OPPGAVESETT MAT111-H16 UKE 43. Oppgaver til seminaret 28/10
|
|
- Brage Holter
- 8 år siden
- Visninger:
Transkript
1 OPPGAVESETT MAT111-H16 UKE 43 Avsn. 5.1: 41 Avsn. 5.3: 3, 7 Avsn. 5.4: 13, 31, 37 På settet: S.1 Oppgaver til seminaret 28/10 Oppgaver til gruppene uke 44 Merknad: Oppgavene under skal kunne løses uten bruk av Fundamentalteoremet 5.5.5; dvs. integralene skal kunne løses ved arealbetraktninger. Løs disse først så disse Mer dybde Avsn. 5.1: 9, 17 33, 37 Avsn. 5.3: 1, 9 6, ( ), 18 Avsn. 5.4: 1, 7, 24 9, 29 På settet: G.1, G.2, G.3 G.4, G.5, G.6, G.7 ( ) Løsningen på Oppgave 17 i 5.3 bruker ikke at funksjonen f er kontinuerlig, slik at oppgaven viser egentlig at enhver ikkeavtagende funksjon på et lukket intervall er integrérbar. (Samme resultat holder selvfølgelig også for ikkevoksende funksjoner.) Oppgavene under Mer dybde behandles i 2. time av det raske seminaret 4/11. Obligatoriske oppgaver Oppgavene 1 og 2 i Obligatorisk innlevering 3 (innleveringsfrist mandag 21/11). Merk at noen av oppgavene vil involvere pensum fra tidligere uker. 1
2 2 OPPGAVESETT MAT111-H16 UKE 43 OPPGAVE S.1 Finn en funksjon f, et intervall og en partisjon slik at de to summene i oppgavene 11 og 12 i Avsnitt 5.3 er henholdsvis øvre og nedre Riemannsum. OPPGAVE G.1 (Eksamen UiB-V02-Oppg. 3) OPPGAVE G.2 (Eksamen UiB-V10-Oppg. 2)
3 OPPGAVESETT MAT111-H16 UKE 43 3 OPPGAVE G.3 (Deleksamen UiB-H03-Oppg. 9) Avgjer om påstandane under er sanne eller usanne. Gi ei kort grunngjeving for svaret ditt. a) Kontinuerlege funksjonar på [a, b] er alltid deriverbare på (a, b). b) Funksjonar definert på [a, b] har alltid eit absolutt (globalt) maksimum og minimum på intervallet. c) Gitt at x 6 x 5 x Vi kan bruke middelverditeoremet/sekantsetninga på f til å vise at likninga 6c 5 5c 4 2c + 1 = 0 har ei løysing (rot) i intervallet (0, 1). OPPGAVE G.4 Definisjonen av øvre og nedre Riemannsum i Avsnitt 5.3 i læreboken fungerer for alle funksjoner som har en maksimal- og minimalverdi i hvert av delintervallene [x i, x i 1 ] i partisjonen. (Og dere vil se i MAT112 at definisjonen lett kan utvides til alle funksjoner som er begrenset på det lukkede intervallet [a, b] i definisjonen.) La oss betrakte Dirichlets funksjon (fra Oppgave G.6 i oppgavesett Uke 36) 1, x rasjonal; 0, x irrasjonal. Beregn øvre Riemannsum U(f, P ) og nedre Riemannsum L(f, P ) for en vilkårlig partisjon P på et vilkårlig intervall [a, b]. Du vil få de samme svarene uansett partisjon. Bruk dette til å forklare at f ikke er integrérbar på noe intervall [a, b]. Hvordan passer dette inn med Teorem 2 i 5.3? (Hint: Bruk det faktum at det i ethvert intervall, uansett hvor lite det er, vil finnes både rasjonale og irrasjonale tall.) OPPGAVE G.5 Bevis følgende sats, som gir en nyttig regel for å avgjøre om en funksjon er derivérbar eller ikke. Sats La f være kontinuerlig i a og derivérbar for alle x i et intervall rundt a, men ikke nødvendigvis i a. (i) Dersom lim x a f (x) = L (med L et endelig tall), da er f derivérbar i a med f (a) = L. (ii) Dersom de to ensidige grensene lim x a f (x) og lim x a + f (x) eksisterer (og altså er endelige) men er ulike, eller en av dem er eller, da er f ikke derivérbar i a.
4 4 OPPGAVESETT MAT111-H16 UKE 43 Merknader (a) Husk at dersom f ikke er kontinuerlig i a, kan den heller ikke være derivérbar i a, ved Teorem 1 i 2.3, så da trenger vi ikke gjøre noe mer. (b) Merk også at satsen ikke sier noe i det tilfellet der én eller to av de ensidige grensene ikke eksisterer og ingen av dem er ±. (c) Merk at del (i) av satsen også gir at den deriverte er kontinuerlig i punktet a, siden den nettopp sier at lim x a f (x) = f (a) (se Definisjon 4 i 1.4). OPPGAVE G.6 (a) Hvor brukte du at f er kontinuerlig i a i svaret på Oppgave G.5? Vis at denne betingelsen er nødvendig ved å studere funksjonen x, når x 0 x + 1, når x > 0. i x = 0. (b) Vis at det finnes en funksjon f slik at lim x a f (x) ikke eksisterer, men f likevel er derivérbar i a. Hvorfor strider dette ikke mot resultatet i satsen? Hint: prøv funksjonen x 2 sin 1, når x 0 x 0, når x = 0. (fra Oppgave G.2 i oppgavesett Uke 37, eller Oppgave i læreboken ( i utg. 7 og i utg. 6)). OPPGAVE G.7 Bruk satsen fra Oppgave G.5 til å avgjøre om følgende funksjoner er derivérbare i 0: e x 1, når x 0 sin x, når x < 0. tan x, når x 0 g(x) = ln(x 2 + 1), når x < 0. Fasit/hint på neste side
5 OPPGAVESETT MAT111-H16 UKE 43 5 Fasit og hint til oppgavene For fasit/løsningsforslag til gamle eksamensoppgaver fra UiB, se vevsiden Oppgave G.4. L(f, P ) = 0 og U(f, P ) = b a. Oppgave G.7. f er derivérbar, g ikke. LYKKE TIL! Andreas Leopold Knutsen
OPPGAVESETT MAT111-H17 UKE 38. Oppgaver til gruppene uke 39
OPPGAVESETT MAT111-H17 UKE 38 Oppgaver til seminaret 22/9 (Tall i blått angir utgave 6, tall i rødt angir utgave 7.) Avsn. 2.7: 15(11), 21(31)(27) Avsn. 2.8: 5, 17(2.8.13)(2.6.13) Avsn. 2.10: 12, 29, 39
DetaljerOPPGAVESETT MAT111-H17 UKE 39. Oppgaver til seminaret 29/9
OPPGAVESETT MAT111-H17 UKE 39 Avsnitt 3.1: 9, 23, 34 Avsnitt 3.3: 48, 61 Avsnitt 3.4: 1, 2, 9 På settet: S.1 Oppgaver til seminaret 29/9 Oppgaver til gruppene uke 40 Løs disse først så disse Mer dybde
DetaljerOPPGAVESETT MAT111-H16 UKE 38. Oppgaver til gruppene uke 39
OPPGAVESETT MAT111-H16 UKE 38 Oppgaver til seminaret 23/9 (Tall i blått angir utgave 6, tall i rødt angir utgave 7.) Avsn. 2.7: 15(11), 21(31)(27) Avsn. 2.8: 5, 17(2.8.13)(2.6.13) Avsn. 2.10: 12, 29, 39
DetaljerOPPGAVESETT MAT111-H17 UKE 36. Oppgaver til seminaret 8/9. Husk at seminaret finnes i to varianter, begge fredag :
OPPGAVESETT MAT111-H17 UKE 36 Avsnitt 1.4: 17, 29, 32 Avsnitt 2.2: 12 Avsnitt 2.3: 41, 52 På settet: S.1 Oppgaver til seminaret 8/9 Husk at seminaret finnes i to varianter, begge fredag 12.15-14.00: Seminar
DetaljerOPPGAVESETT MAT111-H16 UKE 44. Oppgaver til seminaret 4/11
OPPGAVESETT MAT111-H16 UKE 44 Avsn. 5.5: 19, 41, 47 Avsn. 5.6: 9, 17, 47 Avsn. 5.7: 15 På settet: S.1, S.2. Oppgaver til seminaret 4/11 Oppgaver til gruppene uke 45 Løs disse først så disse Mer dybde Avsn.
DetaljerOPPGAVESETT MAT111-H16 UKE 36. Oppgaver til seminaret 9/9. Husk at seminaret finnes i to varianter, begge fredag :
OPPGAVESETT MAT111-H16 UKE 36 Avsnitt 1.4: 17, 29, 32 Avsnitt 2.2: 12 Avsnitt 2.3: 41, 52 På settet: S.1 Oppgaver til seminaret 9/9 Husk at seminaret finnes i to varianter, begge fredag 12.15-14.00: Seminar
DetaljerOPPGAVESETT MAT111-H16 UKE 46. Oppgaver til seminaret 18/11
OPPGAVESETT MAT111-H16 UKE 46 (Tall i blått angir utgave 6.) Avsn. 6.2(6.3): 9, 20 Avsn. 6.3(6.2): 3, 19, 51(45). Avsn. 6.5: 13, 19, 31 Oppgaver til seminaret 18/11 Oppgaver til gruppene uke 47 Løs disse
DetaljerOPPGAVESETT MAT111-H17 UKE 46. Oppgaver til seminaret 17/11
OPPGAVESETT MAT111-H17 UKE 46 (Tall i blått angir utgave 6.) Avsn. 6.2(6.3): 9, 20 Avsn. 6.3(6.2): 19, 51(45). Avsn. 6.5: 13, 23, 31 Oppgaver til seminaret 17/11 Oppgaver til gruppene uke 47 Løs disse
DetaljerOPPGAVESETT MAT111-H17 UKE 47. Oppgaver til seminaret 24/11
OPPGAVESETT MAT111-H17 UKE 47 På settet: S.1, S.2, S.3, S.4, S.5 Oppgaver til seminaret 24/11 Oppgaver til gruppene uke 48 Løs disse først så disse Mer dybde Avsn. 6.6 3 Avsn. 6.7 3, 7 Avsn. 7.9 28, 29
DetaljerLøsningsforslag til Mat112 Obligatorisk Oppgave, våren Oppgave 1
Løsningsforslag til Mat2 Obligatorisk Oppgave, våren 206 Oppgave Avgjør om følgende rekker er konvergente: (a) n + n n + n + Løsning: rekken lim : n n + n n + n + Vi bruker grensesammenligningstesten mhp.
DetaljerOPPGAVESETT MAT111-H16 UKE 34
OPPGAVESETT MAT111-H16 UKE 34 Avsnittene (og appendiksene) viser til utgave 8 av læreboken, som er like i utgavene 7 og 6 når ikke annet er oppgitt. Gruppene starter opp i uke 35. Hver student er satt
DetaljerOPPGAVESETT MAT111-H17 UKE 34. Oppgaver til seminaret 25/08
OPPGAVESETT MAT111-H17 UKE 34 Settet inneholder oppgaver fra stoffet omhandlet på forelesning uke 34, og består av seminaroppgaver, gruppeoppgaver og og obligatoriske oppgaver. Avsnittene og appendiksene
DetaljerOppgaveark Uke 37 (07/09-11/09) MAT111 - H09
Oppgaveark Uke 37 (07/09-11/09) MAT111 - H09 Oppgave 1 Du ar fått deg en jobb i et firma og skal kjøre til en konferanse med overnatting. Du drar jemmefra på mandag kl 07:15 og ankommer 11:07. Du overnatter
DetaljerUNIVERSITETET I BERGEN
UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT - Grunnkurs i Matematikk II Torsdag 4. juni 05, kl. 09:00-4:00 Bokmål Tillatte hjelpemiddel: Enkel kalkulator i samsvar
DetaljerMAT jan jan jan MAT Våren 2010
MAT 1012 Våren 2010 Mandag 18. januar 2010 Forelesning I denne første forelesningen skal vi friske opp litt rundt funksjoner i en variabel, se på hvordan de vokser/avtar, studere kritiske punkter og beskrive
DetaljerNOTAT OM UNIFORM KONTINUITET VEDLEGG TIL BRUK I KURSET MAT112 VED UNIVERSITETET I BERGEN
NOTAT OM UNIFORM KONTINUITET VEDLEGG TIL BRUK I KURSET MAT2 VED UNIVERSITETET I BERGEN ANDREAS LEOPOLD KNUTSEN OG ARNE STRAY. Innledning og definisjoner Vi vil i dette notatet betrakte reelle funksjoner
DetaljerOPPGAVESETT MAT111-H16 UKE 47. Oppgaver til seminaret 25/11
OPPGAVESETT MAT111-H16 UKE 47 Avsn. 7.1: 1, 11 På settet: S.1, S.2, S.3, S.4 Oppgaver til seminaret 25/11 Oppgaver til gruppene uke 48 Løs disse først så disse Mer dybde Avsn. 6.6 3 Avsn. 6.7 3, 7 Avsn.
DetaljerNotasjon i rettingen:
UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Løsningsforslag med kommentarer) til Innlevering /4 i emnet MAT, høsten 07 Notasjon i rettingen: R = Rett R = Rett, men med liten tulle)feil
DetaljerOppsummering TMA4100. Kristian Seip. 17./18. november 2014
Oppsummering TMA4100 Kristian Seip 17./18. november 2014 Forelesningene 17./18. november Disse forelesningene er et forsøk på å se de store linjer og sammenhengen mellom de ulike deltemaene i TMA4100 delvis
DetaljerEKSEMPLER TIL ETTERTANKE MAT1100 KALKULUS
EKSEMPLER TIL ETTERTANKE MAT00 KALKULUS Simon Foldvik. Oktober 207 Dette dokumentet inneholder eksempler på hvor «ting går galt» og har til hensikt å vise eksempler på hva man ikke kan konkludere. Alle
DetaljerUNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Obligatorisk innlevering 1 i emnet MAT111, høsten 2016
UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Obligatorisk innlevering 1 i emnet MAT111, høsten 2016 Innleveringsfrist: Mandag 26. september 2016, kl. 14, i Infosenterskranken i inngangsetasjen
DetaljerOppsummering MA1101. Kristian Seip. 23. november 2017
Oppsummering MA1101 Kristian Seip 23. november 2017 Forelesningen 23. november Denne forelesningen beskriver de store linjer og sammenhengen mellom de ulike deltemaene i MA1101 noen tips for eksamensperioden
DetaljerOppsummering TMA4100. Kristian Seip. 26./28. november 2013
Oppsummering TMA4100 Kristian Seip 26./28. november 2013 Forelesningene 26./28. november Disse forelesningene er et forsøk på å se de store linjer og sammenhengen mellom de ulike deltemaene i TMA4100 delvis
DetaljerOppsummering TMA4100. Kristian Seip. 16./17. november 2015
Oppsummering TMA4100 Kristian Seip 16./17. november 2015 Forelesningene 17./18. november Denne forelesningen beskriver de store linjer og sammenhengen mellom de ulike deltemaene i TMA4100 noen tips for
DetaljerBYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8
Innlevering BYFE DAFE Matematikk HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 5. april 6 kl Antall oppgaver: 8 Funksjonen ft) er vist i guren over. Funksjonen F x) er denert som for x. F x)
DetaljerMA oppsummering så langt
MA1101 - oppsummering så langt Torsdag 29. september 2005 http://www.math.ntnu.no/emner/ma1101/2005h/ MA1101- oppsummering så langt p.1/21 Pensum til semesterprøven Kapittel P Kapittel 1 Kapittel 2: avsnittene
DetaljerLøsningforslag, Øving 9 MA0001 Brukerkurs i Matematikk A
Løsningforslag, Øving 9 MA Brukerkurs i Matematikk A Læreboka s. 7-74 9. Finn /, dersom y(x) er gitt ved ue 4u du Løsning: Vi bruker fundamentalteoremet (del ): = d [ ] ue 4u du = xe 4x. Bruk Leibniz s
DetaljerOPPGAVESETT MAT111-H16 UKE 45. Oppgaver til seminaret 11/11. Oppgaver til gruppene uke 46
OPPGAVESETT MAT111-H16 UKE 45 Avsn. 6.1: 19, 31 Avsn. 7.9: 9, 17, 22 På settet: S.1, S.2 Oppgaver til seminaret 11/11 Oppgaver til gruppene uke 46 Løs disse først så disse Mer dybde Avsn. 6.1 4, 5, 29
DetaljerUNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Eksamen i MAT111 Grunnkurs i matematikk I Løsningsforslag
UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i MAT Grunnkurs i matematikk I Løsningsforslag Onsdag 9. mai, kl. 9. 4. Bokmål Oppgave a) La R være området mellom kurvene Finn
DetaljerNotasjon i rettingen:
UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Løsningsforslag med kommentarer) til Innlevering /4 i emnet MAT, høsten 207 Notasjon i rettingen: R Rett R Rett, men med liten tulle)feil
DetaljerLøysingsforslag Eksamen MAT111 Grunnkurs i Matematikk I Universitetet i Bergen, Hausten 2016
Løysingsforslag Eksamen MAT Grunnkurs i Matematikk I Universitetet i Bergen, Hausten 26 OPPGÅVE Det komplekse talet z = 3 i tilsvarar punktet eller vektoren Rez, Imz) = 3, ) i det komplekse planet, som
DetaljerFremdriftplan. I går. I dag. 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet
1 Fremdriftplan I går 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet I dag 2.7 Tangenter og derivasjon 3.1 Den deriverte til en funksjon 3.2 Derivasjonsregler 3.3 Den deriverte som endringsrate
DetaljerFunksjonsdrøfting MAT111, høsten 2016
Funksjonsdrøfting MAT111, høsten 2016 Andreas Leopold Knutsen 11. oktober 2016 Den deriverte f Newton-kvotienten f (x+h) f (x) h er stigningen til sekantlinjen gjennom punktene (x, f (x)) og (x + h, f
DetaljerEKSAMEN. Emne: Metode 1: Grunnleggende matematikk og statistikk (Deleksamen i matematikk)
EKSAMEN Emnekode: SFB10711 Dato: 2.6.2014 Hjelpemidler: Kalkulator Utlevert formelsamling Emne: Metode 1: Grunnleggende matematikk og statistikk (Deleksamen i matematikk) Eksamenstid: kl. 09.00 til kl.
DetaljerEksamen i emnet MAT111/M100 - Grunnkurs i matematikk I Mandag 15. desember 2003, kl. 09-13(15) LØYSINGSFORSLAG OPPGÅVE 2:
Eksamen i emnet MAT/M00 - Grunnkurs i matematikk I Mandag 5. desember 2003, kl. 09-3(5) LØYSINGSFORSLAG Finn dei deriverte til i) f(x) = x 2 ln x OPPGÅVE : exp(u 2 )du, x, ii) f(x) = x cos(x). i) d x 2
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Onsdag 9 mai 9 Tid for eksamen: 4:3 8:3 Oppgavesettet er på 7 sider Vedlegg: Tillatte
DetaljerTMA4100: Repetisjon før midtsemesterprøven
TMA4100: Repetisjon før midtsemesterprøven 10.10.09 Lars Sydnes sydnes@math.ntnu.no Institutt for matematiske fag October 1, 2009 L.S. (NTNU) TMA4100: Oversikt October 1, 2009 1 / 20 Kapittel 1: Funksjoner.
DetaljerKrasjkurs MAT101 og MAT111
Krasjkurs MAT101 og MAT111 Forord Disse notatene ble skrevet under et åtte timer (to firetimers forelesninger) i løpet av 10. og 11. desember 2012. Det er mulig at noen av utregningene ikke stemmer, enten
DetaljerFunksjonsdrøfting MAT111, høsten 2017
Funksjonsdrøfting MAT111, høsten 2017 Andreas Leopold Knutsen 11. Oktober 2017 Strengt voksende funksjon (Def. 6 i Ÿ2.8) f er strengt voksende på intervallet I dersom x 1 < x 2 i I = f (x 1 ) < f (x 2
DetaljerTMA4100 Matematikk 1, høst 2013
TMA4100 Matematikk 1, øst 2013 Forelesning 7 www.ntnu.no TMA4100 Matematikk 1, øst 2013, Forelesning 7 Derivasjon Denne uken skal vi begynne på tema 2 om derivasjon. I dagens forelesning skal vi se på
DetaljerVelkommen til MAT111, høsten 2017
Velkommen til MAT111, høsten 2017 Andreas Leopold Knutsen (foreleser) Kristine Lysnes (studieveileder) 16. august 2017 Undervisningstilbud Forelesninger tir og ons 10-12 (alt. 16-18 og 14-16) Seminar (=oppgavegjennomgang
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: Eksamensdag: Fredag 1. april 2011 Tid for eksamen: 15.00 17.00 Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler:
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT111 Prøveeksamen Eksamensdag: 5. juni 21. Tid for eksamen: 1. 13.3. Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler:
DetaljerOppgavesett for pensum uke 5
Oppgavesett for pensum uke 5 Gruppeoppgaver Avsnitt Regn først disse og så disse. P. 1 12, 31, 32, 41 App. I. 5, 23, 34, 37, 51 29, 41 P.6 4 10, 11 Eksamensoppg Oppgavene 1 og 2 på neste side av dette
DetaljerTMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010
TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010 Toke Meier Carlsen Institutt for matematiske fag 30. september 2010 2 Fremdriftplan I går 5.5 Ubestemte integraler og substitusjon
DetaljerMatematikk 1 (TMA4100)
Matematikk 1 (TMA4100) Forelesning 6: Derivasjon Eirik Hoel Høiseth Stipendiat IMF NTNU 22. august, 2012 Stigningstallet i et punkt Stigningstallet i et punkt Vi vender nå tilbake til problemet med å finne
DetaljerTMA4100 Matematikk 1, høst 2013
TMA4100 Matematikk 1, høst 2013 Forelesning 9 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 9 Derivasjon I dagens forelesning skal vi se på følgende: 1 Tilnærminger til små endringer. 2 Vekstfart.
DetaljerLitt topologi. Harald Hanche-Olsen
MA2104 2006 Litt topologi Harald Hanche-Olsen hanche@math.ntnu.no De reelle tall En grunnleggende egenskap ved de reelle tall, som skiller dem fra de rasjonale tall, er kompletthetsaksiomet. Det har flere
DetaljerProblem 1. Problem 2. Problem 3. Problem 4
Oppsummeringsproblemer som utgangspunkt til ekstraforelesninger i uke 48 i emnet MAT111, høsten 2008 Problem 1 Bruk den formelle definisjonen av grenseverdi til å vise at x 4 1 x 1 x + 1 = 4. Problem 2
DetaljerVelkommen til eksamenskurs i matematikk 1
Velkommen til eksamenskurs i matematikk 1 Haakon C. Bakka Institutt for matematiske fag 4.-5. desember 2010 Program I dag og i morgen skal vi holde på fra 10-16 med en pause fra 13-14. Vi skal gjennom:
DetaljerEKSAMEN I EMNET Løsning: Mat Grunnkurs i Matematikk I Mandag 14. desember 2015 Tid: 09:00 14:00
Universitetet i Bergen Det matematisk naturvitenskapelige fakultet Matematisk institutt Side 1 av 7 BOKMÅL EKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I Mandag 14. desember 15 Tid: 9: 14: Tillatte
DetaljerDerivasjon ekstremverdier Forelesning i Matematikk 1 TMA4100
Derivasjon ekstremverdier Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 6. september 20 Kapittel 3.. Hyperbolske funksjoner 3 Hyperbolske funksjoner Definisjon (Grunndefinisjoner)
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT Kalkulus. Eksamensdag: Fredag 9. desember 2. Tid for eksamen: 9.. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler:
DetaljerMAT jan jan feb MAT Våren 2010
MAT 1012 Våren 2010 Mandag 25. januar 2010 Forelesning Vi fortsetter med å se på det bestemte integralet, bl.a. på hvordan vi kan bruke numeriske beregninger til å bestemme verdien når vi ikke nødvendigvis
DetaljerFasit til obligatorisk oppgave i MAT 100A
3. november, 000 Fasit til obligatorisk oppgave i MAT 00A Oppgave a) Grensen er et 0 0-uttrykk, og vi bruker l Hôpitals regel: ln cos π (ln ) (cos π ) ( sin π ) π b) Vi må først skrive uttrykket på eksponentiell
DetaljerINVERST FUNKSJONSTEOREM MAT1100 KALKULUS
INVERST FUNKSJONSTEOREM MAT1100 KALKULUS Simon Foldvik 29. Oktober 2017 1. Introduksjon Vi skal i dette dokumentet bevise en global og en lokal versjon av inverst unksjonsteorem i én variabel. Kort oppsummert
DetaljerMatematikk 1. Oversiktsforelesning. Lars Sydnes November 25, Institutt for matematiske fag
Matematikk 1 Oversiktsforelesning Lars Sydnes sydnes@math.ntnu.no Institutt for matematiske fag November 25, 2009 LS (IMF) tma4100rep November 25, 2009 1 / 21 Matematikk 1 Hovedperson Relle funksjoner
DetaljerANDREAS LEOPOLD KNUTSEN
NOTAT OM FUNKSJONER AV FLERE VARIABLE VEDLEGG TIL BRUK I KURSET MAT112 VED UNIVERSITETET I BERGEN ANDREAS LEOPOLD KNUTSEN Dette notatet inneholder ikke noe nytt pensum i kurset MAT112 i forhold til læreboken
DetaljerDeleksamen i MAT111 - Grunnkurs i Matematikk I
Bergen, oktober. 2004. Løsningsforslag til Deleksamen i MAT - Grunnkurs i Matematikk I Mandag. oktober 2004, kl. 09-2. Oppgave Beregn grensen f.eks. ved hjelp av l Hôpitals regel. lim x ln x x Vi ser at
DetaljerTMA4100 Matematikk 1, høst 2013
TMA400 Matematikk, høst 203 Forelesning 2 www.ntnu.no TMA400 Matematikk, høst 203, Forelesning 2 Transcendentale funksjoner I dagens forelesning skal vi se på følgende: Den naturlige logaritmen. 2 Eksponensialfunksjoner.
DetaljerTeorem 12.8: Anta f \: R^2 \to R er kontinuerlig, t_0, y_0 \in R og \delta>0. Anta videre at det finnes en K>0 med K\delta<1 slik at
MAT1300 Analyse I 4. mai 2009 12.2. Eksistens av løsninger for differensiallikninger Teorem 12.8: Anta f \: R^2 \to R er kontinuerlig, t_0, y_0 \in R og \delta>0. Anta videre at det finnes en K>0 med K\delta
DetaljerINDUKSJONSPRINSIPPET MAT111 - H16
INDUKSJONSPRINSIPPET MAT - H ANDREAS LEOPOLD KNUTSEN. Matematisk induksjon I læreboken står kun en liten trudelutt om matematisk induksjon i margen på side 0 (side 09 i utg. 7, side 08 i utg. ). Det er
DetaljerEmnenavn: Eksamenstid: Faglærer: Christian F Heide
EKSAMEN Emnekode: ITD15013 Emnenavn: Matematikk 1 første deleksamen Dato: 13. desember 017 Hjelpemidler: Eksamenstid: 09.00 1.00 Faglærer: To A4-ark med valgfritt innhold på begge sider. Formelhefte. Kalkulator
DetaljerNewtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100
Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 20. september 2011 Kapittel 4.7. Newtons metode 3 Eksakt løsning Den eksakte løsningen av
DetaljerINNHOLD. Side Eksempeleksamen 2T - Hele oppgavesettet 1. Oppgave 1 Eksempeleksamen 10
INNHOLD Side Eksempeleksamen 2T - Hele oppgavesettet 1 Oppgave 1 Eksempeleksamen 10 Oppgave 1a Eksempeleksamen 12 Teori oppgave 1a Eksempeleksamen 12 Løsning oppgave 1a Eksempeleksamen 14 Oppgave 1b Eksempeleksamen
DetaljerDerivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011
Derivasjon Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 2. september 20 Kapittel 3.7. Derivasjon av inverse funksjoner 3 Derivasjon av inverse til deriverbare funksjoner
DetaljerLøsningsforslag: Eksamen i Brukerkurs for informatikere MA 0003, onsdag 30. november 2005
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 Løsningsforslag: Eksamen i Brukerkurs for informatikere MA 3, onsdag 3. november 5 Del Oppgave Funksjonen f(x) er
Detaljerdg = ( g P0 u)ds = ( ) = 0
NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,
DetaljerPotensrekker Forelesning i Matematikk 1 TMA4100
Potensrekker Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 11. november 2011 Kapittel 8.8. Taylorrekker og Maclaurinrekker 3 Taylor-polynomer Definisjon (Taylorpolynomet
DetaljerBYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Fredag 11. mars 2016 Antall oppgaver: Løsningsforslag
Innlevering BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Fredag 11. mars 2016 Antall oppgaver: 10 + 1 Løsningsforslag 1 Hvilken av de to funksjonene vist i guren er den deriverte
DetaljerMål og innhold i Matte 1
Mål og innhold i Institutt for matematiske fag 15. november 2013 på Målet med denne oversikten er at vi skal se hvor vi er i pensum, og at du skal kunne finne hva du kan/ikke kan. Jeg vil i tillegg vise
DetaljerLøsningsforslag eksamen MAT111 Grunnkurs i Matematikk I høsten 2009
Løsningsforslag eksamen MAT Grunnkurs i Matematikk I høsten 9 OPPGAVE (a) Vi har w = + ( ) =. I et komplekse plan ligger w i 4. kvarant og vinkelen θ mellom tallet og en relle aksen har tan θ =, vs. at
DetaljerGrunnleggende notasjon ℕ = 1, 2, 3, 4, 5, 6, ℤ =, 3, 2, 1, 0, 1, 2, 3,
Grunnleggende notasjon ℕ,, 3, 4, 5, 6, ℤ, 3,,, 0,,, 3, ℝ 𝑎𝑙𝑙𝑒 𝑟𝑒𝑒𝑙𝑒 𝑡𝑎𝑙𝑙 ℚ 𝑎𝑙𝑙𝑒 𝑟𝑎𝑠𝑗𝑜𝑛𝑎𝑙𝑒 𝑡𝑎𝑙𝑙 𝑎 𝑎, ℤ, 0 Induksjonsprinsippet Anta at for hver 𝑛 ℕ har vi gitt et utsagn 𝑃. Anta videre at vi vet at følgende
DetaljerFasit til utvalgte oppgaver MAT1100, uka 15/11-19/11
Fasit til utvalgte oppgaver MAT uka 5/-9/ Øyvind Ryan oyvindry@ifi.uio.no) November Oppgave 9.. Vi skriver 5x 5 x )x ) A x B x og ser at vi må løse likningene Ax ) Bx ) x )x ) A B 5 A B 5. A B)x A B x
DetaljerNTNU Institutt for matematiske fag. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 8. Oppgave 1. Oppgave 2
NTNU Institutt for matematiske fag TMA4 Matematikk høsten Løsningsforslag - Øving 8 Oppgave b. Vi har at f() > og f(π/) π /6
DetaljerUNIVERSITETET I BERGEN
BOKMÅL MAT - Høst 03 UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT Grunnkurs i Matematikk I Mandag 6. desember 03, kl. 09- Tillatte hjelpemidler: Lærebok ( Calculus
DetaljerI = (x 2 2x)e kx dx. U dv = UV V du. = x 1 1. k ekx x 1 ) = x k ekx 2x dx. = x2 k ekx 2 k. k ekx 2 k I 2. k ekx 2 k 1
TMA4 Høst 6 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 6 6..4 Vi skal evaluere det ubestemte integralet I = ( e k. Vi starter med å dele opp integralet
DetaljerAnalysedrypp II: Kompletthet
Analysedrypp II: Kompletthet Kompletthet er et begrep som står sentralt i både MAT1100 og MAT1110, og som vil stå enda mer sentralt i MAT2400. I de tidligere kursene fremstår begrepet på litt forskjellig
Detaljer1 Mandag 1. februar 2010
Mandag. februar 200 I dag skal vi fortsette med rekkeutviklinger som vi begynte med forrige uke. Vi skal se på litt mer generell rekker og vurdere når de konvergerer, bl.a. gi et enkelt kriterium. Dette
DetaljerFlere anvendelser av derivasjon
Flere anvendelser av derivasjon Department of Mathematical Sciences, NTNU, Norway September 30, 2014 Forelesning 17.09.2014 Fikspunkt-iterasjon Newtons metode Metoder for å finne nullpunkter av funksjoner:
DetaljerSom vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk og stil variere noe fra oppgave til oppgave.
NTNU Institutt for matematiske fag TMA4105 Matematikk, øving 7, vår 011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,
DetaljerLØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode
DetaljerEmnenavn: Eksamenstid: Faglærer: Hans Kristian Bekkevard. består av 8 sider inklusiv denne forsiden og vedlagt formelsamling.
e. Høgskoleni Østfold ). EKSAMEN Emnekode: Emnenavn: SFB10711 Metode 1 matematikk deleksamen Dato: Eksamenstid: 3. juni 2016 4 timer Hjelpemidler: Kalkulator og vedlagt formelsamling Faglærer: Hans Kristian
DetaljerMatematikk 1 (TMA4100)
Matematikk 1 (TMA4100) Forelesning 7: Derivasjon (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 23. august, 2012 Den deriverte som momentan endringsrate Den deriverte som momentan endringsrate Repetisjon
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT1100 Kalkulus Eksamensdag: Fredag 14. oktober 2016 Tid for eksamen: 13.00 15.00 Oppgavesettet er på 5 sider. Vedlegg: Svarark,
DetaljerLogaritmer og eksponentialfunksjoner
Logaritmer og eksponentialfunksjoner Harald Hanche-Olsen og Marius Irgens 20-02-02 Dette notatet ble først laget for MA02 våren 2008. Denne versjonen er omskrevet for MA02 våren 20. Du vil oppdage at mange
DetaljerMatematikk 1 (TMA4100)
Matematikk 1 (TMA4100) Forelesning 4: Grenseverdi (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 20. august, 2012 Formell definisjon av grenseverdi Formell definisjon av grenseverdi Uformell definisjon
DetaljerNTNU. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 5. Avsnitt Vi vil finne dx ( cos t dt).
NTNU Instittt for matematiske fag TMA4 Matematikk høsten Løsningsforslag - Øving 5 Avsnitt 5.4 ( + cos x)dx = dx + cos xdx = π + [sin x] π = π + (sin π sin) = π. 44 Vi vil finne d x dx ( cos t dt). Merk
DetaljerLøsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 009 Oppgave 1 Funksjonen g er definert ved g(x)
DetaljerObligatorisk oppgave 2 i MAT1140, Høst Løsninger og kommentarer
Obligatorisk oppgave 2 i MAT1140, Høst 2014. Løsninger og kommentarer Dette vil ikke være et løsningsforslag i vanlig forstand, men en diskusjon av oppgavene, av hvordan studentene løste dem og av diverse
DetaljerMAT1100 - Grublegruppen Uke 36
MAT - Grublegruppen Uke 36 Jørgen O. Lye Partiell derivasjon Hvis f : R 2 R er en kontinuerlig funksjon, så kaller man følgende dens partiellderiverte (gitt at de finnes!) f f(x + h, y) f(x, y) (x, y)
DetaljerFremdriftplan. Siste uke. I dag. Kap. 1 Funksjoner Grenseverdier
1 Fremdriftplan Siste uke Kap. 1 Funksjoner 2.1-2.2 Grenseverdier I dag 2.3 Den formelle definisjonen av grenseverdi 2.4 Ensidige grenser og grenser i uendelig 2.5 Uendelige grenser og vertikale asymptoter
DetaljerOPPGAVESETT MAT111-H17 UKE 45. Oppgaver til seminaret 10/11. Oppgaver til gruppene uke 46
OPPGAVESETT MAT111-H17 UKE 45 Avsn. 7.1: 3, 4 Avsn. 7.9: 22 På settet: S.1, S.2 Oppgaver til seminaret 10/11 Oppgaver til gruppene uke 46 Løs disse først så disse Mer dybde Avsn. 7.1 1, 2, 6, 7, 18 Avsn.
DetaljerPrøveunderveiseksamen i MAT-INF 1100, H-03
Prøveunderveiseksamen i MAT-INF 1100, H-03 Denne prøveeksamenen har samme format som den virkelige underveiseksamenen, og inneholder oppgaver av samme type og vanskelighetsgrad. De 15 første oppgavene
DetaljerTMA4100 Matematikk 1, høst 2013
TMA4100 Matematikk 1, høst 2013 Teknostart Forelesning 3 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Teknostart Forelesning 3 Tema Logikk Definisjoner og Teoremer Mengder og Egenskaper ved de Reelle Tall
DetaljerEkstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100
Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 9. september 2011 Kapittel 4.1. Funksjoners ekseremverdier fra og med lokale ekstrema
DetaljerDen deriverte og derivasjonsregler
Den deriverte og derivasjonsregler Department of Mathematical Sciences, NTNU, Norway September 3, 2014 Tangenten til en funksjon i et punkt (kap. 2.1) Sekant til en funksjon gjennom to punkter 25 20 f(c+h)
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT-INF 1100 Modellering og beregninger. Eksamensdag: Onsdag 12. oktober 2016. Tid for eksamen: 15:00 17:00. Oppgavesettet
DetaljerViktig informasjon. 1.1 Taylorrekker. Hva er Taylor-polynomet av grad om for funksjonen? Velg ett alternativ
Viktig informasjon MAT-INF1100 - Modellering og beregninger Mandag 10. desember 2018 Kl.09:00-13:00 (4 timer) Tillatte hjelpemiddel: Formelsamling (deles ut på eksamen), Gyldig kalkulator. I dette oppgavesettet
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Torsdag 1. oktober 2005. Tid for eksamen: 9:00 11:00. Oppgavesettet er på
Detaljer