Kap. 14 Mekaniske svingninger
|
|
- Gunvor Arnesen
- 7 år siden
- Visninger:
Transkript
1 Kap. 14 Mekaniske svingninger Mye svingning i dagliglivet: Pendler Musikkinstrument Elektriske og magnetiske svingninger Klokker Termiske vibrasjoner (= temperatur) Måner og planeter Historien og økonomien m.m. Farlige svingninger:
2 Tacoma Narrows Bridge on the morning of Nov. 7, 194. The bridge was an unusually light design, and, as engineers discovered, peculiarly sensitive to high winds. Rather than resist them, as most bridges do, the Tacoma Narrows tended to sway and vibrate. On November 7, in a 4-mile-per-hour wind, the center span began to sway, then twist. The combined force of the winds and internal stress was too great for the bridge, and it self-destructed. No one was killed, as the bridge had been closed because of previous swaying. This is one of the best-known and most closely studied engineering failures, thanks in large part to the film and photographs that recorded the collapse. Full video:
3 Brusvinginger i Norge, stormen «Lena» 9. aug. 214, Tofterøybrua mellom Sotra og Tofterøya utenfor Bergen:
4 14. Mekaniske svingninger Vi skal se på: Udempet harmonisk svingning x(t) = A cos (ω t + φ) Dempet svingning x(t) = A e -γt cos (ω d t + φ) Tvungen svingning (resonans) Eksempler: Fjærpendel Matematisk pendel Fysisk pendel Y & F: Kap. 14 (mer enn pensum) L & L: Kap. 9 (mer enn pensum, spesielt å løse diff.likn.)
5 Harmonisk oscillasjon (SHM = Simple Harmonic Motion) Eks: Masse-fjær-pendel (friksjonsfri) Fjærkrefter: F x = - k Δx Newton 2 gir: d 2 /dt 2 x + k/m x = (14.4) m m F x
6 Newton 2 gir: d 2 /dt 2 x +ω 2 x = (14.4) der ω 2 = k/m (14.1) løsning: x(t) = A cos (ω t + φ) (14.13) Frekvens ω = k/m Stiv fjær: stor k, høy frekvens Stor masse: stor m, liten frekvens -φ
7 I romfartøy: Tyngden mangler. Måling av masse ved SHM: m = k / ω 2 Kjent k Måler ω
8 Harmonisk svingning: x(t) = A cos (ω t + φ) (14.13) startamplitude = x = x(t=) = A cos φ (*) startfart = v = dx/dt(t=) = -A ω sin φ (**) gir: tan x v A x v / (14.18) (14.19) v x φ A x(t) = x x cos ω t Enkle eksempler = π/2 v /ω v /ω sin ω t
9 Posisjon x(t) = A cos (ω t + φ) (14.13) φ = fasevinkel, (= i grafen) Hastighet v(t) = dx/dt = - Aω sin (ω t + φ) (14.15) Akselerasjon a(t) = dv/dt = - Aω 2 cos (ω t + φ) = - ω 2 x (Fjærpendel: ω 2 = k/m ) (14.16)
10 x(t) x E p og E k s.f.a tid E p = ½ kx 2 E p E k = ½ mv 2 E k E tot = E p (t)+e k (t) = konstant
11 Energi i SHM (Simple Harmonic Motion) [Y&F ch. 14.3] E p og E k s.f.a posisjon E tot = E p (t)+e k (t) = konstant Pot. energi U = E p og kinetisk energi K = E k
12 Eksempel x Vertikal SHM: Vil kula lette fra underlaget? Letter når klossens akselerasjon nedover er større enn 9,81 m/s 2
13 Letter på toppen eller like før x Posisjon Letter! Akselerasjon Aksel oppover Aksel nedover Letter når a g = 9,81 m/s 2
14 Matematisk pendel (14.5 Simple pendulum) θ L F=-mg sinθ For små utsving (sin θ θ ) : d 2 /dt 2 θ +ω 2 θ = med ω 2 = g/l T = 2π/ω mg cosθ mg
15 Feil ved f.eks. 3 O : sin 3 O = sin π/6 =,5 π/6 =,524 (kun 5 % feil) F θ = -mg sin θ F θ -mg θ (Y&F Fig )
16 Matematisk pendel Periode ved store vinkelamplituder θ : T T 1 sin sin T 2 2 L g (14.35) Store utsving: Ikke-harmonisk svingning. Behandles numerisk (Matlab) i Øving 7, opg.4. 1 o 2 o 3 o 4 o 5 o Amplitude θ
17 A Χ θ d Fysisk pendel (14.6 Physical pendulum) N2-rot gir for små utsving: d 2 /dt 2 θ +ω 2 θ = cm θ ω 2 = mgd/i T 2 2 I mgd mg
18 Svingende fjøl T 2 I mgd (13.39) T 2 I( x) mgx L/2 x L/2 A cm Treg.mom. om hull A: I(x) = I cm + mx 2 (Steiners sats) Treg.mom. om c.m.: I cm = 1/12 m (L 2 +b 2 ) 1/12 m L 2 T(x) med L = 1, m d = x b << L Minimum ved x = L/ 12
19 14.7. Dempet svingning Svingelikning: d 2 /dt 2 x + 2γ d/dt x + ω 2 x = (14.41) γ << ω svak dempet: x(t) = A e γt cos(ω d t + φ) ω d2 = ω 2 - γ 2 (14.43) γ = ω kritisk dempet: x(t) = (A + t B) e γt γ > ω overkritisk dempet: x( t) Ae e Be e t t t t Fra: 2 2
20 14.8. Tvungen svingning. Resonans Svingelikning: d 2 /dt 2 x + 2γ d/dt x + ω 2 x = f cos ωt bx kx Etter kort tid bestemmer pådraget frekvensen: x(t) = A cos(ω t - δ) F cos t Amplitude A og fase δ bestemmes av ω og γ: A ( ) (2 ) tan f (14.46) Utledning i eget notat under forelesningsplan Resonans (stor A ) når ω = ω
21 A ( ) (2 ) f i log-log-plot med ζ = γ/ω = 1/2 (svært svak demping) A ( ) A () ω /ω
22 A ( ) A () Figurer: ζ = γ/ω A ( ) (2 ) f A ( ) A () ω /ω δ tan vanlig bruk : ω /ω
23 2A / mm (peak-to-peak) 12 Resonanstopp målt for lab-svingeapparat. Pådragsamplitude 4 mm. Liten demping (15 mm gap mellom magneter) Halvverdibredde ca,2 Hz ,5 1 1,5 2 2,5 3 f 1,55 Hz f /Hz
24 14. Mekaniske svingninger. Oppsummering 1 Udempet harmonisk oscillasjon (SHM) Kriterium SHM: Krafta som trekker mot likevekt er prop. med avstand x (eks. F = - kx ) Dette gir fra Newton 2: d 2 /dt 2 x +ω 2 x = med løsning: x(t) = A cos (ω t + φ) masse/fjær: ω 2 = k/m tyngependel (matematisk): ω 2 = g/l fysisk pendel: ω 2 = mgl/i Dempet harmonisk oscillasjon d 2 /dt 2 x + 2γ d/dt x + ω 2 x = med løsning: x(t) = A e -γt cos (ω d t + φ) (svak demping γ < ω ) ω d2 = ω 2 - γ 2
25 14. Mekaniske svingninger. Oppsummering 2 Tvungen svingning (resonans) d 2 /dt 2 x + 2γ d/dt x + ω 2 x = F /m cos ωt med løsning x(t) = A cos(ω t - δ) F / m A ( ) (2 ) 2 tan 2 2 Resonans (stor A ) når ω = ω A ( ) A () ω /ω Energi: Totalenergi E tot = E k (t) + E p (t) svinger mellom E k og E p E tot konstant for udempa svingning E p (t) prop. med x 2 for alle svingninger Fjærpendel: E p (t)= ½ k x 2
26 Energi: Totalenergien E tot = E k (t) + E p (t) er konstant og svinger mellom E k (max) og E p (max) E p (t) prop. med (utslag) 2 for alle svingninger: Fjærpendel: E p (x) = ½ k x 2 Torsjonspendel: E p (θ) = ½ κ θ 2 Tyngdependel L θ Lcosθ E p (θ) = mgh = mgl(1- cosθ) mgl/2 θ 2 L cosθ 1 ½ θ 2 h = L - Lcosθ
27 Vertikal svingning. Flervalgsoppgave fra en eksamen Ei pakke vaskemiddel står oppå en vaskemaskin som er i ferd med å sentrifugere på 12 omdreininger per minutt. Vaskemaskinen vibrerer dermed vertikalt med en amplitude på 1, mm. Vil vaskemiddelpakka på noe tidspunkt miste kontakten med underlaget? Hvorfor, evt. hvorfor ikke? A. Ja, fordi vaskemaskinens maksimale akselerasjon overstiger 9,8 m/s 2. B. Ja, fordi vaskemaskinens maksimale hastighet overstiger 9,8 m/s. C. Nei, fordi vaskemaskinens maksimale akselerasjon aldri overstiger 9,8 m/s 2. D. Nei, fordi vaskemaskinens maksimale hastighet aldri overstiger 9,8 m/s. E. Nei, fordi vaskemaskinens maksimale vertikale utsving aldri overstiger 9,8 mm.
28 Vertikal svingning. Flervalgsoppgave fra en eksamen Ei pakke vaskemiddel står oppå en vaskemaskin som er i ferd med å sentrifugere på 12 omdreininger per minutt. Vaskemaskinen vibrerer dermed vertikalt med en amplitude på 1, mm. Vil vaskemiddelpakka på noe tidspunkt miste kontakten med underlaget? Hvorfor, evt. hvorfor ikke? A. Ja, fordi vaskemaskinens maksimale akselerasjon overstiger 9,8 m/s 2. B. Ja, fordi vaskemaskinens maksimale hastighet overstiger 9,8 m/s. Mulige svar C. Nei, fordi vaskemaskinens maksimale akselerasjon aldri overstiger 9,8 m/s 2. D. Nei, fordi vaskemaskinens maksimale hastighet aldri overstiger 9,8 m/s. E. Nei, fordi vaskemaskinens maksimale vertikale utsving aldri overstiger 9,8 mm. SHM: ω = 2πf = 2π 12/6 1/s = 4π 1/s x = A cos(ωt) => a = d 2 x/dt 2 = - ω 2 A cos(ωt) a max = ω 2 A = (4π 1/s) 2,1 m = 15,8 m/s 2 > g => Alt. A
29 Horisontal svingning. Fra en eksamen Oppgave 4 En pakke med masse m er plassert på en horisontal plattform som svinger harmonisk langs bakken med periode T. Friksjonskoeffisienten mellom pakken og plattformen er μ og tyngdens akselerasjon er g. Svingeamplituden A økes nå langsomt (med konstant T). Ved hvilken amplitude A begynner pakken å skli? (Forsøk med en mynt på et papirark.) Friksjonsbegrenset
30 Horisontal svingning. Fra en eksamen Oppgave 4 En pakke med masse m er plassert på en horisontal plattform som svinger harmonisk langs bakken med periode T. Friksjonskoeffisienten mellom pakken og plattformen er μ og tyngdens akselerasjon er g. Svingeamplituden A økes nå langsomt (med konstant T). Ved hvilken amplitude A begynner pakken å skli? (Forsøk med en mynt på et papirark.) Friksjonsbegrenset Pakken akselereres av friksjonskrafta som er max F f = μmg, dvs. dens maksimale akselerasjon den kan følge er a max = F f /m = μg. Akselerasjonens amplitude = ω 2 A, dermed: a max = μg = ω 2 A, som med ω = 2π/T gir A = μg /ω 2 = μg (T/ 2π) 2
Kap. 14 Mekaniske svingninger
Kap. 14 Mekaniske svingninger Mye svingning i dagliglivet: Pendler Musikkinstrument Elektriske og magnetiske svingninger Klokker Termiske vibrasjoner (= temperatur) Måner og planeter Historien og økonomien
DetaljerKap. 14 Mekaniske svingninger. 14. Mekaniske svingninger. Vi skal se på: Udempet harmonisk svingning. kap
kap14 1.11.1 Kap. 14 Mekaniske svingninger Mye svingning i dagliglivet: Pendler Musikkinstrument Elektriske og magnetiske svingninger Klokker Termiske vibrasjoner (= temperatur) Måner og planeter Historien
DetaljerKap. 14 Mekaniske svingninger. 14. Mekaniske svingninger
Kap. 14 8.1.215 Kap. 14 Mekaniske svingninger Mye svingning i dagliglivet: Pendler Musikkinstrument Elektriske og magnetiske svingninger Klokker Termiske vibrasjoner (= temperatur) Måner og planeter Historien
DetaljerKap. 14 Mekaniske svingninger
Kap. 14 21.11.213 Kap. 14 Mekaniske svingninger Mye som svinger i dagliglivet: Pendler Musikkinstrument Elektriske og magnetiske svingninger Klokker Termiske vibrasjoner (= temperatur) Måner og planeter
DetaljerArbeid og energi. Energibevaring.
Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : Potensiell energi E p (x,y,z) dw = de k (Tyngdefelt: E p
DetaljerKap. 3 Arbeid og energi. Energibevaring.
Kap. 3 Arbeid og energi. Energibevaring. Definisjon arbeid, W Kinetisk energi, E k Potensiell energi, E p. Konservative krefter Energibevaring Energibevaring når friksjon. Arbeid = areal under kurve F(x)
DetaljerKap. 6+7 Arbeid og energi. Energibevaring.
TFY4145/FY11 Mekanisk fysikk Størrelser og enheter (Kap 1) Kinematikk i en, to og tre dimensjoner (Kap. +3) Posisjon, hastighet, akselerasjon. Sirkelbevegelse. Dynamikk (krefter): Newtons lover (Kap. 4)
DetaljerFlervalgsoppgave. Arbeid og energi. Energibevaring. Kollisjoner REP Konstant-akselerasjonslikninger. Vi har sett på:
Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : dw = de k Potensiell energi E p (x,y,z) (Tyngdefelt: E p
DetaljerMandag F d = b v. 0 x (likevekt)
Institutt for fysikk, NTNU TFY46/FY: Bølgefysikk Høsten 6, uke 35 Mandag 8.8.6 Dempet harmonisk svingning [FGT 3.7; YF 3.7; TM 4.4; AF.3; LL 9.7,9.8] I praksis dempes frie svingninger pga friksjon, f.eks.
DetaljerEKSAMEN I TFY4145 OG FY1001 MEKANISK FYSIKK
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK LØSNINGSFORSLAG (5 sider): EKSAMEN I TFY445 OG FY00 MEKANISK FYSIKK Fredag 8. desember 2009 kl. 0900-00 Oppgave. Tolv flervalgsspørsmål
DetaljerLøsningsforslag til øving 1
1 FY100/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 01. Løsningsforslag til øving 1 Oppgave 1 a) Vi antar at Hookes lov, F = kx, gjelder for fjæra. Newtons andre lov gir da eller kx = m d x
DetaljerEKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK
TFY4145/FY1001 18. des. 2012 Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Kontakt under eksamen: Jon Andreas Støvneng, telefon: 45 45 55 33 / 73 59 36 63 EKSAMEN I FY1001
DetaljerEKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK
TFY4145/FY1001 18. des. 2012 Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Kontakt under eksamen: Jon Andreas Støvneng, telefon: 45 45 55 33 / 73 59 36 63 EKSAMEN I FY1001
DetaljerØving 2. a) I forelesningene har vi sett at det mekaniske svingesystemet i figur A ovenfor, med F(t) = F 0 cosωt, oppfyller bevegelsesligningen
FY1002/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 2012. Veiledning: Mandag-Tirsdag 3-4. september. Innleveringsfrist: Mandag 10. september kl 12:00. Øving 2 A k b m F B V ~ q C q L R I a)
DetaljerOppsummert: Kap 1: Størrelser og enheter
Oppsummert: Kap 1: Størrelser og enheter s = 3,0 m s = fysisk størrelse 3,0 = måltall = {s} m = enhet = dimensjon = [s] OBS: Fysisk størrelse i kursiv (italic), enhet opprettet (roman) (I skikkelig teknisk
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag 3. desember 2007 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 7 59 6 6 / 45 45 55 LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag.
DetaljerObligatorisk oppgave nr 1 FYS Lars Kristian Henriksen UiO
Obligatorisk oppgave nr 1 FYS-2130 Lars Kristian Henriksen UiO 28. januar 2015 2 For at en kraft skal danne grunnlaget for svingninger, må det virke en kraft som til en hver tid virker inn mot likevektspunktet.
DetaljerKap. 6+7 Arbeid og energi. Energibevaring.
Kap. 6+7 Arbeid og energi. Energibevaring. Definisjon arbeid, W Kinetisk energi, E k Potensiell energi, E p. Konservative krefter Energibevaring Energibevaring når friksjon. F F x Arbeid = areal under
DetaljerTFY4160 Bølgefysikk/FY1002 Generell Fysikk II 1. Løsning Øving 2. m d2 x. k = mω0 2 = m. k = dt 2 + bdx + kx = 0 (7)
TFY4160 Bølgefysikk/FY100 Generell Fysikk II 1 Løsning Øving Løsning oppgave 1 Ligning 1) i oppgaveteksten er i dette tilfellet: Vi setter inn: i lign. 1) og får: m d x + kx = 0 1) dt x = A cosω 0 t +
DetaljerPendler, differensialligninger og resonansfenomen
Pendler, differensialligninger og resonansfenomen Hensikt Oppsettet pa bildet kan brukes til a illustrere ulike fenomen som opptrer i drevede svingesystemer, slik som for eksempel resonans. Labteksten
DetaljerArbeid og energi. Energibevaring.
Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : Potensiell energi E p (x,y,z) dw = de k (Tyngdefelt: E p
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK Mandag 10. desember 2007 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK
DetaljerMandag 21.08.06. Mange senere emner i studiet bygger på kunnskap i bølgefysikk. Eksempler: Optikk, Kvantefysikk, Faststoff-fysikk etc. etc.
Institutt for fysikk, NTNU TFY46/FY2: Bølgefysikk Høsten 26, uke 34 Mandag 2.8.6 Hvorfor bølgefysikk? Man støter på bølgefenoener overalt. Eksepler: overflatebølger på vann akustiske bølger (f.eks. lyd)
DetaljerDenne ligninga beskriver en udempet harmonisk oscillator. Torsjons-svingning. En stav er festet midt på en tråd som er festet i begge ender.
Side av 6 Periodiske svingninger (udempede) Masse og fjær, med fjærkonstant k. Massen glir på friksjonsfritt underlag. Newtons. lov gir: mx kx dvs. x + x 0 hvor ω0 k m som gir løsning: xt () C cos t +
DetaljerUNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FY 5 - Svingninger og bølger Eksamensdag: 5. januar 4 Tid for eksamen: Kl. 9-5 Tillatte hjelpemidler: Øgrim og Lian: Størrelser
DetaljerEKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Torsdag 11. desember 2008 Eksamenstid: 09:00-13:00
Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL Eksamensteksten består av 6 sider inklusiv denne frontsida EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato:
Detaljer5) Tyngdens komponent langs skråplanet, mg sin β, lik maksimal statisk friksjonskraft, f max = µ s N =
FY1001/TFY4145 Mekanisk Fysikk ksamen 9. august 2016 Løsningsforslag 1) Her har vi bevegelse med konstant akselerasjon: v = at = 9.81 0.5 m/s = 4.9 m/s. (Kula er fortsatt i fritt fall, siden h = at 2 /2
DetaljerMandag 04.09.06. Institutt for fysikk, NTNU TFY4160/FY1002: Bølgefysikk Høsten 2006, uke 36
Institutt for fsikk, NTNU TFY4160/FY1002: Bølgefsikk Høsten 2006, uke 36 Mandag 04.09.06 Del II: BØLGER Innledning Bølger er forplantning av svingninger. Når en bølge forplanter seg i et materielt medium,
DetaljerFysikkk. Støvneng Tlf.: 45. Andreas Eksamensdato: Rottmann, boksen 1 12) Dato. Sign
Instituttt for fysikk Eksamensoppgave i TFY4104 Fysikkk Faglig kontakt under eksamen: Jon Andreas Støvneng Tlf.: 45 45 55 33 Eksamensdato: 18. desember 2013 Eksamenstid (fra-til): 0900-1300 Hjelpemiddelkode/Tillattee
DetaljerEKSAMENSOPPGAVE. Fagnr: FO 443A Dato: Antall oppgaver:
Avdeling for ingeniørutdanning EKSAMENSOPPGAVE Fag: FYSIKK/TERMODYNAMIKK Gruppe(r): 1 KA Eksamensoppgaven består av Tillatte hjelpemidler: Oppgave 1 Antall sider inkl forside: 4 Fagnr: FO 443A Dato: 80501
DetaljerEksamensoppgave i TFY4108 Fysikk
Institutt for fysikk Eksamensoppgave i TFY4108 Fysikk Faglig kontakt under eksamen: Førsteamanuensis John Ove Fjærestad Tlf: 97 94 00 36 Eksamensdato: 16 august 2013 Eksamenstid (fra-til): 9-13 Hjelpemiddelkode/Tillatte
DetaljerForelesning, TMA4110 Torsdag 11/9
Forelesning, TMA4110 Torsdag 11/9 Martin Wanvik, IMF Martin.Wanvik@math.ntnu.no (K 2.8) Tvungne svingninger. Resonans. Ser på masse-fjær system påvirket av periodisk ytre kraft: my + cy + ky = F 0 cos
DetaljerTFY4104 Fysikk Eksamen 28. november 2016 Side 13 av 22
TFY4104 Fysikk Eksamen 28. november 2016 Side 13 av 22 FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsområde og de ulike symbolenes betydning antas
DetaljerEKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK
Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL Oppgaver og formler på 5 vedleggsider EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Tirsdag 11 desember
DetaljerTFY4104 Fysikk Eksamen 28. november 2016 Side 13 av 22
TFY4104 Fysikk Eksamen 28. november 2016 Side 13 av 22 FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsområde og de ulike symbolenes betydning antas
DetaljerNewtons 3.lov. Kraft og motkraft. Kap. 4+5: Newtons lover. kap Hvor er luftmotstanden F f størst? F f lik i begge!!
TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn
DetaljerTFY4108 Fysikk: Løysing kontinuasjonseksamen 13. aug. 2014
TFY48 Fysikk: Løysing kontinuasjonseksamen 3. aug. 4 Oppgåve (a) Reknar først ut venstresida av TUSL. Sidan bølgjefunksjonen i dette tilfellet er uavhengig av θ og φ, forsvinn ledda som involverer deriverte
DetaljerEksamensoppgave i TFY4115 FYSIKK
Institutt for fysikk Eksamensoppgave i TFY4115 FYSIKK for MTNANO, MTTK og MTELSYS Faglig kontakt under eksamen: Institutt for fysikk v/jon Andreas Støvneng Tlf.: 454 55 533 Eksamensdato: Lørdag 16. desember
DetaljerTFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 4. m 1 gl = 1 2 m 1v 2 1. = v 1 = 2gL
TFY46 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 4. Oppgave. a) Hastigheten v til kule like før kollisjonen finnes lettest ved å bruke energibevarelse: Riktig svar: C. m gl = 2 m v 2
DetaljerTFY4106 Fysikk. Institutt for fysikk, NTNU. Test 7.
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 7. Oppgave 1 Prinsippet for en mekanisk klokke er et hjul med treghetsmoment I festet til ei spiralfjr som virker pa hjulet med et dreiemoment som er proporsjonalt
DetaljerFY1002/TFY4160 Bølgefysikk. Løsningsforslag til Midtsemesterprøve fredag 15. oktober 2010 kl Oppgavene og et kortfattet løsningsforslag:
Institutt for fysikk, NTNU FY1002/TFY4160 ølgefysikk Høst 2010 FY1002/TFY4160 ølgefysikk Løsningsforslag til Midtsemesterprøve fredag 15. oktober 2010 kl 08.15 09.45 Fasit på side 10. Oppgavene og et kortfattet
DetaljerKap Rotasjon av stive legemer
Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rep) Sentripetalakselerasjon, baneakselerasjon (rep) Rotasjonsenergi E k Treghetsmoment I Kraftmoment τ Rulling Spinn
DetaljerLøsningsforslag til eksamen i FYS1000, 14/8 2015
Løsningsforslag til eksamen i FYS000, 4/8 205 Oppgave a) For den første: t = 4 km 0 km/t For den andre: t 2 = = 0.4 t. 2 km 5 km/t + 2 km 5 km/t Den første kommer fortest fram. = 0.53 t. b) Dette er en
DetaljerLøsningsforslag til ukeoppgave 4
Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 4 Oppgave 4.03 W = F s cos(α) gir W = 1, 2 kj b) Det er ingen bevegelse i retning nedover, derfor gjør ikke tyngdekraften noe arbeid. Oppgave
DetaljerEksamensoppgave i TFY4108 Fysikk
Institutt for fysikk Eksamensoppgave i TFY4108 Fysikk Faglig kontakt under eksamen: Førsteamanuensis John Ove Fjærestad Tlf.: 97 94 00 36 Eksamensdato: 13. august 2014 Eksamenstid (fra-til): 9-13 Hjelpemiddelkode/Tillatte
DetaljerLøsningsforslag til ukeoppgave 2
Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 2 Oppgave 2.15 a) F = ma a = F/m = 2m/s 2 b) Vi bruker v = v 0 + at og får v = 16 m/s c) s = v 0 t + 1/2at 2 gir s = 64 m Oppgave 2.19 a) a =
DetaljerAristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen må trekke med kraft S k
TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn
DetaljerUNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: mars 017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
DetaljerLøsningsforslag til midtveiseksamen i FYS1000, 17/3 2016
Løsningsforslag til midtveiseksamen i FYS1000, 17/3 2016 Oppgave 1 Vi har v 0 =8,0 m/s, v = 0 og s = 11 m. Da blir a = v2 v 0 2 2s = 2, 9 m/s 2 Oppgave 2 Vi har v 0 = 5,0 m/s, v = 16 m/s, h = 37 m og m
DetaljerA) 1 B) 2 C) 3 D) 4 E) 5
Side 2 av 5 Oppgave 1 Hvilket av de følgende fritt-legeme diagrammene representerer bilen som kjører nedover uten å akselerere? Oppgave 2 A) 1 B) 2 C) 3 D) 4 E) 5 En lampe med masse m er hengt opp fra
DetaljerEKSAMEN i TFY4108 FYSIKK
Side 1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL EKSAMEN i TFY4108 FYSIKK Eksamensdato: Fredag 14 desember 01 Eksamenstid: 09:00-13:00 Faglig kontakt under eksamen:
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 6 juni 2017 Tid for eksamen: 14:30 18:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte
DetaljerEksamensoppgave i TFY4108 Fysikk
Institutt for fysikk Eksamensoppgave i TFY4108 Fysikk Faglig kontakt under eksamen: Førsteamanuensis John Ove Fjærestad Tlf.: 97 94 00 36 Eksamensdato: 11. desember 2014 Eksamenstid (fra-til): 9-13 Hjelpemiddelkode/Tillatte
DetaljerLØSNINGSFORSLAG EKSAMEN FYS120 VÅR 2017
LØSNINGSFORSLAG EKSAMEN FYS120 VÅR 2017 Oppgave 1 a) Bruker bevaring av bevegelsesmengde i - og y-retning og velger positiv -akse mot høyre og positiv y-akse oppover, og lar vinkelen være = 24. Dekomponerer
DetaljerRotasjon: Translasjon: F = m dv/dt = m a. τ = I dω/dt = I α. τ = 0 => L = konstant (N1-rot) stivt legeme om sym.akse: ω = konst
Translasjon: Rotasjon: Bevegelsesmengde (linear momentum): p = m v Spinn (angular momentum): L = r m v L = I ω Stivt legeme om sym.akse N2-trans: F = dp/dt Stivt legeme (konst. m): F = m dv/dt = m a N2-rot
DetaljerUNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
DetaljerKap Newtons lover. Newtons 3.lov. Kraft og motkraft. kap 4+5 <file> Hvor er luftmotstanden F f størst?
TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. +3). (Rekapitulasjon) Newtons lover (kap. 4+5) Svingninger (kap. 14) Energi, bevegelsesmengde, kollisjoner (kap.
DetaljerEKSAMEN FAG TFY4160 BØLGEFYSIKK OG FAG FY1002 GENERELL FYSIKK II Onsdag 8. desember 2004 kl Bokmål. K. Rottmann: Matematisk formelsamling
Side 1 av 11 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Førsteamanuensis Knut Arne Strand Telefon: 73 59 34 61 EKSAMEN FAG TFY416 BØLGEFYSIKK OG
DetaljerTMA4110 Matematikk 3 Haust 2011
Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag TMA4110 Matematikk 3 Haust 2011 Løysingsforslag Øving 2 Oppgåver frå læreboka, s. xliv-xlv 9 Me finn først fjørkonstanten k. Når
DetaljerKap Rotasjon av stive legemer
Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rask rekap) Sentripetalakselerasjon, baneakselerasjon (rask rekap) Rotasjonsenergi E k Treghetsmoment I Kraftmoment
DetaljerKap Rotasjon av stive legemer
Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rask rekap) Sentripetalakselerasjon, baneakselerasjon (rask rekap) Rotasjonsenergi E k Treghetsmoment I Kraftmoment
DetaljerKap. 4+5: Newtons lover. Newtons 3.lov. Kraft og motkraft. kap Hvor er luftmotstanden F f størst?
TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn
DetaljerEksamensoppgave i TFY4108 Fysikk
Institutt for fysikk Eksamensoppgave i TFY4108 Fysikk Faglig kontakt under eksamen: Førsteamanuensis John Ove Fjærestad Tlf.: 97 94 00 36 Eksamensdato: 7. august 2015 Eksamenstid (fra-til): 9-13 Hjelpemiddelkode/Tillatte
DetaljerLØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017
LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017 Oppgave 1 a) Bruker bevaring av bevegelsesmengde i - og y-retning og velger positiv -akse mot høyre og positiv y-akse oppover, og lar vinkelen være = 24. Dekomponerer
DetaljerVektorstørrelser (har størrelse og retning):
Kap..1. Kinematikk Posisjon: rt () = xtx () + yt () y + zt () z Hastighet: v(t) = dr(t)/dt = endring i posisjon per tid Akselerasjon: a(t) = dv(t)/dt = endring i hastighet per tid Vektorstørrelser (har
DetaljerFysikkolympiaden Norsk finale 2018 Løsningsforslag
Fysikkolympiaden Norsk finale 018 øsningsforslag Oppgave 1 Det virker tre krefter: Tyngden G = mg, normalkrafta fra veggen, som må være sentripetalkrafta N = mv /R og friksjonskrafta F oppover parallelt
DetaljerLøsningsforslag til øving 6
1 FY100/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 01. Løsningsforslag til øving 6 Oppgave 1 a) Litt repetisjon: Generelt er hastigheten til mekaniske bølger gitt ved mediets elastiske modul
DetaljerLøsningsforslag, eksamen FY desember 2017
1 Løsninsforsla, eksamen FY1001 14. desember 017 1 3 områder av t = 4 s, a konstant i hvert omrde. 1 : a 1 = 0; v 0 = 5m/s = x 1 = v 0 t; v 1 = v 0 : a = v/ t = 1.5 m/s = x = x 1 + v 1 t + a t = v 0 t
DetaljerObligatorisk oppgave nr 3 FYS Lars Kristian Henriksen UiO
Obligatorisk oppgave nr 3 FYS-13 Lars Kristian Henriksen UiO 11. februar 15 Diskusjonsoppgaver 1 Fjerde ordens Runge-Kutta fungerer ofte bedre enn Euler fordi den tar for seg flere punkter og stigningstall
DetaljerEksamensoppgave i TFY4104 Fysikk
Institutt for fysikk Eksamensoppgave i TFY4104 Fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng Tlf.: 45 45 55 33 Eksamensdato: 4. desember 2015 Eksamenstid (fra-til): 0900-1300 Hjelpemiddelkode/Tillatte
DetaljerLøsningsforslag til MEF1000 Material og energi - Kapittel 2 Høsten 2006
Løsningsforslag til MEF1000 Material og energi - Kapittel 2 Høsten 2006 Utarbeidet av A. E. Gunnæs. Revidert (TN) Aug. 06. Øvelse 2-4* a) Totale bevegelsemengde til de to bilene er P = 0 siden vi adderer
DetaljerMEKANISK FYSIKK INKL SVINGNINGER. Newtons andre lov: F = dp/dt p = mv = mṙ. Konstant akselerasjon: v = v 0 + at x = x 0 + v 0 t at2
TFY4106 Fysikk Eksamen 9. juni 2016 (Foreløpig versjon pr 7. mai 2016.) FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsområde og de ulike symbolenes
DetaljerUNIVERSITETET I OSLO
vx [m/s] vy [m/s] Side UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: 3 mars 8 Tid for eksamen: 9: : (3 timer) Oppgavesettet er på 3 sider Vedlegg: Formelark
DetaljerEksamensoppgave i TFY4115 FYSIKK
Side 1 av 6. Institutt for fysikk Eksamensoppgave i TFY4115 FYSIKK for MTNANO, MTTK og MTEL Faglig kontakt under eksamen: Institutt for fysikk v/arne Mikkelsen Tlf.: 486 05 392 Eksamensdato: Torsdag 11.
DetaljerFYSMEK1110 Eksamensverksted 23. Mai :15-18:00 Oppgave 1 (maks. 45 minutt)
FYSMEK1110 Eksamensverksted 23. Mai 2018 14:15-18:00 Oppgave 1 (maks. 45 minutt) Page 1 of 9 Svar, eksempler, diskusjon og gode råd fra studenter (30 min) Hva får dere poeng for? Gode råd fra forelesere
DetaljerTFY4106 Fysikk Lsningsforslag til Eksamen 16. mai t= + t 2 = 2 ) exp( t=);
TFY46 Fysikk Lsningsforslag til Eksamen 6. mai 9 ) D Bilen snur der v = : dvs v = for t =, som tilsvarer v = d=dt = a (t t =) ep( t=); ) E Maksimal positiv hastighet nar a = (og v > ): = a () ep( ) = 4:5
DetaljerTFY4108 Fysikk: Løysing ordinær eksamen 11. des. 2014
TFY418 Fysikk: øysing ordinær eksamen 11. des. 214 Oppgåve 1 (a) Vi brukar normeringskravet Ψ(x, t) 2 for bølgjefunksjonen ved t =. Innsetjing for Ψ(x, ) 2 = Ψ (x, )Ψ(x, ) gir ( 1 = A 2 dx x 2 ( x) 2 =
DetaljerLøsningsforslag til øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover.
Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2007. Veiledning: 22. september kl 12:15 15:00. Løsningsforslag til øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover. Oppgave 1 a)
Detaljer5) Tyngdens komponent langs skråplanet, mgsinβ, lik maksimal statisk friksjonskraft, f max = µ s N =
FY1001/TFY4145 Mekanisk Fysikk ksamen 18. desember 2015 Løsningsforslag 1) Her har vi bevegelse med konstant akselerasjon: h = at 2 /2, med h = 14 m og a = g. ermed: t = 2h/a = 2 14/9.81 s = 1.7 s. 2)
DetaljerØving 2: Krefter. Newtons lover. Dreiemoment.
Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2007. Veiledning: 15. september kl 12:15 15:00. Øving 2: Krefter. Newtons lover. Dreiemoment. Oppgave 1 a) Du trekker en kloss bortover et friksjonsløst
DetaljerTFY4109 Fysikk Eksamen 14. desember 2015 Side 13 av 22
TFY4109 Fysikk Eksamen 14. desember 2015 Side 13 av 22 FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsområde og de ulike symbolenes betydning antas
DetaljerMEK4510 Svingninger i konstruksjoner
MEK4510 Svingninger i konstruksjoner H. Osnes Avdeling for mekanikk, Matematisk institutt Universitetet i Oslo MEK4510 p. 1 Generelt om kurset Informasjon tilgjengelig fra: www.uio.no/studier/emner/matnat/math/mek4510/v11/
DetaljerFjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd med dempningskoeffisient b til en harmonisk oscillator.
Oppgave 1 a) Ei ideell fjær har fjærkonstant k = 2.60 10 3 [N/m]. Finn hvilken kraft en må bruke for å trykke sammen denne fjæra 0.15 [m]. Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd
DetaljerEksamensoppgave i TFY4145 MEKANISK FYSIKK FY1001 MEKANISK FYSIKK
Institutt for fysikk Eksamensoppgave i TFY4145 MEKANISK FYSIKK FY1001 MEKANISK FYSIKK Faglig kontakt under eksamen: Institutt for fysikk v/arne Mikkelsen, Tlf: 486 05 392 / 7359 3433 Eksamensdato: Mandag
DetaljerTFY4104 Fysikk Eksamen 6. desember 2018 { 6 sider
TFY404 Fysikk Eksamen 6. desember 08 { 6 sider FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsomrade og de ulike symbolenes betydning antas forvrig
DetaljerTFY4109 Fysikk Eksamen 9. august Løsningsforslag
TFY4109 Fysikk ksamen 9. august 2016 Løsningsforslag 1) 1 TU = 1055 J; 200 cal = 837 J; 0.0004 kwh = 1440 J; 10 20 Ry = 218 J; 10 22 ev = 1600 J. Sistnevnte er altså mest energi. 2) Periode T = 1/500 minutt
DetaljerFysikkolympiaden Norsk finale 2017
Norsk fysikklærerforening Fysikkolympiaden Norsk finale 7 Fredag. mars kl. 8. til. Hjelpemidler: abell/formelsamling, lommeregner og utdelt formelark Oppgavesettet består av 6 oppgaver på sider Lykke til!
DetaljerEKSAMEN I FAG SIF4002 FYSIKK. Mandag 5. mai 2003 Tid: Sensur uke 23.
side 1 av 5 (bokmål) NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET, INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Institutt for fysikk, Gløshaugen Professor Arnljot Elgsæter, 73940078 EKSAMEN I
DetaljerAristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen trekke med kraft R O =S k
TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn
DetaljerLøsningsforslag til eksamen i FYS1000, 12/6 2017
Løsningsforslag til eksamen i FYS000, 2/6 207 Oppgave a) Vi kaller energien til fotoner fra overgangen fra nivå 5 til nivå 2 for E og fra nivå 2 til nivå for E 2, og de tilsvarende bølgelengdene er λ og
DetaljerStivt legeme, reeksjonssymmetri mhp rotasjonsaksen: L = L b + L s = R CM MV + I 0!
TFY404 Fysikk Eksamen 6. desember 207 Formelside av 6 FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsomrade og de ulike symbolenes betydning antas
DetaljerKap. 8 Bevegelsesmengde. Kollisjoner. Massesenter.
Kap. 8 Bevegelsesmengde. Kollisjoner. Massesenter. Vi skal se på: Newtons 2. lov på ny: Definisjon bevegelsesmengde Kollisjoner: Kraftstøt, impuls. Impulsloven Elastisk, uelastisk, fullstendig uelastisk
DetaljerTFY4104 Fysikk Eksamen 17. august V=V = 3 r=r ) V = 3V r=r ' 0:15 cm 3. = m=v 5 = 7:86 g=cm 3
TFY4104 Fysikk Eksamen 17. august 2018 Lsningsforslag 1) C: V = 4r 3 =3 = 5:575 cm 3 For a ansla usikkerheten i V kan vi regne ut V med radius hhv 11.1 og 10.9 mm. Dette gir hhv 5.729 og 5.425 cm 3, sa
DetaljerFYSMEK1110 Eksamensverksted 31. Mai 2017 (basert på eksamen 2004, 2013, 2014, 2015,)
YSMEK1110 Eksamensverksted 31. Mai 2017 (basert på eksamen 2004, 2013, 2014, 2015,) Oppgave 1 (2014), 10 poeng To koordinatsystemer og er orientert slik at tilsvarende akser peker i samme retning. System
DetaljerKap. 8 Bevegelsesmengde. Kollisjoner. Massesenter.
Kap. 8 Bevegelsesmengde. Kollisjoner. Massesenter. Vi skal se på: Newtons 2. lov på ny: Definisjon bevegelsesmengde Kollisjoner: Kraftstøt, impuls. Impulsloven Elastisk, uelastisk, fullstendig uelastisk
DetaljerTMA4115 Matematikk 3 Vår 2012
Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag TMA4115 Matematikk 3 Vår 01 Oppgaver fra læreboka, s lxxxiv 9 a) Likninga for systemet vert y + 4y = 4 cos ωt Me løyser først den
DetaljerFY1001/TFY4145 Mekanisk Fysikk Eksamen 9. august 2016 Side 1 av 20
FY1001/TFY4145 Mekanisk Fysikk Eksamen 9. august 2016 Side 1 av 20 1) Ei kule slippes (dvs med null starthastighet) fra en høyde 2.0 m over gulvet. Hva er kulas hastighet 0.5 s etter at den ble sluppet?
DetaljerLøsningsforslag til øving 5
FY1001/TFY4145 Mekanisk fysikk. Institutt for fysikk, NTNU. Høsten 011. Løsningsforslag til øving 5 Oppgave 1 a) Energibevarelse E A = E B gir U A + K A = U B + K B Innsetting av r = L x i ligningen gir
DetaljerMekaniske svingesystemer. Institutt for fysikk, NTNU
Oppgave 2 Lab TFY4120 Mekaniske svingesystemer Institutt for fysikk, NTNU 1.1 Innledning I denne oppgaven skal vi studere begrepene fri og tvungne svingninger i et enkelt svingesystem. Vi skal spesielt
Detaljer