Likevekt STATISK LIKEVEKT. Når et legeme er i ro, sier vi at det er i statisk likevekt.
|
|
- Hallgeir Håkonsen
- 8 år siden
- Visninger:
Transkript
1 Likevekt STATISK LIKEVEKT Når et legeme er i ro, sier vi at det er i statisk likevekt. Et legeme beveger seg i den retningen resultanten virker. Vi kan sette opp den første betingelsen for at et legeme skal være i likevekt: For at et legeme skal være i likevekt, må resultanten til kreftene på legemet være lik null. Et kraftpar er to like store og motsatt rettete krefter som ligger på to parallelle angrepslinjer. Resultanten til et kraftpar er lik null, men kreftene gir likevel et statisk moment med eller mot urviseren. Det gjør at legemet som kraftparet virker på, også dreier med eller mot urviseren. Dette legemet er derfor ikke i likevekt. Vi ser at i de fleste tilfellene er det ikke nok at resultanten til kreftene er lik null. side 1
2 ANALYTISK LØSNING Kraftresultanten i x-retningen er lik summen av kreftene i x-retningen: F Rx = ΣF x Kraftresultanten i y-retningen er lik summen av kreftene i y-retningen: F Ry = ΣF y For at et legeme skal være i likevekt må resultanten av kreftene være lik null. ΣF x = 0 og ΣF y = 0 Det er ikke tilstrekkelig at resultanten er lik null. Ved likevekt mellom tre krefter må de tre kreftene også gi gjennom samme punkt. Ved likevekt mellom fire krefter må vi kunne sette sammen kreftene til to resultanter som er like store, motsatt rettet og ligger på samme angrepslinje. Dersom resultanten er lik null, mens ingen av de andre likevektskravene er oppfylt, blir legemet påvirket av et kraftpar som gir moment og dreining av legemet. Figuren viser et kraftpar med kraften F og avstand a mellom de to angrepslinjene. Kraftparet gir et moment M = F a rundt hvilket som helst punkt. Hvis statisk momentet om et hvilket som helst punkt er lik null, har vi ikke noe kraftpar. Den siste betingelsen for likevekt er da: ΣM = 0 side 2
3 Disse likningene kaller vi de tre algebraiske likevektslikningene. Regel: Dersom et legeme skal være i likevekt, må summen av kreftene som virker pi legemet, være lik null. I tillegg må det statiske momentet til kreftene som virker på legemet, være lik null om et hvilket som helst punkt. Siden vi kan sette opp tre uavhengige matematiske likninger, kan vi også løse tre ukjente med disse likningene. Vi kan også løse tre ukjente på denne måten: - en momentlikning og to kraftlikninger - to momentlikninger og en kraftlikning - tre momentlikninger og ingen kraftlikning Vi kan løse oppgaver med inntil tre ukjente størrelser og sier da at oppgaven er statisk bestemt. Hvis vi har mer enn tre ukjente opplagerbetingelser, har vi ikke mange nok ligninger å bruke. Vi sier da at konstruksjonen er statisk ubestemt. side 3
4 Eksempel 1 Legemet er påvirket av en horisontal kraft F = 10kN og er opplagret i de tre stanglagrene A, B og C. Vi skal finne kreftene F A, F B og F C som alle er ukjente. F A virker horisontalt, mens F B og F C virker vertikalt. Vi velger retningene på kreftene, hvis feil, får vi negativt svar ved utregning. Vi kan nå velge inntil to kraft- og to momentligninger. Vi prøver å velge ligninger som bare gir en ukjent. Negativt svar som betyr at F C virker motsatt, altså nedover. Ut fra de valgte retningene og fortegnene i svarene ser vi at det blir strekk i stengene A og C og trykk i stang B. side 4
5 Eksempel 2 En 5m lang bjelke er opplagret i et fastlager i A og et glidelager i B. På bjelken virker det en kraft F = 15kN som vist. Vi skal bestemme lagerkreftene i A og B. I fastlager A kjenner vi ikke kraftens retning, så vi dekomponerer i F Ax og F Ay. I glidelager B er retningen kjent, vertikal, F B. Vi setter på kreftene med antatte retninger i figuren. side 5
6 Eksempel 3 Opplager A er et stanglager, og opplagerkraften følger retningen på stanga. Opplager B er et fastlager, så vi må anta krefter i x- og y- retning. Vi antar retninger og setter på kreftene i figuren. Vi skal bestemme opplagerkreftene A og B. side 6
7 Punktlaster eller enkeltlaster er konsentrerte laster som virker i ett punkt. Vi kan også ha jevnt fordelte laster. Et eksempel i er egenlasten til en bjelke. En 5 m lang bjelke veier 200 N per meter. Det skriver vi slik: g = 200 N/m. Vi bruker: - liten bokstav for en jevnt fordelt last - stor bokstav for en enkeltlast (punktlast) Vi kan angi en jevnt fordelt last som en enkeltlast G midt på bjelken. G = g l = 200 N/m 5 m = 1000N For nyttelaster bruker vi ofte bokstaven q om jevnt fordelte laster og bokstaven F om enkeltlaster. Eksempler på jevnt fordelte laster er snølast, vindlast og nyttelast på golv. En jevnt fordelt last på en bjelke har en annen virkning på bjelken enn en tilsvarende last (kraft) plassert midt på bjelken. Lasten kan også endre seg jevnt fra 0 til q. På en 6 meter lang bjelke endrer lasten seg fra q = 0 ved A til q = 500N/m ved opplager B. For statiske beregninger kan denne belastningen erstattes av: F = 0,5 q l = 0, = 1500N Siden belastningen utgjør en trekant, skulle det være klart at resultantkraften F angriper i avstand 4 meter fra opplager A og 2 meter fra Opplager B. Det gir opplagerkreftene F A = 500N og F B = 1000N. side 7
Resultanten til krefter
KRAFTBEGREPET Resultanten til krefter En kraft er en vektor. Kraften har måltall (størrelse), enhet(n) og retning (horisontalt mot høyre) Kraften virker langs en rett linje, kraftens angrepslinje Punktet
DetaljerLøsningsforslag til test nr. 1 Mekanikk våren 2011
Løsningsforslag til test nr. 1 Mekanikk våren 2011 Spørsmål 1. V11-Resultant (i kn) - 3 laster på rektangel Legemet på figuren er utsatt for 3 krefter. Kraften på 4 kn er skrå, med retning nedover t.h.
DetaljerLøsningsforslag for eksamen 5. januar 2009
Løsningsforslag for eksamen 5. januar 2009 Oppgave 1 Figuren til høyre viser en hengebroliknende konstruksjon, med et tau mellom C og E med egen tyngde g = 0,5 kn/m og en punktlast P = 75 kn som angriper
DetaljerLøsningsforslag for Eksamen 1/12-03
Løsningsforslag for Eksamen 1/12-03 Oppgave 1 a) Definerer (velger/antar) først positiv retning på reaksjonskreftene som vist i følgende fig.: Beregning av reaksjonskreftene: ΣF y = 0 A y - 3 8 = 0 A y
Detaljer2 Resultanten. til krefter
2 Resultanten til krefter Mål Når du har lest dette kapitlet skal du kunne gjøre greie for angrepslinja og angrepspunktet til en kraft forklare hva vi mener med statisk moment sette sammen krefter grafisk
DetaljerKapittel 1:Introduksjon - Statikk
1 - Introduksjon - Statikk Kapittel 1:Introduksjon - Statikk Studér: - Emnebeskrivelse - Emneinformasjon - Undervisningsplan 1.1 Oversikt over temaene Skjærkraft-, Moment- og Normalkraft-diagrammer Grunnleggende
DetaljerEKSAMEN I EMNE TKT4116 MEKANIKK 1
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET Institutt for konstruksjonsteknikk Faglig kontakt under eksamen: Førsteamanuensis Arne Aalberg 73 59 46 24 Førsteamanuensis Aase Gavina Reyes 73 59 45 24
DetaljerHovedpunkter fra pensum Versjon 12/1-11
Hovedpunkter fra pensum Versjon 1/1-11 Kapittel 1 1 N = 1 kg m / s F = m a G = m g Haugan: s. 6 (Kap. 1.3, pkt. ) 1 kn = Tyngden (dvs. tyngdekraften G) fra en mann som veier 100 kg. Kapittel En kraft er
DetaljerStatikk. Kraftmoment. F = 0, forblir ikke stolsetet i ro. Det begynner å rotere. Stive legemer
Statikk Etter Newtons. lov vil et legeme som er i ro, forbli i ro hvis summen av kreftene på legemet er lik null. Det er i hvert fall tilfellet for et punktformet legeme. Men for et legeme med utstrekning
DetaljerLøsningsforslag for eksamen 1/6-04 Oppgave 1. Oppgave 2. HØGSKOLEN I GJØVIK Avdeling for teknologi. Mekanikk Fagkode: L158M LF for eksamen 1/6-04
Løsningsforslag for eksamen /6-4 Oppgave a) Verdien i venstre ende av V-diagrammet er for en orisontal, fritt opplagt bjelke alltid lik A y A y =, k Verdien i øyre ende av V-diagrammet er for en orisontal,
DetaljerKrefter Stikkord (Se kompendium for fullstendig tekst)
Side 1 av 11 Krefter Stikkord (Se kompendium for fullstendig tekst) Innledning, krefter og akselerasjon Oppgave: Nevn eksempler på kontaktkrefter og fjernkrefter. Newtons. lov: = ma, der a er akselerasjonen
DetaljerMEK likevektslære (statikk)
MEK2500 - likevektslære (statikk) Tormod Landet Høst 2015 Mange konstruksjoner kan analyseres med tre enkle prinsipper 1. Saint-Venants prinsipp 2. Balanse i krefter 3. Balanse i momenter Denne forelesningen
DetaljerEkstra formler som ikke finnes i Haugan
Oppgavetekstene kan inneholde unødvendige opplysninger. Ekstra formler som ikke finnes i Haugan σ n = B n = sikkerhetsfaktor, σ B = bruddspenning (fasthet), σ till = tillatt spenning σ till Kombinert normalkraft
DetaljerOppgavehefte i MEK2500 - Faststoffmekanikk
Oppgavehefte i MEK2500 - Faststoffmekanikk av Henrik Mathias Eiding og Harald Osnes ugust 20 2 Oppgave 1 En kraft har - og y-komponentene F og F y. vstanden fra et gitt punkt til et punkt på kraftens angrepslinje
DetaljerDet skal ikke tas hensyn til eventuelle skjærspenninger i oppgavene i øving 5
Det skal ikke tas hensyn til eventuelle skjærspenninger i oppgavene i øving 5 Oppgave 1 Figuren viser en 3,5m lang bom som benyttes for å løfte en gjenstand med tyngden 100kN. Gjenstanden henger i et blokkarrangement
DetaljerBeregning av konstruksjon med G-PROG Ramme
Side 1 av 11 Beregning av konstruksjon med G-PROG Ramme Introduksjon G-Prog Ramme er et beregningsprogram for plane (2-dimensjonale) ramme-strukturer. Beregningene har følgende fremgangsmåte: 1) Man angir
DetaljerBeregning av konstruksjon med G-PROG Ramme
Side 1 av 11 Beregning av konstruksjon med G-PROG Ramme Introduksjon G-Prog Ramme er et beregningsprogram for plane (2-dimensjonale) ramme-strukturer. Beregningene har følgende fremgangsmåte: 1) Man angir
DetaljerKrefter, Newtons lover, dreiemoment
Krefter, Newtons lover, dreiemoment Tor Nordam 13. september 2007 Krefter er vektorer En ting som beveger seg har en hastighet. Hastighet er en vektor, som vi vanligvis skriver v. Hastighetsvektoren har
DetaljerFagnr:LO 580M. Fag: Mekanikk. Per Kr. Paulsen. Gruppe(r):IBA, IBB, lma, IMB,IMF Dato: 25/5 Eksamenstid, inkl. forside. Tillatte hjelpemidler
Fag: Mekanikk Fagnr:LO 580M Faglig veileder: Per Kr. Paulsen Gruppe(r):IBA, IBB, lma, IMB,IMF Dato: 25/5 Eksamenstid, fra - til: 0900-1400 2001 Eksamensoppgaven består av Antall sider: 5 inkl. forside
DetaljerE K S A M E N. MEKANIKK 1 Fagkode: ITE studiepoeng
HiN TE 73 8. juni 0 Side av 8 HØGSKOLEN NRVK Teknologisk avdeling Studieretning: ndustriteknikk Studieretning: llmenn ygg Studieretning: Prosessteknologi E K S M E N MEKNKK Fagkode: TE 73 5 studiepoeng
DetaljerEKSAMEN I EMNE TKT4116 MEKANIKK 1
NORGES TEKNISK- NTURVITENSKPELIGE UNIVERSITET Institutt for konstruksjonsteknikk Faglig kontakt under eksamen: Førsteamanuensis rne alberg 73 59 46 24 EKSMEN I EMNE TKT4116 MEKNIKK 1 Mandag 2. juni 2008
DetaljerUtnyttelse stålbjelke Vegard Fossbakken Stålbrudagen 2013
Utnyttelse stålbjelke Vegard Fossbakken Stålbrudagen 2013 Blakkstadelvbrua E39 Astad-Knutset Gjemnes kommune 3 spenn: 28 34 28 Samvirke Kasselandkar Frittstående søyler Fjell og løsmasser Beregnet med
DetaljerI Emnekode: NB! Alle utregninger og beregninger skal framgå av besvarelsen, dvs vises skritt for skritt.
høgskolen i oslo! Emne: Emnekode: MEKANKK LO 200 B : Gruppe(r): Dato: BA BB og BC. mai -05 Eksamensoppgaven Antall sider (inkl. Antall oppgaver: består av: forsiden): 4 5 Tillatte hjelpemidler: Tekniske
DetaljerMassegeometri. Vi skal her se på noen begreper og utregninger som vi får stor bruk for videre i mekanikken.
Massegeometri Vi skal her se på noen begreper og utregninger som vi får stor bruk for videre i mekanikken. Tyngdepunktets plassering i ulike legemer og flater. Viktig for å kunne regne ut andre størrelser.
DetaljerC11 RIBBEPLATER 231. Figur C Ribbeplater med strekkbånd. a) Strekkbånd i bjelken. b) Strekkbånd på opplegget. c) Strekkbånd på dekket
C11 RIBBEPLATER 231 Lask a) Strekkbånd i bjelken b) Strekkbånd på opplegget c) Strekkbånd på dekket d) Armering og utstøping e) Innstøpt flattstål i plate res dette ofte med at den samme forbindelsen også
DetaljerEKSAMEN I EMNE TKT4116 MEKANIKK 1
Faglig kontakt under eksamen: Jan Bjarte Aarseth 73 59 35 68 Aase Reyes 915 75 625 EKSAMEN I EMNE TKT4116 MEKANIKK 1 Fredag 3. juni 2011 Kl 09.00 13.00 Hjelpemidler (kode C): Irgens: Formelsamling mekanikk.
DetaljerEKSAMEN I EMNE TKT4116 MEKANIKK 1
NORGS TKNISK- NTURVITNSKPLIG UNIVRSITT Institutt for konstruksjonsteknikk Faglig kontakt under eksamen: rne alberg 976 42 898 / 73 59 46 24 Jan jarte arseth 73 59 35 68 KSMN I MN TKT4116 MKNIKK 1 Onsdag
DetaljerKap. 3 Krumningsflatemetoden
SIDE. KRUMNINGSFLTEMETODEN I kpittel. og. hr vi sett t en bjelkes krefter og deformsjon kn beskrives ved fire integrler som henger smmen : Skjærkrft : V d Vinkelendring : φ M d Moment : M V d Forskyvning
DetaljerLøsningsforslag Øving 3
Løsningsforslag Øving 3 TEP4105 Fluidmekanikk, Høst 2017 Oppgave 3-75 Løsning En sikkerhetsdemning for gjørmeskred skal konstrueres med rektangulære betongblokker. Gjørmehøyden som får blokkene til å begynne
DetaljerEksamensoppgave i TKT4124 Mekanikk 3
Institutt for konstruksjonsteknikk Eksamensoppgave i TKT4124 Mekanikk 3 Faglig kontakt under eksamen: Aase Reyes Tlf.: 73 59 45 24 Eksamensdato: 14. desember 2015 Eksamenstid (fra-til): 09.00 13.00 Hjelpemiddelkode/
DetaljerForeløpig utgave pr 21.10.11. Forfatter: Jørgen Amdahl. Marine konstruksjoners styrke. Havromsteknologier. Institutt for marin teknikk
Foreløpig utgave pr 21..11 Forfatter: Jørgen Amdahl Marine konstruksjoners styrke Havromsteknologier Institutt for marin teknikk 6 Kapitlet handler om marine konstruksjoners styrke. Mange skip har brutt
DetaljerH5 DIMENSJONERINGSEKSEMPLER
H5 DIMENSJONERINGSEKSEMPLER 69 I dette kapittelet tar en praktisk i bruk de regler og anbefalinger som er omtalt i kapitlene H1 til H4. Eksemplene tar kun for seg dimensjonering for seismiske laster. Det
DetaljerBWC 30-U UTKRAGET BALKONG - INNSPENT I PLASSTØPT DEKKE BEREGNING AV FORANKRINGSPUNKT
MEMO 742 Dato: 12.01.2016 Sign.: sss BWC 30-U UTKRAGET BALKONG - INNSPENT I PLASSTØPT DEKKE BEREGNING AV FORANKRINGSPUNKT Siste rev.: Dok. nr.: 23.05.2016 K5-10-742 Sign.: Kontr.: sss nb BWC 30-U UTKRAGET
DetaljerEksamensoppgave i TKT 4124 Mekanikk 3
Institutt for konstruksjonsteknikk Eksamensoppgave i TKT 44 Mekanikk Faglig kontakt under eksamen: Aase Rees Tlf.: 7 5(9 45 4) / 95 75 65 Eksamensdato: 6. desember Eksamenstid (fra-til): 9 - Hjelpemiddelkode/Tillatte
DetaljerLøsningsforslag til ukeoppgave 2
Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 2 Oppgave 2.15 a) F = ma a = F/m = 2m/s 2 b) Vi bruker v = v 0 + at og får v = 16 m/s c) s = v 0 t + 1/2at 2 gir s = 64 m Oppgave 2.19 a) a =
DetaljerHØGSKOLEN I GJØVIK. Mekanikk Emnekode:BYG1041/1061/1061B Skoleåret 2004/2005. Oppg. 1 for BYG1061B. Oppg. 1 for BYG1061 / Oppg.
ekanikk Emnekode:BYG101/101/101B Skoleåret 00/005 Oppg. 1 for BYG101B a) Stang BC er skrå med 5 vinkel B x og B y har samme tallverdi. Likevekt av hele konstruksjonen: Σ A = 0 B y + 5 5 = 0 B y =,5 kn
DetaljerFLYGETEORI Bok 1 Michael Katz Nedre Romerike Flyklubb michael@katz.no 5. august 2009
FLYGETEORI Bok 1 Michael Katz Nedre Romerike Flyklubb michael@katz.no 5. august 2009 Innhold 1 Krefter på yet 3 1.1 Kraftkomponenter.................................... 3 1.2 Likevektssituasjoner...................................
DetaljerDato: Siste rev.: Dok. nr.:
MEMO 704 Dato: 8.0.0 Sign.: sss BWC 55-740 / BWC 55 LIGHT SØYLER I FRONT INNFESTING I PLASSTØPT DEKKE EKSEMPEL Siste rev.: Dok. nr.:.09.06 K5-4/5 Sign.: Kontr.: sss ps DIMENSJONERING INNHOLD GRUNNLEGGENDE
DetaljerB8 STATISK MODELL FOR AVSTIVNINGSSYSTEM
igur B 8.10. Kombinasjon av skiver og rammer. a) Utkraget skive b) Momentramme ) Kombinasjon igur B 8.11. Eksempel på ramme/ skivekombinasjon Hovedramme igur B 8.12. (Lengst t.h.) Kombinasjon av rammer.
DetaljerLast ned Ingeniørmekanikk - Fridtjov Irgens. Last ned. Last ned e-bok ny norsk Ingeniørmekanikk Gratis boken Pdf, ibook, Kindle, Txt, Doc, Mobi
Last ned Ingeniørmekanikk - Fridtjov Irgens Last ned Forfatter: Fridtjov Irgens ISBN: 9788245016918 Format: PDF Filstørrelse:11.80 Mb Ingeniørmekanikk er mekanikk tilpasset ingeniører og realister som
DetaljerEKSAMEN I EMNE TKT4122 MEKANIKK 2
INSTITUTT FOR KONSTRUKSJONSTEKNIKK Side 1 av 5 Faglig kontakt under eksamen: Bokmål Kjell Holthe, 951 12 477 / 73 59 35 53 Jan B. Aarseth, 73 59 35 68 EKSAMEN I EMNE TKT4122 MEKANIKK 2 Fredag 3. desember
DetaljerOPPGAVE 1 En aksel av stål med diameter 90mm belastes pi en slik måte at den bare utsettes for vridning. Belastningen regnes som statisk.
OPPGAVE 1 En aksel av stål med diameter 90mm belastes pi en slik måte at den bare utsettes for vridning. Belastningen regnes som statisk. a) Beregn hvor stor effekt i kw som kan. overføres ved 100r/min
DetaljerPraktisk betongdimensjonering
6. og 7. januar (7) Veggskiver Praktisk betongdimensjonering Magnus Engseth, Dr.techn.Olav Olsen www.betong.net www.rif.no 2 KORT OM MEG SELV > Magnus Engseth, 27 år > Jobbet i Dr.techn.Olav Olsen i 2.5
DetaljerFagdag for lærere i matematikk Matematikk i bruprosjektering. 03.05.2013 Matematikk i bruprosjektering - Trondeim
Fagdag for lærere i matematikk Matematikk i bruprosjektering Om oss Foredragsholder Kristian Berntsen Kvaløya videregående skole i Tromsø, ferdig 2002 Tok 2. klasse som utvekslingsstudent i USA Høgskolen
DetaljerStatiske Beregninger for BCC 800
Side 1 av 12 DEL 1 - GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER 1.1 GENERELT Det er i disse beregningene gjort forutsetninger om dimensjoner og fastheter som ikke alltid vil være det man har i et aktuelt
DetaljerMEMO 812. Beregning av armering DTF/DTS150
Side 1 av 7 INNHOLD GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER... 2 GENERELT... 2 STANDARDER... 2 KVALITETER... 2 LAST... 3 ARMERINGSBEREGNING... 3 YTRE LIKEVEKT... 3 NØDVENDIG FORANKRINGSARMERING...3
DetaljerT 1 = (m k + m s ) a (1)
Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2008. Løsningsforslag til Øving 2. Oppgave 1 a) Vi ser på et system bestående av en kloss på et horisontalt underlag og en snor med masse. Vi
DetaljerEmnekode: IRB22013 Emnenavn: Konstruksjonsteknikk 2. Eksamenstid: kl Faglærer: Jaran Røsaker (betong) Siri Fause (stål)
EKSAMEN Emnekode: IRB22013 Emnenavn: Konstruksjonsteknikk 2 Dato: 23.05.2019 Eksamenstid: kl. 09.00 13.00 Sensurfrist: 13.06.2019 Antall oppgavesider (inkludert forside): 5 Antall vedleggsider: 4 Faglærer:
DetaljerLøsningsforslag Øving 3
Løsningsforslag Øving 3 TEP400 Fluidmekanikk, Vår 206 Oppgave 3-86 Løsning En sikkerhetsdemning for gjørmeskred skal konstrueres med rektangulære betongblokker. Gjørmehøyden som får blokkene til å begynne
DetaljerHØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning
HØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning EKSAMEN I Matematisk analyse og vektoralgebra, FOA150 KLASSE : Alle DATO : 11. august 006 TID: : Kl. 0900-100 (4 timer) ANTALL OPPGAVER : 5 VARIGHET ANTALL
DetaljerLøsningsforslag til ukeoppgave 4
Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 4 Oppgave 4.03 W = F s cos(α) gir W = 1, 2 kj b) Det er ingen bevegelse i retning nedover, derfor gjør ikke tyngdekraften noe arbeid. Oppgave
DetaljerOppgave for Haram Videregående Skole
Oppgave for Haram Videregående Skole I denne oppgaven er det gitt noen problemstillinger knyttet til et skip benyttet til ankerhåndtering og noen av verktøyene, hekkrull og tauepinne, som benyttes om bord
DetaljerMEMO 734. Søyler i front - Innfesting i stålsøyle i vegg Eksempel
INNHOLD BWC 50-40 Side av GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER... GENERELT... LASTER... 4 BETONG OG ARMERING I BALKONG... 4 DEKKETYKKELSER... 4 STÅLSØYLE FOR INNFESTING BWC... 4 BEREGNINGER... 5
DetaljerMEK2500. Faststoffmekanikk 1. forelesning
MEK2500 Faststoffmekanikk 1. forelesning MEK2500 Undervisning Foreleser: Frode Grytten Øvingslærer: NN Forelesninger: Tirsdag 10:15-12:00 B62 Torsdag 12:15-14:00 B91 Øvinger: Torsdag 14:15-16:00 B70 Øvinger
DetaljerRepetisjonsoppgaver kapittel 0 og 1 løsningsforslag
Repetisjonsoppgaver kapittel 0 og løsningsforslag Kapittel 0 Oppgave a) Gjennomsnittet er summen av måleverdiene delt på antallet målinger. Summen av målingene er,79 s. t sum av måleverdiene antallet målinger,79
DetaljerStatiske Beregninger for BCC 250
Side 1 av 7 DEL 1 - GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER 1.1 GENERELT Det er i disse beregningene gjort forutsetninger om dimensjoner og fastheter som ikke alltid vil være det man har i et aktuelt
DetaljerProsjektering MEMO 551 EN KORT INNFØRING
Side 1 av 7 Denne innføringen er ment å gi en liten oversikt over bruk og design av forbindelsene, uten å gå inn i alle detaljene. er et alternativ til f.eks faste eller boltede søylekonsoller. enhetene
Detaljer4.4.5 Veiledning i valg av søyledimensjoner I det følgende er vist veiledende dimensjoner på søyler for noen typiske
A HJELPEMIDLER TIL OVERSLAGSDIMENSJONERING Verdier for β er angitt for noen typiske søyler i figur A.. Verdier for β for andre avstivningsforhold for søyler er behandlet i bind B, punkt 1.2... Veiledning
DetaljerNewtons lover i én dimensjon
Newtons lover i én dimensjon 3.01.018 snuble-gruppe i dag, kl.16:15-18:00, Origo FYS-MEK 1110 3.01.018 1 Hva er kraft? Vi har en intuitivt idé om hva kraft er. Vi kan kvantifisere en kraft med elongasjon
DetaljerKandidaten må selv kontrollere at oppgavesettet er fullstendig.
for ingeniørutdanning Fag Gruppe(r): DIMENSJONERING 3 BK Il Fagnr: sa 210 B Dato: 18. febr. -02 Faglig veileder: Brækken/Nilsen/Tei.e;en Eksamenstid, fra - til: 0900-1400, Eksamensoppg består av Antall
DetaljerSpenninger i bjelker
N Teknologisk avd. R 1.0.1 Side 1 av 6 Rev Spenninger i bjelker rgens kap 18.1. ibbeler Sec. 1.1-1. En bjelke er et avlangt stkke materiale som utsettes for bøebelastning. Ren bøning bjelke b N 0 0 0 0
DetaljerB10 ENKELT SØYLE BJELKE SYSTEM
0. EN-ETASJES BYGNINGER Dette er bygninger som vist i figur B 0..b). Fordeling av horisontallaster Forutsettes det at alle søyler med horisontal last har lik forskyvning i toppen, har man et statisk bestemt
DetaljerNewtons lover i én dimensjon
Newtons lover i én dimensjon 6.01.017 YS-MEK 1110 6.01.017 1 Hva er kraft? Vi har en intuitivt idé om hva kraft er. Vi kan kvantifisere en kraft med elongasjon av en fjær. YS-MEK 1110 6.01.017 Bok på bordet
DetaljerLast ned Ingeniørmekanikk - Fridtjov Irgens. Last ned. Forfatter: Fridtjov Irgens ISBN: Format: PDF Filstørrelse: 20.
Last ned Ingeniørmekanikk - Fridtjov Irgens Last ned Forfatter: Fridtjov Irgens ISBN: 9788245016918 Format: PDF Filstørrelse: 20.66 Mb Ingeniørmekanikk er mekanikk tilpasset ingeniører og realister som
DetaljerForelesning 8.2.06 Klasse M3A g A3A Side 1 av 5
Forelesning 8.2.06 Klasse M3A g A3A Side 1 av 5 OPPGAVE / RESULTAT Godkjenning og innlevering: Godkjenningen skjer ved at resultatene vises til Egil Berg. Innleveringen skjer ved at filene S5.std, (Input-filen)
DetaljerNewtons lover i én dimensjon (2)
Newtons lover i én dimensjon () 1..16 YS-MEK 111 1..16 1 Identifikasjon av kreftene: 1. Del problemet inn i system og omgivelser.. Tegn figur av objektet og alt som berører det. 3. Tegn en lukket kurve
DetaljerNewtons lover i én dimensjon (2)
Newtons lover i én dimensjon () 0.0.015 oblig #1: innlevering: mandag, 9.feb. kl.1 papir: boks på ekspedisjonskontoret elektronisk: Devilry (ikke ennå åpen) YS-MEK 1110 0.0.015 1 Identifikasjon av kreftene:
DetaljerAntall oppgavesider: 4 Antall vedleggsider: 6
1 EKSAMENSOPPGAVE Emne: IRB21512 - Konstruksjonsteknikk 1 Lærer/telefon: Geir Flote / 46832940 Grupper: 2. bygg Dato: 16.12.2013 Tid: 09:00-13:00 Antall oppgavesider: 4 Antall vedleggsider: 6 Sensurfrist:
DetaljerUNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: mars 017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
DetaljerEksamen i emnet SIB 5025 Hydromekanikk 25 nov b) Bestem størrelsen, retningen og angrepspunktet til resultantkrafta,.
Eksamen i emnet SIB 55 Hydromekanikk 5 nov 1999 Oppgave 1. Husk å angi benevninger ved tallsvar. ρ θ I en ny svømmehall er det foreslått montert et vindu formet som en halvsylinder med radius og bredde.
DetaljerHAKIs mangeårige erfaring med stillasbygging innen Off-shore- og verftsindustrien har skapt et unikt sortiment av opphengsbeslag.
HAKI Opphengsbeslag HAKI Opphengsbeslag gjør det mulig å bygge et hengende stillas fra stort sett hvilken bærende konstruksjon som helst. HAKIs mangeårige erfaring med stillasbygging innen Off-shore- og
DetaljerBWC 80 500. MEMO 724a. Søyler i front Innfesting i bærende vegg Eksempel
INNHOLD BWC 80 500 Side 1 av 10 GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER... GENERELT... LASTER... BETONG OG ARMERING... 3 VEGG OG DEKKETYKKELSER... 3 BEREGNINGER... 3 LASTER PÅ BWC ENHET... 3 DIMENSJONERING
DetaljerFølgende systemer er aktuelle: Innspente søyler, rammesystemer, skivesystemer og kombinasjonssystemer. Se mer om dette i bind A, punkt 3.2.
52 B8 STATISK MODELL FOR ASTININGSSYSTEM Hvilke feil er egentlig gjort nå? Er det på den sikre eller usikre siden? Stemmer dette med konstruksjonens virkemåten i praksis? Er den valgte modellen slik at
DetaljerTheory Norwegian (Norway) Vær vennlig å lese de generelle instruksjonene i den separate konvolutten før du begynner på dette problemet.
Q1-1 To problemer i mekanikk (10 poeng) Vær vennlig å lese de generelle instruksjonene i den separate konvolutten før du begynner på dette problemet. Del A. Den gjemte disken (3,5 poeng) Vi ser på en massiv
DetaljerStillasdagene Offentlige trappetårn STILLASENTREPRENØRENES FORENING
Stillasdagene 2017 Offentlige trappetårn 1 Bekymringsmelding; Trappetårn Det skulle bygges et midlertidig trappetårn som rømningsvei for et kjøpesenter. Eurokode 1 del 1 har krav til slike trappetårn (rømningsvei);
DetaljerTMA4110 Matematikk 3 Høst 2010
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4110 Matematikk 3 Høst 010 Løsningsforslag Øving 4 Fra Kreyszig (9. utgave) avsnitt.7 3 Vi skal løse ligningen (1) y 16y
DetaljerEurokoder Dimensjonering av trekonstruksjoner
Eurokoder Dimensjonering av trekonstruksjoner NS-EN 1995 NS-EN 1990 NS-EN 338 NS-EN 1194 NS-EN 1991 Ved Ingvar Skarvang og Arnold Sagen 1 Beregningseksempel 1 -vi skal beregne sperrene på dette huset laster
DetaljerI Faglig veileder: MEKANIKK. Finn-Erik Nilsen IGruppe(r): i Dato: Eksamenstid: 2 BA, 2 BB, 2 BC og 3BK 30. mai
G høgskolen i oslo remne : Emnekode: Faglig veileder: MEKANKK LO 58 B.~, - - Finn-Erik Nilsen Gruppe(r): i Dato: Eksamenstid: 2 BA, 2 BB, 2 BC og 3BK. mai -05 0900-400 - Eksamensoppgaven Antall sider (ink-:-
DetaljerLøsningsforslag for øvningsoppgaver: Kapittel 2
Løsningsforslag for øvningsoppgaver: Kapittel 2 Jon Walter Lundberg 13.01.2015 2.03 Tyngdekraften på strikkhoppern på bildet er 540N. Kraften fra striken i fotoøyeblikket er 580N. a) Tegn figur og beregn
DetaljerImpuls, bevegelsesmengde, energi. Bevaringslover.
Impuls, bevegelsesmengde, energi. Bevaringslover. Kathrin Flisnes 19. september 2007 Bevegelsesmengde ( massefart ) Når et legeme har masse og hastighet, viser det seg fornuftig å definere legemets bevegelsesmengde
Detaljer6 Prinsippet om stasjonær potensiell energi
6 Prinsippet om stasjonær potensiell energi Innhold: Konservative krefter Potensiell energi Prinsippet om stasjonær potensiell energi Stabil og ustabil likevekt rihetsgrader Litteratur: Irgens, Statikk,
Detaljer~ høgskolen i oslo. sa 210 B Dato: 6. desember -04 Antall oppgaver 7 3BK. Emne: Emnekode: Faglig veileder: Hanmg/Rolfsen/Nilsen.
I DIMENSJONERING I -~ ~ høgskolen i oslo Emne: Il ~Gruppe(r) 3BK Eksamensoppgaven Antall sider (inkl. består av: forsiden): _L Tillatte hjelpemidler Alle skriftlige kilder. Enkel ikkeprogrammerbar Emnekode:
DetaljerLøsningsforslag EKSAMEN
Løsningsforslag EKSAMEN EMNENAVN: Styrkeberegning EMNENUMMER: TEK1 EKSAMENSDATO: 8. juni 17 TID: timer: KL 9. - KL 1. EMNEANSVARLIG: Henning Johansen ANTALL SIDER UTLEVERT: TILLATTE HJELPEMIDLER: Lærebok
DetaljerInstruktøren. Kort innføring i biomekanikk... 53. Vektarmprinsippet... 53 Kraftretning... 55 Løft... 59
Instruktøren Kort innføring i biomekanikk......................... 53 Vektarmprinsippet...................................... 53 Kraftretning......................................... 55 Løft................................................
DetaljerSØYLER I FRONT INNFESTING I PLASSTØPT DEKKE, BEREGNING AV DEKKE OG BALKONGARMERING
MEMO 711 Dato: 11.0.015 Sign.: sss SØYLER I FRONT INNFESTING I PLASSTØPT DEKKE, BEREGNING AV DEKKE OG BALKONGARMERING Siste rev.: Dok. nr.: 18.05.016 K5-10/711 Sign.: Kontr.: sss ps SØYLER I FRONT INNFESTING
DetaljerElektrisk og Magnetisk felt
Elektrisk og Magnetisk felt Kjetil Liestøl Nielsen 1 Emner for i dag Coulombs lov Elektrisk felt Ladet partikkel i elektrisk felt Magnetisk felt Magnetisk kraft på elektrisk eladninger Elektromagnetiske
DetaljerDimensjonering MEMO 54c Armering av TSS 41
Side av 9 INNHOLD GUNNLEGGENDE FOUTSETNINGE OG ANTAGELSE... GENEELT... STANDADE... KVALITETE... 3 DIMENSJONE OG TVESNITTSVEDIE... 3 LASTE... 3 AMEINGSBEEGNING... 4 LIKEVEKT... 4 Side av 9 GUNNLEGGENDE
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: Onsdag, 5. juni 2013 Tid for eksamen: kl. 9:00 13:00 Oppgavesettet er på 3 sider Vedlegg: formelark
DetaljerBestemmelse av skjærmodulen til stål
Bestemmelse av skjærmodulen til stål Rune Strandberg Institutt for fysikk, NTNU, N-7491 Trondheim, Norge 9. oktober 2007 Sammendrag Skjærmodulen til stål har blitt bestemt ved en statisk og en dynamisk
DetaljerGeometri. Mål. for opplæringen er at eleven skal kunne
8 1 Geometri Mål for opplæringen er at eleven skal kunne bruke geometri i planet til å analysere og løse sammensatte teoretiske og praktiske problemer knyttet til lengder, vinkler og areal 1.1 Vinkelsummen
DetaljerEksamen i FO929A Matematikk Underveiseksamen Dato 14. desember 2006 Tidspunkt Antall oppgaver 4. Løsningsforslag
Eksamen i FO99A Matematikk Underveiseksamen Dato. desember 6 Tidspunkt 9. -. Antall oppgaver Vedlegg Tillatte hjelpemidler Ingen Godkjent kalkulator Godkjent formelsamling Oppgave Vi løser likningene ved
Detaljer! EmnekOde: i SO 210 B. skriftlige kilder. Enkel ikkeprogrammerbar og ikkekommuniserbar kalkulator.
l Alle ~ høgskolen oslo Emne: DIMENSJONER ~Gruppe(ry 3 BK NG II! EmnekOde: i SO 210 B - Dato: 19. februar -04 I I Fagiig veiled-e-r:-- Hoel/Harung/Nilsen Eksamenstid: 0900-1400 I Anttrlsldre~kI. forsiden):
DetaljerEKSAMEN I EMNE TKT4116 MEKANIKK 1
INSTITUTT FOR KONSTRUKSJONSTEKNIKK Side 1 av 7 Faglig kontakt under eksamen: BOKMÅL Førsteamanuensis Arild H. Clausen, 482 66 568 Førsteamanuensis Erling Nardo Dahl, 917 01 854 Førsteamanuensis Aase Reyes,
DetaljerLøsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.
Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 27. Veiledning: 29. september kl 12:15 15:. Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Oppgave 1 a) C. Elektrisk
DetaljerKortfattet løsningsforslag / fasit
1 Kortfattet løsningsforslag / fasit Ordinær eksamen i FYS-MEK 1110 - Mekanikk / FYS-MEF 1110 - Mekanikk for MEF / FY-ME 100 Eksamensdag onsdag 8. juni 2005 (Versjon 10. juni kl 1520) 1. Forståelsesspørsmål
Detaljer7.2 RIBBEPLATER A7 ELEMENTTYPER OG TEKNISKE DATA 109
A7 ELEMENTTYPER OG TEKNISKE DATA 19 7.2 RIBBEPLATER Generelt DT-elementer har lav egenlast og stor bæreevne, med spennvidder inntil 24 m. Elementene brukes til tak, dekker, bruer, kaier og enkelte fasadeløsninger.
DetaljerNewtons lover i én dimensjon (2)
Newtons lover i én dimensjon () 3.1.17 Innlevering av oblig 1: neste mandag, kl.14 Devilry åpner snart. Diskusjoner på Piazza: https://piazza.com/uio.no/spring17/fysmek111/home Gruble-gruppe i dag etter
DetaljerUNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
DetaljerPOK utvekslingsjern for hulldekker
norge as POK utvekslingsjern for hulldekker SFS127 www.bb-artikler.no www..com POK Innholdsfortegnelse 1. FUNKSJONSMÅTE... 3 2. MÅL OG KAPASITETER... 3 3. PRODUKSJON 3.1 PRODUKSJONSANVISNINGER... 4 3.2
Detaljer