Testobservator for kjikvadrattester
|
|
- Helen Jenssen
- 5 år siden
- Visninger:
Transkript
1 ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 11: Anvendelser av kjikvadratfordelingen: Kjikvadrattester Situasjon: t tilfeldig utvalg av n individer er trukket fra en populasjon. Hvert individ kan klassifiseres ifølge en kategorisk variabel med k mulige verdier, og det telles opp hvor mange (O) som faller i hver kategori (observerte frekvenser). Disse skal så sammenlignes med forventede frekvenser () ifølge den teori som skal testes. Kategorier kalles ofte celler i tabeller som den nedenfor. k kategorier k Totalt Observerte frekvenser O 1 O 2 O 3 O k n Forventede frekvenser k n 3 Testobservator for kjikvadrattester k celler k Totalt Observerte frekvenser O 1 O 2 O 3 O k n Forventede frekvenser k n Hvis (null)hypotesen som svarer til de forventede frekvenser er sann, vil χ 2 være kjikvadratfordelt med df frihetsgrader, som avhenger av situasjonen. Hvis χ 2 blir for stor vil vi forkaste nullhypotesen. ksempel med terningkast: Kast en terning 60 ganger, observer antall 1 ere, 2 ere... osv. Vi vil teste nullhypotesen at terningen er korrekt, dvs. at sannsynlighetene er 1/6 for hvert antall øyne. Forventede frekvenser under denne hypotesen er Antall øyne Observerte frekvenser Forventede frekvenser
2 Beregning av testobservator: Øyne O O- (O ) 2 (O ) 2 / Totalt n60 n dvs. at χ r dette et stort tall? Vi kommer tilbake til dette, siden vi her har et spesialtilfelle av multinomiske eksperimenter - se neste side: 6 ultinomiske eksperimenter (11.3) 1. n identiske uavhengige forsøk. 2. Utfallet av hvert forsøk havner i en av k mulige kategorier (celler) 3. Sannsynlighetene for å havne i hver kategori er konstante i hele forsøket. p 1 er sannsynligheten for å falle i kategori 1, osv. Vi må ha at p 1 + p p k 1 4. ksperimentet resulterer i et sett av observerte frekvenser O 1, O 2,, O k ( med sum lik n) Vi sier at (O 1, O 2,...,O k ) er multinomisk fordelt med n forsøk og sannsynligheter p 1, p 2,, p k Vi tester nullhypoteser av formen H 0 : p 1, p 2,...,p k har gitte verdier mot alternativet H a at minst en p-ene har en annen verdi. De forventede frekvenser når H 0 gjelder er: 1 np 1, 2 np 2,..., k np k ( med sum lik n) Det grunnleggende fordelingsresultat er nå at hvis H 0 gjelder, er testobservatoren kjikvadratfordelt med df k 1 frihetsgrader. Analyse av terningeksemplet I terningeksemplet hadde vi n 60, k 6, og testet nullhypotesen at alle p ene er lik 1/6, dvs. at alle -ene er lik 60 1/6 10. Hypotestetest ved bruk av p-verdi: p verdi P(χ 2 >χ 2 )P(χ 2 > 2.2) der χ 2 er kjikvadratfordelt med frihetsgrader. p-verdien er større enn signifikansnivå α0.05, og nullhypotesen forkastes ikke.
3 & $ " ' " ( # ) # * % $ ( " " $ T g h i b o V ` \ ` ^ U e e U a X _ U V p a a U V U a H I F ; A : ; ; > q Z [ ` a ` e \ W n Z [ [ U c X V [ ` W \ U j r m X \ U W U a X Y ` \ ^ ` V a J k L s O P 9 O R [ _ Z a a U V X ] Y U a a ] n V e Z [ U Y r U \ Z e c ` W \ e U ] U a k Analyse av terningeksemplet Hypotetsetest ved bruk av kritisk verdi: H 0 forkastes med signifikansnivå α hvis χ 2 >χ 2 (k 1,α). Vihar χ 2 (5, 0.05) 11.1 og siden χ < 11.1 kan vi ikke forkaste nullhypotesen. Oppgave: n produsent av poleringsmiddel for gulv utførte et eksperiment for å finne ut hvilket av 5 poleringsmidler som hadde det beste resultatet. t utvalg med 100 konsumenter betraktet fem overflater behandlet med de ulike poleringsmidlene. Hver konsument indikerte hvilken av de 5 overflatene som var finest. Svarene fordelte seg slik: poleringsmiddel A B C D frekvens a) Sett opp nullhypotesen for konsumentene har ingen spesiell preferanse b) Hvilken testobservator vil du bruke for å teste nullhypotesen? c) Fullfør hypotesetesten med α 0.1 Løsning Fra eksamen 9. desember H 0 : p barn 375/1500,p kvinne 607/1500,p mann 522/1500 H A 9 : : ; < > : A B C C D : > F G :? p I ; ;! " # # K L L N O Q S R Q L O L Q * $ + " ' " H 0 U V V Z [ \ Z ] U V \ U W \ X ^ W U V _ ` \ X V U a U V W X Y, & " $ - " - ". " " $ $. - / 0 1 χ 2 (O i i ) 2 i χ 2b c X V d U e \ Y U d f c V Z j U \ W ] V ` d U V l [ W U m \ X Y V n d U ^ e Z V (0,χ 2 (2, 0.05)) (0, 5.99)k χ 2 (O i i ) 2 i 3.26 H 0 k W X Y U V Z ` [ W U m \ X Y V n d U \ X ] U a ^ U j X e d U V
4 13 Inferens i kontingenstabeller (krysstabeller) (11.4) Individene klassifiseres nå etter to faktorer (kjennetegn). Ønsker å undersøke om faktorene er uavhengige. 14 Uavhengighetstesten Hypoteser i uavhengighetstesten: H 0 : Fagpreferanse (S, SS eller H) er uavhengig av kjønn. H a : Fagpreferanse er avhengig av kjønn. Bruker igjen kjikvadratobservatoren med forventede frekvenser beregnet for hver celle ved: radsum kolonnesum totalt antall i utvalg Begrunnelse for forventede responser: Ved uavhengighet skulle vi forvente at sannsynligheten for at en uttrukket er ale med område S er lik sannsyligheten for ale multiplisert med sannsynligheten for S, dvs Forventet antall uttrukne med denne kombinasjonen ville i så fall være
5 18 Frihetsgrader ved kontingenstabeller: df (r 1) (c 1) der r er antall rader og c er antall kolonner i tabellen. I eksempel: df (2 1) (3 1) Klassisk metode med signifikansnivå 5%: Forkast H 0 hvis χ 2 >χ 2 (2, 0.05) 5.99, dvs. ikke forkast. Homogenitetstesten Tilfeldige utvalg fra r 3 populasjoner, klassifisert i c 2 kategorier. H 0 : Andelen stemmeberettigede som er for lovforslaget er den samme i alle de tre bostedsgruppene H a :... er ikke den samme i alle de tre bostedsgruppene etode med p-verdi: p-verdi P(χ 2 > 4.61) 0.10 i Tabell 8, så p-verdi er ca Beregner forventede frekvenser som for uavhengighetstesten, f.eks. for øverste venstre celle: Antall frihetsgrader er som for uavhengighetstesten, dvs. df (r 1) (c 1) (3 1) (2 1) 2 p-value P(χ 2 > 91.72) ,såH 0 forkastes klart med alle tenkelige signifikansnivå!
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 11: Anvendelser av kjikvadratfordelingen: Kjikvadrattester Situasjon: Et tilfeldig utvalg av n individer er trukket
DetaljerTestobservator for kjikvadrattester
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 11: Anvendelser av kjikvadratfordelingen: Kjikvadrattester Situasjon: Et tilfeldig utvalg av n individer er trukket
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 11: Anvendelser av kjikvadratfordelingen: Kjikvadrattester Situasjon: Et tilfeldig utvalg av n individer er trukket
DetaljerST0202 Statistikk for samfunnsvitere Kapittel 11: Anvendelser av kjikvadratfordelingen Kapittel 12: Variansanalyse (ANOVA)
ST0202 Statistikk for samfunnsvitere Kapittel 11: Anvendelser av kjikvadratfordelingen Kapittel 12: Variansanalyse (ANOVA) Bo Lindqvist Institutt for matematiske fag Bo Lindqvist, ST0202 2 Skittles (oppgave
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Inferens om varians og standardavvik for ett normalfordelt utvalg (9.4) Inferens om variansen til en normalfordelt populasjon
DetaljerNotasjon og Tabell 8. ST0202 Statistikk for samfunnsvitere
2 Inferens om varians og standardavvik for ett normalfordelt utvalg (9.4) Inferens om variansen til en normalfordelt populasjon bruker kjikvadrat-fordelingen ( chi-square distribution ) (der kji er den
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis
DetaljerForelesning 9 Kjikvadrattesten. Kjikvadrattest for bivariate tabeller (klassisk variant) Når kan vi forkaste H 0?
Forelesning 9 Kjikvadrattesten Kjikvadrattesten er den mest benyttede metoden for å utføre statistiske generaliseringer fra bivariate tabeller. Kjikvadrattesten brukes til å teste nullhypotesen om at det
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 10: Inferens om to populasjoner Situasjon: Det er to populasjoner som vi ønsker å sammenligne. Vi trekker da et utvalg
DetaljerForelesning 10 Kjikvadrattesten
verdier Forelesning 10 Kjikvadrattesten To typer av statistisk generalisering: Statistisk hypotesetesting Statistiske hypoteser (H 0 og H 1 ) om populasjonen Finner forkastningsområdet for H 0 ut fra en
DetaljerKap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere
Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis μ 1 og μ. Vi trekker da ett utvalg fra hver populasjon. ST00 Statistikk for
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon I Kapittel 8 brukte vi observatoren z = x µ σ/ n for å trekke konklusjoner om µ. Dette
DetaljerST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon
ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere
DetaljerST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper
ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper Bo Lindqvist Institutt for matematiske fag 2 Kapittel 8: Sammenligning av grupper Situasjon: Vi ønsker
DetaljerEksamensoppgave i samfunnsfaglig forskningsmetode 16. mai 2003
Eksamensoppgave i samfunnsfaglig forskningsmetode 16. mai 03 Oppgave 1 1 Tabell 1 gjengir data fra en spørreundersøkelse blant personer mellom 17 og 66 år i et sannsynlighetsutvalg fra SSB sitt sentrale
DetaljerEKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE
Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Bokmål Faglig kontakt under eksamen: Øyvind Bakke, tlf. 99041673 EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Tirsdag
Detaljer1 11-1: Kji-kvadrat fordelingen : Krysstabeller og kji-kvadrattesten. 3 Kji-kvadrattesten i JMP
1 11-1: Kji-kvadrat fordelingen 2 11-3: Krysstabeller og kji-kvadrattesten 3 Kji-kvadrattesten i JMP Kapittel 11 Samvariasjon mellom to kategoriske variabler Korrelasjon og regresjon handler om samvariasjon
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig
DetaljerKrysstabellanalyse (forts.) SOS1120 Kvantitativ metode. 4. Statistisk generalisering. Forelesningsnotater 9. forelesning høsten 2005.
SOS112 Kvantitativ metode Krysstabellanalyse (forts.) Forelesningsnotater 9. forelesning høsten 25 4. Statistisk generalisering Per Arne Tufte Eksempel: Hypoteser Eksempel: observerte frekvenser (O) Hvordan
DetaljerStatistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere
2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Analysere en observator for å finne ut noe om korresponderende
DetaljerStatistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere
2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Å analysere en utvalgsobservator for å trekke slutninger
DetaljerEKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE
Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Bokmål Faglig kontakt under eksamen: Bo Lindqvist, tlf. 97589418 EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Tirsdag
DetaljerST0202 Statistikk for samfunnsvitere Kapittel 9-10 (oversikt): Inferens om én og to populasjoner
ST0202 Statistikk for samfunnsvitere Kapittel 9-10 (oversikt): Inferens om én og to populasjoner Bo Lindqvist Institutt for matematiske fag 2 Inferens med EN populasjon 3 Oppgave: H2002 # 3 I følge Nielsen
DetaljerKap. 12: Variansanalyse
2 Kap. 12: Variansanalyse Situasjon: c populasjoner, hver med sitt populasjonsgjennomsnitt μ i. Vi tester ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag H 0 : Alle populasjonene
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 12: Variansanalyse Situasjon: c populasjoner, hver med sitt populasjonsgjennomsnitt μ i. Vi tester H 0 : Alle populasjonene
Detaljerα =P(type I feil) = P(forkast H 0 H 0 er sann) =1 P(220 < X < 260 p = 0.6)
TMA4245 Statistikk Vår 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving 4 blokk II Løsningsskisse Oppgave 1 4 personer spurt. Hvis mellom 22 og 26 personer svarer
DetaljerEKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Bokmål Faglig kontakt under eksamen: Bo Lindqvist, tlf. 97589418 EKSAMEN ST00 STATISTIKK FOR SAMFUNNSVITERE Torsdag
DetaljerECON240 VÅR / 2016 BOKMÅL
ECON240 VÅR / 2016 BOKMÅL UNIVERSITETET I BERGEN EKSAMEN UNDER SAMFUNNSVITENSKAPELIG GRAD [ DATO og KLOKKESLETT FOR EKSAMEN (START OG SLUTT) ] Tillatte hjelpemidler: Matematisk formelsamling av K. Sydsæter,
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Fra første forelesning: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av
DetaljerSannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere
2 Sannsynligheten for en hendelse (4.2) Sannsynligheten for en hendelse sier oss hvor ofte vi forventer at hendelsen inntreffer, dvs. den forventede relative frekvens av hendelsen. ST0202 Statistikk for
DetaljerFra første forelesning:
2 Fra første forelesning: ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag opulasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av populasjonen
DetaljerFasit for tilleggsoppgaver
Fasit for tilleggsoppgaver Uke 5 Oppgave: Gitt en rekke med observasjoner x i (i = 1,, 3,, n), definerer vi variansen til x i som gjennomsnittlig kvadratavvik fra gjennomsnittet, m.a.o. Var(x i ) = (x
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Kapittel 7: Utvalgsfordeling Bo Lindqvist Institutt for matematiske fag 2 Fra kapittel 1: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg
DetaljerST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner
ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner Bo Lindqvist Institutt for matematiske fag 2 Kapittel 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to
DetaljerTMA4240 Statistikk Høst 2007
TMA4240 Statistikk Høst 2007 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b4 Løsningsskisse Oppgave 1 Eksamen juni 1999, oppgave 3 av 3 a) µ populasjonsgjennomsnitt,
DetaljerEKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 12 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK Onsdag
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Tilfeldige variable (5.2) Dersom vi til hvert utfall av eksperimentet tilordner et tall, har vi laget en tilfeldig variabel.
DetaljerTilfeldige variable (5.2)
Tilfeldige variable (5.) Dersom vi til hvert utfall av eksperimentet tilordner et tall, har vi laget en tilfeldig variabel. Tilfeldig variabel: En variabel som har en numerisk verdi for hvert utfall i
DetaljerEKSAMEN I FAG TMA4255 ANVENDT STATISTIKK
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 BOKMÅL EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK Onsdag
DetaljerTMA4240 Statistikk H2010 (19)
TMA4240 Statistikk H2010 (19) Hypotesetesting 10.1-10.3: Generelt om statistiske hypoteser 10.5: Ett normalfordelt utvalg Mette Langaas Foreleses mandag 25.oktober, 2010 2 Estimering og hypotesetesting
DetaljerTMA4240 Statistikk H2010 (20)
TMA4240 Statistikk H2010 (20) 10.5: Ett normalfordelt utvalg, kjent varians (repetisjon) 10.4: P-verdi 10.6: Konfidensintervall vs. hypotesetest 10.7: Ett normalfordelt utvalg, ukjent varians Mette Langaas
DetaljerTMA4240 Statistikk Høst 2016
TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 11 Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale begreper
DetaljerEksamensoppgave i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland a, Sara Martino b Tlf: a 48 22 18 96, b 99 40 33 30 Eksamensdato: 30. november 2017 Eksamenstid
DetaljerFra i går Signifikanssannsynlighet (p verdi) vs. signifikansnivå Utgangspunkt for begge: Signifikansnivå α. evt.
Fra i går Signifikanssannsynlighet (p verdi) vs. signifikansnivå Utgangspunkt for begge: H 0 : µ = µ 0 H 1 : µ < µ 0 eller µ > µ 0 Signifikanssannsynlighet p Angir sannsynligheten for å få en X som er
DetaljerKategoriske data, del I: Kategoriske data - del 2 (Rosner, ) Kategoriske data, del II: 2x2 tabell, parede data (Mc Nemar s test)
Kategoriske data, del I: Kategoriske data - del (Rosner, 10.3-10.7) 1 januar 009 Stian Lydersen To behandlinger og to utfall. (generelt: variable, verdier). x tabell. Uavhengige observasjoner Sammenheng
DetaljerA. i) Sett opp en frekvenstabell over de fire mulige kombinasjonene av kjønn og røykestatus. Dvs. fyll inn. Ikke - røyker Sum Jente Gutt Sum 25
1 ECON21: ESAEN 215v SENSORVEILEDNING. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i > Grensen til bestått bør ligge på ca
DetaljerOppgaver til Studentveiledning 3 MET 3431 Statistikk
Oppgaver til Studentveiledning 3 MET 3431 Statistikk 24. april 2012 kl 17.15-20.15 i B2 Handelshøyskolen BI 2 Oppgaver 1. Eksamensoppgaver: Eksamen 01/06/2011: Oppgave 1-7. Eksamensoppgaven fra 06/2011
Detaljeri x i
TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 11, blokk II Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale
DetaljerTMA4240 Statistikk Eksamen desember 2015
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Eksamen desember 15 Oppgave 1 La den kontinuerlige stokastiske variabelen X ha fordelingsfunksjon (sannsynlighetstetthet
DetaljerTMA4240 Statistikk Høst 2009
TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b5 Løsningsskisse Oppgave 1 Vi ønsker å finne ut om et nytt serum kan stanse leukemi.
DetaljerKapittel 3: Studieopplegg
Oversikt over pensum Kapittel 1: Empirisk fordeling for en variabel o Begrepet fordeling o Mål for senter (gj.snitt, median) + persentiler/kvartiler o Mål for spredning (Standardavvik s, IQR) o Outliere
Detaljer3. Multidimensjonale tabeller. SOS1120 Kvantitativ metode. Årsaksmodeller. Forelesningsnotater 8. forelesning høsten 2005
SOS1120 Kvantitativ metode 3. Multidimensjonale tabeller Forelesningsnotater 8. forelesning høsten 2005 Per Arne Tufte Hva skjer når vi inkluderer flere uavhengige variabler i en tabellanalyse? Årsaksmodeller
DetaljerEksamensoppgave i ST3001
Det medisinske fakultet Institutt for kreftforskning og molekylær medisin Eksamensoppgave i ST3001 Onsdag 16. desember 2010, kl. 9.00 13:00 ntall studiepoeng: 7.5 Tillatte hjelpemidler: Kalkulator og alle
DetaljerEksamensoppgave i TMA4295 Statistisk inferens
Institutt for matematiske fag Eksamensoppgave i TMA4295 Statistisk inferens Faglig kontakt under eksamen: Vaclav Slimacek Tlf: 942 96 313 Eksamensdato: Tirsdag 2. desember 2014 Eksamenstid (fra til): 09:00-13:00
DetaljerEKSAMEN I FAG TMA4315 GENERALISERTE LINEÆRE MODELLER Torsdag 14. desember 2006 Tid: 09:0013:00
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Bo Lindqvist, tlf. 975 89 418 EKSAMEN I FAG TMA4315 GENERALISERTE LINEÆRE MODELLER
DetaljerEksamensoppgave i ST1201/ST6201 Statistiske metoder
Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Tlf: Eksamensdato: august 2015 Eksamenstid (fra til): Hjelpemiddelkode/Tillatte hjelpemidler:
Detaljerβ(µ) = P(akseptere H 1 µ)
Sentrale begreper for hypotesetesting Begrep Nullhypotesen H 0 Definisjon/forklaring Utrykker "status quo"/"situation normal"/"ting er slik produsenter påstår"/"alt er greit" Signifikansnivå α Sannsynligheten
DetaljerHypotesetest: generell fremgangsmåte
TMA4240 Statistikk H2010 (21) 10.8, 10.10: To normalfordelte utvalg 10.9: Teststyrke og antall observasjoner Mette Langaas Foreleses mandag 1.november, 2010 2 Hypotesetest: generell fremgangsmåte Generell
Detaljer1 8-1: Oversikt. 2 8-2: Grunnleggende hypotesetesting. 3 Section 8-3: Å teste påstander om andeler. 4 Section 8-5: Teste en påstand om gjennomsnittet
1 8-1: Oversikt 2 8-2: Grunnleggende hypotesetesting 3 Section 8-3: Å teste påstander om andeler 4 Section 8-5: Teste en påstand om gjennomsnittet Definisjoner Hypotese En hypotese er en påstand om noe
DetaljerLøsning eksamen desember 2017
Løsning eksamen desember 017 Oppgave 1 Innfører hendelsene D: enheten er defekt K: enheten blir kassert a i Disse sannsynlighetene kan leses ut av oppgaveteksten: P D = 0, 10 P K D = 0, 07 P K D = 0, 95
DetaljerTMA4240 Statistikk Høst 2015
TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 11, blokk II I denne øvingen skal vi fokusere på hypotesetesting. Vi ønsker å gi dere
DetaljerTMA4245 Statistikk Eksamen august 2014
TMA4245 Statistikk Eksamen august 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Oppgave 1 En bedrift produserer en type medisin i pulverform Medisinen selges på flasker
DetaljerEksamensoppgave i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Sara Martino a, Torstein Fjeldstad b Tlf: a 994 03 330, b 962 09 710 Eksamensdato: 28. november 2018 Eksamenstid
DetaljerSammenlikninger av gjennomsnitt. SOS1120 Kvantitativ metode. Kan besvare to spørsmål: Sammenlikning av to gjennomsnitt
SOS1120 Kvantitativ metode Forelesningsnotater 10. forelesning høsten 2005 Per Arne Tufte Sammenlikninger av gjennomsnitt Sammenlikner gjennomsnittet på avhengig variabel for ulike grupper av enheter Kan
DetaljerSnøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk
Snøtetthet Notat for TMA424/TMA4245 Statistikk Institutt for matematiske fag, NTNU 5. august 22 I forbindelse med varsling av om, klimaforskning og særlig kraftproduksjon er det viktig å kunne anslå hvor
DetaljerForelesning 7 Statistiske beskrivelser av enkeltvariabler. Mål for sentraltendens
Forelesning 7 Statistiske beskrivelser av enkeltvariabler Statistiske mål for univariate fordelinger: Sentraltendens Verdien for fordelingens tyngdepunkt Spredning Hvor nært opp til tyngdepunktet ligger
DetaljerEksamensoppgåve i Løsningsskisse TMA4245 Statistikk
Institutt for matematiske fag Eksamensoppgåve i Løsningsskisse TMA4245 Statistikk Fagleg kontakt under eksamen: Gunnar Taraldsen a, Torstein Fjeldstad b Tlf: a 464 32 506, b 962 09 710 Eksamensdato: 23
DetaljerTMA4240 Statistikk H2010 (22)
TMA4240 Statistikk H2010 (22) 10.11-10.12: Testing av andelser 10.13: Testing av varians i ett N utvalg Mette Langaas Foreleses onsdag 3.november, 2010 2 Laban strakk seg ikke lenger, men smaker den bedre?
Detaljer1 9-3: Sammenligne gjennomsnitt for to uavhengige stikkprøver. 2 9-4: Sammenligne gjennomsnitt for to relaterte stikkprøver
1 9-3: Sammenligne gjennomsnitt for to uavhengige stikkprøver 2 9-4: Sammenligne gjennomsnitt for to relaterte stikkprøver 3 Oppvarming til kap 10: Rette linjer Sammenligne to populasjoner Data fra to
DetaljerÅMA 110 SANNSYNLIGHETSREGNING MED STATISTIKK Løsningsforslag til regneøving nr. 12 (s. 34)
ÅMA 110 SANNSYNLIGHETSREGNING MED STATISTIKK Løsningsforslag til regneøving nr. s. 34 Oppgave.1 Situasjon betraktes som 7 Bernoulliforsøk; Suksess: dyr velger belønning 1, motsatt fiasko. P suksess = p;
DetaljerÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser.
ÅMA1 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 0, s. 1 (Det tas forbehold om feil i løsningsforslaget.) a) Gjennomsnitt: x = 1 Emp. standardavvik: Median: 1 (1.33 + 1.) = 1.35
DetaljerTMA4240 Statistikk Eksamen desember 2015
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Eksamen desember 15 Oppgave 1 La den kontinuerlege stokastiske variabelen X ha fordelingsfunksjon (sannsynstettleik
DetaljerEksamensoppgave i ST1201/ST6201 Statistiske metoder
Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 11. desember 2014 Eksamenstid (fra til): 09:00
DetaljerHypotesetesting (kp. 6) ÅMA110 Sannsynlighetsregning med statistikk, våren Tre deler av faget/kurset: 1. Beskrivende statistikk
ÅMA Sannsynlighetsregning med statistikk, våren 2 Kp. 6 Hypotesetesting Hypotesetesting (kp. 6) Tre deler av faget/kurset:. Beskrivende statistikk 2. Sannsynlighetsteori, sannsynlighetsregning 3. Statistisk
DetaljerEksamensoppgave i TMA4245 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Gunnar Taraldsen a, Torstein Fjeldstad b Tlf: a 464 32 506, b 962 09 710 Eksamensdato: 23. mai 2018 Eksamenstid
DetaljerOppgaver til Studentveiledning 4 MET 3431 Statistikk
Oppgaver til Studentveiledning 4 MET 3431 Statistikk 8. mai 2012 kl 17.15-20.15 i B2 Handelshøyskolen BI 2 Oppgaver 1. Eksamensoppgaver: Eksamen 22/11/2011: Oppgave 1-7. Eksamensoppgaven fra 11/2011 er
DetaljerForkaste H 0 "Stikkprøven er unormal" Akseptere H 0 "Stikkprøven er innafor normalen" k kritisk verdi. Utgangspunkt for H 0
* 6.2. Hypotesetest i normalfordeling med kjent σ v.h.a. kritisk verdi (fra i går) Overordnet mål med hypotesetest i normalfordeling: vurdere en påstand om µ ("er den påståtte verdien for µ riktig, eller
DetaljerTMA4245 Statistikk Eksamen desember 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer
DetaljerForelesning 23 og 24 Wilcoxon test, Bivariate Normal fordeling
Forelesning 23 og 24 Wilcoxon test, Bivariate Normal fordeling Wilcoxon Signed-Rank Test I uke, bruker vi Z test eller t-test for hypotesen H:, og begge tester er basert på forutsetningen om normalfordeling
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Kapittel 5: Sannsynlighetsfordelinger for diskrete variabler Bo Lindqvist Institutt for matematiske fag 2 Tilfeldige variabler (5.1) Dersom vi til hvert utfall av eksperimentet
DetaljerMålenivå: Kjønn: Alle bør kunne se at denne variabelen må plasseres på nominalnivå
Fasit til eksamen 30.november 000 Oppgave 1 a) Beskriv den avhengige og de uavhengige variablene i tabellen, og diskuter hvilket målenivå du vil gi de ulike variablene. MÅL: Test av studentens ferdigheter
DetaljerEksamensoppgave i ST1201/ST6201 Statistiske metoder
Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 20. desember 2016 Eksamenstid (fra til): 09:00
DetaljerEKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.
KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 16. juni 2009. KLASSE: HIS 07 10. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 innkl. forside)
DetaljerST0103 Brukerkurs i statistikk Høst 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag ST0103 Brukerkurs i statistikk Høst 2014 Løsningsforslag Øving 1 2.1 Frekvenstabell For å lage en frekvenstabell må vi telle
DetaljerMOT310 Statistiske metoder 1, høsten 2011
MOT310 Statistiske metoder 1, høsten 2011 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 30. oktober, 2011 Bjørn H. Auestad Kp. 13: Én-faktor eksperiment 1 / 15 -tabell
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST0 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Torsdag 9. mai 994. Tid for eksamen: 09.00 5.00. Oppgavesettet
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting, innledning. Kp.
ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. 6 Hypotesetesting Hypotesetesting (kp. 6) Tre deler av faget/kurset:. Beskrivende statistikk. Sannsynlighetsteori, sannsynlighetsregning 3. Statistisk
DetaljerUNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1120 Statistiske metoder og dataanalyse 2 Eksamensdag: Mandag 4. juni 2007. Tid for eksamen: 14.30 17.30. Oppgavesettet er
DetaljerEksamensoppgave i TMA4255 Anvendt statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4255 Anvendt statistikk Faglig kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: 16. mai 2015 Eksamenstid (fra til): 09:00-13:00
DetaljerOppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0
Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir
DetaljerST0202 Statistikk for samfunnsvitere Introduksjon til ST0202 høsten 2012 Kapittel 1: Statistikk
ST0202 Statistikk for samfunnsvitere Introduksjon til ST0202 høsten 2012 Kapittel 1: Statistikk Bo Lindqvist Institutt for matematiske fag http://wiki.math.ntnu.no/st0202/2012h/start 2 Lærebok Robert Johnson
DetaljerLøsningsforslag eksamen STAT100 Høst 2010
Løsningsforslag eksamen STAT100 Høst 2010 Oppgave 1 a) To-utvalg, parvise data. La Y være tilfeldig variabel som angir antall drepte i periode 1 og tilsvarende X for periode 2. Vi antar parvise avhengigheter
DetaljerKATEGORISKE DATA- TABELLANALYSE ANALYSE AV. Tron Anders Moger. 3. Mai 2005
ANALYSE AV KATEGORISKE DATA- TABELLANALYSE 3. Mai 2005 Tron Anders Moger Forrige gang: Snakket om kontinuerlige data, dvs data som måles på en kontinuerlig skala Hypotesetesting med t-tester evt. ikkeparametriske
DetaljerTillatte hjelpemidler: C3: alle typer kalkulator, alle andre hjelpemidler
EKSAMENSOPPGAVER Institutt: Eksamen i: Tid: IKBM STAT100 Torsdag 13.des 2012 STATISTIKK 09.00-12.30 (3.5 timer) Emneansvarlig: Solve Sæbø ( 90065281) Tillatte hjelpemidler: C3: alle typer kalkulator, alle
DetaljerEksamensoppgave i TMA4255 Anvendt statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4255 Anvendt statistikk Faglig kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: August 2014 Eksamenstid (fra til): Hjelpemiddelkode/Tillatte
DetaljerEKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.
KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 1. juni 2010. KLASSE: HIS 08 11. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 (innkl. forside)
DetaljerEKSAMEN. Flexibel ingeniørutdanning, 2kl. Bygg.
KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. REA 1081F REA1081) EKSAMENSDATO: 1. juni 2010. KLASSE: Flexibel ingeniørutdanning, 2kl. Bygg. TID: kl. 9.00 12.00. FAGLÆRER: Hans Petter Hornæs ANTALL
DetaljerTMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger
TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger Binomisk fordeling* ( ) n b(x; n, p) = p x (1 p) n x = x ( ) n p x q n x, x x = 0, 1, 2,..., n Fenomén: i) n forsøk. ii) Suksess/fiasko
DetaljerEKSAMEN I SOS1120 KVANTITATIV METODE 30. NOVEMBER 2006 (4 timer)
EKSAMEN I SOS1120 KVANTITATIV METODE 30. NOVEMBER 2006 (4 timer) Bruk av ikke-programmerbar kalkulator er tillatt under eksamen. Utover det er ingen hjelpemidler tillatt. Sensur faller torsdag 21. desember
Detaljer