Fasit eksamen i fysikk vår 2003
|
|
|
- Pernille Pedersen
- 9 år siden
- Visninger:
Transkript
1 Fait ekamen i fyikk vår 003 Oppgave a) Krefter Kreftene er tyngdekraften G og normalkraften N M : 89 kg α : 44 deg g : 9.8 m G : M g G N N : G co( α) N N b) Akelerjon i A. Dekomponerer G og finner komponenten av G lag bakken Gp Gp : G in( α) Gp a : a 6.85 m M c) Høydeforkjell A-B. Nytter at poteniell energi går over til kinetik energi v : 3 m M g Hab M v Ekamen i fyikk vår 003 ide
2 Høyt v Hab : Hab 6.96 m g d) Krefter lavete punkt. I dette punktet virker normalkraft N og tyngdekraft G. Tyndekraften G er den amme om i a). Kloen har en entripetalakelerajon rettet oppover og um av normalkraft og tyngdekraft gir entripetalkraft. r : 7 m N G M v N : G + M v N N r r e) Høyt kommer Håkonen Nytter at kinetik energi går over til poteniell energi M v M g h v : 5 m v h : h.468 m g f) Lenge i luften v t g t 0 Ser bort fra løning t0 v g t 0 g t v t v : t g Ekamen i fyikk vår 003 ide
3 g) Når 3 m over C v t g t 3 m ( ) t v v : + 6 g m t.843 g ( ) t v v : 6 g m t 0.5 g Oppgave a) Def. elektrik penning og elektrik trøm Strøm I definerer om ladning Q om paerer et tvernitt per tidenhet. En har da at I Q/t Spenning mellom to punkt i et elektrik felt kan definere om det arbeide om det elektrik feltet kan gjøre på ladningen We når ladningen går mellom punktene, delt på ladningen. U We/Q b) Elektrik effekt Snur vi utrykket for penning får vi We U*Q Snur vi uttrykket for trøm får vi Q I*t og da kan vi ette We U*I*t Effekt P er lik arbeid delt på tid P We/t P U*I*t / t P U*I c) Spenning for å gi fart Nytter at arbeid om felt gjør går over til kinetik erngi v m : e : C Mp : kg Ekamen i fyikk vår 003 ide 3
4 U e Mp v Mp v U : U V e d) Felttyrke mellom plater 70 V E : E V 0.06 m m e) Magnetik fluktetthet mellom plater Skal ionenene gå rett frem må den magnetike kraften være lik den elektrike kraften e E E e v B B : B T v f) Radiu i irkelbane Den magnetike kraften er vinkelrett på hatigheten og gjør derfor ikke noe arbeid. Derved blir hatigheten kontant og den magnetike kraften kontant. En får da en kontant entripetalkraft om gir en irkelbane B : 0.5 T e v B Mp v Mp v r : r.09 m r e B Oppgave 3 a) Brytningindek til vann nl : nl in( αl) nv in( αv) αl : 4 deg αv : 30 deg in( αl) nv : nv.338 in( αv) b) Lyhatighet i vann m cv : cv nv m c) Grenevinkel Grenevinkel er innfallvinkel når brytningvinkel er 90 grader. Derom innfallvinkel tørre enn grenevinkel får en totalreflekjon nl in 90 deg nl in( 90 deg) nv in( αg) αg : ain ( ) αg deg nv Ekamen i fyikk vår 003 ide 4
5 d) Bølgelengden til lyet nm : 0 9 m d : 0.00 m 400 θ : atan 0 θ.6 deg d in( θ) 4 λ d in( θ) λ : λ m λ nm e) Antall makimum Mak antall får en når en etter vinkel til 90. En får da makima på en ide. Totalt blir antall makima um av makima på hver ide plu makimum i midt. n λ d in( 90 deg) d in( 90 deg) n : n 5. λ N : N f) Uikkerhet θmax : atan 0.3 θmax 3.49 deg 3.7 θmin : atan 9.7 θmin.76 deg 4.3 d in( θmax) λmax : λmax m λmax nm d in( θmin) λmin : λmin m λmin nm λmax λmin λ : λ m λ nm g) Serien av bølger Serien av bølger om danne av elektroner om faller ned til kall i hydrogenatomet kalle Balmererien. h) Antall bølgelengder fra kall 4 til Av fig er vi at vi har 6 muligheter for bølgelengder Ekamen i fyikk vår 003 ide 5
6 i) Bølgelengden til lyet h : J c m : B : J h f B B B B 6 6 f : f h c λ : λ m λ nm f j) Kortete bølgelengde Kortete bølgendelngde gir tørt energiprang dv. et prang fra n uendelig til n. Leddet med n uendelig faller bort og vi får: h f B f : B f h c λ : λ m λ nm f k) Bohr potulater Bohr a at ) Elektronet kunne ekitere i betemte tajonære tiltander uten å mite energi. ) Derom et elektron gikk fra en tajonær tiltand Em til en tajonær tiltand med lavere energi En, ville energidifferanen bli endt ut om et foton. h*f Em -En Bakgrunnen for at Bohr kom med die potulatene var ) Rutherford atommodell om ammenkoblet med Maxwell ligninger a at iden elektronene var akelerert når de gikk rundt kjernen (entripetalakelerajon), kulle de ende ut elektromagnetik tråling, mite energi og derved havne i kjernen. Siden dette ikke kjedde potulerte Bohr at man måtte ha tajonære tiltander. ) Siden pektrene for gaer hadde betemte lyende linjer, potulerte Bohr at die tajonære tiltander ikke var tilfeldige, men at det måtte være betemte tiltander karakteritike for den aktuelle ga, og han kunne og beregene die for Hydrogen. Ekamen i fyikk vår 003 ide 6
7 Oppgave 4 a) Proent av normal mengde TC4 : 5730 a t : 7500 a TC4 P : 00 P.04 b) Lenge iden døde t P : 7.3 P 00 TC4 t P 00 t TC4 log P 00 log t TC4 P log 00 t : TC4 t a log c) Energi frigitt Finner maetap og nytter konverteringfaktor energi/mae. ev : J MeV : 0 6 ev u : kg MC4 : u MN4 : u M : MC4 MN4 M u E : MeV M E 0.59 MeV E J u d) Type tråling Dette er et ekempel på beta tråling d) Bindingenergi per nukleon MH : u Mn : u M : 6 MH + 8 Mn MC4 M 0. u MeV M u En : En 7.39 MeV En.7 0 J 4 Ekamen i fyikk vår 003 ide 7
8 Oppgave 5 a) Hovedgrupper av partikler Hovedgruppen av partikler er fermioner om har antiymmetrik bølgefunkjon og av den grunn ikke kan være i amme kvantetiltand det vil i de følger Pauliprinippet. Fermionene har alltid halvtallig pinn. Den andre hovedgruppen er booner om har ymmetrik bølgefunkjoen og derfor kan være i amme kvantetiltand. Booner har alltid heltallig pinn. Fermionene er igjen gruppert i kvarker og leptoner. Kvarkene danner partikkelgruppene baryoner (tre kvarker) om og er fermioner, og meoner (kvark og antikvark) om hører med til boonene. Boonene er gruppert i ulike formidlingpartikler for de ulike kreftene b) Konerveringlover Energi er konervert Bevegelemengde er konervert Ladning er konervert Baryontall er konervert Kvarkkvantetall er delvi konervert (Ikke i vake vekelvirkninger) Leptontall er konervert (I partikkelreakjoner, men kan endre over tid jevnfør nøytrinoer om kommer fra olen) c) Formidlingpartikler for kreftene i naturen Vi har følgende krefter og formidlingpartikler Den terke kjernekraften om virker mellom hadroner (partikler bygd opp av kvarker) Den terke kjernekraften blir formidlet av gluoner mellom kvarker og meoner mellom nukleoner. Den terke kjernekraften har kort rekkevidde 0-5 m mellom nukleonene. Den elektromagnetike kraften om virker mellom alle elektrik ladete partikler og har uendelig rekkevidde. Den elektromagnetike kraften blir formidlet av fotoner. Den vake kjernekraften virker mellom alle partikler, men har vært kort rekkevidde 0-6 m. Den er anvarlig for vie typer radioativ nedbrytning om βtråling. Den vake kjernekraften blir formidlet av W+, W- og Z0 boonene. Gravitajonkraften virker mellom alt om har effektiv mae energi inkludert. Den har uendelig rekkveidde noe om gjør at elv om den er den vakete av alle kreftene å tyrer den univeret i tor kala. Gravitajonkraften kan muligen bekrive ved at den blir formidlet av gravitoner. Ekamen i fyikk vår 003 ide 8
9 d) Reakjonen med nøytronet ν+ n > p + e- kan illiutrere om følger der tidaken går oppover. ν e) Siden en kvark kifter fra nedkvark d til oppkvark u, er det den vake kraften om formidler denne proeen. Formidlingpartikkelen er W- f) Wolfgang Pauli var den om ført forelo at nøytrinoet måtte ekitere. Grunnen til at Pauli framatte påtanden om nøytrionoet ekiten ligger i β tråling. Regner man ut energien om er frigitt ved å e på maedifferanen i proeen for β tråling, finner en at elektronet vanligvi ikke har all den energi om er frigitt. Pauli forelo da at det måtte finne en nøytral neten maelø partikkel om tok med eg en del av energien. Partikkelen måtte være nøytral ut fra konervering av ladning og neten maelø da elektronet i noen tilfeller hadde neten all frigitt energi. g) Ut fra konevering av leptontall må vi ha med antielektronnøytrinoet. Det er ikke leptoner på ventre iden av reakjonen ergo er leptontall 0. På høyre ide har en elektronet med elektronleptontall. Da må vi få inn en partikkel med elektronleptontall - dv. antielektronnøytrinoet. Ekamen i fyikk vår 003 ide 9
EKSAMEN I FAG SIF 4014 FYSIKK 3 Onsdag 2. desember 1998 kl
Side av 7 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under ekamen: Førteamanueni Knut Arne Strand Telefon: 73 59 34 6 EKSAMEN I FAG SIF 44 FYSIKK 3 Ondag. deember
Kap Newtons lover. Newtons 3.lov. Kraft og motkraft. Kap. 4+5: Newtons lover. kap4+5.ppt Sir Isaac Newton ( ) Før hans tid:
TFY4145/FY1001 Mekanik fyikk Størreler og enheter (Kap 1) Kinematikk i en, to og tre dimenjoner (Kap. +3) Poijon, hatighet, akelerajon. Sirkelbevegele. Dynamikk (krefter): Newton lover (Kap. 4) Anvendele
EKSAMENSOPPGAVE. Eksamen i: Fys-2001 Statistisk fysikk og termodynamikk Dato: Onsdag 02. desember 2015 Tid: Kl 09:00 13:00 Sted: Åsgårdvegen 9
EKSAMESOGAE Ekamen i: Fy-00 Statitik fyikk og termodynamikk Dato: Ondag 0. deember 05 Tid: Kl 09:00 :00 Sted: Ågårdvegen 9 Tillatte hjelpemidler: Tabeller og formler i fyikk for FY og FY K. Rottmann: Matematik
TFY4106 Eksamen 9 aug Løsningsforslag
TFY416 Ekamen 9 aug 14. Løningforlag Oppgave 1 a) Når m 1 og m er i ro er trekkraften i tauet om holder m 1 lik tyngdekraften: F1 m1 F betemme ut fra at det totale dreiemomentet om aken av trinen er null
AST1010 En kosmisk reise. Forelesning 5: Fysikken i astrofysikk, del 2
AST1010 En kosmisk reise Forelesning 5: Fysikken i astrofysikk, del 2 Innhold Synkrotronstråling Bohrs atommodell og Kirchhoffs lover Optikk: Refleksjon, brytning og diffraksjon Relativitetsteori, spesiell
AST1010 En kosmisk reise
AST1010 En kosmisk reise Forelesning 5: Dopplereffekten Relativitetsteori Partikkelfysikk Energisprang, bølgelengder og spektrallinjer i hydrogen Viktig detalj: Kortere bølgelengde betyr høyere energi
LHC girer opp er det noe mørk materie i sikte?
LHC girer opp er det noe mørk materie i sikte? Faglig pedagogisk dag 29. oktober 2015 Oversikt Partikkelfysikkteori Standardmodellen Mørk materie Mørk materie og partikkelfysikk Hvordan se etter mørk materie?
Hvordan skal vi finne svar på alle spørsmålene?
Hvordan skal vi finne svar på alle spørsmålene? Vi trenger et instrument til å: studere de minste bestanddelene i naturen (partiklene) gjenskape forholdene rett etter at universet ble skapt lære om det
Introduksjon til partikkelfysikk. Trygve Buanes
Introduksjon til partikkelfysikk Trygve Buanes Tidlighistorie Fundamentale byggestener gjennom historien De første partiklene 1897 Thomson oppdager elektronet 1919 Rutherford oppdager protonet 1929 Skobeltsyn
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Program for elektro- og datateknikk 7004 TRONDHEIM
HØGSKOLEN I SØR-RØNDELAG Avdeling for teknologi Program for elektro- og datateknikk 7004 RONDHEIM ALM005M-A Matematikk 1 Grunnlagfag - 10 tudiepoeng Cae Høt 011 Le dette ført Caen er en "hjemmeoppgave"
Fysikk 2 Eksamen våren Løsningsforslag
Fyikk - Løningforlag Ogae 1 a) B Partikkel X må ære oiti for at det elektrike feltet kal eke radielt bort fra denne artikkelen. Partikkel Y må ære negati for at det elektrike feltet kal eke radielt mot
Hvordan skal vi finne svar på alle spørsmålene?
Hvordan skal vi finne svar på alle spørsmålene? Vi trenger et instrument til å: studere de minste bestanddelene i naturen (partiklene) gjenskape forholdene rett etter at universet ble skapt lære om det
VELKOMMEN TIL INTERNATIONAL MASTERCLASSES 2017 FYSISK INSTITUTT, UNIVERSITETET I OSLO
VELKOMMEN TIL INTERNATIONAL MASTERCLASSES 2017 FYSISK INSTITUTT, UNIVERSITETET I OSLO SOSIALE MEDIA facebook/fysikk fysikkunioslo @fysikkunioslo Fysikk_UniOslo INTRODUKSJON TIL PARTIKKELFYSIKK INTERNATIONAL
Løsningsforslag til midtveiseksamen i FYS1000, 17/3 2016
Løsningsforslag til midtveiseksamen i FYS1000, 17/3 2016 Oppgave 1 Vi har v 0 =8,0 m/s, v = 0 og s = 11 m. Da blir a = v2 v 0 2 2s = 2, 9 m/s 2 Oppgave 2 Vi har v 0 = 5,0 m/s, v = 16 m/s, h = 37 m og m
Løsningsforslag til eksamen i FYS1000, 12/6 2017
Løsningsforslag til eksamen i FYS000, 2/6 207 Oppgave a) Vi kaller energien til fotoner fra overgangen fra nivå 5 til nivå 2 for E og fra nivå 2 til nivå for E 2, og de tilsvarende bølgelengdene er λ og
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi. Torsdag Kalkulator: Type C Alt skriftlig materiale
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: Klae(r): Studiepoeng: Faglærer(e): Løning Tordag.. 04 5 klokketimer TALM003-A Matematikk
1 Lavpassfilter Lavpassfilteret påtrykkes en inngangsspenning på 1 V ved t = 0. Spenningen over spolen er vist i figuren under.
ALM5M-A Matematikk Utatt Ekamen, 9 Lavpafilter Lavpafilteret påtrykke en inngangpenning på V ved t =. Spenningen over polen er vit i figuren under. Spenning [V].9.8.7.6.5.4.3.. Tidkontanten til lavpafilteret
Hva har LHC lært oss om partikkelfysikk så langt?
Hva har LHC lært oss om partikkelfysikk så langt? Etterutdanningskurs for lærere 4. november 2011 Oversikt Partikkelfysikkteori - Standardmodellen Hva er det som ikke beskrives/forklares av Standardmodellen?
Eksamen FY0001 Brukerkurs i fysikk Torsdag 3. juni 2010
NTNU Institutt for Fysikk Eksamen FY0001 Brukerkurs i fysikk Torsdag 3. juni 2010 Kontakt under eksamen: Tor Nordam Telefon: 47022879 / 73593648 Eksamenstid: 4 timer (09.00-13.00) Hjelpemidler: Tabeller
FYS2140 Kvantefysikk, Oblig 2. Lars Kristian Henriksen Gruppe 3
FYS2140 Kvantefysikk, Oblig 2 Lars Kristian Henriksen Gruppe 3 6. februar 2015 Obliger i FYS2140 merkes med navn og gruppenummer! Denne obligen har oppgaver som tar for seg fotoelektrisk effekt, Comptonspredning
Eksamensoppgave i FY0001 Brukerkurs i fysikk (V2017)
ntitutt for fyikk Ekaenoppgave i FY000 Brukerkur i fyikk (V07) Faglig kontakt under ekaen: Mikael Lindgren Tlf.: 4 46 65 0 Ekaendato: 4. ai 07 Ekaentid (fra-til): 0900-300 Hjelpeiddelkode/Tillatte hjelpeidler:
Fysikkolympiaden Norsk finale 2018 Løsningsforslag
Fysikkolympiaden Norsk finale 018 øsningsforslag Oppgave 1 Det virker tre krefter: Tyngden G = mg, normalkrafta fra veggen, som må være sentripetalkrafta N = mv /R og friksjonskrafta F oppover parallelt
FYS2140 Kvantefysikk, Løsningsforslag for Oblig 2
FYS2140 Kvantefysikk, Løsningsforslag for Oblig 2 12. februar 2018 Her finner dere løsningsforslag for Oblig 2 som bestod av Oppgave 2.6, 2.10 og 3.4 fra Kompendiet. Til slutt finner dere også løsningen
Eksamen i FY3403/TFY4290 PARTIKKELFYSIKK Mandag 12. desember :00 13:00
NTNU Side 1 av 6 Institutt for fysikk Faglig kontakt under eksamen: Professor Kåre Olaussen Telefon: 9 36 5 eller 45 43 71 70 Eksamen i FY3403/TFY490 PARTIKKELFYSIKK Mandag 1. desember 005 09:00 13:00
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: Klae(r): Studiepoeng: Faglærer(e): Tordag 11.1. 014 5 klokketimer TALM1003-A Matematikk
Fasit eksamen Fys1000 vår 2009
Fasit eksamen Fys1000 vår 2009 Oppgave 1 a) Klossen A er påvirka av tre krefter: 1) Tyngda m A g som peker loddrett nedover. Denne er det lurt å dekomponere i en komponent m A g sinθ langs skråplanet nedover
Lys. Bølger. Partiklar Atom
Lys Bølger Partiklar Atom Atom «Atomhistoria» Gamle grekarar og indarar, ca 500 f. Kr. Materien har ei minste eining; den er bygd opp av små bitar som ikkje kan delast vidare 1800-talet: Dalton, Brown,
AST1010 En kosmisk reise. Forelesning 5: Fysikken i astrofysikk, del 2
AST1010 En kosmisk reise Forelesning 5: Fysikken i astrofysikk, del 2 De viktigste punktene i dag: Sorte legemer og sort stråling. Emisjons- og absorpsjonslinjer. Kirchhoffs lover. Synkrotronstråling Bohrs
Kap 10 Dynamikk av rotasjons-bevegelse
Kap Dynaikk av rotajon-bevegele. Bete kraftoentet (tørrele og retning) o en ake noralt på papirplanet gjenno O o kraften F i hver av ituajonene er årak til. Objektet o F virker på har i hvert av tilfellene
EKSAMENSOPPGAVE. Fys-2001 Statistisk fysikk og termodynamikk. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: NEI Hvis JA: ca. kl.
Fakultet for naturvitenkap og teknologi EKSAMESOPPGAE Ekamen i: Dato: 6.0.8 Klokkelett: 09.00-3.00 Fy-00 Statitik fyikk og termodynamikk Sted: Adm.bygget B.54 Tillatte hjelpemidler: Type innføringark (rute/linje):
Lys. Bølger. Partiklar Atom
Lys Bølger Partiklar Atom Lys «Lyshistoria» Lys er små partiklar! Christiaan Huygens (1629-1695) Lys er bølger Isaac Newton (1642-1726) «Lyshistoria» Thomas Young (1773-1829) «Lyshistoria» James Clerk
Signalfiltrering. Finn Haugen TechTeach. 21. september 2003. Sammendrag
Signalfiltrering Finn Haugen TechTeach. eptember 3 Sammendrag Dette dokumentet gir en kort bekrivele av ignalfiltrering med tidkontinuerlige, ogå kalt analoge, filtere og med tiddikrete, ogå kalt digitale,
AST1010 En kosmisk reise
AST1010 En kosmisk reise Forelesning 5: Fysikken i astrofysikk, del 2 Innhold Synkrotronstråling Bohrs atommodell og Kirchhoffs lover OpJkk: Refleksjon, brytning og diffraksjon RelaJvitetsteori, spesiell
UNIVERSITETET I OSLO
UNVERSTETET OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 14. august 2015 Tid for eksamen: 14.30-18.30, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 12. juni 2017 Tid for eksamen: 9.00-13.00, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).
EKSAMEN I FAG FY 0001 Brukerkurs i fysikk Fakultet for naturvitenskap og teknologi Tid:
Side 1 av 5 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Hanne Mehli Tlf.: 7359367 EKSAMEN I FAG FY 0001 Brukerkurs i fysikk Fakultet for naturvitenskap
5:2 Tre strålingstyper
168 5 Radioaktivitet 5:2 Tre strålingstyper alfa, beta, gamma AKTIVITET Rekkevidden til strålingen Undersøk rekkevidden til gammastråling i luft. Bruk en geigerteller og framstill aktiviteten som funksjon
AST1010 En kosmisk reise
AST1010 En kosmisk reise Forelesning 5: Dopplereffekten Rela?vitetsteori Par?kkelfysikk Energisprang, bølgelengder og spektrallinjer i hydrogen Vik?g detalj: Kortere bølgelengde betyr høyere energi Spektralserier
Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.
Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 27. Veiledning: 29. september kl 12:15 15:. Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Oppgave 1 a) C. Elektrisk
ØVING 12. Vinkelfunksjonar, radialfunksjonar og orbitalar for hydrogenliknande. Y lm ; l =0, 1, ; m = l,,l.
FY1006/TFY4215 - Øving 12 1 Frit for innlevering: Tirdag 22. april kl.1700 Oppgåve 1 ytem ØVING 12 Vinkelfunkjonar, radialfunkjonar og orbitalar for hydrogenliknande For ein partikkel om bevegar eg i eit
FYS2140 Kvantefysikk, Oblig 2. Sindre Rannem Bilden, Gruppe 3
FYS2140 Kvantefysikk, Oblig 2 Sindre Rannem Bilden, Gruppe 3 6. februar 2015 Obliger i FYS2140 merkes med navn og gruppenummer! Denne obligen har oppgaver som tar for seg fotoelektrisk eekt, Comptonspredning
Løsningsforslag til eksamen i FYS1000, 19/8 2016
Løsningsforslag til eksamen i FY1000, 19/8 016 Oppgave 1 a) C D A B b) I inusert A + B I ien strømmen går mot høyre vil magnetfeltet peke ut av planet inne i strømsløyfa. Hvis vi velger positiv retning
FAG: FYS114 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann
UNIVERSITETET I AGDER Gritad E K S A M E N S O G A V E : FAG: FYS4 Fyikk/Kjei LÆRER: Fyikk : er Henrik Hogtad Kjei : Grethe Lehrann Klae(r): Dato: 5.5. Ekaentid, fra-til: 9. 4. Ekaenoppgaven betår av følgende
Løsningsforslag til eksamen i FYS1000, 14/8 2015
Løsningsforslag til eksamen i FYS000, 4/8 205 Oppgave a) For den første: t = 4 km 0 km/t For den andre: t 2 = = 0.4 t. 2 km 5 km/t + 2 km 5 km/t Den første kommer fortest fram. = 0.53 t. b) Dette er en
Løsningsforslag Eksamen i Fys-mek1110/Fys-mef1110 våren 2007
Side av Løningforlag Ekamen i Fy-mek/Fy-mef våren 7 Oppgave a) En pendel beår av en iv, maelø av av lengde L med en kule med mae m fee i enden. Den andre enden er fee i e frikjonfri hengel. Gjør rede for
Atommodeller i et historisk perspektiv
Demokrit -470 til -360 Dalton 1776-1844 Rutherford 1871-1937 Bohr 1885-1962 Schrödinger 1887-1961 Atommodeller i et historisk perspektiv Bjørn Pedersen Kjemisk institutt, UiO 31 mai 2007 1 Eleven skal
Permittiviteten til en kondensator sier hvor godt det isolerende stoff som skiller kondensatorplatene isolerer.
1 4.2 KONDENSATORENS KAPASITANS PERMITTIVITETEN - RELATIVE PERMITTIVITETEN Permittiviteten til en kondenator ier hvor godt det iolerende toff om killer kondenatorplatene iolerer. Permittiviteten er flatetetthet
Eirik Gramstad (UiO) 2
Program 2 PARTIKKELFYSIKK Læren om universets minste byggesteiner 3 Vi skal lære om partikkelfysikk og hvordan vi kan forstå universet basert på helt fundamentale byggesteiner med ny kunnskap om hvordan
Moderne partikkelfysikk
Moderne partikkelfysikk Bjarne Stugu February 20, 2017 1 Introduksjon Partikkelfysikk kan defineres som studiet av naturens minste byggestener, de uten kjent indre struktur, og kreftene mellom dem. I løpet
Løsningsforslag til ukeoppgave 10
Oppgaver FYS1001 Vå018 1 Løsningsforslag til ukeoppgave 10 Oppgave 17.04 a) Et elektron har ladningen 1, 6 10 19 C. 5, 0 10 10 elektroner gir en total ladning på 8 nc. b) På -1 C går det 1C/1,6 10 19 C06,26
ESERO AKTIVITET BYGGING AV TRYKKLUFTRAKETT. Elevaktivitet. 6 år og oppover. Utviklet av
ESERO AKTIVITET 6 år og oppover Utviklet av Elevaktivitet Overikt Tid Læremål Nødvendige materialer timer Gi deltagerne mulighet til å bruke teori fra et foredrag i raketteknikk og ette det i praki. Teip
FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann
UNIVERSITETET I AGDER Gritad E K S A M E N S O G A V E : FAG: FYS6 Fyikk/Kjei LÆRER: Fyikk : er Henrik Hogtad Kjei : Grethe Lehrann Klae(r): Dato: 5.5. Ekaentid, fra-til: 9. 4. Ekaenoppgaven betår av følgende
Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Torsdag 3. juni 2010
NTNU Institutt for Fysikk øsningsforslag til eksamen FY0001 Brukerkurs i fysikk Torsdag 3 juni 2010 Oppgae 1 a) His i elger nullniå for potensiell energi ed bunnen a skråningen, har du i utgangspunktet
Figur 1: Skisse av Franck-Hertz eksperimentet. Hentet fra Wikimedia Commons.
Oppgave 1 Franck-Hertz eksperimentet Med utgangspunkt i skissen i figuren under, gi en konsis beskrivelse av Franck-Hertz eksperimentet, dets resultater og betydning for kvantefysikken. [ poeng] Figur
Løsningsforslag. for. eksamen. fysikk forkurs. 3 juni 2002
Løsningsforslag for eksamen fysikk forkurs juni 00 Løsningsforslag eksamen forkurs juni 00 Oppgave 1 1 7 a) Kinetisk energi Ek = mv, v er farten i m/s. Vi får v= m/s= 0m/s, 6 1 1 6 slik at Ek = mv = 900kg
Masterclass i partikkelfysikk
Masterclass i partikkelfysikk Katarina Pajchel på vegne av Maiken Pedersen, Erik Gramstad, Farid Ould-Saada Mars, 18 2011 Innholdsfortegnelse Det I: Masterklass konseptet Det II: Teori Introduksjons til
AST1010 En kosmisk reise. Forelesning 5: Dopplereffekten Relativitetsteori Partikkelfysikk
AST1010 En kosmisk reise Forelesning 5: Dopplereffekten Relativitetsteori Partikkelfysikk Institutt for teoretisk astrofysikk Nær Solliplass Blindern Harestua Opprettet i 1934 av professor Svein Rosseland
PD-regulator med faseforbedrende egenskaper. Denne ma dessuten klare
Norge teknik naturvitenkapelige univeritet Intitutt for teknik kybernetikk Oktober 99/PJN, September 9 /MPF Utlevert:..9 0 SERVOTENI Lningforlag ving 0 a) Oppgave Vi kriver h() pa formen ( +0:)( ; 0:)
BEDRIFTSØKONOMISK ANALYSE MAN 8898 / 8998
BEDRIFTSØKONOMISK ANALYSE MAN 8898 / 8998 Lineær programmering og bedriftøkonomike problemer Tor Tangene BI - Sandvika V-00 Dipoijon Bruk av LP i økonomike problemer Et LP-problem Begreper og noen grunnleggende
Eksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m
Side av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 5 7 Sensurfrist: Fredag 0 juni 008 Eksamen
Løsningsforslag til eksamen i FYS1000, 13/6 2016
Løsningsforslag til eksamen i FYS1000, 13/6 2016 Oppgave 1 a) Sola skinner både på snøen og på treet. Men snøen er hvit og reflekterer det meste av sollyset. Derfor varmes den ikke så mye opp. Treet er
Løsningsforslag for FYS2140 Kvantefysikk, Mandag 3. juni 2019
Løsningsforslag for FYS210 Kvantefysikk, Mandag 3. juni 201 Oppgave 1: Stern-Gerlach-eksperimentet og atomet Stern-Gerlach-eksperimentet fra 122 var ment å teste Bohrs atommodell om at angulærmomentet
TALM1003-A Matematikk 1 Grunnlagsfag - 10 studiepoeng
HØGSKOLEN I SØR-RØNDELAG Avdeling for teknologi Progra for elektro- og datateknikk 7004 RONDHEIM ALM1003-A Mateatikk 1 Grunnlagfag - 10 tudiepoeng Cae: Regulering av vækenivået i en tank Høt 013 Le dette
LØSNING. Eksamensoppgave i TALM1004 Matematikk 2. Institutt for allmennfag. Faglig kontakt under eksamen: Kåre Bjørvik Tlf.
Intitutt for allmennfag Ekamenoppgave i ALM4 Matematikk LØSNING Faglig kontakt under ekamen: Kåre Bjørvik lf.: 9 77 898 Ekamendato: 5.5.7 Ekamentid (fra-til): 9. 4. Hjelpemiddelkode/illatte hjelpemidler:
Løsningsforslag til eksamen i FYS1001, 15/6 2018
Løsningsforslag til eksamen i FYS1001, 15/6 2018 Oppgave 1 a) Bølgen beveger seg en strekning s = 200 km på tiden t = 15 min = 0,25 t. Farten blir v = s 200 km = = 8, 0 10 2 km/t t 0, 25t b) Først faller
Løsningsforslag til eksamen i FY8306 KVANTEFELTTEORI Fredag 9. juni 2006
NTNU Side av 3 Institutt for fysikk Fakultet for fysikk, informatikk og matematikk Løsningsforslag til eksamen i FY836 KVANTEFELTTEORI Fredag 9. juni 6 Dette løsningsforslaget er på 3 sider, pluss et vedlegg
ATLAS Detector Monitoring with Jets
ATLAS Detector Monitoring with Jets Presentasjon av resultater oppnådd gjennom arbeid med mastergradsoppgave i eksperimentell partikkelfysikk av Kent Olav Skjei Målsetning Studere ATLAS med hjelp av hendelser
Løsningsforslag for FYS2140 Kvantemekanikk, Tirsdag 29. mai 2018
Løsningsforslag for FYS40 Kvantemekanikk, Tirsdag 9. mai 08 Oppgave : Fotoelektrisk effekt Millikan utførte følgende eksperiment: En metallplate ble bestrålt med monokromatisk lys. De utsendte fotoelektronene
TALM 1004 Matematikk 2-Eksamen mandag 4.mai 2015 LØSNING. 5 klokketimer TALM1004-A. Matematikk 2. Kåre Bjørvik. Kalkulator: Type C
HØGSKOLEN I SØR-TRØNELG vdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: LØSNING 5 5 klokketimer TLM- Matematikk Klae(r): Studiepoeng: EL FEN Faglærer(e): Hjelpemidler:
LØSNINGSFORSLAG Eksamen i emne SIE4006, Digitalteknikk med kretsteknikk, fredag 16. mai 2003
Side av 6 LØSNINGSFORSLAG Ekamen i emne SIE4006, Digitalteknikk med kretteknikk, fredag 6. mai 2003 Oppgave a) Kirchoff trømlov: Den algebraike um av alle grentrømmer i et knutepunkt i en kret er lik null
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS4 Kvantefysikk Eksamensdag: 8. juni 5 Tid for eksamen: 9. (4 timer) Oppgavesettet er på fem (5) sider Vedlegg: Ingen
Institutt for fysikk Fakultet for fysikk, informatikk og matematikk. Løsningsforslag til eksamen i FY3403 PARTIKKELFYSIKK Torsdag 31.
NTNU Side av 7 Institutt for fysikk Fakultet for fysikk, informatikk og matematikk Dette løsningsforslaget er på 7 sider. Løsningsforslag til eksamen i FY3403 PARTIKKELFYSIKK Torsdag 3. mai 007 Oppgave.
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS 1000 Eksamensdag: 11. juni 2012 Tid for eksamen: 09.00 13.00, 4 timer Oppgavesettet er på 5 sider inkludert forsiden Vedlegg:
Eksamensoppgave i TALM1004 Matematikk 2
Fakultet for teknologi Ekamenoppgave i TLM Matematikk Faglig kontakt under ekamen: Kåre jørvik Tlf.: 9 77 898 Ekamendato: 7. ugut 6 Ekamentid (fra-til): 9.-. Hjelpemiddelkode/Tillatte hjelpemidler: lt
Løsningsforslag til eksamen i FYS1000, 17/8 2017
øsningsforslag til eksamen i FYS1000, 17/8 017 Oppgave 1 N Fartsretning R De fire kreftene er: a) G Tyngdekraft, G, motkraften virker på jorda. Normalkraft, N, motkraften virker på underlaget. Friksjonskraft,
FY6019 Moderne fysikk. Institutt for fysikk, NTNU. Våren Løsningsforslag til øving 4. 2 h
FY609 Moderne fysikk. Institutt for fysikk, NTNU. Våren 07. Løsningsforslag til øving 4. Oppgave : Bundne tilstander i potensialbrønn a) Fra forelesningene (s 60) har vi følgende ligning for bestemmelse
Elektrisk og Magnetisk felt
Elektrisk og Magnetisk felt Kjetil Liestøl Nielsen 1 Emner for i dag Coulombs lov Elektrisk felt Ladet partikkel i elektrisk felt Magnetisk felt Magnetisk kraft på elektrisk eladninger Elektromagnetiske
Oppgaver til Dynamiske systemer 1
Oppgaver til Dynamike ytemer Oppgave 0. Lineariering av ulineær modell Likning (2.28) i læreboka er en dynamik modell av en tank med gjennomtrømning og oppvarming. Modellen gjengi her: cρv T (t) P (t)+cw(t)[t
Løsningsforslag til oppgavene 1 8 fra spesiell relativitetsteori.
FY100/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Desember 008. Løsningsforslag til oppgavene 1 8 fra spesiell relativitetsteori. Oppgave 1 Vi lar x 1 = x være posisjonen for hendelsene i inertialsystemet
5:2 Tre strålingstyper
58 5 Radioaktivitet 5:2 Tre strålingstyper alfa, beta, gamma AKTIVITET Rekkevidden til strålingen Undersøk rekkevidden til gammastråling i luft. Bruk en geigerteller og framstill aktiviteten som funksjon
EKSAMEN I FY2045 KVANTEFYSIKK Mandag 2. juni 2008 kl
NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I FY2045 KVANTEFYSIKK Mandag
CERN og The Large Hadron Collider. Tidsmaskinen
CERN og The Large Hadron Collider Tidsmaskinen Hva er CERN Cern ligger på grensen mellom Sveits og Frankrike CERN er verdens største forskningssenter Både i antall folk og i størrelse 8000 forskere, 55
Betinget bevegelse og friksjon
Betinget beegele og rikjon 16.0.017 ingen gruble-gruppe inntil iere FYS-MEK 1110 16.0.017 1 Betinget beegele beegele: r (t) bane: r () beegele lang banen: (t) hatighet: r r ( t) uˆ ( t) t t r uˆ tangenialektor:
Eksamen S2 høst 2009 Løsning Del 1
S Ekamen, høten 009 Løning Ekamen S høt 009 Løning Del Oppgave a) Deriver funkjonene: ) ln f f ln ln f ln ln f f ) g e e u, u g e e g e e e g 6e b) Vi har en aritmetik rekke der a 8 og a8. Betem a, d og
Kapittel 7 Atomstruktur og periodisitet Repetisjon 1 ( )
Kapittel 7 Atomstruktur og periodisitet Repetisjon 1 (04.11.01) 1. Generell bølgeteori - Bølgenatur (i) Bølgelengde korteste avstand mellom to topper, λ (ii) Frekvens antall bølger pr tidsenhet, ν (iii)
Løsningsforslag til eksamen i FYS1000, 15/8 2014
Løsningsforslag til eksamen i FY1000, 15/8 2014 Oppgave 1 a) Lengden til strengen er L = 1, 2 m og farten til bølger på strengen er v = 230 m/s. Bølgelengden til den egensvingningen med lavest frekvens
Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning
Nork Fikklærerforenin Nork Fik Selkap faruppe for underinin FYSIKK-OLYMPIADEN 4 5 Andre runde: 3/ 5 Skri øert: Nan, fødeldato, hjeeadree o eentuell e-potadree, kolen nan o adree. Varihet: 3 klokketier
Fysikkolympiaden Norsk finale 2013
Nork fyikklærerforening Fyikkolympiaen Nork finale. uttakingrune Freag. mar kl. 9. til. Hjelpemiler: Tabell/formelamling, lommeregner og utelt formelark Oppgaveettet betår av 6 oppgaver på ier Lykke til!
Løsningsforslag til eksamen i FYS1000, 16/8 2013
Løsningsforslag til eksamen i FYS1000, 16/8 2013 Oppgave 1 a) Totalrefleksjon oppstår når lys går fra et medium med større brytningsindeks til et med mindre. Da vil brytningsvinkelen være større enn innfallsvinkelen,
Ioniserende stråling. 10. November 2006
Ioniserende stråling 10. November 2006 Tema: Hva mener vi med ioniserende stråling? Hvordan produseres den? Hvordan kan ioniserende stråling stoppes? Virkning av ioniserende stråling på levende vesener
Eksamensoppgave i TALM1004 Matematikk 2 LØSNING
Fakultet for teknologi Ekamenoppgave i TLM Matematikk LØSNING Faglig kontakt under ekamen: Kåre jørvik Tlf.: 9 77 898 Ekamendato: ugut 6 Ekamentid (fra-til): 9.-. Hjelpemiddelkode/Tillatte hjelpemidler:
Hvordan ser kjernen ut?
Hvordan ser kjernen ut? Størrelsen på et nukleon: ca. 1.6 fm Størrelsen på kjernen: r r o A 1/3 1 fm (femtometer, fermi) = 10-15 m Bindingsenergi Bindingsenergi pr. nukleon som funksjon av massetallet.
Kollokvium 4 Grunnlaget for Schrödingerligningen
Kollokvium 4 Grunnlaget for Scrödingerligningen 10. februar 2016 I dette kollokviet skal vi se litt på grunnlaget for Scrödingerligningen, og på når den er relevant. Den første oppgaven er en diskusjonsoppgave
Elementærpartikler. Are Raklev 12. mai Sammendrag Dette er et sammendrag av forelesningene om elementærpartikler.
Elementærpartikler Are Raklev. mai Sammendrag Dette er et sammendrag av forelesningene om elementærpartikler. Partikkelzoo Hva mener vi egentlig med en elementærpartikkel? En fundamental og udelelig partikkel,
