introduksjon til sannsynlighetsbegrepet. Deterministiske fenomener. Stokastiske forsøk. Litt historikk
STK1100 våren 2016 Introduksjon til sannsynlighetsbegrepet Svarer til avsnittene 2.1 og 2.2 i læreboka Geir Storvik Basert på presentasjon av Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Deterministiske
Detaljer1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger
1 Section 4-1: Introduksjon til sannsynlighet 2 Section 4-2: Enkel sannsynlighetsregning 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 4 Section 5-2: Tilfeldige variable 5 Section 5-3: Binomisk
DetaljerStatistikk 1 kapittel 5
Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2015 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel om en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like
DetaljerStatistikk 1 kapittel 5
Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2016 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel med en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like
DetaljerTotal sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk = Vi kan skrive en hendelse B som en disjunkt
MAT000V Sannsynlighetsregning og kombinatorikk Total sannsynlighet Vi kan skrive en hendelse B som en disjunkt union av A B og A B Total sannsynlighet og Bayes' setning Kombinatorikk Ordnede utvalg med
DetaljerTMA4240 Statistikk Høst 2015
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 3, blokk I Løsningsskisse Oppgave 1 Hvis hendelsene A og B er uavhengige, vil enhver kunnskap om hvorvidt A har
DetaljerSannsynlighet og statistikk
Sannsynlighet og statistikk Arkeologiske utgravinger har vist at mennesker har underholdt seg med forskjellige spill i tusener av år. Terninger fra India som ble brukt i spill, er faktisk 5000 år gamle.
DetaljerTMA4240 Statistikk 2014
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 5, blokk I Løsningsskisse Oppgave 1 X og Y er uavhengige Poisson-fordelte stokastiske variable, X p(x;5 og Y p(y;1.
DetaljerStatistikk 1 kapittel 5
Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2017 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel med en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like
DetaljerKapittel 3: Stokastiske variable og sannsynlighetsfordelinger
Kapittel 3: Stokastiske variable og sannsynlighetsfordelinger TMA4245 Statistikk (B, K1, I) 3.1, 3.2, 3.3 foreleses torsdag 15.januar 0.00 0.02 0.04 0.06 0.08 160 170 180 190 hoyde i cm Mette.Langaas@math.ntnu.no
DetaljerØVINGER 2017 Løsninger til oppgaver. 3.1 Myntkast For et enkelt myntkast har vi to mulige utfall, M og K. Utfallsrommet blir
ØVINGER 017 Løsninger til oppgaver Øving 3.1 Myntkast For et enkelt myntkast har vi to mulige utfall, M og K. Utfallsrommet blir S = {M, K}. Med to etterfølgende myntkast blir utfallsrommet S = {MM, MK,
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2008
ÅMA0 Sannsynlighetsregning med statistikk, våren 008 Kp. Sannsynlighetsregning (sannsynlighetsteori).5 Betinget sannsynlighet Betinget sannsynlighet (kp..5) - innledning Eks.: Et terningkast; {,, 3, 4,
Detaljer6 Sannsynlighetsregning
MATEMATIKK: 6 Sannsynlighetsregning 6 Sannsynlighetsregning 6.1 Forsøk. Utfallsrom. Sannsynlighet (sjanse). Sannsynlighetsmodell Ved ett kast med en terning vet vi at terningen vil vise enten ett, to,
DetaljerBetinget sannsynlighet, total sannsynlighet og Bayes setning Kapittel 4.5
Betinget sannsynlighet, total sannsynlighet og Bayes setning Kapittel 4.5 På bakgrunn av materiale fra Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Vi vil først ved hjelp av et eksempel se
DetaljerSannsynlighetsregning
Sannsynlighetsregning 1 Sannsynlighet Mål for opplæringa er at eleven skal kunne formulere, eksperimentere med og drøfte enkle uniforme og ikkje-uniforme sannsynsmodellar berekne sannsyn ved hjelp av systematiske
DetaljerInnledning kapittel 4
Innledning kapittel 4 Sannsynlighet og tilfeldighet Basert på materiale fra Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Deterministiske fenomener Almanakk for Norge viser: når det er fullmåne
DetaljerStatistikk 1 kapittel 5
Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2014 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel om en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like
DetaljerHØGSKOLEN I STAVANGER
HØGSKOLEN I STAVANGER Avdeling for TEKNISK NATURVITEN- EKSAMEN I: TE199 SANNSYNLIGHETSREGNING MED STATISTIKK SKAPELIGE FAG VARIGHET: 4 TIMER DATO: 30. AUGUST 2003 TILLATTE HJELPEMIDLER: KALKULATOR OPPGAVESETTET
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2011
ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 Kp. 2 Sannsynlighetsregning i (sannsynlighetsteori) t i) 2.5 Betinget sannsynlighet 1 Betinget sannsynlighet (kp. 2.5) - innledning Eks.: Et terningkast;
DetaljerSannsynlighet løsninger
Sannsynlighet løsninger Innhold 3.1 Pascals talltrekant... 2 3.2 Kombinatorikk... 5 3.3 Sannsynlighetsberegninger... 10 3.4 Hypergeometrisk sannsynlighetsmodell... 12 3.5 Binomisk sannsynlighetsmodell...
DetaljerSTK1100 våren Kombinatorikk = = Uniform sannsynlighetsmodell. Et stokastisk forsøk har N utfall. Det er de mulige utfallene for forsøket.
ST1100 våren 2017 ombinatorikk Uniform sannsynlighetsmodell Et stokastisk forsøk har N utfall. Det er de mulige utfallene for forsøket. Vi antar at de N utfallene er like sannsynlige. Svarer til avsnitt
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 24. april Bjørn H. Auestad Oppsummering våren
DetaljerInnledning kapittel 4
Innledning kapittel 4 Sannsynlighet og tilfeldighet Basert på materiale fra Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Deterministiske fenomener Almanakk for Norge viser: når det er fullmåne
DetaljerECON Statistikk 1 Forelesning 3: Sannsynlighet. Jo Thori Lind
ECON2130 - Statistikk 1 Forelesning 3: Sannsynlighet Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Hva er sannsynlighet? 2. Grunnleggende regler for sannsynlighetsregning 3. Tilfeldighet i datamaskinen
DetaljerINNHOLD. Matematikk for ungdomstrinnet
INNHOLD STATISTIKK... 2 FREKVENS... 2 RELATIV FREKVENS... 2 FREKVENSTABELL... 2 KLASSEDELING... 3 SØYLEDIAGRAM (STOLPEDIAGRAM)... 3 LINJEDIAGRAM... 4 SEKTORDIAGRAM... 4 HISTOGRAM... 4 FRAMSTILLING AV DATA...
DetaljerMappeoppgave om sannsynlighet
Mappeoppgave om sannsynlighet Statistiske eksperimenter Første situasjon Vi kom frem til å bruke Yatzy som et spill vi ønsket å beregne sannsynlighet ut ifra. Vi valgte ut tre like og to par. Etter en
DetaljerOppgave 1 dvs 2 kort med samme verdi og 3 kort med ulike andre verdier. 4 verdier paret kan ta, og de to kortene i paret kan velges på måter.
TMA0 Statistikk Vår 008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer Løsningsskisse Oppgave a Ett par, dvs kort med samme verdi og kort med ulike andre verdier.
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2011
ÅMA0 Sannsynlighetsregning med statistikk, våren 0 Kp. 3 Diskrete tilfeldige variable Noen viktige sannsynlighetsmodeller Noen viktige sannsynlighetsmodeller ( Sanns.modell : nå betyr det klasse/type sanns.fordeling.
DetaljerQuiz, 4 Kombinatorikk og sannsynlighet
Quiz, 4 Kombinatorikk og sannsynlighet Innhold 4.1 Begreper i sannsynlighetsregning... 2 4.2 Addisjon av sannsynligheter... 6 4.3 Produktsetningen for sannsynlighet... 12 4.4 Kombinatorikk og sannsynlighetsberegning...
DetaljerStatistikk og økonomi, våren 2017
Statistikk og økonomi, våren 207 Obligatorisk oppgave 3 Løsningsforslag Oppgave Produsenten av en type bærbar datamaskin har registrert at sannsynligheten er 0.2 for at tastaturet svikter, 0.09 for at
DetaljerSannsynlighetsregning
Sannsynlighetsregning Per G. Østerlie Thora Storm vgs per.osterlie@stfk.no 5. april 203 Hva og hvorfor? Hva? Vi får høre at det er sannsynlig at et eller annet kommer til å skje. Sannsynligheten for å
DetaljerSTK1100 våren Introduksjon til sannsynlighetsbegrepet. Svarer til avsnittene 2.1 og 2.2 i læreboka
STK1100 våren 2017 Introduksjon til sannsynlighetsbegrepet Svarer til avsnittene 2.1 og 2.2 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Deterministiske fenomener Almanakk for Norge
DetaljerSTK1100 våren Introduksjon til sannsynlighetsbegrepet. Deterministiske fenomener. Stokastiske forsøk. Litt historikk
STK1100 våren 2017 Introduksjon til sannsynlighetsbegrepet Svarer til avsnittene 2.1 og 2.2 i læreboka Deterministiske fenomener Almanakk for Norge viser: når det er fullmåne når det er soloppgang og solnedgang
DetaljerSannsynlighetsbegrepet
Sannsynlighetsbegrepet Notat til STK1100 Ørnulf Borgan Matematisk institutt Universitetet i Oslo Januar 2004 Formål Dette notatet er et supplement til kapittel 1 i Mathematical Statistics and Data Analysis
DetaljerTerningkast. Utfallsrommet S for et terningskast med en vanlig spillterning med 6 sider er veldefinert 1, 2, 3, 4, 5, 6
Terningkast Halvor Aarnes, UiO, 2014 Innhold Ett terningkast og utfallsrom... 1 Union og snitt... 4 Betinget sannsynlighet... 5 Forventningsverdi E(X) og varianse Var(X)... 5 Konfidensintervall for proporsjoner...
DetaljerTMA4240 Statistikk 2014
TMA0 Statistikk 0 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer, blokk I Løsningsskisse Oppgave Hendelsene A og B er ikke disjunkte, det vil si at de kan ha
DetaljerForelesning 3, kapittel 3. : 3.2: Sannsynlighetsregning. Kolmogoroffs aksiomer og bruk av disse.
Forelesning 3, kapittel 3. : 3.2: Sannsynlighetsregning. Kolmogoroffs aksiomer og bruk av disse. Den klassiske definisjonen (uniform modell) av sannsynlighet for en hendelse A i et utfallsrom S er at sannsynligheten
DetaljerBetinget sannsynlighet
Betinget sannsynlighet Multiplikasjonsloven for sannsynligheter (s. 49 i bok): P( AB ) = P( A B ) P(B) Veldig viktig verktøy for å finne sannsynligheter for snitt. (Bevises ved rett fram manipulering av
DetaljerHvorfor sannsynlighetsregning og kombinatorikk?
Sannsynlighet og kombinatorikk i videregående skole Helmer Aslaksen Institutt for lærerutdanning og skoleforskning/matematisk institutt Universitetet i Oslo helmer.aslaksen@gmail.com www.math.nus.edu.sg/aslaksen/
DetaljerBetinget sannsynlighet, total sannsynlighet og Bayes setning Kap. 4.5 STK1000 H11
Betinget sannsynlighet, total sannsynlighet og Bayes setning Kap. 4.5 STK1000 H11 På bakgrunn av materiale fra Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Vi vil først ved hjelp av et eksempel
DetaljerSannsynlighet og kombinatorikk i videregående skole
Sannsynlighet og kombinatorikk i videregående skole Helmer Aslaksen Institutt for lærerutdanning og skoleforskning/matematisk institutt Universitetet i Oslo helmer.aslaksen@gmail.com www.math.nus.edu.sg/aslaksen/
DetaljerKompetansemål Sannsynlighet, S Innledning Pascals talltrekant Binomialkoeffisienter Kombinatorikk...
Sannsynlighet Innhold Kompetansemål Sannsynlighet, S1... 2 Innledning... 2 3.1 Pascals talltrekant... 3 Binomialkoeffisienter... 6 3.2 Kombinatorikk... 9 Ordnet og uordnet utvalg... 10 Med og uten tilbakelegging...
DetaljerOppfriskning av blokk 1 i TMA4240
Oppfriskning av blokk 1 i TMA4240 Geir-Arne Fuglstad November 21, 2016 2 Hva har vi gjort i dette kurset? Vi har studert to sterkt relaterte grener av matematikk Sannsynlighetsteori: matematisk teori for
DetaljerBetinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet!
MAT0100V Sannsynlighetsregning og kombinatorikk Betinget sannsynlighet og uavhengige hendelser Produktsetningen Total sannsynlighet og Bayes' setning Betinget sannsynlighet Vil repeterer først et eksempel
DetaljerIntroduction to the Practice of Statistics
David S. Moore George P. McCabe Introduction to the Practice of Statistics Fifth Edition Chapter 4: Probability: The Study of Randomness Copyright 2005 by W. H. Freeman and Company Statistisk inferens
DetaljerOppgave 1 Vi lar X være antall tankskip som ankommer havnen i løpet av en dag. Vi har fått oppgitt at X poisson(λ) med
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 5, blokk I Løsningsskisse Oppgave 1 Vi lar X være antall tankskip som ankommer havnen i løpet av en dag.
DetaljerTMA4240 Statistikk H2015
TMA4240 Statistikk H2015 Kapittel 5: Noen diskrete sannsynlighetsfordelinger 5.4 Geometrisk og negativ binomisk fordeling 5.5 Poisson-prosess og -fordeling Mette Langaas Institutt for matematiske fag,
DetaljerTMA4240 Statistikk Høst 2008
TMA4240 Statistikk Høst 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave 1 Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har
DetaljerEmne 12 Mengdelære. ( bokstaven g er ikke et element i mengden B ) Betyr: B er mengden av alle positive oddetall.
Emne 12 Mengdelære En mengde er en samling elementer. Mengden er veldefinert hvis vi entydig kan avgjøre om et vilkårlig element tilhører mengden eller ikke. Mengder på listeform. Endelige mengder:, Uendelige
DetaljerMAT0100V Sannsynlighetsregning og kombinatorikk
MAT000V Sannsynlighetsregning og kombinatorikk Uordnet utvalg uten tilbakelegging (repetisjon) Tilfeldige variabler og sannsynlighetsfordelinger Hypergeometrisk fordeling Binomisk fordeling Ørnulf Borgan
DetaljerSlide 1. Slide 2 Statistisk inferens. Slide 3. Introduction to the Practice of Statistics Fifth Edition
Slide 1 David S. Moore George P. McCabe Introduction to the Practice of Statistics Fifth Edition Chapter 4: Probability: The Study of Randomness 9/22/2010 Copyright 2005 by W. H. Freeman and Company Slide
DetaljerBetinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet!
MAT000V Sannsynlighetsregning og kombinatorikk Betinget sannsynlighet og uavhengige hendelser Produktsetningen Total sannsynlighet og Bayes' setning Betinget sannsynlighet Vil repeterer først et eksempel
DetaljerKapittel 4.3: Tilfeldige/stokastiske variable
Kapittel 4.3: Tilfeldige/stokastiske variable Litt repetisjon: Sannsynlighetsteori Stokastisk forsøk og sannsynlighet Tilfeldig fenomen Individuelle utfall er usikre, men likevel et regulært mønster for
Detaljer6. kurskveld Ila, 7. juni - 06 Statistikk og sannsynlighet
. kurskveld Ila, 7. juni - 0 Statistikk og sannsynlighet Sannsynlighet og kombinatorikk Sannsynlighet er noe vi omgir oss med nesten daglig. Vi spiller Lotto og andre spill, og håper vi har flaks og vinner.
DetaljerTALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.
1 ECON130: EKSAMEN 014 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variason i vanskelighetsgrad. Svarene er gitt i >. Oppgave 1 Fra en eldre
Detaljer