Reg tek final exam formelsamling
|
|
|
- Arnulf Bjerke
- 9 år siden
- Visninger:
Transkript
1 Reg tek final exam formelsamling Andreas Klausen 6. september 202 Brukes som vanlig på eget ansvar :)
2 Innhold Bode plot stuff 3. Kryssfrekvens Fasemargin Gain Margin Forskjell på type system Type Type Type Break frekvens Asymptotisk bode plot av Lag/Lead compensator Eksempel på å lage bode plot Steady state error 5 2. K p K v K a Type Type Type Lag compensator 6 3. Key Equation K ess ω p K adj Lead compensator 7 4. Key equation Hvordan gå frem Uten oppgitt %OS Lead-Lag compensator 8 5. Key equation Hvordan gå frem Estimere transfer funksjon fra bode plot 9 7 Transfer function stuff 9 7. Ultimate gain, total forsterking Closed loop transfer function Del-eksamen stuff grads Grads Flytskjemaer/formler 2
3 Bode plot stuff. Kryssfrekvens Kryssfrekvens, ω c, er frekvensen der amplituden krysser 0 db..2 Fasemargin Ved kryssfrekvensen kan man lese av φ m ved å ta fasen man finner, A, og: φ m = A ( 80 ) ().3 Gain Margin Gain margin, G m, finner man ved å se på amplituden ved frekvensen -80, B, og da er: G m = B (2).4 Forskjell på type system.4. Type 0 Regn ut startamplituden ved ω = 0 Start fasen ved 0 (s +...)(...) s 0 (s +...)(...) (3).4.2 Type (s +...)(...) s (s +...)(...) Regn ut startamplituden ved en frekvens mindre enn laveste break-frekvens (Eller veldig ofte 0.rad/s), og start den med 20dB/dec Start fasen ved Type 2 (s +...)(...) s 2 (s +...)(...) Regn ut startamplituden ved en frekvens mindre enn laveste break frekvens (Eller veldig ofte 0.rad/s), og start den med 40dB/dec Start fasen ved 80.5 Break frekvens Break ω a a ω n ω n s + a s+a K( s2 ω + 2ζ s K n 2 ω n + ) s 2 ωn 2 +2ζ s ωn + Magnitude +20dB/dec -20dB/dec +40dB/dec -40dB/dec Phase Asymptotisk bode plot av Lag/Lead compensator Får man spørsmål om å lage denne ved 0dB startamplitude, vil si at K ess ikke skal være med. (4) (5) 3
4 .7 Eksempel på å lage bode plot G(s) = K(s + 3) s(s + )(s + 2 (6) Type system Laveste break frekvens ved ω n =, høyeste ved ω n = 3, derfor bode plot fra 0.rad/s til 00 rad/s Start rate er -20dB/dec og 90 Startamplituden finnes ved å ta G(s) ved startfrekvensen ω n = 0. G(j0.) = K(0.j + 3) 0.j(0.j + )(0.j + 2) = K( j) G(j0.) = K ( 7308) 2 + ( 4.844) 2 = 4.95K 5K Setter så K = og får: Startamp = 20log(5)dB = 23.52dB (7) Til slutt kan man da lage bode plotten: Break ω 2 3 Magnitude -20dB/dec -20dB/dec +20dB/dec Fase
5 2 Steady state error 2. K p K v K a K p = lim G(s) (8) s 0 K v = lim s 0 sg(s) (9) K a = lim s 0 s 2 G(s) (0) For å se dette ut ifra et bode plot trengs noen skarpe øyner: Her må man selvfølgelig vite hva slags type system man har. 2.2 Type 0 Input SS error formula Static error constant Error Step, u(t) +K p K p = C +K p Ramp, t*u(t) K v K v = 0 Parabola, 2 t2 u(t) K a K a = Type Input SS error formula Static error constant Error Step, u(t) +K p K p = 0 Ramp, t*u(t) K v K v = C K v Parabola, 2 t2 u(t) K a K a = Type 2 Input SS error formula Static error constant Error Step, u(t) +K p K p = 0 Ramp, t*u(t) K v K v = 0 Parabola, 2 t2 u(t) K a K a = C K a 5
6 3 Lag compensator 3. Key Equation K ess ( ) s + 0.ωp G clag = K ess K adj s + 0.K adj ω p Gain adjustment in order to meet the required steady state error. () ω p K adj Frequency at which the phase margin would be the desired one plus 5 to 2 extra. Gain adjustment in order to have 0dB at ω = ω p 3.. K ess K p K v K a = lim s 0 s typesystem K ess G(s) = K ess K 0 K p finner man i error formlene (en maks error må være oppgitt i oppgaven) Der K 0 er start gainen der bode ploten starter. Finnes enten på bode plotten eller vha. utregningen til eksempel på å lage bode plot. Til slutt bruker man da de respektive error formlene ω p Etter K ess er funnet kan man lage ny bode plot av K ess G(s) som ofte blir gjort ved å endre på skalaen til original bode plot med +20Log[K ess ]. Så har man forhåpentligvis oppgitt en måte å regne ut φ Md på (oppgitt %OS f.eks). Frekvensen kan finnes ved å se på fasen: ω P er da frekvensen ved denne fasen. φ Md + [5 0 ] 80 (2) 3..3 K adj Denne biten har til hensikt å senke amplituden til 0 der fasen er φ Md + [5 0 ] 80, og det gjøres slik: K adj = 0 amp 20 (3) Der amp er amplituden i db over 0. TIl slutt kan alt settes inn i Key Equation og man har sin lag compensator. 6
7 4 Lead compensator 4. Key equation G Lead (s) = β ( ) s + T s + βt (4) 4.2 Hvordan gå frem Har man oppgitt en steady state error, begynner man med å finne K ess på samme måte som i Lagkompensatoren. Etter det lager man en bode plot av K ess G(s) og finner φ M. Sammen med φ Md, som man finner ved hjelp av %OS (ζ φ Md ), finner man: φ max = φ Md φ M + 0 (5) Så kan man finne β: ( ) sinφmax β = + sinφ max Så for å finne ω max, bruker man følgende formel: (6) G c (jω max = β (7) Så kommer den tricky biten. For å finne ω max må man se i bode plot til K ess G(s) ved enten +20Log[ β ]db eller ved 20Log[ β ]db, avhengig av hvilken frekvens som blir størst. Til slutt finner man da T : Dette stappes inn slik: T = ω max β (8) G c = K ess G Lead (9) Der G c er Lead kompensatoren. Får man spørsmål om denne er grei, med tanke på ω BW og ω BW d, kan læreren suge seg selv, fordi å bode plotte G c G(s) er ikke noe gøy. 4.3 Uten oppgitt %OS Hvis man får oppgitt en ss-error og en ω c, kan man hoppe over noen steg og gjøre dette. Finn først K ess på vanlig måte, men i bode plot til K ess G(s) må man finne amplituden ved den gitte ω max. Denne amplituden skal motvirkes med β slik at amplituden her blir 0. G c (jω max ) = = Amp ωc = A β 20Log[ ] = A β Deretter er det bare å følge vanlig prosedyre. β = 0 A
8 5 Lead-Lag compensator 5. Key equation 5.2 Hvordan gå frem G Lead Lag (s) = ( s + T s + γ T ) ( ) s + T 2 s + γt 2 (20) Begynn med å regn ut så mye som mulig fra de oppgitte spesifikasjonene. Dvs: ζ, φ Md, ω BW d, K p K v K a Finn deretter K ess på samme måte som før. ω c regnes ut slik: ω c = 0.8ω BW d (2) Sammen med denne frekvensen finner man φ ωc (finnes i bode plot til enten G(s) eller K ess G(s)), og φ max : φ max = φ Md φ ωc + [5 0 ] (22) Deretter kan β og γ bli funnet, samt det siste som kreves i en Lead-Lag kompensator: ( ) sinφmax β = + sinφ max γ = β = ω c T 2 0 = ω c β T Dette settes inn i Key Equation, og du er good to go! 8
9 6 Estimere transfer funksjon fra bode plot Her går man ut ifra at læreren gir bruddpunkter ved frekvenser som 0.,, 0, 00 eller 000 etc. For ellers blir det vanskelig å estimere. Det man vanligvis gjør er å først vite hva slags type system man har, så bare tegne på streker der grafen er mest rett fram. Der streken avviker fra graf, kan man gå utifra at det er et bruddpunkt i nærmeste 0-gangen. Går grafen da nedover med -20dB/dec er det en pol. Hvis den øker er det et nullpunkt etc. Den estimerte transferfunksjonen for denne grafen blir: G(s) = K (s + 0.)(s + )(s + 00) (23) Der K finnes ved å ta: ( ) K lim (20Log[ G(jω ) = 20Log ω K = l 00 = 00 = 20dB 7 Transfer function stuff 7. Ultimate gain, total forsterking Ultimate gain finner man ved å ta lim ω 0 G(jω) (evt lim ω 0. om det er type eller 2). Eller ved å se på bode ploten og finne gainen som skal til å starte der man gjør. 7.2 Closed loop transfer function Hvis M(s) er transferfunksjonen: Y (s) X(s) = M(s) = G(s) + G(s)H(s) (24) 9
10 8 Del-eksamen stuff 8.. grads Her har man en grads Transfer funksjon som må på formen: Noen ganger kommer den på formen: Så kan man finne T s og T r : G(s) = G(s) = T s = 4 a a s + a K s + a (25) (26) (27) Time constant, τ, finnes slik: T r = 2.2 a τ = a (28) (29) Grads Eller: Så kan man finne T p, T s, %OS, og ζ. K G = s 2 ω + 2ζ n 2 ω n s + Kω 2 n G = s 2 + 2ζω n + ωn 2 π T p = ω n ζ 2 (30) (3) (32) T s = 4 ζω n (33) For en tilnærming til T r kan man bruke: %OS = e (ζπ/ ζ 2) 00 (34) ln(%os/00) ζ = π 2 + ln 2 (%OS/00) (35) T r = (Normalizedrisetime)/ω (36) 0
11 9 Flytskjemaer/formler Lead-Lag Compensator Structure Graph Second order approximation: ζ = ln(%os/00) () π 2 + ln 2 (%OS/00) 2ζ φ M = tan 2ζ ζ 4 ω BW = 4 Tsζ π ω BW = Tp ζ 2 ( 2ζ 2 ) + 4ζ 4 4ζ (3) ( 2ζ 2 ) + 4ζ 4 4ζ (4) ω BW = ω OL GdB [ 6dB, 7.5dB] if φ OL [ 35, 225 ] (5) Lag compensation: Upper break one decade below ωc: = 0.ωc (6) Lead compensation: ( sin φ max β = + sin φmax Lead-Lag compensation: G Lead-Lag (s) = T2 φmax = φ Md φ Mω c + [5 0 ] (7) ) s + T s + γ T (8) ωmax = (9) T β s + T 2 s + γt γ > (0) 2 3 UiA Department of Engineering, University of Agder MAS07 - L0a
12 Lead Compensator Structure Graph Second order approximation: ζ = ln(%os/00) () π 2 + ln 2 (%OS/00) 2ζ φ M = tan 2ζ ζ 4 ω BW = 4 Tsζ π ω BW = Tp ζ 2 ( 2ζ 2 ) + 4ζ 4 4ζ (3) ( 2ζ 2 ) + 4ζ 4 4ζ (4) ω BW = ω OL GdB [ 6dB, 7.5dB] if φ OL [ 35, 225 ] (5) Lead compensation: G Lead (s) = β s + T s + βt β < (6) Gc(jωmax) = (7) β ( ) sin φ max β = (8) + sin φmax ωmax = T β (9) φmax = φ Md φ M + 0 (0) 6 UiA Department of Engineering, University of Agder MAS07 - L9b
Reguleringsteknikk Sammendrag REVISJON ØRJAN LANGØY OLSEN
2015 Reguleringsteknikk Sammendrag REVISJON 1.1.1 ØRJAN LANGØY OLSEN Innhold Ordliste... 2 PID (Proporsjonal Integral Derivasjon) regulator... 3 Ziegler-Nichols Closed-loop tuning... 3 Ziegler-Nichols
2003/05-001: Dynamics / Dynamikk
Institutt for kjemisk prosessteknologi SIK 050: Prosessregulering 003/05-001: Dynamics / Dynamikk Author: Heinz A Preisig [email protected] English: Given the transfer function g(s) := s (
Løsning til eksamen i EE4107 Kybernetikk- videregående
Høgskolen i elemark. Finn Haugen([email protected]). Løsning til eksamen i EE4107 Kybernetikk- videregående Eksamensdato: 11.6 2009. Varighet 3 timer. Vekt i sluttkarakteren: 70%. Hjelpemidler: Ingen
Løsningsforslag øving 6
TTK5 Reguleringsteknikk, Vår Løsningsforslag øving Oppgave Vi setter inntil videre at τ = e τs. a) Finn først h s) gitt ved h s) = T i s T s) + T i s) ) ) ) ) + ζ s ω + s ω Vi starter med amplitudeforløpet.
Frequency Response and Stability Analysis
Control Engineering Frequency Response and Stability Analysis Hans-Petter Halvorsen Dataverktøy Spesialtilfelle MathScript LabVIEW Differensial -likninger Tidsplanet Laplace 2.orden 1.orden Realisering/
Obligatorisk oppgave nr 3 FYS Lars Kristian Henriksen UiO
Obligatorisk oppgave nr 3 FYS-13 Lars Kristian Henriksen UiO 11. februar 15 Diskusjonsoppgaver 1 Fjerde ordens Runge-Kutta fungerer ofte bedre enn Euler fordi den tar for seg flere punkter og stigningstall
a) The loop transfer function with the process model with a P controller is given by h 0 (s) = h c (s)h p (s) = K p (1 + s)(2 + s) K p
Master study Systems and Control Engineering Department of Technology Telemark University College DDiR, November 9, 006 SCE1106 Control Theory Solution Exercise 8 Task 1 a) The loop transfer function with
KYBERNETIKKLABORATORIET. FAG: Dynamiske systemer DATO: OPPG.NR.: DS4 FREKVENS OG SPRANGRESPONSANALYSE
KYBERNETIKKLABORATORIET FAG: Dynamiske systemer DATO: 08.14 OPPG.NR.: DS4 FREKVENS OG SPRANGRESPONSANALYSE BESVARELSE: Protokollen skal besvare alle spørsmål. Diagrammene skal ha definerte akser og forklarende
Prøveeksamen 2. Elektronikk 24. mars Løsningsforslag
Prøveeksamen Elektronikk 4. mars øsningsforslag OPPGAVE a) V SB 8 V/ 8 8 V/56 3,5 mv. b) xc 9 Utgangsspenning V o (9/56) 8 V 6 V. c) Utgangsspenning V o skal være lik for påtrykk x. Offset-feilen i SB
FILTERDESIGN Ukeoppgavene skal leveres som selvstendige arbeider. Det forventes at alle har satt seg inn i instituttets krav til innleverte oppgaver: Norsk versjon: http://www.ifi.uio.no/studinf/skjemaer/erklaring.pdf
Formelsamling i Regtek. Andreas Klausen. (Kontrollør Sondre S. Tørdal) 4. september 2012
Formelamling i Regtek Andrea Klauen (Kontrollør Sondre S. Tørdal) 4. eptember 0 Bruk på eget anvar. Innhold Ziegler Nochlie PID tuning 3. Open Loop.............................. 3. Cloed loop..............................
Transformanalyse. Jan Egil Kirkebø. Universitetet i Oslo 17./23. september 2019
Transformanalyse Jan Egil Kirkebø Universitetet i Oslo [email protected] 17./23. september 2019 Jan Egil Kirkebø (Inst. for Inf.) IN3190/IN4190 17./23. september 2019 1 / 22 Egenfunksjoner til LTI-systemer
LABORATORIEØVELSE B FYS LINEÆR KRETSELEKTRONIKK 1. LAPLACE TRANSFORMASJON 2. AC-RESPONS OG BODEPLOT 3. WIENBROFILTER
FYS322 - LINEÆR KRETSELEKTRONIKK LABORATORIEØVELSE B. LAPLACE TRANSFORMASJON 2. AC-RESPONS OG BODEPLOT 3. WIENBROFILTER Maris Tali(maristal) [email protected]. uio.no Eino Juhani Oltedal(einojo)
Forslag B til løsning på eksamen FYS august 2004
Forslag B til løsning på eksamen FYS20 3 august 2004 Oppgave (Sweeper frekvensområdet 00Hz til 0MHz Figur viser et båndpassfilter. Motstandene R og R2 har verdi 2kΩ. Kondensatorene C = 00nF og C2 = 0.nF.
Frequency Response and Stability Analysis. Hans- Pe9er Halvorsen, M.Sc.
Frequency Response and Stability Analysis Hans- Pe9er Halvorsen, M.Sc. Tilstandsrom- modeller Dataverktøy SpesialElfelle MathScript LabVIEW Differensial - likninger Tidsplanet Laplace Blokk- diagrammer
FILTERDESIGN Ukeoppgavene skal leveres som selvstendige arbeider. Det forventes at alle har satt seg inn i instituttets krav til innleverte oppgaver: Norsk versjon: http://www.ifi.uio.no/studinf/skjemaer/erklaring.pdf
Løsningsforslag øving 4
TTK405 Reguleringsteknikk, Vår 206 Oppgave Løsningsforslag øving 4 Når k 50, m 0, f 20, blir tilstandsromformen (fra innsetting i likning (3.8) i boka) Og (si A) blir: (si A) [ ] [ ] 0 0 ẋ x + u 5 2 0.
SCE1106 Control Theory
Master study Systems and Control Engineering Department of Technology Telemark University College DDiR, October 26, 2006 SCE1106 Control Theory Exercise 6 Task 1 a) The poles of the open loop system is
Løsningsforslag til hjemmeeksamen i INF3440 / INF4440
Løsningsforslag til hjemmeeksamen i INF3 / INF Jan Egil Kirkebø 7. oktober 3 Oppgave a π = 9 n= (n)!(3 + 39n) (n!) 39 n Srinivasa Ramanujan Vi ser at første dag i 999 har index 5, mens siste registrerte
Kap. 14 Mekaniske svingninger. 14. Mekaniske svingninger. Vi skal se på: Udempet harmonisk svingning. kap
kap14 1.11.1 Kap. 14 Mekaniske svingninger Mye svingning i dagliglivet: Pendler Musikkinstrument Elektriske og magnetiske svingninger Klokker Termiske vibrasjoner (= temperatur) Måner og planeter Historien
UNIVERSITETET I OSLO.
UNIVERSITETET I OSLO. Det matematisk - naturvitenskapelige fakultet. Eksamen i : Eksamens dag : Tid for eksamen : Oppgavesettet er på 6 sider Vedlegg : Tillatte hjelpemidler : FYS1210-Elektronikk med prosjektoppgaver
g m = I C / V T g m = 1,5 ma / 25 mv = 60 ms ( r π = β / g m = 2k5 )
Forslag til løsning på eksamensoppgavene i FYS0 vår 0 8.6 Oppgave Figure viser en enkel transistorforsterker med en NPNtransistor N Transistoren har en oppgitt strømforsterkning β = 50. Kondensatoren C
Fakultet for teknologi, kunst og design Teknologiske fag
Fakultet for teknologi, kunst og design Teknologiske fag Ny/utsatt eksamen i: Elektronikk Målform: Bokmål Dato: 8. juli 015 Tid: 0900-100 Antall sider (inkl. forside og 1 side Vedlegg): 5 Antall oppgaver:
Løsningsforslag Dataøving 2
TTK45 Reguleringsteknikk, Vår 6 Løsningsforslag Dataøving Oppgave a) Modellen er gitt ved: Setter de deriverte lik : ẋ = a x c x x () ẋ = a x + c x x x (a c x ) = () x ( a + c x ) = Det gir oss likevektspunktene
Systemidentifikasjon Oppgaver
University College of Southeast Norway Systemidentifikasjon Oppgaver HANS-PETTER HALVORSEN http://home.hit.no/~hansha Innholdsfortegnelse 1 Innledning... 3 2 Minste kvadraters metode... 4 3 Validering...
Dagens temaer. Definisjon av z-transformasjonen. Tema. Time 5: z-transformasjon og frekvens transformasjon. Fra forrige gang
Dagens temaer Time 5: z-transformasjon og frekvens transformasjon Andreas [email protected], NF3470 fi/uio September 2009 Fra forrige gang Kausalitet, stabilitet og inverse systemer Z 1 { }: nvers z-transformasjon
Kapittel 5. Frekvensrespons. Beregningavfrekvensresponsfrasignaler. Figur 25 viser sammenhørende inngangssignal og utgangssignal for et system.
Kapittel 5 Frekvensrespons Oppgave5.1 Beregningavfrekvensresponsfrasignaler Figur 25 viser sammenhørende inngangssignal og utgangssignal for et system. Figur 25: Oppgave 5.1: Inngangssignalet u og utgangssignalet
Kap. 14 Mekaniske svingninger
Kap. 14 Mekaniske svingninger Mye svingning i dagliglivet: Pendler Musikkinstrument Elektriske og magnetiske svingninger Klokker Termiske vibrasjoner (= temperatur) Måner og planeter Historien og økonomien
UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet Eksamen i AST5220/9420 Kosmologi II Eksamensdag: Fredag 11. juni 2010 Tid for eksamen: 09.00 12.00 Oppgavesettet er på 4 sider. Vedlegg:
Systemidentifikasjon Oppgaver
Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics Systemidentifikasjon Oppgaver HANS-PETTER HALVORSEN, 2012.03.16 Faculty of Technology, Postboks
Kap. 14 Mekaniske svingninger
Kap. 14 21.11.213 Kap. 14 Mekaniske svingninger Mye som svinger i dagliglivet: Pendler Musikkinstrument Elektriske og magnetiske svingninger Klokker Termiske vibrasjoner (= temperatur) Måner og planeter
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Eksamensdato: 11.12.2012 Varighet/eksamenstid: Emnekode: Emnenavn: Klasse(r): 4 timer EDT210T-A Grunnleggende elektronikk 2EL Studiepoeng: 7,5
Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 3
Løsning av utvalgte øvingsoppgaver til Sigma R kapittel.a cos + + sin + = cos cos sin sin + sin cos + cos sin = cos sin + sin + cos = cos + = cos = cos b sin + = sin sin sin = sin = sin = sin =,7 =,7 +
Øving 6, løsningsforslag
Inst. for teknisk kybernetikk Fag TELE2001 Reguleringsteknikk Øving 6, løsningsforslag Revidert sist Fredrik Dessen 2017-11-08 I løsningsforslaget til øving 2, oppgave 2.3 finner vi overføringsfunksjonene
NTNU Fakultet for teknologi
NTNU Fakultet for teknologi Eksamensdato: 7. juni 2016 Fag: Faglærer: Løsningsforslag, versjon 6 TELE2001 Reguleringsteknikk Fredrik Dessen Del 1. Enkle overføringsfunksjoner (25%) I disse oppgavene skal
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF347/447 Digital signalbehandling Eksamensdag:. desember 5 Tid for eksamen: 9. 3. Oppgavesettet er på 7 sider. Vedlegg: Ingen
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF347/447 Digital signalbehandling Eksamensdag: 1. desember 16 Tid for eksamen: 14.3 18.3 Oppgavesettet er på 8 sider. Vedlegg:
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Eksamensdato: 13.12.2011 Varighet/eksamenstid: Emnekode: Emnenavn: Klasse(r): 4 timer EDT210T-A Grunnleggende elektronikk 2EL Studiepoeng: 7,5
Løsningsforslag til eksamen FY108 høsten 2003
Løsningsforslag til eksamen FY08 høsten 003 Figur viser et båndpassfilter. Motstandene R og R har verdi kω. Kondensatorene C = µf og C = 0,nF. Signalkilden leverer et AC-signal med spissverdi (peakvalue)
Uke 5: Analyse i z- og frekvensdomenet
Uke 5: Analyse i z- og frekvensdomenet Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/32 Dagens temaer Fra forrige gang Kausalitet, stabilitet og inverse systemer
Forslag til løsning på Eksamen FYS1210 våren 2008
Oppgave 1 Forslag til løsning på Eksamen FYS1210 våren 2008 1a) Hvor stor er strømmen gjennom? 12 ma 1b) Hvor stor er strømmen gjennom? 6 ma 1c) Hva er spenningen i punktene AA og BB målt i forhold til
LØSNINGSFORSLAG, EKSAMEN I ALGORITMER OG DATASTRUKTURER (IT1105)
Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 8 Faglig kontakt under eksamen: Magnus Lie Hetland LØSNINGSFORSLAG, EKSAMEN I ALGORITMER OG DATASTRUKTURER
Løsningsforslag Eksamen 20. desember 2012 FY2045/TFY4250 Kvantemekanikk I
Eksamen FY045/TFY450 0. desember 0 - løsningsforslag Oppgave Løsningsforslag Eksamen 0. desember 0 FY045/TFY450 Kvantemekanikk I a. For x < 0 er potensialet lik null. (i) For E > 0 er da ψ E = (m e E/
LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag 3. desember 2007 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 7 59 6 6 / 45 45 55 LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag.
Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011
Derivasjon Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 2. september 20 Kapittel 3.7. Derivasjon av inverse funksjoner 3 Derivasjon av inverse til deriverbare funksjoner
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 11. juni 27 Tid for eksamen: 14.3 17.3 Oppgavesettet er på 5 sider. Vedlegg: INF 347 / INF 447 Digital Signalbehandling
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Eksamensdato: 14.12.2010 Varighet/eksamenstid: Emnekode: 4 timer EDT210T-A Emnenavn: Elektronikk 1 Klasse(r): 2EL Studiepoeng: 7,5 Faglærer(e):
Eksamensoppgave i TMA4265 Stokastiske prosesser
Institutt for matematiske fag Eksamensoppgave i TMA4265 Stokastiske prosesser Faglig kontakt under eksamen: Andrea Riebler Tlf: 4568 9592 Eksamensdato: 16. desember 2013 Eksamenstid (fra til): 09:00 13:00
IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer
Eksamen 8. desember 16 Eksamenstid 4 timer IR151 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del uten bruk av hjelpemidler. Du kan bare bruke
Oppgaven må gis etter at vi har gjennomgått bodeplot for resonanskretser. Anta at opampen er ideell og kun fungerer som en ren forsterker Rf
Oppgaver med løsningsforslag FYS30 H009 Uke 40 H.Balk 4.4 Bodeplot for krets med reelle og komplekse poler Oppgaven må gis etter at vi har gjennomgått bodeplot for resonanskretser Anta at opampen er ideell
MEK4510 Svingninger i konstruksjoner
MEK4510 Svingninger i konstruksjoner H. Osnes Avdeling for mekanikk, Matematisk institutt Universitetet i Oslo MEK4510 p. 1 Generelt om kurset Informasjon tilgjengelig fra: www.uio.no/studier/emner/matnat/math/mek4510/v11/
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Eksamensdato: 0.1.009 Varighet/eksamenstid: Emnekode: 5 timer EDT10T Emnenavn: Elektronikk 1 Klasse(r): EL Studiepoeng: 7,5 Faglærer(e): ngrid
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3440/4440 Signalbehandling Eksamensdag: xx. desember 007 Tid for eksamen: Oppgavesettet er på 6 sider. Vedlegg: Tillatte hjelpemidler:
Forslag til løsning på eksamen FYS1210 våren Oppgave 1
Forslag til løsning på eksamen FYS1210 våren 201 Oppgave 1 Nettverksanalyse. Legg spesielt merke til diodenes plassering. Figur 1 viser et nettverk bestående av en NPN silisium transistor Q1 ( β = 200
Generell informasjon om faget er tilgjengelig fra It s learning.
Stavanger,. oktober 3 Det teknisknaturvitenskapelige fakultet ELE5 Signalbehandling, 3. Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 4. Frekvensrespons for system.....................
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Exam: ECON320/420 Mathematics 2: Calculus and Linear Algebra Eksamen i: ECON320/420 Matematikk 2: Matematisk analyse og lineær algebra Date of exam: Friday, May
Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT
Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Øving 12; løysing Oppgåve 0 Denne oppgåva er ein smakebit på den typen fleirvalsspørsmål som skal utgjera 40 % av eksamen. Berre eitt av svaralternativa er
Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning. systemidentifikasjon fra sprangrespons.
Stavanger, 29. september 2016 Det teknisknaturvitenskapelige fakultet ELE620 Systemidentifikasjon, 2016. Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning.
UNIVERSITETET I OSLO.
UNIVERSITETET I OSLO. Det matematisk - naturvitenskapelige fakultet. Eksamen i : FY-IN 204 / FY108 Eksamensdag : 16 juni 2003 Tid for eksamen : Kl.0900-1500 Oppgavesettet er på 5 sider. Vedlegg : Logaritmepapir
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3440/4440 Signalbehandling Eksamensdag: 11. desember 006 Tid for eksamen: 15.30 18.30 Oppgavesettet er på 7 sider. Vedlegg:
INF1411 Obligatorisk oppgave nr. 4
INF1411 Obligatorisk oppgave nr. 4 Fyll inn navn på alle som leverer sammen, 2 per gruppe (1 eller 3 i unntakstilfeller): 1 2 3 Informasjon og orientering I denne oppgaven skal du lære litt om responsen
Fakultet for teknologi, kunst og design Teknologiske fag
Fakultet for teknologi, kunst og design Teknologiske fag Ny og utsatt eksamen i: Elektronikk Målform: Bokmål Dato: 7. august 2013 Tid: 0900-1200 Antall sider (inkl. forside): 5 (inkludert Vedlegg 1 side)
Fakultet for teknologi, kunst og design Teknologiske fag
Fakultet for teknologi, kunst og design Teknologiske fag Eksamen i: Elektronikk Målform: Bokmål Dato: 24. mai 2017 Tid: 3 timer/0900-1200 Antall sider (inkl. forside): 5 (inkludert Vedlegg 1 side) Antall
Del 1. Standard overføringsfunksjoner (25%)
Eksamensdato: 8. desember 2015 HØGSKOLEN I SØR-TRØNDELAG Fakultet for teknologi Fag: Faglærer: Løsningsforslag versjon 5 TELE2001 Reguleringsteknikk Fredrik Dessen Del 1. Standard overføringsfunksjoner
Control Engineering. MathScript. Hans-Petter Halvorsen
Control Engineering MathScript Hans-Petter Halvorsen Dataverktøy MathScript LabVIEW Differensial -likninger Tidsplanet Laplace 2.orden 1.orden Realisering/ Implementering Reguleringsteknikk Serie, Parallel,
Dette er et utdrag fra kapittel 6 i boka: Reguleringsteknikk, skrevet av. Per Hveem og Kåre Bjørvik
Dette er et utdrag fra kapittel 6 i boka: Reguleringsteknikk, skrevet av Per Hveem og Kåre Bjørvik Kapittelnummering og eksempelnummering stemmer ikke overens med det står i boka. 1 5.1 Fra overføringsfunksjon
Contents. Oppgavesamling tilbakekobling og stabilitet. 01 Innledende oppgave om ABC tilbakekobling. 02 Innledende oppgave om Nyquist diagram
Contents Oppgavesamling tilbakekobling og stabilitet... Innledende oppgave om ABC tilbakekobling... Innledende oppgave om Nyquist diagram... 3 Bodeplott og stabilitet (H94 5)... 4 Bodediagram og stabilitet
Fasit til midtveiseksamen
Fasit til midtveiseksamen INF344/444 Signalbehandling 2. november 24 Oppgave Betrakt systemet x(n) T y (n) med y(n) = 4 5 [x(n+)] 2. Avgjør og begrunn ditt svar om hvorvidt dette systemet er. lineært,
Hjemmeeksamen TTK 4190 NavFart. 1mars2004
Hjemmeeksamen TTK 490 NavFart 6664 mars004 Contents Teori. Rotasjonsmatrise.... Invariansavenhetskaternionen... 3.3 Elementærrotasjon... 4.4 Egenskaptilrotasjonsmatrisen... 4.5 Kvarternionerpropagering...
Løsningsforslag AA6524 Matematikk 3MX Elever AA6526 Matematikk 3MX Privatister eksamensoppgaver.org
Løsningsforslag AA6524 Matematikk MX Elever - 05.12.2007 AA6526 Matematikk MX Privatister - 05.12.2007 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk
SLUTTPRØVE KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
1 SLUTTPRØVE EMNE: EE417 Kybernetikk videregående LÆRER Kjell Erik Wolden KLASSE(R): IA, EL DATO: 17.1.1 PRØVETID, fra - til (kl.): 9. 1. Oppgaveettet betår av følgende: Antall ider (inkl.vedlegg): 11
Eksamensoppgave i TMA4265 Stokastiske Prosesser
Institutt for matematiske fag Eksamensoppgave i TMA4265 Stokastiske Prosesser Faglig kontakt under eksamen: Jo Eidsvik Tlf: 901 27 472 Eksamensdato: Desember 1, 2016 Eksamenstid (fra til): 09:00 13:00
Innhold Oppgaver om AC analyse
Innhold Oppgaver om AC analyse 30 a) Finn krets og bodeplot vedhjelp av målt impulsrespons.... 30 b) Finn krets og bodeplot vedhjelp av målt respons.... 30 Gitt Bodeplot, Del opp og finn systemfunksjon...
LØSNINGSFORSLAG TIL SIGNALBEHANDLING 1 JUNI 2010
LØSNINGSFORSLAG TIL SIGNALBEHANDLING JUNI Løsningsforslag til eksamen i Signalbehandling, mai Side av 5 Oppgave a) Inngangssignalet x(t) er gitt som x( t) = 5cos(π t) + 8cos(π 4 t). Bruker Eulers formel
Fakultet for teknologi, kunst og design Teknologiske fag
Fakultet for teknologi, kunst og design Teknologiske fag Ny og utsatt eksamen i: Elektronikk Målform: Bokmål Dato: 1. august 01 Tid: 0900-100 Antall sider (inkl. forside): 5 (inkludert Vedlegg 1 side)
NB! Vedlegg 2 skal benyttes i forbindelse med oppgave 3a), og vedlegges besvarelsen.
SLUTTPRØVE EMNE: EE407 Kybernetikk videregående LÆRER Kjell Erik Wolden KLASSE(R): IA, EL DATO: 0..0 PRØVETID, fra - til (kl.): 9.00.00 Oppgavesettet består av følgende: Antall sider (inkl. vedlegg): 0
Studere en Phase Locked Loop IC - LM565
Kurs: FYS3230 Sensorer og måleteknikk Gruppe: Gruppe-dag: Oppgave: LABORATORIEØVELSE NR 5 Omhandler: Studere en Phase Locked Loop IC - LM565 Frekvensmodulert sender og mottager for Frequency Shift Keying
Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT
Elektrisitetslære TELE00-A 3H HiST-AFT-EDT Øving ; løysing Oppgåve 0 Denne oppgåva er ein smakebit på den typen fleirvalsspørsmål som skal utgjera 40 % av eksamen. Berre eitt av svaralternativa er rett;
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Eksamensdato: 10.desember 2013 Varighet/eksamenstid: 5 timer Emnekode: TELE 2002 Emnenavn: Elektronikk Klasse(r): Studiepoeng: 10 Faglærer(e):
Det fysiske laget, del 2
Det fysiske laget, del 2 Kjell Åge Bringsrud (med foiler fra Pål Spilling) 1 Pulsforvrengning gjennom mediet Linje g(t) innsignal Dempning A(f) v(t) utsignal A(f) 0% 50% Frekvensresponsen Ideell Frekv.
LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK Mandag 10. desember 2007 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK
Uke 6: Analyse i frekvensdomenet
Uke 6: Analyse i frekvensdomenet Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/26 Dagens temaer Fra forrige gang Frekvensrespons funksjonen Fourier rekker og
Del 1. Standard overføringsfunksjoner (25%)
Eksamensdato: 8. desember 2015 HØGSKOLEN I SØR-TRØNDELAG Fakultet for teknologi Fag: Faglærer: Løsningsforslag versjon 2 TELE2001 Reguleringsteknikk Fredrik Dessen Del 1. Standard overføringsfunksjoner
NORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller
NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 97012355 EKSAMEN I FY2045/TFY4250 KVANTEMEKANIKK
Forelesning nr.11 INF 1411 Elektroniske systemer
Forelesning nr.11 INF 1411 Elektroniske systemer Operasjonsforsterkere 1 Dagens temaer Ideel operasjonsforsterker Operasjonsforsterker-karakteristikker Differensiell forsterker Opamp-kretser Dagens temaer
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON2915 Vekst og næringsstruktur Exam: ECON2915 - Growth and business structure Eksamensdag: Mandag 3. desember Sensur kunngjøres: 18. desember 2007
z = a + jb Mål Komplekse tall: Sum og produkt Komplekse tall
Mål IN3190/4190 Digital signalbehandling Andreas Austeng og Stine Hverven (INF3470/4470, H18). Repetisjon av komplekse tall og trigonometri Beherske komplekse tall. Beherske trigonometriske funksjoner.
TFY4160 Bølgefysikk/FY1002 Generell Fysikk II 1. Løsning Øving 2. m d2 x. k = mω0 2 = m. k = dt 2 + bdx + kx = 0 (7)
TFY4160 Bølgefysikk/FY100 Generell Fysikk II 1 Løsning Øving Løsning oppgave 1 Ligning 1) i oppgaveteksten er i dette tilfellet: Vi setter inn: i lign. 1) og får: m d x + kx = 0 1) dt x = A cosω 0 t +
EKSAMEN I FAG TMA4240 STATISTIKK
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglige kontakter under eksamen: Jo Eidsvik 90127472 Arild Brandrud Næss 99538294 EKSAMEN I FAG TMA4240 STATISTIKK
Fysikkolympiaden 1. runde 27. oktober 7. november 2008
Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Universitetet i Oslo Fysikkolympiaden 1. runde 27. oktober 7. november 2008 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner
Ny og utsatt eksamen i Elektronikk 28. Juli 2015. Løsningsforslag Knut Harald Nygaard
Ny og utsatt eksamen i Elektronikk 28. Juli 205 Løsningsforslag Knut Harald Nygaard Oppgave (30 % En operasjonsforsterker, som antas ideell, er benyttet i figuren nedenfor. V a Transferfunksjonen: V (s=
