Prosentregning på en annen måte i 1P

Størrelse: px
Begynne med side:

Download "Prosentregning på en annen måte i 1P"

Transkript

1 Prosentregning på en annen måte i 1P Læreplanmål: Elevene skal kunne regne med prosent. Tid: 4-6 undervisningstimer Elevforutsetninger: Opplegget er først og fremst beregnet på elever som har problemer med å løse likninger og skille mellom begrepene prosentfaktor og vekstfaktor. Prosentfaktor brukes derfor i liten grad i dette opplegget, og vekstfaktor innføres først når det er snakk om prosentvis endring over flere perioder. Undervisningsopplegg og gjennomføring: Dette opplegget ledes av læreren, det vil si at læreren presenterer ulike metoder, men gjennomføringen skjer i dialog med aktive elever. Timen starter først med å klargjøre at prosent betyr hundredel, og hva betyr så 0,23? Oppgaveregning: Hvor mange prosent er? 0,082 0,004 0,345 Gjør om 50%, 120% og 250% til desimaltall. Resten av undervisningsopplegget går nå ut på å lære tre metoder: 1. Å finne prosenten av et tall. 2. Hvordan finne ny og opprinnelig verdi. 3. Hvordan finne ukjent prosent

2 1. Å finne prosenten av et tall Når kan det være aktuelt å finne prosenten av et tall? Her kommer ofte skatt og rabatt som svar fra elevene. Det viser seg at elevene kan en del om prosent. Hvordan har dere funnet 20% av 800 kr tidligere? Elevene kommer med ulike forslag og de velger den metoden de er mest fortrolig med. For eksempel en av følgende: eller eller Eksempel på oppgavetekst: Opprinnelig pris på en genser var 220 kr. Genseren selges med 15% rabatt. Finn rabatten i kroner. Elevene kan også selv formulere flere oppgaver.

3 2. Hvordan finne ny og opprinnelig verdi Her bruker vi det vi har valgt å kalle boblemetoden. Denne figuren gjelder for alle oppgaver. Elevene skriver oppgitte verdier fra oppgaveteksten inn i figuren med boblene og på den måten blir oppgaven konkretisert og lettere å løse. Alle oppgavene kan nå løses på en linje og prinsippet er å gå veien om én. Vi må da gripe fatt i boblen der både prosent og kronebeløp er kjent. Eksempler på bruk av boblemetoden Eksempel 1: En sykkel med 20 % rabatt koster på salg 4800 kr. Hva var opprinnelig pris? 100 % 20 % 80 % må regnes ut og fylles inn under aktuell boble. Bruker bare kr som enhet i utregningen, da svaret er i kroner. Det er nå mulig å lese av boblene hvordan vi skal finne den opprinnelige prisen:

4 Eksempel 2: Merverdiavgiften på en vare er 25% og tilsvarer 150 kr. Regn ut prisen inkludert merverdiavgift. Vi fyller inn kronebeløpet over streken og økningen i prosent under streken. Vi går nå veien om én og finner svaret Elevene kan også her lage oppgavetekst selv, der opprinnelig verdi eller ny verdi er ukjent. Oppgaveregning.

5 3. Hvordan finne ukjent prosent. a. Å finne prosenten av et tall. Hvor mange prosent er kr av kr? Her kan elevene få utdelt Non-stop og bli bedt om å finne hvor mange prosent røde, gule, grønne osv Non-stop det er i en pose. b. Å finne endringen i prosent, økning eller minking. Metode: gå veien om 1. Unngår tolkning av prosentfaktor her. Eksempler på oppgavetekst: Eksempel 1: En sykkel kostet opprinnelig 4200 kr. Salgsprisen er 3000 kr. Regn ut rabatten i prosent. Bruker bare % som enhet, i og med at svaret er i %. Eksempel 2: Ei jakke ble solgt for 225 kr og kostet opprinnelig 180 kr. Regn ut prisøkningen i prosent. Oppgaveregning Til slutt i dette undervisningsopplegget testes elevene i alle tre metodene.

6 Prosentregning 1. Hvor mye er 2,5% av 300 kr? 2. En bukse som kostet 890 kr ble satt ned til 650 kr. Hvor mange prosent var avslaget på? 3. En jakke kostet 350 kr. Prisen ble satt ned med 14 %. Finn den nye prisen. 4. Du betalte 500 kr for en genser, og fikk da 12 % rabatt. Hva kostet genseren opprinnelig? 5. Rabatten på ei bok var 50 kr og dette tilsvarte 8 %. Hva kostet boka opprinnelig.

Kapittel 3. Prosentregning

Kapittel 3. Prosentregning Kapittel 3. Prosentregning I dette kapitlet skal vi repetere prosentregningen fra Matematikk 1P. Hovedemnene er: Forstå hva prosent er. Regne ut hvor mange prosent noe er av noe annet (finne prosenttallet).

Detaljer

Test, 1 Tall og algebra i praksis

Test, 1 Tall og algebra i praksis Test, 1 Tall og algebra i praksis Innhold 1.1 Potenser... 1. Prosentregning... 1. Eksponentiell vekst... Grete Larsen 1 1.1 Potenser 1) Hvordan vil du regne ut oppgaven nedenfor? 6 ) Hvilket svar er riktig?

Detaljer

2 Prosent og eksponentiell vekst

2 Prosent og eksponentiell vekst 2 Prosent og eksponentiell vekst 196 KATEGORI 1 2.1 Prosentfaktorer Oppgave 2.110 Finn prosentfaktoren til a) 18 % b) 60 % c) 11 % d) 99 % e) 49 % f) 1 % Oppgave 2.111 Finn prosenten når prosentfaktoren

Detaljer

for opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor

for opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor 46 2 Forhold og prosent MÅL for opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor behandle proporsjonale og omvendt proporsjonale størrelser i praktiske sammenhenger

Detaljer

3 Prosentregning vekstfaktor og eksponentiell vekst

3 Prosentregning vekstfaktor og eksponentiell vekst 3 Prosentregning vekstfaktor og eksponentiell vekst Prosent (pro cent) betyr «av hundre» eller «hundredeler». I mange sammenhenger står prosentregning svært sentralt. Prisstigning (inflasjon) måles i prosent.

Detaljer

2 Prosentregning + ØV MER. Oppgave 2.112 a) Omtrent hvor mange prosent av figuren er blå?

2 Prosentregning + ØV MER. Oppgave 2.112 a) Omtrent hvor mange prosent av figuren er blå? 2 Prosentregning + ØV MER 2.1 PROSENT Oppgave 2.110 Hvor mange ruter må være fargelagt for at a) 25 % b) 40 % c) 80 % d) 100 % av figuren skal være fargelagt? Oppgave 2.112 a) Omtrent hvor mange prosent

Detaljer

Kapittel 2. Prosentregning

Kapittel 2. Prosentregning Kapittel 2. Prosentregning Mål for Kapittel 4, Prosentregning. Kompetansemål Mål for opplæringen er at eleven skal kunne tolke og bruke formler som gjelder dagligliv og yrkesliv regne med forhold, prosent,

Detaljer

Kapittel 3. Prosentregning

Kapittel 3. Prosentregning Kapittel 3. Prosentregning I dette kapitlet skal vi repetere og utvide prosentregningen fra grunnskolen. Hovedemnene er: Forstå hva prosent er. Regne ut hvor mange prosent noe er av noe annet (finne prosenttallet).

Detaljer

Kapittel 4. Prosentregning

Kapittel 4. Prosentregning Kapittel 4. Prosentregning I dette kapitlet skal vi repetere og utvide prosentregningen fra grunnskolen. Hovedemnene er: Forstå hva prosent er. Regne ut hvor mange prosent noe er av noe annet (finne prosenttallet).

Detaljer

Prosent og eksponentiell vekst

Prosent og eksponentiell vekst 30 2 Prosent og eksponentiell vekst MÅL for opplæringen er at eleven skal kunne gjøre suksessive renteberegninger og regne praktiske oppgaver med eksponentiell vekst 2.1 Prosentfaktorer Når vi skal regne

Detaljer

Kapittel 3. Prosentregning

Kapittel 3. Prosentregning Kapittel 3. Prosentregning Mål for Kapittel 3, Prosentregning. Kompetansemål Mål for opplæringen er at eleven skal kunne tolke og bruke formler som gjelder dagligliv og yrkesliv regne med forhold, prosent,

Detaljer

Kapittel 5. Prosentregning

Kapittel 5. Prosentregning d) Ca. 325 hpa for f og g. (1000/3=333, så stemmer bra for f og g). Negativ verdi for h, se c) Kapittel 5. Prosentregning I dette kapitlet skal vi repetere og utvide prosentregningen fra grunnskolen. Hovedemnene

Detaljer

Potenser og prosenter

Potenser og prosenter Potenser og prosenter 1.9 Læreplanmål 1 1.1 Potenser 2 1.2 Potensene a 0 og a n 2 1.3 Flere regneregler for potenser 3 1.4 Tall på standardform 5 1.5 Regning med tid 7 1.6 Prosentfaktorer 9 1.7 Vekstfaktorer

Detaljer

( ) ( ) Vekstfaktor. Vekstfaktor

( ) ( ) Vekstfaktor. Vekstfaktor Vekstfaktor Fagstoff Listen [1] Hvis folketallet i en by vokser med 5 % hvert år i perioden 1995 til 2015, så sier vi at folketallet har en eksponentiell vekst i disse årene. Eva setter 10 000 kroner på

Detaljer

Kapittel 4. Prosentregning

Kapittel 4. Prosentregning Kapittel 4. Prosentregning I dette kapitlet skal vi repetere og utvide prosentregningen fra grunnskolen. Hovedemnene er: Forstå hva prosent er. Regne ut hvor mange prosent noe er av noe annet (finne prosenttallet).

Detaljer

Tall og algebra Vg1P MATEMATIKK

Tall og algebra Vg1P MATEMATIKK Oppgaver Innhold Innhold... 1 Modul 1: Regnerekkefølgen... 2 Modul 2: Overslagsregning og hoderegning... 3 Modul 3: Brøkregning... 9 Modul 4: Koordinatsystemet... 12 Modul 5: Forhold... 14 Modul 6: Proporsjonale

Detaljer

Kapittel 3. Prosentregning

Kapittel 3. Prosentregning Kapittel 3. Prosentregning I dette kapitlet skal vi repetere og utvide prosentregningen fra grunnskolen. Hovedemnene er: Forstå hva prosent er. Regne ut hvor mange prosent noe er av noe annet (finne prosenttallet).

Detaljer

Kapittel 4. Prosentregning

Kapittel 4. Prosentregning Kapittel 4. Prosentregning Mål for Kapittel 4, Prosentregning. Kompetansemål Mål for opplæringen er at eleven skal kunne tolke og bruke formler som gjelder dagligliv og yrkesliv regne med forhold, prosent,

Detaljer

Alle teller. - en introduksjon. NY GIV - 1. samling 2011/2012 Anne-Gunn Svorkmo Astrid Bondø Svein H. Torkildsen

Alle teller. - en introduksjon. NY GIV - 1. samling 2011/2012 Anne-Gunn Svorkmo Astrid Bondø Svein H. Torkildsen Alle teller - en introduksjon NY GIV - 1. samling 2011/2012 Anne-Gunn Svorkmo Astrid Bondø Svein H. Torkildsen Håndbok - for lærere som underviser i matematikk i grunnskolen Forfatteren: Professor Alistair

Detaljer

Kapittel 3. Prosentregning

Kapittel 3. Prosentregning Kapittel 3. Prosentregning Mål for kapittel 3: Kompetansemål Mål for opplæringen er at eleven skal kunne tolke og bruke formler som gjelder dagligliv og yrkesliv regne med forhold, prosent, prosentpoeng

Detaljer

Kapittel 1. Prosentregning

Kapittel 1. Prosentregning Kapittel 1. Prosentregning Mål for Kapittel 1, Prosentregning. Kompetansemål Mål for opplæringen er at eleven skal kunne tolke og bruke formler som gjelder dagligliv og yrkesliv regne med forhold, prosent,

Detaljer

Oppgaver. Tall og algebra i praksis Vg2P

Oppgaver. Tall og algebra i praksis Vg2P Oppgaver Modul 1: Potenser... 1 Modul : Tall på standardform... 5 Modul : Prosentregning... 9 Modul : Vekstfaktor... 1 Modul 5: Eksponentiell vekst... 1 Bildeliste... 16 1 Modul 1: Potenser 1.1 Regn ut.

Detaljer

Kapittel 1. Prosentregning

Kapittel 1. Prosentregning Kapittel 1. Prosentregning Mål for Kapittel 1, Prosentregning. Kompetansemål Mål for opplæringen er at eleven skal kunne tolke og bruke formler som gjelder dagligliv og yrkesliv regne med forhold, prosent,

Detaljer

Løsninger. Innhold. Tall og algebra Vg1P

Løsninger. Innhold. Tall og algebra Vg1P Løsninger Innhold Innhold... 1 Modul 1: Regnerekkefølgen... Modul : Overslagsregning og hoderegning... 3 Modul 3: Brøkregning... 9 Modul 4: Koordinatsystemet... 13 Modul 5: Forhold... 17 Modul 6: Proporsjonale

Detaljer

Tallet 0,04 kaller vi prosentfaktoren til 4 %. Prosentfaktoren til 7 % er 0,07, og prosentfaktoren til 12,5 % er 0,125.

Tallet 0,04 kaller vi prosentfaktoren til 4 %. Prosentfaktoren til 7 % er 0,07, og prosentfaktoren til 12,5 % er 0,125. Prosentregning Når vi skal regne ut 4 % av 10 000 kr, kan vi regne slik: 10 000 kr 4 = 400 kr 100 Men det er det samme som å regne slik: 10 000 kr 0,04 = 400 kr Tallet 0,04 kaller vi prosentfaktoren til

Detaljer

Løsninger. Tall og algebra i praksis Vg2P

Løsninger. Tall og algebra i praksis Vg2P Tall og algebra i praksis VgP Løsninger Modul 1: Potenser... 1 Modul : Tall på standardform... Modul : Prosentregning... 1 Modul 4: Vekstfaktor... 17 Modul : Eksponentiell vekst... 1 Bildeliste... 4 1

Detaljer

YF kapittel 2 Likninger Løsninger til oppgavene i læreboka

YF kapittel 2 Likninger Løsninger til oppgavene i læreboka YF kapittel Likninger Løsninger til oppgavene i læreboka Oppgave 01 a a+ a a b 5b+ 4b 9b c 8c 6c c Oppgave 0 a + + b 5+ 4+ 10 c 5 9 4 Oppgave 0 a 7y 7y 0y 0 b 6y 5y y c 8y+ 1y 4y Oppgave 04 a 5z z z z

Detaljer

Øvingshefte. Brøk og prosent

Øvingshefte. Brøk og prosent Øvingshefte Matematikk Ungdomstrinn/VGS Brøk og prosent Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk U/VGS Tall tallsystemet vårt Brøk og prosent Seksjon Oppgave.

Detaljer

Fasit til øvingshefte

Fasit til øvingshefte Fasit til øvingshefte Matematikk Ungdomstrinn/VGS Brøk og prosent Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk U/VGS Tall tallsystemet vårt Brøk og prosent Seksjon Oppgave.

Detaljer

1 Tall og algebra i praksis

1 Tall og algebra i praksis 1 Tall og algebra i praksis Innhold Kompetansemål Tall og algebra i praksis, VgP... 1 Modul 1: Potenser... Modul : Tall på standardform... 6 Modul : Prosentregning... 10 Modul 4: Vekstfaktor... 15 Modul

Detaljer

Matematikkkurs M0 Oppgaver

Matematikkkurs M0 Oppgaver Matematikkkurs M0 Oppgaver Avdeling for Lærerutdanning, Høgskolen i Vestfold. oktober 007 Brøk, desimaltall og prosent. Illustrer disse addisjonenen og subtraksjonene med papirark og bretting av rektangel

Detaljer

Løsninger. Innhold. Tall og algebra Vg1P

Løsninger. Innhold. Tall og algebra Vg1P Løsninger Innhold Innhold... 1 Modul 1: Regnerekkefølgen... 2 Modul 2: Overslagsregning og hoderegning... 3 Modul 3: Brøkregning... 11 Modul 4: Koordinatsystemet... 14 Modul 5: Forhold... 18 Modul 6: Proporsjonale

Detaljer

Test, Algebra (1P) 1.1 Tallregning. 1) Addere betyr x legge sammen trekke fra gange dele. 2) Subtrahere betyr legge sammen x trekke fra gange dele

Test, Algebra (1P) 1.1 Tallregning. 1) Addere betyr x legge sammen trekke fra gange dele. 2) Subtrahere betyr legge sammen x trekke fra gange dele Test, Algebra (1P) 1.1 Tallregning 1) Addere betyr x legge sammen trekke fra gange dele 2) Subtrahere betyr legge sammen x trekke fra gange dele 3) Multiplisere betyr legge sammen trekke fra x gange dele

Detaljer

Forhold og prosent KATEGORI 1. 2.1 Brøkdelen av et tall. Oppgave 2.113 Guri og Petter skal dele 4200 kr. Guri skal ha. av pengene og Petter resten.

Forhold og prosent KATEGORI 1. 2.1 Brøkdelen av et tall. Oppgave 2.113 Guri og Petter skal dele 4200 kr. Guri skal ha. av pengene og Petter resten. 2 Forhold og prosent KATEGORI 1 2.1 Brøkdelen av et tall Oppgave 2.110 Regn ut. 1 3 av 3 b) 2 av 20 5 c) 1 6 av 24 d) 2 7 av 35 Oppgave 2.111 Regn ut. 2 3 av 450 kr b) 4 av 15 km 5 c) 3 7 av 14 kg Oppgave

Detaljer

INNHOLD INNLEDNING... 4 STEGARK... 5 NIVÅ A: GJØRE OM MELLOM PROSENT OG DESIMALTALL HHV BRØK... 5 NIVÅ B: «ALT» TILSVARER 100%.

INNHOLD INNLEDNING... 4 STEGARK... 5 NIVÅ A: GJØRE OM MELLOM PROSENT OG DESIMALTALL HHV BRØK... 5 NIVÅ B: «ALT» TILSVARER 100%. 16. juni 2013 INNHOLD INNLEDNING... 4 STEGARK... 5 NIVÅ A: GJØRE OM MELLOM OG DESIMALTALL HHV BRØK... 5 NIVÅ B: «ALT» TILSVARER %. FINNE HVOR MYE ET IL ER AV ET OPPGITT TALL... 6 NIVÅ C: PROMILLE, FINNE

Detaljer

Matematikk for yrkesfag

Matematikk for yrkesfag John Engeseth Odd Heir Håvard Moe fo re nk BOKMÅL l t e Matematikk for yrkesfag BOKMÅL John Engeseth Odd Heir Håvard Moe BOKMÅL Matematikk for yrkesfag forenklet Innhold 1 Tall Vi øver på å legge sammen

Detaljer

Prøveinformasjon. Våren 2015 Bokmål

Prøveinformasjon. Våren 2015 Bokmål Våren 2015 Bokmål Navn: Gruppe: Prøveinformasjon Prøvetid: Hjelpemidler på Del 1 og Del 2: Framgangsmåte og forklaring: 5 timer totalt. Del 1 og Del 2 blir utdelt samtidig. Del 1 skal du levere innen 2

Detaljer

Øvingshefte. Brøk og prosent

Øvingshefte. Brøk og prosent Øvingshefte Matematikk Mellomtrinn Brøk og prosent Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk Mellomtrinn Tall tallsystemet vårt Brøk og prosent Seksjon Oppgave.

Detaljer

Øveprøve November 2016

Øveprøve November 2016 Øveprøve November 2016 Prøvetid: Inntil 5 klokketimer. Prøven består av to delprøver: Delprøve 1 gjennomføres uten andre hjelpemidler enn vanlige skrivesaker. Du skal skrive svarene rett inn i oppgaveheftet.

Detaljer

Basisoppgaver til 1P kap. 2 Økonomi

Basisoppgaver til 1P kap. 2 Økonomi Basisoppgaver til 1P kap. 2 Økonomi 2.1 Forhold 2.2 Prosentregning 2.3 Prisindeks 2.4 Konsumprisindeks. Reallønn 2.5 Lønnsutregning 2.6 Skattetrekk. Ferielønn 2.8 Utregning av skatt (2.7 og 2.9 har ikke

Detaljer

4 Prisindeks. Nominell lønn. Reallønn

4 Prisindeks. Nominell lønn. Reallønn 4 Prisindeks. Nominell lønn. Reallønn 1 Gjennomsnittsprisen for en vare har utviklet seg slik: År Pris Indeks 1989 125,00 1990 134,00 1991 135,00 1992 132,50 a) Lag en indeks over prisutviklingen med 1989

Detaljer

Alle teller. - en introduksjon. Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen

Alle teller. - en introduksjon. Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen Alle teller - en introduksjon Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen Håndbok - for lærere som underviser i matematikk i grunnskolen Forfatteren: Professor

Detaljer

Tall og algebra 1P, Prøve 1 løsning

Tall og algebra 1P, Prøve 1 løsning Tall og algebra 1P, Prøve 1 løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 Gjør overslag a) Ali kjøper 4,1 kg appelsiner. Appelsinene koster 15,70 kr per kg. Gjør overslag og finn ut omtrent

Detaljer

Sensorveiledning nasjonal deleksamen

Sensorveiledning nasjonal deleksamen Sensorveiledning nasjonal deleksamen 11.05.2016 Oppgave 1 Viser to ulike resonnement som fører frem. Eksempler: 1. Forklarer at 3 = 6 som igjen er lik 0,6. 5 10 2. Korrekt eliminering av de tre gale alternativene,

Detaljer

ELEVAKTIVE METODER: Snakke matte, samarbeidslæring og problemløsing. PÅBYGG TIL GENERELL STUDIEKOMPETANSE Skolering av lærere

ELEVAKTIVE METODER: Snakke matte, samarbeidslæring og problemløsing. PÅBYGG TIL GENERELL STUDIEKOMPETANSE Skolering av lærere ELEVAKTIVE METODER: Snakke matte, samarbeidslæring og problemløsing PÅBYGG TIL GENERELL STUDIEKOMPETANSE Skolering av lærere MATEMATIKK 2P-Y 15.januar 2013 Tone Elisabeth Bakken [email protected]

Detaljer

Terminprøve i matematikk for 9. trinn

Terminprøve i matematikk for 9. trinn Terminprøve i matematikk for 9. trinn Våren 2006 bokmål Til noen av oppgavene skal du bruke opplysninger fra informasjonsheftet. Disse oppgavene er merket med dette symbolet: Navn: DELPRØVE 1 Maks. poengsum:

Detaljer

Løsningsforslag til Eksamen 2P vår 2008

Løsningsforslag til Eksamen 2P vår 2008 Løsningsforslag til Eksamen P vår 008 Delprøve 1 OPPGAVE 1 a) Avlesning av grafen viser at 50 stoler koster 40.000 kroner. Gjennomsnittskostnaden per stol blir da: 40000 = 800 kroner. 50 b) c) = = 4,46

Detaljer

1. Kreve inn skatter for å rydde rom for offentlig etterspørsel eller omfordele inntekt.

1. Kreve inn skatter for å rydde rom for offentlig etterspørsel eller omfordele inntekt. Forelesning 30.01 : Politikk i markedet Skal se på to typer inngrep i prisdannelsen: 1. prisregulering (direkte inngrep) 2. Skatter(avgifter og subsidier) Grunner til å bruke skatter/avgifter eller subsidier?

Detaljer

90 % av isfjellet ligger under vann. Hvordan kan du skrive det med desimaltall?

90 % av isfjellet ligger under vann. Hvordan kan du skrive det med desimaltall? 90 % av isfjellet ligger under vann. Hvordan kan du skrive det med desimaltall? 3 Hm, hva må jeg betale da? Prosent og desimaltall MÅL I dette kapitlet skal du lære om prosentbegrepet brøk og prosent prosentvis

Detaljer

DAG 2 1. Hans og Grete er til sammen 63 år. Hans er dobbelt så gammel som det Grete var da Hans var så gammel som Grete er nå. Hvor gammel er Hans?

DAG 2 1. Hans og Grete er til sammen 63 år. Hans er dobbelt så gammel som det Grete var da Hans var så gammel som Grete er nå. Hvor gammel er Hans? SETT 12 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. Hvilket av følgende tall er delelig med 9? A) 309 B) 456 C) 696 D) 783 E) 939 2. To esker inneholder to røde og to hvite kuler hver. Vi tar en tilfeldig

Detaljer

99 matematikkspørsma l

99 matematikkspørsma l 99 matematikkspørsma l TALL 1. Hva er et tall? Et tall er symbol for en mengde. Et tall forteller om antallet i en mengde. 5 sauer eller 5 epler eller 5.. 2. Hvilket siffer står på eneplassen i tallet

Detaljer

Læreplan i matematikk. Kompetansemål etter 10. årstrinn

Læreplan i matematikk. Kompetansemål etter 10. årstrinn Læreplan i matematikk Kompetansemål etter 10. årstrinn Tall og algebra Eleven skal kunne: 1. Sammenlikne og regne om hele tal, desimaltall, brøker, prosent, promille og tall på standardform 2. Regne med

Detaljer

2 Prosentrekning + ØV MEIR. Oppgåve 2.112 a) Omtrent kor mange prosent av figuren er blå?

2 Prosentrekning + ØV MEIR. Oppgåve 2.112 a) Omtrent kor mange prosent av figuren er blå? 2 Prosentrekning + ØV MEIR 2.1 PROSENT Oppgåve 2.110 Kor mange ruter må vere fargelagde for at a) 25 % b) 40 % c) 80 % d) 100 % av figuren skal vere fargelagd? Oppgåve 2.112 a) Omtrent kor mange prosent

Detaljer

DEN LILLE KALKULATOREN

DEN LILLE KALKULATOREN DEN LILLE KALKULATOREN ELLER KANSKJE DEN LILLE MED DE MANGE MULIGHETER (Det er ikke størrelsen det kommer an på men hvordan den blir brukt) Bjørn Bjørneng Forord: Dette ideheftet tar for seg den enkle

Detaljer

Undervisningsopplegg for ungdomstrinnet om likninger og annen algebra

Undervisningsopplegg for ungdomstrinnet om likninger og annen algebra Undervisningsopplegg for ungdomstrinnet om likninger og annen algebra Kilde: www.clipart.com 1 Likninger og annen algebra. Lærerens ark Hva sier læreplanen? Tall og algebra Mål for opplæringen er at eleven

Detaljer

1. Kreve inn skatter for å rydde rom for offentlig etterspørsel eller omfordele inntekt.

1. Kreve inn skatter for å rydde rom for offentlig etterspørsel eller omfordele inntekt. Forelesning 30.01 : Politikk i markedet Pensum: Mankiw and Taylor (MT) kap. 6 Skal se på to typer inngrep i prisdannelsen: 1. prisregulering (direkte inngrep) 2. Skatter(avgifter og subsidier) Grunner

Detaljer

6.2 Eksponentiell modell

6.2 Eksponentiell modell Oppgave 6.14 Du arbeider i 7. 8. klasse og du vil bruke oppgave 6.13 til å arbeide med formalisering. Lag en oppgavetekst der du først lar eleven regne ut lønn etterhvert som du varierer antall brosjyrer.

Detaljer

S1 kapittel 4 Funksjoner Utvalgte løsninger oppgavesamlingen

S1 kapittel 4 Funksjoner Utvalgte løsninger oppgavesamlingen S1 kapittel 4 Funksjoner Utvalgte løsninger oppgavesamlingen 408 O ( ) 80 500 a 1 O(0) 0 80 0 500 700 Ved produksjon og salg av 0 enheter blir overskuddet 700 kr. O(60) 60 80 60 500 700 Ved produksjon

Detaljer

PRISER FERDIGE PRODUKTER

PRISER FERDIGE PRODUKTER PRISER Prisene inkluderer porto for brev. Forhåndsbetaling foretrekkes. Dersom du ønsker oppkravsbetaling tilkommer Postens oppkravsgebyr for brev på kr 69,- pr. brev. (Sendes i flere brev dersom vekten

Detaljer

Emnenavn: Ny, utsatt eksamen. Eksamenstid: Faglærere: Monica Nordbakke. Marianne Maugesten

Emnenavn: Ny, utsatt eksamen. Eksamenstid: Faglærere: Monica Nordbakke. Marianne Maugesten EKSAMEN Emnekode: LMUMAT10117 Emnenavn: MAT101: Tall, algebra og funksjoner 1 (5-10) Ny, utsatt eksamen Dato: 14.06.2018 Eksamenstid: 9.00 15.00 Hjelpemidler: Kalkulator (ikke grafisk) Faglærere: Monica

Detaljer

Forhold og prosent MÅL. for opplæringa er at eleven skal kunne. rekne med forhold, prosent, prosentpoeng og vekst faktor

Forhold og prosent MÅL. for opplæringa er at eleven skal kunne. rekne med forhold, prosent, prosentpoeng og vekst faktor 46 2 Forhold og prosent MÅL for opplæringa er at eleven skal kunne rekne med forhold, prosent, prosentpoeng og vekst faktor arbeide med proporsjonale og omvendt proporsjonale storleikar i praktiske samanhengar

Detaljer

Desimaltall FRA A TIL Å

Desimaltall FRA A TIL Å Desimaltall FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side Innledning til desimaltall D - 2 2 Grunnleggende om desimaltall D - 2 2. Tideler, hundredeler og tusendeler D - 6 3 Å regne

Detaljer

Brøk-, desimalog prosentplater 1 = 1:7 = 0,143 0,143 100 = 14,3% = 1:24 = 0,042 0,042 100 = 4,2%

Brøk-, desimalog prosentplater 1 = 1:7 = 0,143 0,143 100 = 14,3% = 1:24 = 0,042 0,042 100 = 4,2% Brøk-, desimalog prosentplater = : = 0, 0, 00 =,% = : = 0, 0, 00 =,% = : = 0, 0, 00 =,% = : = 0, 0, 00 =,% = : = 0, 0, 00 =,% = : = 0, 0, 00 =,% = : = 0, 0, 00 =,% = : = 0,0 0,0 00 =,% = : = 0,0 0,0 00

Detaljer

Terminprøve vår matematikk

Terminprøve vår matematikk Jan Erik Gulbrandsen Randi Løchsen nye MEGA 8 Terminprøve vår matematikk 2013 Bokmål CAPPELEN DAMM AS Terminprøver vår for 8. trinn 2013 nye MEGA 1 Terminprøver vår 2013 nye MEGA 8 Vårens terminprøve er

Detaljer

Løsningsforslag eksempeloppgave MAT1003 Matematikk 2P Desember 2007. eksamensoppgaver.org

Løsningsforslag eksempeloppgave MAT1003 Matematikk 2P Desember 2007. eksamensoppgaver.org Løsningsforslag eksempeloppgave MAT1003 Matematikk 2P Desember 2007 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2P er gratis, og det er lastet

Detaljer

TIP Tallforståelse prosent, desimaltall, brøk, forholdstall

TIP Tallforståelse prosent, desimaltall, brøk, forholdstall TIP Tallforståelse prosent, desimaltall, brøk, forholdstall Susanne Stengrundet 1 kyndighet 2 Skyt bort siffrene Desimaltall Slå inn siffrene 1 8 på kalkulatoren, valgfri rekkefølge Velg en plass for komma

Detaljer

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1003 Matematikk 2P Eksamen 30.11.2009. Bokmål

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1003 Matematikk 2P Eksamen 30.11.2009. Bokmål Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1003 Matematikk P Eksamen 30.11.009 Bokmål MAT1003 Matematikk P HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en

Detaljer

1,055 kg 1,5 kg 1,505 kg. Hverdagsmatte. Praktisk regning for voksne Del 4 Kjøp og salg

1,055 kg 1,5 kg 1,505 kg. Hverdagsmatte. Praktisk regning for voksne Del 4 Kjøp og salg 1,055 kg 1,5 kg 1,505 kg Hverdagsmatte Praktisk regning for voksne Del 4 Kjøp og salg Innhold Del 4, Kjøp og salg Overslag 1 Handle på tilbud 5 Handle frukt 8 Kassalapper 10 Salg 13 Moms 14 Spise ute 15

Detaljer

MATEMATIKK NAVN: 2P-Y HELLERUD VGS

MATEMATIKK NAVN: 2P-Y HELLERUD VGS MATEMATIKK NAVN: 2P-Y HELLERUD VGS Rektangel Trekant Parallellogram Trapes Noen formler det er lurt å kunne... A = g h A = g h 2 A = g h (a + b) h A = 2 Sirkel A = π r 2 Prisme Sylinder Pytagoras setning

Detaljer

Hellerud videregående skole

Hellerud videregående skole Matematikk 2P Hellerud videregående skole Rektangel Trekant Parallellogram Trapes Noen formler det er lurt å kunne... A = g h A = g h 2 A = g h (a + b) h A = 2 Sirkel A = π r 2 Prisme Sylinder Pytagoras

Detaljer

1P eksamen høsten Løsningsforslag

1P eksamen høsten Løsningsforslag 1P eksamen høsten 2017 - Løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) En vare koster 640 kroner. Butikkeieren

Detaljer

Regning med tall og algebra

Regning med tall og algebra Regning med tall og algebra Dette er en variert samling av oppgaver. De kan alle løses ved algebraisk, men det fins også andre måter å løse dem på. Man kan bruke kvadratsetningene, potensregning, prosentregning

Detaljer

Eksamen MAT0010 Matematikk Del 1

Eksamen MAT0010 Matematikk Del 1 Eksamen 16.05.019 MAT0010 Matematikk Del 1 Skole: Kandidatnr.: Del 1 + ark fra Del Bokmål Til skolen: Ved digital innlevering av Del 1 må skolen føre kandidatnummer på hvert ark før skanning og opplasting

Detaljer

Matematisk førstehjelp

Matematisk førstehjelp Matematisk førstehjelp Brøk prosent desimaltall Brynhild Farbrot Foosnæs Matematisk kompetanse Kunnskapsløftet Kompetansemål Ferdigheter Forståelse Anvendelse Kunnskapsløftet Kompetansemål Ferdigheter:

Detaljer

Brann i matteboken. Elevhefte Tall og regning

Brann i matteboken. Elevhefte Tall og regning Elevhefte Til eleven. Du skal i en periode arbeide med fotball og matematikk. Først skal dere besøke VilVite, hvor dere får flere praktiske oppgaver som dere skal gjøre. Dere skal for eksempel: måle hastigheten

Detaljer

Sensorveiledning nasjonal deleksamen

Sensorveiledning nasjonal deleksamen Sensorveiledning nasjonal deleksamen 10.05.2017 Karakterer gis i henhold til total poengskår og følgende karakterskala fastsatt av eksamensgruppen: A: 36 40 B: 31 35 C: 23 30 D: 18 22 E: 16 17 F: 0 15

Detaljer

1. Per og Kari kaster hver sin terning. Hva er sannsynligheten for at Karis terning viser mer enn Pers? A) 1/6 B) 1/3 C) 1/2 D) 3/8 E) 5/12

1. Per og Kari kaster hver sin terning. Hva er sannsynligheten for at Karis terning viser mer enn Pers? A) 1/6 B) 1/3 C) 1/2 D) 3/8 E) 5/12 SETT 28 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. Per og Kari kaster hver sin terning. Hva er sannsynligheten for at Karis terning viser mer enn Pers? A) 1/6 B) 1/3 C) 1/2 D) 3/8 E) 5/12 2. Hvis summen

Detaljer

Løsningsforslag for eksamen i MAT1003 Matematikk 2P Privatister - 27.05.2008. eksamensoppgaver.org

Løsningsforslag for eksamen i MAT1003 Matematikk 2P Privatister - 27.05.2008. eksamensoppgaver.org Løsningsforslag for eksamen i MAT1003 Matematikk 2P Privatister - 27.05.2008 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2P er gratis, og

Detaljer

Semester: Høst År: 2015 Eksamenstype: Individuell skriftlig

Semester: Høst År: 2015 Eksamenstype: Individuell skriftlig Sensurveiledning Emnekode: 4MX230UM1 Emnenavn: Matematikk 2 (5-10) KfK, emne 1 Semester: Høst År: 2015 Eksamenstype: Individuell skriftlig Oppgave 1 I denne oppgaven får du oppgitt tre situasjoner som

Detaljer

Faktor terminprøve i matematikk for 8. trinn

Faktor terminprøve i matematikk for 8. trinn Faktor terminprøve i matematikk for 8. trinn Høsten 2008 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir utdelt samtidig, men del

Detaljer

Eksamen MAT 1001 Matematikk 1 P-Y. Programområde: Service og samferdsel. Nynorsk/Bokmål

Eksamen MAT 1001 Matematikk 1 P-Y. Programområde: Service og samferdsel. Nynorsk/Bokmål Eksamen 15.11.16 MAT 1001 Matematikk 1 P-Y Programområde: Service og samferdsel Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid 4 timar Del 1 skal leverast inn etter 1,5 timar. Del 2 skal leverast

Detaljer

Delemneplan for undervisningskunnskap i brøk og desimaltall

Delemneplan for undervisningskunnskap i brøk og desimaltall Delemneplan for undervisningskunnskap i brøk og desimaltall Emnet omfatter matematikkdidaktiske og matematikkfaglige tema innen brøk og desimaltall som er viktige for alle som skal undervise i matematikk

Detaljer

Løsningsforslag Prøve kapittel 1-2PY, Klasse 4B

Løsningsforslag Prøve kapittel 1-2PY, Klasse 4B Løsningsforslag Prøve kapittel 1-2PY, Klasse B Henrik Vikøren October 1, 201 Del 1 - Uten hjelpemiddel 30 min Oppgave 1 Regn ut: (2 2 ) 3 2 2 = 2 2 3 2 2 = 2 6 +1 = 2 3 = 8 (2 3 2 2 16a = 23 a 3 2 2 2

Detaljer

NASJONALE PRØVER. Matematikk 10. trinn delprøve 2. Skolenr. Elevnr. Oppgaver som kan løses ved hjelp av lommeregner. Tid: 90 minutter.

NASJONALE PRØVER. Matematikk 10. trinn delprøve 2. Skolenr. Elevnr. Oppgaver som kan løses ved hjelp av lommeregner. Tid: 90 minutter. Bokmål Skolenr. Elevnr. NASJONALE PRØVER Matematikk 10. trinn delprøve 2 Tid: 90 minutter 15. april 2004 Gutt Jente Oppgaver som kan løses ved hjelp av lommeregner. Tillatte hjelpemidler: lommeregner,

Detaljer

Misoppfatninger knyttet til tall

Misoppfatninger knyttet til tall Misoppfatninger knyttet til tall 17.04.18 Olav Dalsegg Tokle, Astrid Bondø og Roberth Åsenhus MATEMATIKKSENTERET, NTNU Innholdsfortegnelse INNLEDNING... 3 NULL SOM PLASSHOLDER... 4 OPPGAVER... 5 ANALYSE...

Detaljer

Eksamen MAT0010 Matematikk Del 1. Kandidatnummer:

Eksamen MAT0010 Matematikk Del 1. Kandidatnummer: Eksamen 16.05.2018 MAT0010 Matematikk Del 1 Kandidatnummer: Bokmål Til skolen: Ved digital innlevering av Del 1 må skolen føre kandidatnummer på hvert ark før skanning og opplasting i PGS. Bokmål Eksamensinformasjon

Detaljer

En fjerdedel er 25 %. En halv er 50 %. Tre fjerdedeler er 75 %. En hel (det hele) er 100 %

En fjerdedel er 25 %. En halv er 50 %. Tre fjerdedeler er 75 %. En hel (det hele) er 100 % En fjerdedel er 25 %. En halv er 50 %. Tre fjerdedeler er 75 %. En hel (det hele) er % = pv gv er grunnverdien ps er prosentsatsen pv er prosentverdien pv er ps prosent av gv Når vi kjenner to av de tre

Detaljer

For å svare på disse spørsmålene må vi undersøke hva som skjer i et marked når vi legger på en skatt (avgift) eller utbetaler en subsidie?

For å svare på disse spørsmålene må vi undersøke hva som skjer i et marked når vi legger på en skatt (avgift) eller utbetaler en subsidie? «Prisoverveltning», «Skatteoverveltning» («ta incidence») Hvor mye øker prisen på brus dersom myndighetene legger på en avgift på 5 kroner per liter? Og hvor mye reduseres forbruket? Hvor mye mer vil de

Detaljer

Matematikktentamen - eksamensklassen Onsdag 11. desember Løsningsforslag. Oppgave 1. Regn ut.

Matematikktentamen - eksamensklassen Onsdag 11. desember Løsningsforslag. Oppgave 1. Regn ut. Matematikktentamen - eksamensklassen Onsdag 11. desember 2013 Løsningsforslag Oppgave 1. Regn ut. a) 11 2 4 + 1 = 11 8 + 1 = 4 b) 10 : (-2) + 4 + 8 : 4 = -5 + 4 + 2 = 1 c) -5 (10 4 2) = -5 (10 8) = -5

Detaljer

Kapittel 5 Lønnsomhetsanalyse

Kapittel 5 Lønnsomhetsanalyse Løsningsforslag oppgaver side 125 131 Dersom ikke annet er oppgitt, er prisene i oppgavene uten merverdiavgift. Løsningsforslag oppgave 5.14 a) Papas T Papas O Papas K Papas G Direkte materialer kr 5,00

Detaljer

Lag figur med gitt areal

Lag figur med gitt areal Areal Nr. Lag figur til arealet: Lag to figurer med areal: 6 ruter Lag figur med gitt areal Eleven skal lag en figur med oppgitt areal her i form av ruter på prikkeark. Eleven står her fritt til å velge

Detaljer

3 Prosentregning vekstfaktor og eksponentiell vekst

3 Prosentregning vekstfaktor og eksponentiell vekst 3 Prosentregning vekstfaktor og eksponentiell vekst 1 Hvis 64 % av elevene på en skole får gjennomsnittskarakteren 4 på avgangsvitnemålet, og det totalt er 200 elever på skolen, hvor mange elever får da

Detaljer

Høgskoleni østfold EKSAMEN. LSVIMAT12 Matematikk 1, V 1: Tall og algebra. funksjoner 1. Dato: 16. desember Eksamenstid: kl til kl 15.

Høgskoleni østfold EKSAMEN. LSVIMAT12 Matematikk 1, V 1: Tall og algebra. funksjoner 1. Dato: 16. desember Eksamenstid: kl til kl 15. Høgskoleni østfold EKSAMEN Emnekode: Emne: LSVIMAT12 Matematikk 1, V 1: Tall og algebra. funksjoner 1 Dato: 16. desember Eksamenstid: kl 09.00 til kl 15.00 2015 Hjelpemidler: Faglærer: Khaled Jemai Kalkulator

Detaljer

Karakter 2: 10p Karakter 3: 17p Karakter 4: 23p Karakter 5: 30p Karakter 6: 36p

Karakter 2: 10p Karakter 3: 17p Karakter 4: 23p Karakter 5: 30p Karakter 6: 36p 30.09.016 MATEMATIKK (MAT1005) Potenser / Prosent / Mønster / Tid DEL 1 (UTEN HJELPEMIDLER) 45 minutter DEL (MED HJELPEMIDLER) 45 minutter (Del 1 leveres inn etter nøyaktig 45 minutter og før hjelpemidlene

Detaljer

Oppgaver/klassespørsmål til oppdragene

Oppgaver/klassespørsmål til oppdragene Oppgaver/klassespørsmål til oppdragene 5. 7. klasse OPPDRAG 1 SPILLKONSOLLEN (ANDERS) SPØRSMÅL TIL KLASSEN FØR OPPDRAGET Før elevene settes i arbeid, kan det lønne seg å snakke med dem om begreper som

Detaljer