Prosentregning på en annen måte i 1P
|
|
|
- Patrick Andreassen
- 8 år siden
- Visninger:
Transkript
1 Prosentregning på en annen måte i 1P Læreplanmål: Elevene skal kunne regne med prosent. Tid: 4-6 undervisningstimer Elevforutsetninger: Opplegget er først og fremst beregnet på elever som har problemer med å løse likninger og skille mellom begrepene prosentfaktor og vekstfaktor. Prosentfaktor brukes derfor i liten grad i dette opplegget, og vekstfaktor innføres først når det er snakk om prosentvis endring over flere perioder. Undervisningsopplegg og gjennomføring: Dette opplegget ledes av læreren, det vil si at læreren presenterer ulike metoder, men gjennomføringen skjer i dialog med aktive elever. Timen starter først med å klargjøre at prosent betyr hundredel, og hva betyr så 0,23? Oppgaveregning: Hvor mange prosent er? 0,082 0,004 0,345 Gjør om 50%, 120% og 250% til desimaltall. Resten av undervisningsopplegget går nå ut på å lære tre metoder: 1. Å finne prosenten av et tall. 2. Hvordan finne ny og opprinnelig verdi. 3. Hvordan finne ukjent prosent
2 1. Å finne prosenten av et tall Når kan det være aktuelt å finne prosenten av et tall? Her kommer ofte skatt og rabatt som svar fra elevene. Det viser seg at elevene kan en del om prosent. Hvordan har dere funnet 20% av 800 kr tidligere? Elevene kommer med ulike forslag og de velger den metoden de er mest fortrolig med. For eksempel en av følgende: eller eller Eksempel på oppgavetekst: Opprinnelig pris på en genser var 220 kr. Genseren selges med 15% rabatt. Finn rabatten i kroner. Elevene kan også selv formulere flere oppgaver.
3 2. Hvordan finne ny og opprinnelig verdi Her bruker vi det vi har valgt å kalle boblemetoden. Denne figuren gjelder for alle oppgaver. Elevene skriver oppgitte verdier fra oppgaveteksten inn i figuren med boblene og på den måten blir oppgaven konkretisert og lettere å løse. Alle oppgavene kan nå løses på en linje og prinsippet er å gå veien om én. Vi må da gripe fatt i boblen der både prosent og kronebeløp er kjent. Eksempler på bruk av boblemetoden Eksempel 1: En sykkel med 20 % rabatt koster på salg 4800 kr. Hva var opprinnelig pris? 100 % 20 % 80 % må regnes ut og fylles inn under aktuell boble. Bruker bare kr som enhet i utregningen, da svaret er i kroner. Det er nå mulig å lese av boblene hvordan vi skal finne den opprinnelige prisen:
4 Eksempel 2: Merverdiavgiften på en vare er 25% og tilsvarer 150 kr. Regn ut prisen inkludert merverdiavgift. Vi fyller inn kronebeløpet over streken og økningen i prosent under streken. Vi går nå veien om én og finner svaret Elevene kan også her lage oppgavetekst selv, der opprinnelig verdi eller ny verdi er ukjent. Oppgaveregning.
5 3. Hvordan finne ukjent prosent. a. Å finne prosenten av et tall. Hvor mange prosent er kr av kr? Her kan elevene få utdelt Non-stop og bli bedt om å finne hvor mange prosent røde, gule, grønne osv Non-stop det er i en pose. b. Å finne endringen i prosent, økning eller minking. Metode: gå veien om 1. Unngår tolkning av prosentfaktor her. Eksempler på oppgavetekst: Eksempel 1: En sykkel kostet opprinnelig 4200 kr. Salgsprisen er 3000 kr. Regn ut rabatten i prosent. Bruker bare % som enhet, i og med at svaret er i %. Eksempel 2: Ei jakke ble solgt for 225 kr og kostet opprinnelig 180 kr. Regn ut prisøkningen i prosent. Oppgaveregning Til slutt i dette undervisningsopplegget testes elevene i alle tre metodene.
6 Prosentregning 1. Hvor mye er 2,5% av 300 kr? 2. En bukse som kostet 890 kr ble satt ned til 650 kr. Hvor mange prosent var avslaget på? 3. En jakke kostet 350 kr. Prisen ble satt ned med 14 %. Finn den nye prisen. 4. Du betalte 500 kr for en genser, og fikk da 12 % rabatt. Hva kostet genseren opprinnelig? 5. Rabatten på ei bok var 50 kr og dette tilsvarte 8 %. Hva kostet boka opprinnelig.
Kapittel 3. Prosentregning
Kapittel 3. Prosentregning I dette kapitlet skal vi repetere prosentregningen fra Matematikk 1P. Hovedemnene er: Forstå hva prosent er. Regne ut hvor mange prosent noe er av noe annet (finne prosenttallet).
Test, 1 Tall og algebra i praksis
Test, 1 Tall og algebra i praksis Innhold 1.1 Potenser... 1. Prosentregning... 1. Eksponentiell vekst... Grete Larsen 1 1.1 Potenser 1) Hvordan vil du regne ut oppgaven nedenfor? 6 ) Hvilket svar er riktig?
2 Prosent og eksponentiell vekst
2 Prosent og eksponentiell vekst 196 KATEGORI 1 2.1 Prosentfaktorer Oppgave 2.110 Finn prosentfaktoren til a) 18 % b) 60 % c) 11 % d) 99 % e) 49 % f) 1 % Oppgave 2.111 Finn prosenten når prosentfaktoren
for opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor
46 2 Forhold og prosent MÅL for opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor behandle proporsjonale og omvendt proporsjonale størrelser i praktiske sammenhenger
3 Prosentregning vekstfaktor og eksponentiell vekst
3 Prosentregning vekstfaktor og eksponentiell vekst Prosent (pro cent) betyr «av hundre» eller «hundredeler». I mange sammenhenger står prosentregning svært sentralt. Prisstigning (inflasjon) måles i prosent.
2 Prosentregning + ØV MER. Oppgave 2.112 a) Omtrent hvor mange prosent av figuren er blå?
2 Prosentregning + ØV MER 2.1 PROSENT Oppgave 2.110 Hvor mange ruter må være fargelagt for at a) 25 % b) 40 % c) 80 % d) 100 % av figuren skal være fargelagt? Oppgave 2.112 a) Omtrent hvor mange prosent
Kapittel 2. Prosentregning
Kapittel 2. Prosentregning Mål for Kapittel 4, Prosentregning. Kompetansemål Mål for opplæringen er at eleven skal kunne tolke og bruke formler som gjelder dagligliv og yrkesliv regne med forhold, prosent,
Kapittel 3. Prosentregning
Kapittel 3. Prosentregning I dette kapitlet skal vi repetere og utvide prosentregningen fra grunnskolen. Hovedemnene er: Forstå hva prosent er. Regne ut hvor mange prosent noe er av noe annet (finne prosenttallet).
Kapittel 4. Prosentregning
Kapittel 4. Prosentregning I dette kapitlet skal vi repetere og utvide prosentregningen fra grunnskolen. Hovedemnene er: Forstå hva prosent er. Regne ut hvor mange prosent noe er av noe annet (finne prosenttallet).
Prosent og eksponentiell vekst
30 2 Prosent og eksponentiell vekst MÅL for opplæringen er at eleven skal kunne gjøre suksessive renteberegninger og regne praktiske oppgaver med eksponentiell vekst 2.1 Prosentfaktorer Når vi skal regne
Kapittel 3. Prosentregning
Kapittel 3. Prosentregning Mål for Kapittel 3, Prosentregning. Kompetansemål Mål for opplæringen er at eleven skal kunne tolke og bruke formler som gjelder dagligliv og yrkesliv regne med forhold, prosent,
Kapittel 5. Prosentregning
d) Ca. 325 hpa for f og g. (1000/3=333, så stemmer bra for f og g). Negativ verdi for h, se c) Kapittel 5. Prosentregning I dette kapitlet skal vi repetere og utvide prosentregningen fra grunnskolen. Hovedemnene
Potenser og prosenter
Potenser og prosenter 1.9 Læreplanmål 1 1.1 Potenser 2 1.2 Potensene a 0 og a n 2 1.3 Flere regneregler for potenser 3 1.4 Tall på standardform 5 1.5 Regning med tid 7 1.6 Prosentfaktorer 9 1.7 Vekstfaktorer
( ) ( ) Vekstfaktor. Vekstfaktor
Vekstfaktor Fagstoff Listen [1] Hvis folketallet i en by vokser med 5 % hvert år i perioden 1995 til 2015, så sier vi at folketallet har en eksponentiell vekst i disse årene. Eva setter 10 000 kroner på
Kapittel 4. Prosentregning
Kapittel 4. Prosentregning I dette kapitlet skal vi repetere og utvide prosentregningen fra grunnskolen. Hovedemnene er: Forstå hva prosent er. Regne ut hvor mange prosent noe er av noe annet (finne prosenttallet).
Tall og algebra Vg1P MATEMATIKK
Oppgaver Innhold Innhold... 1 Modul 1: Regnerekkefølgen... 2 Modul 2: Overslagsregning og hoderegning... 3 Modul 3: Brøkregning... 9 Modul 4: Koordinatsystemet... 12 Modul 5: Forhold... 14 Modul 6: Proporsjonale
Kapittel 3. Prosentregning
Kapittel 3. Prosentregning I dette kapitlet skal vi repetere og utvide prosentregningen fra grunnskolen. Hovedemnene er: Forstå hva prosent er. Regne ut hvor mange prosent noe er av noe annet (finne prosenttallet).
Kapittel 4. Prosentregning
Kapittel 4. Prosentregning Mål for Kapittel 4, Prosentregning. Kompetansemål Mål for opplæringen er at eleven skal kunne tolke og bruke formler som gjelder dagligliv og yrkesliv regne med forhold, prosent,
Alle teller. - en introduksjon. NY GIV - 1. samling 2011/2012 Anne-Gunn Svorkmo Astrid Bondø Svein H. Torkildsen
Alle teller - en introduksjon NY GIV - 1. samling 2011/2012 Anne-Gunn Svorkmo Astrid Bondø Svein H. Torkildsen Håndbok - for lærere som underviser i matematikk i grunnskolen Forfatteren: Professor Alistair
Kapittel 3. Prosentregning
Kapittel 3. Prosentregning Mål for kapittel 3: Kompetansemål Mål for opplæringen er at eleven skal kunne tolke og bruke formler som gjelder dagligliv og yrkesliv regne med forhold, prosent, prosentpoeng
Kapittel 1. Prosentregning
Kapittel 1. Prosentregning Mål for Kapittel 1, Prosentregning. Kompetansemål Mål for opplæringen er at eleven skal kunne tolke og bruke formler som gjelder dagligliv og yrkesliv regne med forhold, prosent,
Oppgaver. Tall og algebra i praksis Vg2P
Oppgaver Modul 1: Potenser... 1 Modul : Tall på standardform... 5 Modul : Prosentregning... 9 Modul : Vekstfaktor... 1 Modul 5: Eksponentiell vekst... 1 Bildeliste... 16 1 Modul 1: Potenser 1.1 Regn ut.
Kapittel 1. Prosentregning
Kapittel 1. Prosentregning Mål for Kapittel 1, Prosentregning. Kompetansemål Mål for opplæringen er at eleven skal kunne tolke og bruke formler som gjelder dagligliv og yrkesliv regne med forhold, prosent,
Løsninger. Innhold. Tall og algebra Vg1P
Løsninger Innhold Innhold... 1 Modul 1: Regnerekkefølgen... Modul : Overslagsregning og hoderegning... 3 Modul 3: Brøkregning... 9 Modul 4: Koordinatsystemet... 13 Modul 5: Forhold... 17 Modul 6: Proporsjonale
Tallet 0,04 kaller vi prosentfaktoren til 4 %. Prosentfaktoren til 7 % er 0,07, og prosentfaktoren til 12,5 % er 0,125.
Prosentregning Når vi skal regne ut 4 % av 10 000 kr, kan vi regne slik: 10 000 kr 4 = 400 kr 100 Men det er det samme som å regne slik: 10 000 kr 0,04 = 400 kr Tallet 0,04 kaller vi prosentfaktoren til
Løsninger. Tall og algebra i praksis Vg2P
Tall og algebra i praksis VgP Løsninger Modul 1: Potenser... 1 Modul : Tall på standardform... Modul : Prosentregning... 1 Modul 4: Vekstfaktor... 17 Modul : Eksponentiell vekst... 1 Bildeliste... 4 1
YF kapittel 2 Likninger Løsninger til oppgavene i læreboka
YF kapittel Likninger Løsninger til oppgavene i læreboka Oppgave 01 a a+ a a b 5b+ 4b 9b c 8c 6c c Oppgave 0 a + + b 5+ 4+ 10 c 5 9 4 Oppgave 0 a 7y 7y 0y 0 b 6y 5y y c 8y+ 1y 4y Oppgave 04 a 5z z z z
Øvingshefte. Brøk og prosent
Øvingshefte Matematikk Ungdomstrinn/VGS Brøk og prosent Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk U/VGS Tall tallsystemet vårt Brøk og prosent Seksjon Oppgave.
Fasit til øvingshefte
Fasit til øvingshefte Matematikk Ungdomstrinn/VGS Brøk og prosent Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk U/VGS Tall tallsystemet vårt Brøk og prosent Seksjon Oppgave.
1 Tall og algebra i praksis
1 Tall og algebra i praksis Innhold Kompetansemål Tall og algebra i praksis, VgP... 1 Modul 1: Potenser... Modul : Tall på standardform... 6 Modul : Prosentregning... 10 Modul 4: Vekstfaktor... 15 Modul
Matematikkkurs M0 Oppgaver
Matematikkkurs M0 Oppgaver Avdeling for Lærerutdanning, Høgskolen i Vestfold. oktober 007 Brøk, desimaltall og prosent. Illustrer disse addisjonenen og subtraksjonene med papirark og bretting av rektangel
Løsninger. Innhold. Tall og algebra Vg1P
Løsninger Innhold Innhold... 1 Modul 1: Regnerekkefølgen... 2 Modul 2: Overslagsregning og hoderegning... 3 Modul 3: Brøkregning... 11 Modul 4: Koordinatsystemet... 14 Modul 5: Forhold... 18 Modul 6: Proporsjonale
Test, Algebra (1P) 1.1 Tallregning. 1) Addere betyr x legge sammen trekke fra gange dele. 2) Subtrahere betyr legge sammen x trekke fra gange dele
Test, Algebra (1P) 1.1 Tallregning 1) Addere betyr x legge sammen trekke fra gange dele 2) Subtrahere betyr legge sammen x trekke fra gange dele 3) Multiplisere betyr legge sammen trekke fra x gange dele
Forhold og prosent KATEGORI 1. 2.1 Brøkdelen av et tall. Oppgave 2.113 Guri og Petter skal dele 4200 kr. Guri skal ha. av pengene og Petter resten.
2 Forhold og prosent KATEGORI 1 2.1 Brøkdelen av et tall Oppgave 2.110 Regn ut. 1 3 av 3 b) 2 av 20 5 c) 1 6 av 24 d) 2 7 av 35 Oppgave 2.111 Regn ut. 2 3 av 450 kr b) 4 av 15 km 5 c) 3 7 av 14 kg Oppgave
INNHOLD INNLEDNING... 4 STEGARK... 5 NIVÅ A: GJØRE OM MELLOM PROSENT OG DESIMALTALL HHV BRØK... 5 NIVÅ B: «ALT» TILSVARER 100%.
16. juni 2013 INNHOLD INNLEDNING... 4 STEGARK... 5 NIVÅ A: GJØRE OM MELLOM OG DESIMALTALL HHV BRØK... 5 NIVÅ B: «ALT» TILSVARER %. FINNE HVOR MYE ET IL ER AV ET OPPGITT TALL... 6 NIVÅ C: PROMILLE, FINNE
Matematikk for yrkesfag
John Engeseth Odd Heir Håvard Moe fo re nk BOKMÅL l t e Matematikk for yrkesfag BOKMÅL John Engeseth Odd Heir Håvard Moe BOKMÅL Matematikk for yrkesfag forenklet Innhold 1 Tall Vi øver på å legge sammen
Prøveinformasjon. Våren 2015 Bokmål
Våren 2015 Bokmål Navn: Gruppe: Prøveinformasjon Prøvetid: Hjelpemidler på Del 1 og Del 2: Framgangsmåte og forklaring: 5 timer totalt. Del 1 og Del 2 blir utdelt samtidig. Del 1 skal du levere innen 2
Øvingshefte. Brøk og prosent
Øvingshefte Matematikk Mellomtrinn Brøk og prosent Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk Mellomtrinn Tall tallsystemet vårt Brøk og prosent Seksjon Oppgave.
Øveprøve November 2016
Øveprøve November 2016 Prøvetid: Inntil 5 klokketimer. Prøven består av to delprøver: Delprøve 1 gjennomføres uten andre hjelpemidler enn vanlige skrivesaker. Du skal skrive svarene rett inn i oppgaveheftet.
Basisoppgaver til 1P kap. 2 Økonomi
Basisoppgaver til 1P kap. 2 Økonomi 2.1 Forhold 2.2 Prosentregning 2.3 Prisindeks 2.4 Konsumprisindeks. Reallønn 2.5 Lønnsutregning 2.6 Skattetrekk. Ferielønn 2.8 Utregning av skatt (2.7 og 2.9 har ikke
4 Prisindeks. Nominell lønn. Reallønn
4 Prisindeks. Nominell lønn. Reallønn 1 Gjennomsnittsprisen for en vare har utviklet seg slik: År Pris Indeks 1989 125,00 1990 134,00 1991 135,00 1992 132,50 a) Lag en indeks over prisutviklingen med 1989
Alle teller. - en introduksjon. Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen
Alle teller - en introduksjon Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen Håndbok - for lærere som underviser i matematikk i grunnskolen Forfatteren: Professor
Tall og algebra 1P, Prøve 1 løsning
Tall og algebra 1P, Prøve 1 løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 Gjør overslag a) Ali kjøper 4,1 kg appelsiner. Appelsinene koster 15,70 kr per kg. Gjør overslag og finn ut omtrent
Sensorveiledning nasjonal deleksamen
Sensorveiledning nasjonal deleksamen 11.05.2016 Oppgave 1 Viser to ulike resonnement som fører frem. Eksempler: 1. Forklarer at 3 = 6 som igjen er lik 0,6. 5 10 2. Korrekt eliminering av de tre gale alternativene,
ELEVAKTIVE METODER: Snakke matte, samarbeidslæring og problemløsing. PÅBYGG TIL GENERELL STUDIEKOMPETANSE Skolering av lærere
ELEVAKTIVE METODER: Snakke matte, samarbeidslæring og problemløsing PÅBYGG TIL GENERELL STUDIEKOMPETANSE Skolering av lærere MATEMATIKK 2P-Y 15.januar 2013 Tone Elisabeth Bakken [email protected]
Terminprøve i matematikk for 9. trinn
Terminprøve i matematikk for 9. trinn Våren 2006 bokmål Til noen av oppgavene skal du bruke opplysninger fra informasjonsheftet. Disse oppgavene er merket med dette symbolet: Navn: DELPRØVE 1 Maks. poengsum:
Løsningsforslag til Eksamen 2P vår 2008
Løsningsforslag til Eksamen P vår 008 Delprøve 1 OPPGAVE 1 a) Avlesning av grafen viser at 50 stoler koster 40.000 kroner. Gjennomsnittskostnaden per stol blir da: 40000 = 800 kroner. 50 b) c) = = 4,46
1. Kreve inn skatter for å rydde rom for offentlig etterspørsel eller omfordele inntekt.
Forelesning 30.01 : Politikk i markedet Skal se på to typer inngrep i prisdannelsen: 1. prisregulering (direkte inngrep) 2. Skatter(avgifter og subsidier) Grunner til å bruke skatter/avgifter eller subsidier?
90 % av isfjellet ligger under vann. Hvordan kan du skrive det med desimaltall?
90 % av isfjellet ligger under vann. Hvordan kan du skrive det med desimaltall? 3 Hm, hva må jeg betale da? Prosent og desimaltall MÅL I dette kapitlet skal du lære om prosentbegrepet brøk og prosent prosentvis
DAG 2 1. Hans og Grete er til sammen 63 år. Hans er dobbelt så gammel som det Grete var da Hans var så gammel som Grete er nå. Hvor gammel er Hans?
SETT 12 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. Hvilket av følgende tall er delelig med 9? A) 309 B) 456 C) 696 D) 783 E) 939 2. To esker inneholder to røde og to hvite kuler hver. Vi tar en tilfeldig
99 matematikkspørsma l
99 matematikkspørsma l TALL 1. Hva er et tall? Et tall er symbol for en mengde. Et tall forteller om antallet i en mengde. 5 sauer eller 5 epler eller 5.. 2. Hvilket siffer står på eneplassen i tallet
Læreplan i matematikk. Kompetansemål etter 10. årstrinn
Læreplan i matematikk Kompetansemål etter 10. årstrinn Tall og algebra Eleven skal kunne: 1. Sammenlikne og regne om hele tal, desimaltall, brøker, prosent, promille og tall på standardform 2. Regne med
2 Prosentrekning + ØV MEIR. Oppgåve 2.112 a) Omtrent kor mange prosent av figuren er blå?
2 Prosentrekning + ØV MEIR 2.1 PROSENT Oppgåve 2.110 Kor mange ruter må vere fargelagde for at a) 25 % b) 40 % c) 80 % d) 100 % av figuren skal vere fargelagd? Oppgåve 2.112 a) Omtrent kor mange prosent
DEN LILLE KALKULATOREN
DEN LILLE KALKULATOREN ELLER KANSKJE DEN LILLE MED DE MANGE MULIGHETER (Det er ikke størrelsen det kommer an på men hvordan den blir brukt) Bjørn Bjørneng Forord: Dette ideheftet tar for seg den enkle
Undervisningsopplegg for ungdomstrinnet om likninger og annen algebra
Undervisningsopplegg for ungdomstrinnet om likninger og annen algebra Kilde: www.clipart.com 1 Likninger og annen algebra. Lærerens ark Hva sier læreplanen? Tall og algebra Mål for opplæringen er at eleven
1. Kreve inn skatter for å rydde rom for offentlig etterspørsel eller omfordele inntekt.
Forelesning 30.01 : Politikk i markedet Pensum: Mankiw and Taylor (MT) kap. 6 Skal se på to typer inngrep i prisdannelsen: 1. prisregulering (direkte inngrep) 2. Skatter(avgifter og subsidier) Grunner
6.2 Eksponentiell modell
Oppgave 6.14 Du arbeider i 7. 8. klasse og du vil bruke oppgave 6.13 til å arbeide med formalisering. Lag en oppgavetekst der du først lar eleven regne ut lønn etterhvert som du varierer antall brosjyrer.
S1 kapittel 4 Funksjoner Utvalgte løsninger oppgavesamlingen
S1 kapittel 4 Funksjoner Utvalgte løsninger oppgavesamlingen 408 O ( ) 80 500 a 1 O(0) 0 80 0 500 700 Ved produksjon og salg av 0 enheter blir overskuddet 700 kr. O(60) 60 80 60 500 700 Ved produksjon
PRISER FERDIGE PRODUKTER
PRISER Prisene inkluderer porto for brev. Forhåndsbetaling foretrekkes. Dersom du ønsker oppkravsbetaling tilkommer Postens oppkravsgebyr for brev på kr 69,- pr. brev. (Sendes i flere brev dersom vekten
Emnenavn: Ny, utsatt eksamen. Eksamenstid: Faglærere: Monica Nordbakke. Marianne Maugesten
EKSAMEN Emnekode: LMUMAT10117 Emnenavn: MAT101: Tall, algebra og funksjoner 1 (5-10) Ny, utsatt eksamen Dato: 14.06.2018 Eksamenstid: 9.00 15.00 Hjelpemidler: Kalkulator (ikke grafisk) Faglærere: Monica
Forhold og prosent MÅL. for opplæringa er at eleven skal kunne. rekne med forhold, prosent, prosentpoeng og vekst faktor
46 2 Forhold og prosent MÅL for opplæringa er at eleven skal kunne rekne med forhold, prosent, prosentpoeng og vekst faktor arbeide med proporsjonale og omvendt proporsjonale storleikar i praktiske samanhengar
Desimaltall FRA A TIL Å
Desimaltall FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side Innledning til desimaltall D - 2 2 Grunnleggende om desimaltall D - 2 2. Tideler, hundredeler og tusendeler D - 6 3 Å regne
Brøk-, desimalog prosentplater 1 = 1:7 = 0,143 0,143 100 = 14,3% = 1:24 = 0,042 0,042 100 = 4,2%
Brøk-, desimalog prosentplater = : = 0, 0, 00 =,% = : = 0, 0, 00 =,% = : = 0, 0, 00 =,% = : = 0, 0, 00 =,% = : = 0, 0, 00 =,% = : = 0, 0, 00 =,% = : = 0, 0, 00 =,% = : = 0,0 0,0 00 =,% = : = 0,0 0,0 00
Terminprøve vår matematikk
Jan Erik Gulbrandsen Randi Løchsen nye MEGA 8 Terminprøve vår matematikk 2013 Bokmål CAPPELEN DAMM AS Terminprøver vår for 8. trinn 2013 nye MEGA 1 Terminprøver vår 2013 nye MEGA 8 Vårens terminprøve er
Løsningsforslag eksempeloppgave MAT1003 Matematikk 2P Desember 2007. eksamensoppgaver.org
Løsningsforslag eksempeloppgave MAT1003 Matematikk 2P Desember 2007 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2P er gratis, og det er lastet
TIP Tallforståelse prosent, desimaltall, brøk, forholdstall
TIP Tallforståelse prosent, desimaltall, brøk, forholdstall Susanne Stengrundet 1 kyndighet 2 Skyt bort siffrene Desimaltall Slå inn siffrene 1 8 på kalkulatoren, valgfri rekkefølge Velg en plass for komma
Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1003 Matematikk 2P Eksamen 30.11.2009. Bokmål
Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1003 Matematikk P Eksamen 30.11.009 Bokmål MAT1003 Matematikk P HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en
1,055 kg 1,5 kg 1,505 kg. Hverdagsmatte. Praktisk regning for voksne Del 4 Kjøp og salg
1,055 kg 1,5 kg 1,505 kg Hverdagsmatte Praktisk regning for voksne Del 4 Kjøp og salg Innhold Del 4, Kjøp og salg Overslag 1 Handle på tilbud 5 Handle frukt 8 Kassalapper 10 Salg 13 Moms 14 Spise ute 15
MATEMATIKK NAVN: 2P-Y HELLERUD VGS
MATEMATIKK NAVN: 2P-Y HELLERUD VGS Rektangel Trekant Parallellogram Trapes Noen formler det er lurt å kunne... A = g h A = g h 2 A = g h (a + b) h A = 2 Sirkel A = π r 2 Prisme Sylinder Pytagoras setning
Hellerud videregående skole
Matematikk 2P Hellerud videregående skole Rektangel Trekant Parallellogram Trapes Noen formler det er lurt å kunne... A = g h A = g h 2 A = g h (a + b) h A = 2 Sirkel A = π r 2 Prisme Sylinder Pytagoras
1P eksamen høsten Løsningsforslag
1P eksamen høsten 2017 - Løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) En vare koster 640 kroner. Butikkeieren
Regning med tall og algebra
Regning med tall og algebra Dette er en variert samling av oppgaver. De kan alle løses ved algebraisk, men det fins også andre måter å løse dem på. Man kan bruke kvadratsetningene, potensregning, prosentregning
Eksamen MAT0010 Matematikk Del 1
Eksamen 16.05.019 MAT0010 Matematikk Del 1 Skole: Kandidatnr.: Del 1 + ark fra Del Bokmål Til skolen: Ved digital innlevering av Del 1 må skolen føre kandidatnummer på hvert ark før skanning og opplasting
Matematisk førstehjelp
Matematisk førstehjelp Brøk prosent desimaltall Brynhild Farbrot Foosnæs Matematisk kompetanse Kunnskapsløftet Kompetansemål Ferdigheter Forståelse Anvendelse Kunnskapsløftet Kompetansemål Ferdigheter:
Brann i matteboken. Elevhefte Tall og regning
Elevhefte Til eleven. Du skal i en periode arbeide med fotball og matematikk. Først skal dere besøke VilVite, hvor dere får flere praktiske oppgaver som dere skal gjøre. Dere skal for eksempel: måle hastigheten
Sensorveiledning nasjonal deleksamen
Sensorveiledning nasjonal deleksamen 10.05.2017 Karakterer gis i henhold til total poengskår og følgende karakterskala fastsatt av eksamensgruppen: A: 36 40 B: 31 35 C: 23 30 D: 18 22 E: 16 17 F: 0 15
1. Per og Kari kaster hver sin terning. Hva er sannsynligheten for at Karis terning viser mer enn Pers? A) 1/6 B) 1/3 C) 1/2 D) 3/8 E) 5/12
SETT 28 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. Per og Kari kaster hver sin terning. Hva er sannsynligheten for at Karis terning viser mer enn Pers? A) 1/6 B) 1/3 C) 1/2 D) 3/8 E) 5/12 2. Hvis summen
Løsningsforslag for eksamen i MAT1003 Matematikk 2P Privatister - 27.05.2008. eksamensoppgaver.org
Løsningsforslag for eksamen i MAT1003 Matematikk 2P Privatister - 27.05.2008 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2P er gratis, og
Semester: Høst År: 2015 Eksamenstype: Individuell skriftlig
Sensurveiledning Emnekode: 4MX230UM1 Emnenavn: Matematikk 2 (5-10) KfK, emne 1 Semester: Høst År: 2015 Eksamenstype: Individuell skriftlig Oppgave 1 I denne oppgaven får du oppgitt tre situasjoner som
Faktor terminprøve i matematikk for 8. trinn
Faktor terminprøve i matematikk for 8. trinn Høsten 2008 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir utdelt samtidig, men del
Eksamen MAT 1001 Matematikk 1 P-Y. Programområde: Service og samferdsel. Nynorsk/Bokmål
Eksamen 15.11.16 MAT 1001 Matematikk 1 P-Y Programområde: Service og samferdsel Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid 4 timar Del 1 skal leverast inn etter 1,5 timar. Del 2 skal leverast
Delemneplan for undervisningskunnskap i brøk og desimaltall
Delemneplan for undervisningskunnskap i brøk og desimaltall Emnet omfatter matematikkdidaktiske og matematikkfaglige tema innen brøk og desimaltall som er viktige for alle som skal undervise i matematikk
Løsningsforslag Prøve kapittel 1-2PY, Klasse 4B
Løsningsforslag Prøve kapittel 1-2PY, Klasse B Henrik Vikøren October 1, 201 Del 1 - Uten hjelpemiddel 30 min Oppgave 1 Regn ut: (2 2 ) 3 2 2 = 2 2 3 2 2 = 2 6 +1 = 2 3 = 8 (2 3 2 2 16a = 23 a 3 2 2 2
NASJONALE PRØVER. Matematikk 10. trinn delprøve 2. Skolenr. Elevnr. Oppgaver som kan løses ved hjelp av lommeregner. Tid: 90 minutter.
Bokmål Skolenr. Elevnr. NASJONALE PRØVER Matematikk 10. trinn delprøve 2 Tid: 90 minutter 15. april 2004 Gutt Jente Oppgaver som kan løses ved hjelp av lommeregner. Tillatte hjelpemidler: lommeregner,
Misoppfatninger knyttet til tall
Misoppfatninger knyttet til tall 17.04.18 Olav Dalsegg Tokle, Astrid Bondø og Roberth Åsenhus MATEMATIKKSENTERET, NTNU Innholdsfortegnelse INNLEDNING... 3 NULL SOM PLASSHOLDER... 4 OPPGAVER... 5 ANALYSE...
Eksamen MAT0010 Matematikk Del 1. Kandidatnummer:
Eksamen 16.05.2018 MAT0010 Matematikk Del 1 Kandidatnummer: Bokmål Til skolen: Ved digital innlevering av Del 1 må skolen føre kandidatnummer på hvert ark før skanning og opplasting i PGS. Bokmål Eksamensinformasjon
En fjerdedel er 25 %. En halv er 50 %. Tre fjerdedeler er 75 %. En hel (det hele) er 100 %
En fjerdedel er 25 %. En halv er 50 %. Tre fjerdedeler er 75 %. En hel (det hele) er % = pv gv er grunnverdien ps er prosentsatsen pv er prosentverdien pv er ps prosent av gv Når vi kjenner to av de tre
For å svare på disse spørsmålene må vi undersøke hva som skjer i et marked når vi legger på en skatt (avgift) eller utbetaler en subsidie?
«Prisoverveltning», «Skatteoverveltning» («ta incidence») Hvor mye øker prisen på brus dersom myndighetene legger på en avgift på 5 kroner per liter? Og hvor mye reduseres forbruket? Hvor mye mer vil de
Matematikktentamen - eksamensklassen Onsdag 11. desember Løsningsforslag. Oppgave 1. Regn ut.
Matematikktentamen - eksamensklassen Onsdag 11. desember 2013 Løsningsforslag Oppgave 1. Regn ut. a) 11 2 4 + 1 = 11 8 + 1 = 4 b) 10 : (-2) + 4 + 8 : 4 = -5 + 4 + 2 = 1 c) -5 (10 4 2) = -5 (10 8) = -5
Kapittel 5 Lønnsomhetsanalyse
Løsningsforslag oppgaver side 125 131 Dersom ikke annet er oppgitt, er prisene i oppgavene uten merverdiavgift. Løsningsforslag oppgave 5.14 a) Papas T Papas O Papas K Papas G Direkte materialer kr 5,00
Lag figur med gitt areal
Areal Nr. Lag figur til arealet: Lag to figurer med areal: 6 ruter Lag figur med gitt areal Eleven skal lag en figur med oppgitt areal her i form av ruter på prikkeark. Eleven står her fritt til å velge
3 Prosentregning vekstfaktor og eksponentiell vekst
3 Prosentregning vekstfaktor og eksponentiell vekst 1 Hvis 64 % av elevene på en skole får gjennomsnittskarakteren 4 på avgangsvitnemålet, og det totalt er 200 elever på skolen, hvor mange elever får da
Høgskoleni østfold EKSAMEN. LSVIMAT12 Matematikk 1, V 1: Tall og algebra. funksjoner 1. Dato: 16. desember Eksamenstid: kl til kl 15.
Høgskoleni østfold EKSAMEN Emnekode: Emne: LSVIMAT12 Matematikk 1, V 1: Tall og algebra. funksjoner 1 Dato: 16. desember Eksamenstid: kl 09.00 til kl 15.00 2015 Hjelpemidler: Faglærer: Khaled Jemai Kalkulator
Karakter 2: 10p Karakter 3: 17p Karakter 4: 23p Karakter 5: 30p Karakter 6: 36p
30.09.016 MATEMATIKK (MAT1005) Potenser / Prosent / Mønster / Tid DEL 1 (UTEN HJELPEMIDLER) 45 minutter DEL (MED HJELPEMIDLER) 45 minutter (Del 1 leveres inn etter nøyaktig 45 minutter og før hjelpemidlene
Oppgaver/klassespørsmål til oppdragene
Oppgaver/klassespørsmål til oppdragene 5. 7. klasse OPPDRAG 1 SPILLKONSOLLEN (ANDERS) SPØRSMÅL TIL KLASSEN FØR OPPDRAGET Før elevene settes i arbeid, kan det lønne seg å snakke med dem om begreper som
