TMA4240 Statistikk Høst 2015

Størrelse: px
Begynne med side:

Download "TMA4240 Statistikk Høst 2015"

Transkript

1 TMA0 Statistikk Høst 0 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer, blokk I Løsningsskisse Oppgave Hendelsene A og B er ikke disjunkte, det vil si at de kan ha noen felles elementer. De fire hendelsene A B, A B, A B og A B er representert med skravert område i venndiagrammene i figur til. Figur : Venn-diagram for hendelsen A B Figur : Venn-diagram for hendelsen A B Vi kan skrive A B på en alternativ måte som A B. Dette kan også skrives som S\A B. Oppgave En eske inneholder 00 gjenstander som kan ha defekter av type A, type B og type C. Følgende ov-lsf-b. september 0 Side

2 TMA0 Statistikk Høst 0 Figur : Venn-diagram for hendelsen A B Figur : Venn-diagram for hendelsen A B defekter er oppgitt i oppgaven: Beskrivelse Symbol Antall Ingen defekt A B C 6 Har kun defekt av type A A B C Har kun defekt av type B A B C Har kun defekt av type C A B C 9 Har defekt av type A og B, ikke C A B C Har defekt av type A og C, ikke B A B C Har defekt av type B og C, ikke A A B C Har defekt av alle typer A B C La gjenstandene være nummerert,..., 00. Et naturlig utfallsrom er da S = {,,,..., 99, 00}. Venn-diagrammet for defekter av type A, type B og type C er vist i figur. Vi har videre Beskrivelse Symbol Antall Minst en type defekt A B C Bare en type defekt A B C A B C A B C 6 Minst to typer defekt A B A C B C 8 ov-lsf-b. september 0 Side

3 TMA0 Statistikk Høst 0 Figur : Venn-diagram for defekter av type A, type B og type C. ov-lsf-b. september 0 Side

4 TMA0 Statistikk Høst 0 Oppgave a Antall måter å velge ut k elementer fra en populasjon på n er gitt av binomialkoeffisienten n. k Her har vi n = 0 kniver, og skal velge ut k = av dem. Antall måter dette kan gjøres på er altså n 0 0! = = k!0! = 8. b Her spørres det etter sannsynligheten for at samtlige kniver i et tilfeldig utvalg på fire, har både hvitt skaft og rustfritt blad. For å finne denne sannsynligheten trenger vi å vite hvor mange av de totalt 0 knivene i skuffen som har begge egenskapene, altså hvor mange av knivene som er gunstige. Deler vi knivene inn i grupper med utgangspunkt i hvorvidt de har hvite skaft H og rustfrie blader R, får vi fire ulike knivtyper: RH : Både rustfritt blad og hvitt skaft, RH : Rustfritt blad, men ikke hvitt skaft, R H : Ikke rustfritt blad, men hvitt skaft, og R H : Verken rustfritt blad eller hvitt skaft. La #RH betegne antall kniver med både rustfritt blad og hvitt skaft, og tilsvarende for RH, RH og R H. Fra oppgaveteksten vet vi at: #RH + #RH + #R H + #R H = 0, #RH + #R H = 0, #RH + #RH = 8 #R H = 6 Løser vi likningssystemet får vi #RH + #RH + #R H = 0 6 = #RH = #RH + #RH + #RH + #R H #RH + #R H + #RH = = #R H = #RH + #R H #RH = 0 = 6 #RH = #RH + #RH #RH = 8 = Situasjonen illustreres av venndiagrammet i figur 6. Vi vil regne ut sannsynligheten for å trekke fire kniver med hvitt skaft og rustfritt blad som forholdet mellom antall gunstige utfall og antall mulige utfall. Antall mulige utfall er lik antall ulike måter å velge ut fire kniver fra en populasjon på 0, altså svaret fra deloppgave a, m = 8. Siden utvalgsstørrelsen er fire, og det bare finnes fire gunstige kniver, er antall gunstige utfall i dette tilfellet g = =. ov-lsf-b. september 0 Side

5 TMA0 Statistikk Høst 0 Figur 6: Venndiagram ov-lsf-b. september 0 Side

6 TMA0 Statistikk Høst 0 Sannsynligheten for å trekke fire kniver med hvitt skaft og rustfritt blad er dermed g m = 8 = c Antall mulige utfall er det samme som over, altså 0 m = = 8. For at et utfall skal være gunstig, må vi her trekke én av de #RH = knivene med både hvitt skaft og rustfritt blad, hvilket kan gjøres på! g = =!! = forskjellige måter. Videre må vi trekke to av de #R H = 6 knivene med verken hvitt skaft eller rustfritt blad. Antall måter å gjøre det på er 6 6! g = =!6! =. Den siste kniven i utvalget kan ikke tilhøre noen disse kategoriene, for da ville det ikke vært akkurat eller akkurat av de to første typene. Den siste kniven må derfor være blant de #R H + #RH = 6 + = 0 knivene som enten har hvitt skaft men ikke rustfritt blad, eller har rustfritt blad men ikke hvitt skaft. Dette kan gjøres på 0 0! g = =!0! = 0 ulike måter. Antall måter å trekke et utvalg på fire kniver som oppfyller alle tre betingelsene på en gang, blir da ifølge produktsetningen g = g g g = 0 = 600. Sannsynligheten for å trekke et utvalg som oppfyller de gitte betingelsene er altså g m = = 0.8. Oppgave Vi har at P A = P kron falsk + P kron ekte = P kron falskp falsk + P kron ektep ekte = + =. ov-lsf-b. september 0 Side 6

7 TMA0 Statistikk Høst 0 De to kastene er like, så P B = P A. P A B = P A B ekte + P A B falsk = P A B ektep ekte + P A B falskp falsk = + = 8. Vi finner at P AP B P A B, dermed er hendelsene avhengige. En alternativ løsning er å se på de komplementære hendelsene A og B : P A = P mynt falsk P falsk + P mynt ekte ekte = 0 + = Samme verdi gjelder også for P B, dvs. P B =. Videre har vi P A B = P B A P A = = 8 Hvis. kast er mynt, er den ekte mynten trukket først. Dermed er første tallet her. Dermed er P A B ikke lik P A P B, slik at A og B er avhengige. Da er også A og B avhengige. Oppgave Før man starter med å løse denne oppgaven er det naturlig å introdusere noe notasjon og formulere informasjonen gitt i oppgaveteksten ved hjelp av denne notasjonen. Vi definerer tre aktuelle hendelser, M: den tilfeldig valgte personen er mann, K: den tilfeldig valgte personen er kvinne, F : den tilfeldig valgte personen er fargeblind. Oppgaveteksten gir oss da at vi har følgende sannsynligheter, P M = 0., ov-lsf-b. september 0 Side 7

8 TMA0 Statistikk Høst 0 P K = 0., P F M = 0.0, P F K = Vi finner sannsynligheten P M F ; P M F = P M F P F P M P F M = P M P F M + P K P F K = = 0.9, der vi først har benyttet definisjonen av betinget sannsynlighet, deretter multiplikasjonssetningen for P M F og setningen om total sannsynlighet for P F, og til slutt satt inn de oppgitte sannsynligetene og regnet ut tallsvar. Oppgave 6 a Ett par, dvs kort med samme verdi og kort med ulike andre verdier. Det finnes verdier paret kan ta, og de to kortene i paret kan velges på måter. Verdiene til de tre siste kortene kan velges på ulike måter etter at verdien på paret er valgt ut, har en tolv ulike verdier igjen. Hvert av disse tre kortene har mulige fargekombinasjoner. Tilsammen har en ulike måter å trekke ut kort fra. Dette gir P Ett par = = 0.6. Alternativt kan vi løse oppgaven på føgende måte: Vi vil ha en hånd kort med ulike tallverdier. Disse fire verdiene kan trekkes på måter. Av disse fire ulike verdiene skal en medgå i paret, denne verdien kan trekkes på måter. Videre kan paret ta konstellasjoner av sorter, mens hver av de tre verdiene som ikke medgår i paret kan ta enhver sort; muligheter. ov-lsf-b. september 0 Side 8

9 TMA0 Statistikk Høst 0 Tilsammen har vi da P Ett par = = 0.6. b To par, dvs to kort med en verdi, to kort med en annen verdi og ett kort med en tredje verdi. Vi har nå kombinasjoner av verdiene på parene, og de to kortene i hvert par kan kombineres på måter. Det siste kortet kan velges på ulike måter etter at verdiene på parene er valgt ut, har en ulike verdier igjen, og kortet har ulike fargekombinasjoner. Vi får dermed P To par = = Alternativt kan vi løse oppgaven på føgende måte: Vi vil ha en hånd kort med ulike tallverdier. Disse tre verdiene kan trekkes på måter. Av disse tre verdiene skal to medgå i hvert sitt par, disse kan trekkes på måter. Videre kan hvert par ta konstellasjoner av sorter, mens den resterende verdien som ikke medgår i parene kan ta enhver sort; muligheter. Tilsammen har vi da P To par = = c Tress, dvs tre kort med samme verdi samt to kort med to forskjellige verdier. De tre like kan ta verdier, og de kan kombineres på ulike måter. De resterende to kortene kan velges på ulike måter, der hvert kort har fargekombinasjoner. Dette gir P Tress = = 0.0. ov-lsf-b. september 0 Side 9

10 TMA0 Statistikk Høst 0 d Straight, dvs fem kort med verdier i rekkefølge uansett kortfarge. Vi har tilsammen 0 måter å lage en straight A, 6,..., 0 A. Hvert av de fem kortene kan velges blandt fire farger. P Straight = 0 = e Flush, dvs fem kort i samme farge. Det er fire farger i en kortstokk. Når en farge er valgt, må de fem kortene trekkes fra de verdiene. P Flush = = f Fullt hus, dvs ett par og tress. Ett par kan velges av tretten verdier, og tressen kan velges av de resterende. P Fullt hus = g Fire lange, dvs fire kort med samme verdi. De fire kortene tar en av verdier, og de kan kombineres på måter. Det resterende kortet velges fra mulige verdier med fire mulige fargekombinasjoner. P Fire lange = = h Straight flush, dvs fem kort i rekkefølge i samme farge. I hver farge har vi ti straighter, og det finnes fire farger. Dette gir P Straight flush = 0 = i Royal straight flush, dvs straight flush med ess som høyeste kort. Av hver av straightene er det bare en i hver farge som har ess på toppen. P Royal straight flush = = ov-lsf-b. september 0 Side 0

TMA4240 Statistikk Høst 2013

TMA4240 Statistikk Høst 2013 TMA0 Statistikk Høst 0 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer, blokk I Løsningsskisse Oppgave Et venn-diagram for (A [ B) 0 = A 0 \ B 0 er vist i figur.

Detaljer

Oppgave 1 a) Antall måter å velge ut k elementer fra en populasjon på n er gitt av binomialkoeffisienten

Oppgave 1 a) Antall måter å velge ut k elementer fra en populasjon på n er gitt av binomialkoeffisienten Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 2, blokk I Løsningsskisse Oppgave 1 a) Antall måter å velge ut k elementer fra en populasjon på n er gitt

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 TMA0 Statistikk 0 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer, blokk I Løsningsskisse Oppgave Hendelsene A og B er ikke disjunkte, det vil si at de kan ha

Detaljer

B A. Figur 1: Venn-diagram for(a B) = A B

B A. Figur 1: Venn-diagram for(a B) = A B TM Statistikk Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer Løsningsskisse Oppgave Et venn-diagram for = er vist i figur. Hendelsen er hele det skraverte området,

Detaljer

Oppgave 1 dvs 2 kort med samme verdi og 3 kort med ulike andre verdier. 4 verdier paret kan ta, og de to kortene i paret kan velges på måter.

Oppgave 1 dvs 2 kort med samme verdi og 3 kort med ulike andre verdier. 4 verdier paret kan ta, og de to kortene i paret kan velges på måter. TMA0 Statistikk Vår 008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer Løsningsskisse Oppgave a Ett par, dvs kort med samme verdi og kort med ulike andre verdier.

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 3, blokk I Løsningsskisse Oppgave 1 Hvis hendelsene A og B er uavhengige, vil enhver kunnskap om hvorvidt A har

Detaljer

Følgelig vil sannsynligheten for at begge hendelsene inntreffer være null,

Følgelig vil sannsynligheten for at begge hendelsene inntreffer være null, Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 3, blokk I Løsningsskisse Oppgave 1 Hvis hendelsene A og B er uavhengige, vil enhver kunnskap om hvorvidt A har

Detaljer

SANNSYNLIGHETSREGNING

SANNSYNLIGHETSREGNING SANNSYNLIGHETSREGNING Er tilfeldigheter tilfeldige? Når et par får vite at de skal ha barn, vurderes sannsynligheten for pike eller gutt normalt til rundt 50/50. Det kan forklare at det fødes omtrent like

Detaljer

TMA4245 Statistikk Høst 2016

TMA4245 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 2 Løsningsskisse Oppgave 1 En kartong inneholder 10 pakker hvorav 2 er undervektige. Vi skal trekke pakker tilfeldig

Detaljer

ØVINGER 2017 Løsninger til oppgaver. 3.1 Myntkast For et enkelt myntkast har vi to mulige utfall, M og K. Utfallsrommet blir

ØVINGER 2017 Løsninger til oppgaver. 3.1 Myntkast For et enkelt myntkast har vi to mulige utfall, M og K. Utfallsrommet blir ØVINGER 017 Løsninger til oppgaver Øving 3.1 Myntkast For et enkelt myntkast har vi to mulige utfall, M og K. Utfallsrommet blir S = {M, K}. Med to etterfølgende myntkast blir utfallsrommet S = {MM, MK,

Detaljer

Tema 1: Hendelser, sannsynlighet, kombinatorikk Kapittel ST1101 (Gunnar Taraldsen) :19

Tema 1: Hendelser, sannsynlighet, kombinatorikk Kapittel ST1101 (Gunnar Taraldsen) :19 Tema 1: Hendelser, sannsynlighet, kombinatorikk Kapittel 2.1-2.7 ST1101 (Gunnar Taraldsen) 2019-01-12 17:19 Sentrale definisjoner og regneregler Definisjoner: Stokastisk forsøk, utfallsrom, hendelser (snitt,

Detaljer

MULTIPLE CHOICE ST0103 BRUKERKURS I STATISTIKK September 2016

MULTIPLE CHOICE ST0103 BRUKERKURS I STATISTIKK September 2016 MULTIPLE CHOICE ST0103 BRUKERKURS I STATISTIKK September 2016 SETT RING RUNDT DET RIKTIGE SVARET FOR HVER OPPGAVE. Oppgave 1 Stokastisk forsøk Stokastiske forsøk karakteriseres ved to av følgende egenskaper.

Detaljer

Sannsynlighetsregning og kombinatorikk

Sannsynlighetsregning og kombinatorikk Sannsynlighetsregning og kombinatorikk Introduksjon Formålet med sannsynlighet og kombinatorikk er å kunne løse problemer i statistikk, somoftegårutpååfattebeslutninger i situasjoner der tilfeldighet rår.

Detaljer

Sannsynlighetsregning

Sannsynlighetsregning Sannsynlighetsregning Per G. Østerlie Thora Storm vgs per.osterlie@stfk.no 5. april 203 Hva og hvorfor? Hva? Vi får høre at det er sannsynlig at et eller annet kommer til å skje. Sannsynligheten for å

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 ÅM0 Sannsynlighetsregning med statistikk, våren 00 Kp. Sannsynlighetsregning (sannsynlighetsteori).5 (kp..5) - innledning Eks.: Et terningkast; {,, 3, 4, 5, 6}. Ved bruk av uniform modell: hvert utfall

Detaljer

Betinget sannsynlighet, total sannsynlighet og Bayes setning Kap. 4.5 STK1000 H11

Betinget sannsynlighet, total sannsynlighet og Bayes setning Kap. 4.5 STK1000 H11 Betinget sannsynlighet, total sannsynlighet og Bayes setning Kap. 4.5 STK1000 H11 På bakgrunn av materiale fra Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Vi vil først ved hjelp av et eksempel

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 Kp. 2 Sannsynlighetsregning i (sannsynlighetsteori) t i) 2.5 Betinget sannsynlighet 1 Betinget sannsynlighet (kp. 2.5) - innledning Eks.: Et terningkast;

Detaljer

Statistikk og økonomi, våren 2017

Statistikk og økonomi, våren 2017 Statistikk og økonomi, våren 207 Obligatorisk oppgave 3 Løsningsforslag Oppgave Produsenten av en type bærbar datamaskin har registrert at sannsynligheten er 0.2 for at tastaturet svikter, 0.09 for at

Detaljer

Betinget sannsynlighet, total sannsynlighet og Bayes setning Kapittel 4.5

Betinget sannsynlighet, total sannsynlighet og Bayes setning Kapittel 4.5 Betinget sannsynlighet, total sannsynlighet og Bayes setning Kapittel 4.5 På bakgrunn av materiale fra Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Vi vil først ved hjelp av et eksempel se

Detaljer

ST1101/ST6101 Sannsynlighetsregning og statistikk Vår 2019

ST1101/ST6101 Sannsynlighetsregning og statistikk Vår 2019 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag ST1101/ST6101 Sannsynlighetsregning og statistikk Vår 201 Oppgaver fra boka 2.6.1 En kjemiker vil observere effekten av 2 ulike

Detaljer

STK1100 våren Betinget sannsynlighet og uavhengighet. Svarer til avsnittene 2.4 og 2.5 i læreboka

STK1100 våren Betinget sannsynlighet og uavhengighet. Svarer til avsnittene 2.4 og 2.5 i læreboka STK1100 våren 2017 Betinget sannsynlighet og uavhengighet Svarer til avsnittene 2.4 og 2.5 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Eksempel 1 Vi vil først ved hjelp av et eksempel

Detaljer

Løsningsskisse for oppgavene til uke 7

Løsningsskisse for oppgavene til uke 7 1 HG Februar 08 Løsningsskisse for oppgavene til uke 7 (Forbehold om trykk- og regnefeil.) Oppg..17 A Løgntesten sier at Per lyver B Per lyver faktisk PAB ( ) 0,8 PAB ( ) 0,70 PB ( ) 0, Vi får av Bayes

Detaljer

Oppgaveløsninger til undervisningsfri uke 8

Oppgaveløsninger til undervisningsfri uke 8 1 HG Februar 2013 Oppgaveløsninger til undervisningsfri uke 8 Oppgave 3.17 Definer to begivenheter Oppgitt A = løgntesten sier at Per lyver B = Per lyver faktisk PAB ( ) = 0.85 PA ( B) = 0.70 PB ( ) =

Detaljer

Betinget sannsynlighet, total sannsynlighet og Bayes setning

Betinget sannsynlighet, total sannsynlighet og Bayes setning etinget sannsynlighet, total sannsynlighet og ayes setning Vi vil først ved hjelp av et eksempel se intuitivt på hva betinget sannsynlighet betyr: Vi legger fire røde kort og to svarte kort i en bunke

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 5, blokk I Løsningsskisse Oppgave 1 X og Y er uavhengige Poisson-fordelte stokastiske variable, X p(x;5 og Y p(y;1.

Detaljer

ST0202 Statistikk for samfunnsvitere [4]

ST0202 Statistikk for samfunnsvitere [4] ST0202 Statistikk for samfunnsvitere [4] Kapittel 4: Sannsynlighet 4.4: Disjunkte hendelser, 4.5: Uavhengige hendelser 4.6: Er disjunkthet og uavhengighet relatert til hverandre? Bruk av sannsynlighetsregning

Detaljer

Sannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere

Sannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere 2 Sannsynligheten for en hendelse (4.2) Sannsynligheten for en hendelse sier oss hvor ofte vi forventer at hendelsen inntreffer, dvs. den forventede relative frekvens av hendelsen. ST0202 Statistikk for

Detaljer

Quiz, 4 Kombinatorikk og sannsynlighet

Quiz, 4 Kombinatorikk og sannsynlighet Quiz, 4 Kombinatorikk og sannsynlighet Innhold 4.1 Begreper i sannsynlighetsregning... 2 4.2 Addisjon av sannsynligheter... 6 4.3 Produktsetningen for sannsynlighet... 12 4.4 Kombinatorikk og sannsynlighetsberegning...

Detaljer

Oppgave 1 Vi lar X være antall tankskip som ankommer havnen i løpet av en dag. Vi har fått oppgitt at X poisson(λ) med

Oppgave 1 Vi lar X være antall tankskip som ankommer havnen i løpet av en dag. Vi har fått oppgitt at X poisson(λ) med Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 5, blokk I Løsningsskisse Oppgave 1 Vi lar X være antall tankskip som ankommer havnen i løpet av en dag.

Detaljer

6 Sannsynlighetsregning

6 Sannsynlighetsregning MATEMATIKK: 6 Sannsynlighetsregning 6 Sannsynlighetsregning 6.1 Forsøk. Utfallsrom. Sannsynlighet (sjanse). Sannsynlighetsmodell Ved ett kast med en terning vet vi at terningen vil vise enten ett, to,

Detaljer

Fagdag 5-08.01.09. 2) Du skal fylle ut en tippekupong. På hvor mange måter kan dette gjøres?

Fagdag 5-08.01.09. 2) Du skal fylle ut en tippekupong. På hvor mange måter kan dette gjøres? Fagdag Plan Fagdag - 08.01.0 1,2 time: Repetisjon kapittel 3 - Sannsynlighet Oppgaver Teori (lesestoff) 3, time: Arbeide med.1 og.2: 16, 17, 18, 1 3, time: Ekstra vurdering før terminoppgjør Repetisjon

Detaljer

Sannsynlighetsregning og Statistikk

Sannsynlighetsregning og Statistikk Sannsynlighetsregning og Statistikk Leksjon 2. Leksjon 2 omhandler begreper og regneregler for sannsynligheter. Dette er behandlet i kapittel 3.1 og 3.2 i læreboka. Du bør når du har fullført leksjon 2

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 2 Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige

Detaljer

10.4 Sannsynligheter ved flere i utvalget (kombinatorikk)

10.4 Sannsynligheter ved flere i utvalget (kombinatorikk) 10. er ved flere i utvalget (kombinatorikk) Så langt i framstillingen har vi diskutert den språklige siden, den matematiske tolkningen av sannsynlighetsbegrepet og presentert ulike modeller som kan anvendes

Detaljer

Total sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk = Vi kan skrive en hendelse B som en disjunkt

Total sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk = Vi kan skrive en hendelse B som en disjunkt MAT000V Sannsynlighetsregning og kombinatorikk Total sannsynlighet Vi kan skrive en hendelse B som en disjunkt union av A B og A B Total sannsynlighet og Bayes' setning Kombinatorikk Ordnede utvalg med

Detaljer

Betinget sannsynlighet, Total sannsynlighet og Bayes setning

Betinget sannsynlighet, Total sannsynlighet og Bayes setning Betinget sannsynlighet, Total sannsynlighet og Bayes setning Innhold: Produktsetning, avhengighet, betinget sannsynlighet (.2,.) Setningen om total sannsynlighet (.4) Bayes setning (.4) Disse tingene henger

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 ÅMA0 Sannsynlighetsregning med statistikk, våren 008 Kp. Sannsynlighetsregning (sannsynlighetsteori).5 Betinget sannsynlighet Betinget sannsynlighet (kp..5) - innledning Eks.: Et terningkast; {,, 3, 4,

Detaljer

Oppgaver. Innhold. Sannsynlighet 1P, 1T og 2P-Y

Oppgaver. Innhold. Sannsynlighet 1P, 1T og 2P-Y Oppgaver Innhold 3.1 Hva er sannsynlighet?... 2 3.2 Addisjon av sannsynligheter. Gunstige og mulige utfall... 5 3.3 Beregne sannsynligheter ved å bruke tabeller... 9 3.4 Beregne sannsynligheter ved å bruke

Detaljer

4.4 Sum av sannsynligheter

4.4 Sum av sannsynligheter 4.4 Sum av sannsynligheter Nina trekker kort fra en vanlig kortstokk med 52 kort. Vi innfører hendingene H: Kortet er en hjerter S: Kortet er en spar Det er 13 hjerter og 13 spar i stokken. Sannsynligheten

Detaljer

Blokk1: Sannsynsteori

Blokk1: Sannsynsteori Blokk1: Sannsynsteori Statistikk er vitskapen om læring frå data, og måling, kontroll og kommunikasjon av usikkerheit (Davians Louis, Science, 2012). Vi lærer frå data ved å spesifisere ein statistisk

Detaljer

ST0103 Brukerkurs i statistikk Høst 2014

ST0103 Brukerkurs i statistikk Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag ST0103 Brukerkurs i statistikk Høst 2014 Løsningsforslag Øving 1 2.1 Frekvenstabell For å lage en frekvenstabell må vi telle

Detaljer

9.5 Uavhengige hendinger

9.5 Uavhengige hendinger 9. Uavhengige hendinger Vi kaster en terning to ganger og innfører hendingene A: Det første kastet gir sekser B: Det andre kastet gir sekser Om vi får sekser på det første kastet, endrer ikke det sannsynligheten

Detaljer

Trekking uten tilbakelegging. Disjunkte hendelser (4.5) Forts. ST0202 Statistikk for samfunnsvitere

Trekking uten tilbakelegging. Disjunkte hendelser (4.5) Forts. ST0202 Statistikk for samfunnsvitere 2 Trekking uten tilbakelegging ST0202 Statistikk for samfunnsvitere o Lindqvist Institutt for matematiske fag En bolle inneholder 7 kuler, 5 gule (Y) og to røde (). To kuler trekkes uten tilbakelegging,

Detaljer

Betinget sannsynlighet

Betinget sannsynlighet Betinget sannsynlighet Multiplikasjonsloven for sannsynligheter (s. 49 i bok): P( AB ) = P( A B ) P(B) Veldig viktig verktøy for å finne sannsynligheter for snitt. (Bevises ved rett fram manipulering av

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 6, blokk I Løsningsskisse Oppgave 1 Vi antar X er normalfordelt, X N(3315, 55 2. Ved bruk av formelheftet finner

Detaljer

Oppgaver. Innhold. Sannsynlighet Vg1P

Oppgaver. Innhold. Sannsynlighet Vg1P Oppgaver Innhold Modul 1. Hva er sannsynlighet?... 2 Modul 2. Addisjon av sannsynligheter. Gunstige og mulige utfall... 6 Modul 3. Beregne sannsynligheter ved å bruke tabeller... 10 Modul 4. Beregne sannsynligheter

Detaljer

Sannsynlighet i kortspill

Sannsynlighet i kortspill Prosjektoppgave i MAT400 vår 0 Sannsynlighet i kortspill Av: Paul Høglend Mats Myhr Hansen. mai 0 Prosjektoppgave i MAT400 vår 0 Sannsynlighet i 7-kortpoker I denne presentasjonen av sannsynlighetene for

Detaljer

6 x P (X = x) = x=1 = P (X 2 = 6)P (X 2 = 6)P (X 3 = 6) =

6 x P (X = x) = x=1 = P (X 2 = 6)P (X 2 = 6)P (X 3 = 6) = Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 4, blokk I Løsningsskisse Oppgave 1 a) Utfallsrommet til X 1 er {1, 2,, 4, 5, }. Sannsynlighetsfordelingen

Detaljer

Betinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet!

Betinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet! MAT000V Sannsynlighetsregning og kombinatorikk Betinget sannsynlighet Vi repeterer først et eksempel fra samlingen for sist uke Betinget sannsynlighet og uavhengige hendelser Produktsetningen Total sannsynlighet

Detaljer

Betinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet!

Betinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet! MAT000V Sannsynlighetsregning og kombinatorikk Betinget sannsynlighet og uavhengige hendelser Produktsetningen Total sannsynlighet og Bayes' setning Betinget sannsynlighet Vil repeterer først et eksempel

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 6, blokk I Løsningsskisse Oppgave 1 Fremgangsmetode: P X 1 < 6.8 Denne kan finnes ved å sette opp integralet over

Detaljer

Betinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet!

Betinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet! MAT0100V Sannsynlighetsregning og kombinatorikk Betinget sannsynlighet og uavhengige hendelser Produktsetningen Total sannsynlighet og Bayes' setning Betinget sannsynlighet Vil repeterer først et eksempel

Detaljer

Kapittel 2: Sannsynlighet [ ]

Kapittel 2: Sannsynlighet [ ] Kapittel 2: Sannsynlighet [2.3-2.5] TMA4240 Statistikk (F2 og E7) 2.3, 2.4, 2.5: Kombinatorikk og sannsynlighet [18.august 2004] Ole.Petter.Lodoen@math.ntnu.no p.1/21 Produktregel for valgprosess TEO 2.1

Detaljer

Prøve 6 1T 24.02.12 80 minutter. Alle hjelpemidler

Prøve 6 1T 24.02.12 80 minutter. Alle hjelpemidler Prøve 6 T 24.02.2 80 minutter. Alle hjelpemidler Oppgave I boks A er det 6 svarte og 2 hvite kuler. I boks B er det 8 svarte og 4 hvite kuler. Vi trekker en kule fra en av krukkene. a) va er sannsynligheten

Detaljer

TMA4245 Statistikk Vår 2015

TMA4245 Statistikk Vår 2015 Norges teknisk-naturvitenskapelige universitet Institutt for ateatiske fag Øving nuer, blokk I Løsningsskisse Oppgave X er hypergeoetrisk fordelt ed N 000 turer, k turer kjører transportfiraet gjenno sentru

Detaljer

Kompetansemål Hva er sannsynlighet?... 2

Kompetansemål Hva er sannsynlighet?... 2 3 Sannsynlighet Innhold Kompetansemål... 2 3. Hva er sannsynlighet?... 2 Utfall og utfallsrom... 3 Tilfeldig forsøk... 3 Definisjon av sannsynlighet... 5 Sannsynlighetsmodeller... Andre eksempler på tilfeldige

Detaljer

Løsningskisse seminaroppgaver uke 15

Løsningskisse seminaroppgaver uke 15 HG April 0 Løsningskisse seminaroppgaver uke 5 Oppg. 5.6 La X = antall barn i utvalget som har lærevansker. Andel barn med lærevansker i populasjonen av barn antas å være p = 0,5. Utvalgsstørrelsen er

Detaljer

TMA4240 Statistikk Høst 2008

TMA4240 Statistikk Høst 2008 TMA4240 Statistikk Høst 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave 1 Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har

Detaljer

TMA4245 Statistikk Høst 2016

TMA4245 Statistikk Høst 2016 TMA5 Statistikk Høst 6 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving Løsningsskisse Oppgave a) Den tilfeldige variabelen X er kontinuerlig fordelt med sannsynlighetstetthet

Detaljer

Introduction to the Practice of Statistics

Introduction to the Practice of Statistics David S. Moore George P. McCabe Introduction to the Practice of Statistics Fifth Edition Chapter 4: Probability: The Study of Randomness Copyright 2005 by W. H. Freeman and Company Statistisk inferens

Detaljer

Sannsynlighet i uniforme modeller. Addisjon av sannsynligheter

Sannsynlighet i uniforme modeller. Addisjon av sannsynligheter Sannsynlighet i uniforme modeller. Addisjon av sannsynligheter Fagstoff Listen [] Hendelse En hendelse i en sannsynlighetsmodell består av ett eller flere utfall. Vi ser på det tilfeldige forsøket «kast

Detaljer

Løsningsforslag til utsatt eksamen 2. desember 2015

Løsningsforslag til utsatt eksamen 2. desember 2015 Løsningsforslag til utsatt eksamen 2. desember 2015 Oppgave 1 (vekt 20 %) a) Løs ligningen 3x 2 7x + 2 = 0 ved å bruke formelen for løsning av andregradsligninger. Løsning. 3x 2 7x + 2 = 0 x = ( 7) ( 7)2

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 9, blokk II Løsningsskisse Oppgave X er kontinuerlig fordelt med sannsynlighetstetthet f X (x) = { x exp( x ) x

Detaljer

Løsninger. Innhold. Sannsynlighet 1P, 1T og 2P-Y

Løsninger. Innhold. Sannsynlighet 1P, 1T og 2P-Y Løsninger Innhold 3. Hva er sannsynlighet?... 2 3.2 Addisjon av sannsynligheter. Gunstige og mulige utfall... 3.3 Beregne sannsynligheter ved å bruke tabeller... 2 3.4 Beregne sannsynligheter ved å bruke

Detaljer

1 Sannsynlighetsrgning

1 Sannsynlighetsrgning 1 Sannsynlighetsrgning 1.1 Det er 13 grønne og 18 røde baller i en eske. Vi trekker ut to baller etter hverandre. a) Hva er sannsynligheten for å få to grønne baller? Svar: P(g 1, g 2 ) = p(g 1 ) p(g 2

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 0, blokk II Løsningsskisse Oppgave Surhetsgrad i ferskvann Eksamen august 00, oppgave av 3 a) En god estimator

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b5 Løsningsskisse Oppgave 1 Vi ønsker å finne ut om et nytt serum kan stanse leukemi.

Detaljer

Slide 1. Slide 2 Statistisk inferens. Slide 3. Introduction to the Practice of Statistics Fifth Edition

Slide 1. Slide 2 Statistisk inferens. Slide 3. Introduction to the Practice of Statistics Fifth Edition Slide 1 David S. Moore George P. McCabe Introduction to the Practice of Statistics Fifth Edition Chapter 4: Probability: The Study of Randomness 9/22/2010 Copyright 2005 by W. H. Freeman and Company Slide

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 9, blokk II Oppgave 1 X er kontinuerlig fordelt med sannsynlighetstetthet f(x) = 2xe

Detaljer

Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. ECON 0 EKSAMEN 0 VÅR TALLSVAR Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 5 Løsningsskisse Oppgave 1 En lottorekke kan oppfattes som et ikke-ordnet utvalg på

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 Kp. 2 Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige

Detaljer

Kapittel 2: Sannsynlighet

Kapittel 2: Sannsynlighet Kapittel 2: Sannsynlighet Definisjoner: Noen grunnleggende begrep. Stokastisk forsøk: Et forsøk/eksperiment der det er tilfeldig hva utfall blir. Utfallsrom, : Mengden av alle mulige utfall av et stokastisk

Detaljer

Oppgave 1 En ansatt skal overvåke et prosjekt der en lapp velges tilfeldig fra en boks som inneholder 10 lapper nummerert fra 1 til 10.

Oppgave 1 En ansatt skal overvåke et prosjekt der en lapp velges tilfeldig fra en boks som inneholder 10 lapper nummerert fra 1 til 10. TMA4245 Statistikk Vår 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving 4 blokk I Løsningsskisse Oppgave 1 En ansatt skal overvåke et prosjekt der en lapp velges tilfeldig

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 11 Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale begreper

Detaljer

TMA4240 Statistikk Høst 2012

TMA4240 Statistikk Høst 2012 TMA424 Statistikk Høst 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Løsningsskisse Matlabøving Beskrivende analyse Oppgave 1 a) Finn, for hvert datasett,

Detaljer

Kapittel 2, Sannsyn. Definisjonar og teorem på lysark, eksempel og tolking på tavla. TMA september 2016 Ingelin Steinsland

Kapittel 2, Sannsyn. Definisjonar og teorem på lysark, eksempel og tolking på tavla. TMA september 2016 Ingelin Steinsland Kapittel 2, Sannsyn 2.1 Utfallsrom Onsdag 2.2 Hendingar Onsdag 2.3 Telle mogeleg utfall: I dag 2.4 Sannsyn for ei hending: Onsdag 2.5 Addetive reglar: Onsdag 2.6 Betinga sannsyn, uavhengighet og produktregelen

Detaljer

Litt mer om den hypergeometriske fordelingen og dens tilnærming av binomisk fordeling.

Litt mer om den hypergeometriske fordelingen og dens tilnærming av binomisk fordeling. 1 ECON 2130 HG mars 2015 Litt mer om den hypergeometriske fordelingen og dens tilnærming av binomisk fordeling. Grunnen til dette supplementet er dels at forholdet mellom hypergeometrisk og binomisk fordeling

Detaljer

Eksamen i. MAT110 Statistikk 1

Eksamen i. MAT110 Statistikk 1 Avdeling for logistikk Eksamen i MAT110 Statistikk 1 Eksamensdag : Tirsdag 22. mai 2018 Tid : 09:00 13:00 (4 timer) Faglærer/telefonnummer : Molde + Kristiansund: Per Kristian Rekdal / 924 97 051 Hjelpemidler

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 2.5: Addisjonsregler (union) 2.6: Betinget sannsynlighet 2.7: Multiplikasjonsregler (snitt) 2.8: Bayes regel (starte litt) Mette Langaas Foreleses mandag 30. august 2010 2 Kapittel

Detaljer

TMA4245 Statistikk Høst 2016

TMA4245 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 4 Løsningsskisse Oppgave 1 Mureren La X være mengden mørtel mureren bruker i løpet av en tilfeldig valgt arbeidsdag.

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 10: Mengdelære Dag Normann Matematisk Institutt, Universitetet i Oslo 17. februar 2010 (Sist oppdatert: 2010-02-17 12:40) Kapittel 5: Mengdelære MAT1030 Diskret Matematikk

Detaljer

Kapittel 5: Mengdelære

Kapittel 5: Mengdelære MAT1030 Diskret Matematikk Forelesning 10: Mengdelære Dag Normann Matematisk Institutt, Universitetet i Oslo Kapittel 5: Mengdelære 17. februar 2010 (Sist oppdatert: 2010-02-17 12:41) MAT1030 Diskret Matematikk

Detaljer

INNHOLD. Matematikk for ungdomstrinnet

INNHOLD. Matematikk for ungdomstrinnet INNHOLD STATISTIKK... 2 FREKVENS... 2 RELATIV FREKVENS... 2 FREKVENSTABELL... 2 KLASSEDELING... 3 SØYLEDIAGRAM (STOLPEDIAGRAM)... 3 LINJEDIAGRAM... 4 SEKTORDIAGRAM... 4 HISTOGRAM... 4 FRAMSTILLING AV DATA...

Detaljer

Notat kombinatorikk og sannsynlighetregning

Notat kombinatorikk og sannsynlighetregning Notat kombinatorikk og sannsynlighetregning av Peer Andersen Peer Andersen 2010 1 SANNSYNLIGHETSREGNING MED FLERE TRINN Sannsynlighetsregning med et trinn kan være situasjoner der vi spør hva sjansen er

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

Sannsynlighetsregning

Sannsynlighetsregning Sannsynlighetsregning Læreplan. Forsøk og simuleringer. Sannsynlighet 3.3 Sum av sannsynligheter 5.4 Multiplikasjonsprinsippet 9.5 Uavhengige hendinger 0. Avhengige hendinger 5 Symboler, formler og eksempler

Detaljer

Kapittel 2: Sannsynlighet

Kapittel 2: Sannsynlighet Kapittel 2: Sannsynlighet 2.1, 2.2: Utfallsrom og hendelser 2.3, 2.4: Kombinatorikk og sannsynlighet 2.5, 2.6, 2.7: Regneregler, betinget sanns. 2.8: Bayes regel Eirik Mo Institutt for matematiske fag,

Detaljer

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk MAT000V Sannsynlighetsregning og kombinatorikk Tilfeldige variabler og sannsynlighetsfordelinger (repetisjon) Hypergeometrisk fordeling (repetisjon) Binomisk fordeling Forventningsverdi Tilfeldige variabler

Detaljer

TMA4240 Statistikk Høst 2018

TMA4240 Statistikk Høst 2018 TMA4240 Statistikk Høst 2018 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 5 Dette er andre av tre innleveringer i blokk 2. Denne øvingen skal oppsummere pensum

Detaljer

DAG 2 1. Hans og Grete er til sammen 63 år. Hans er dobbelt så gammel som det Grete var da Hans var så gammel som Grete er nå. Hvor gammel er Hans?

DAG 2 1. Hans og Grete er til sammen 63 år. Hans er dobbelt så gammel som det Grete var da Hans var så gammel som Grete er nå. Hvor gammel er Hans? SETT 12 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. Hvilket av følgende tall er delelig med 9? A) 309 B) 456 C) 696 D) 783 E) 939 2. To esker inneholder to røde og to hvite kuler hver. Vi tar en tilfeldig

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for ateatiske fag Øving nuer, blokk I Løsningsskisse Oppgave a X kan eksepelvis være resultatet av en flervalgsoppgave ed 0 sp og svaralternativ

Detaljer

Tabell 1: Beskrivende statistikker for dataene

Tabell 1: Beskrivende statistikker for dataene Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7, blokk II Løsningsskisse Oppgave 1 a) Utfør en beskrivende analyse av datasettet % Data for Trondheim: TRD_mean=mean(TRD);

Detaljer

TMA4240 Statistikk Høst 2007

TMA4240 Statistikk Høst 2007 TMA4240 Statistikk Høst 2007 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b4 Løsningsskisse Oppgave 1 Eksamen juni 1999, oppgave 3 av 3 a) µ populasjonsgjennomsnitt,

Detaljer

Kombinatorikk og sannsynlighetsregning

Kombinatorikk og sannsynlighetsregning Kombinatorikk og sannsynlighetsregning Aasum, Jon-Henning & Maers, Rafael Lukas 1. april 2014 Sammendrag Denne artikkelen forsøker å gi en god forklaring på grunnleggende kombinatorikk og sannsynlighetsregning,

Detaljer

Kapittel 5: Mengdelære

Kapittel 5: Mengdelære MAT1030 Diskret Matematikk Forelesning 9: Mengdelære Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 5: Mengdelære 17. februar 2009 (Sist oppdatert: 2009-02-17 15:56) MAT1030 Diskret

Detaljer

i x i

i x i TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 11, blokk II Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Kapittel 7: Utvalgsfordeling Bo Lindqvist Institutt for matematiske fag 2 Fra kapittel 1: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg

Detaljer