Introduksjon til partikkelfysikk. Trygve Buanes
|
|
|
- Maren Andersson
- 10 år siden
- Visninger:
Transkript
1 Introduksjon til partikkelfysikk Trygve Buanes
2 Tidlighistorie
3 Fundamentale byggestener gjennom historien
4 De første partiklene 1897 Thomson oppdager elektronet 1919 Rutherford oppdager protonet 1929 Skobeltsyn observerer positive elektroner 1932 Chadwick oppdager neutronet 1932 Anderson oppdager positronet
5 Antimaterie I arbeidet med å forene relativitetsteori og kvantemekanikk fant Dirac at ligningen for elektronet hadde en ekstra løsning med positiv ladning positron Alle partikler har en tilsvarende antipartikkel med motsatte kvantetall (noen partikler er sin egen antipartikkel)
6 Antimaterie Antipartikler har motsatte indre kvantetall i forhold til partikler Når en partikkel møter sin antipartikkel kan de annihilere massen deres blir frigjort i form av energi Antipartikler kan settes sammen til antiatomer
7 Stråling fra himmelen Bakgrunnstrålingen som kunne observeres i laboratorier var antatt å komme fra radioaktivitet i jorden Målinger over vann tydet på at denne hypotesen var feil Da man begynte å gjøre målinger i større høyde fant man først avtok strålingen med økende høyde etterhvert begynte strålingen å øke til et høyere nivå enn ved bakken
8 Stråling fra himmelen Kosmisk stråling viste seg å være et godt laboratorium for å studere høyenergifysikk Flere ukjente partikler ble identifisert i den kosmiske strålingen Positronet var den første partikkelen som ble oppdaget slik
9 Who ordered that? Midt på 1930-tallet hadde man identifisert alle partiklene som trengs for å bygge opp det vi ser rundt oss Fotonet var anerkjent som bærer av den elektromagnetiske kraften, og man lette etter bæreren for den sterke kraften i kosmisk stråling En god kandidat ble funnet, men det viste seg å være noe helt annet: myon myonet passet ikke inn i bildet, og virket overflødig
10 Kollisjonsmaskiner Kosmisk stråling er vanskelig å arbeide med fordi du vet ikke hvor og når kollisjoner vil skje kollisjoner skjer et sted der det er vanskelig å plassere en detektor (øverst i atmosfæren) du kan ikke bestemme hva slags kollisjoner du vil ha Maskiner som aksellerer og kolliderer partikler gir mye mer fleksibilitet
11 Kollisjonsmaskiner Utviklingen av stadig kraftigerer akseleratorer ga en flom av nye partikler Det store antallet partikler fikk folk til å se etter et underliggende mønster analogt med det periodiske system På 60-tallet ble det foreslått at et lite antall kvarker kunne kombineres på ulike måter og dermed forklare det store antallet partikler
12 Partiklene satt i system Leptoner (elektron, myon, nøytrino,...) antas å være elementære vekselvirker gjennom den svake kraften, og den elektromagnetiske i de tilfellene der de er elektrisk ladd kan være stabile eller ustabile Mesoner består av en kvark og en anti-kvark vekselvirker gjennom alle krefter alle er ustabile Baryoner består av tre kvarker vekselvirker gjennom alle krefter kan være stabile(?) eller ustabile
13 Konserveringsloverog symmetrier
14 Eksempler på konserveringslover Kvantisert Beskrivelse Energi Nei En partikkel kan ikke henfalle til partikler med mer energi enn den opprinnelige partikkelen Bevegelsesmengde Nei En partikkel kan ikke henfalle til mindre enn to nye partikler Dreiemoment Ja Sum av spinn og romlig dreiemoment må være likt før og etter henfall Ladning Ja Ladning må være likt før og etter henfall
15 Symmetrier En fysisk lov er symmetrisk under en transformasjon hvis sluttresultatet ikke endres av transformasjonen et kvadrat ser likt ut etter å ha blitt rotert 90 grader en sirkel ser lik ut etter en vilkårlig symmetri
16 Symmetrier og konserveringslover Noethers teorem: Til enhver kontinuerlig symmetri hører det en konserveringslov Ved å identifisere alle symmetriene til en teori finner vi alle de konserverte størrelsene
17 Eksempler på konserveringslover Kvantisert Beskrivelse Symmetri Energi Nei En partikkel kan ikke henfalle til partikler med mer energi enn den opprinnelige partikkelen Ingen endring i tid Bevegelsesmengde Nei En partikkel kan ikke henfalle til mindre enn to nye partikler Ingen endring ved translasjon Dreiemoment Ja Sum av spinn og romlig dreiemoment må være likt før og etter henfall Ingen endring ved rotasjon Ladning Ja Ladning må være likt før og etter henfall Ingen endring ved gaugetransformasjon
18 Nesten-symmetrier Det ble oppdaget at noen hadroner hadde mye lengre levetid enn andre Hadronene med lang levetid ble kalt sære (strange) Den lange levetiden tilskrives en nesten-symmetri som gjør at særtall (særhet?) nesten er bevart Særtall viser seg å være knyttet til en symmetri som den sterke kraften respekterer,men ikke den svake
19 Neutrinoet og bevaring av bevegelsesmengde I et β-henfall spytter en atomkjerne ut et elektron Selv med utgangspunkt i identiske kjerner varierer elektronet sin energi Tilsynelatende er ikke både energi og bevegelsesmengde bevart Pauli foreslo at det måtte sendes ut en annen partikkel samtidig som ikke blir observert neutrino
20 CPT Tre viktige transformasjoner Charge conjugation (C): Ombytte av partikkel og antipartikkel Parity transformation (P): Endre fortegn på alle romlige koordinater Time reversal (T): Snu tidsretningen Alle tre transformasjonene er symmetrier for elektromagnetiske og sterke vekselvirkninger, men ikke for svake C og P er ikke symmetrier til svak vekselvirkning, men kombinasjonen CP er en omtrentlig symmetri brudd på CP er nødvendig for å forklare at det er mer materie enn antimaterie i universet CP-bruddet til den svake vekselvirkningen er ikke tilstrekkelig Kombinasjonen CPT er (antakelig) en fullstendig symmetri for alle kreftene
21 Feynmandiagrammer
22 Feynmandiagrammer Symbolsk fremstilling av partikler og krefter Diagrammene har et en-til-en forhold til ledd i en integralligning som brukes til å regne ut sannsynligheten for den aktuelle prosessen Også nyttig for å få oversikt over hvilke prosesser som kan skje
23 Standardmodellen
24 Standardmodellen Standardmodellen er en matematisk modell som beskriver det vi i dag vet om partikkelfysikk Modellen fikk i hovedsak sin form på 1970-tallet Ingen eksperimentelle resultater fra partikkelfysikk strider utvetydig med standardmodellen En viktig ingrediens er fremdeles ikke bekreftet: Higgs
25 Partiklene i standardmodellen Tre generasjoner med partikler 12 materie partikler (fermioner) 6 kvarker 6 leptoner 4 kraftbærende partikler (bosoner) 1 partikkel som gir andre partikler masse (boson)
26 Elektromagnetisk kraft Den elektromagnetiske kraften binder sammen elektroner og protoner til atomer Fotonet er bæreren av den elektromagnetisk kraften Alle partikler med elektrisk ladning påvirkes av den elektromagnetiske kraften Siden fotonet er masseløst har den elektromagnetiske kraften uendelig rekkevidde
27 Den svake kraften Den svake kraften forårsaker henfallet til en rekke partikler Den svake kraften formidles av tre partikler: W±,Z0 Tunge kraftformidlere gjør at den svake kraften har svært kort rekkevidde (~10-17 m) Den svake kraften virker på alle materiepartikler i standardmodellen
28 Elektrosvak forening Elektromagnetisme og svak kraft viser seg å være to sider av samme sak Kontrasten mellom de tunge W± og Z0, og det masseløse fotonet får kreftene til å virke svært ulike ved lave energier Ved høyere energier oppfører de seg likt Man håper å finne en tilsvarende forening med de andre kreftene
29 Oppdagelsen av Z bosonet
30 Den sterke kraften Den sterke kraften holder kvarkene samlet til hadroner Gluoner formidler den sterke kraften Gluoner er masseløse, men den sterke kraften har likevel svært kort rekkevidde (~10-15 m) pga gluon-gluon vekselvirkning Den sterke kraften virker på alle partikler med fargeladning, dvs kvarker og gluoner
31 Fengslende farger Sterke vekselvirkninger blir sterkere når partiklene fjernes fra hverandre Det er ikke mulig å rive en kvark eller et gluon ut av et hadron Hvis et hadron tilføres mye energi strekkes gluonfeltet ut til en tube, og når den ryker dannes et kvarkantikvark-par slik at frie kvarker aldri opptrer
32 Den siste kvarken
33 Higgs-mekanismen Hvis man setter inn partikkelmasser for hånd i standardmodellens ligninger beskriver ikke modellen naturen riktig Eneste løsning er å generere massene dynamisk Higgsmekanismen gir masse til partikler gjennom å innføre et nytt kvantefelt som partiklene vekselvirker med
34 Higgspartikkelen Higgsmekanismen forutsier at det finnes en ny parikkel: Higgsbosonet Den viktigste oppgaven til ATLAS og CMS er å finne higgsbosonet Teorien forteller ikke hvor stor massen til higgsbosonet er, men eksperimentelle resultater tyder på at det er like rundt hjørnet
35 Higgs slik den kan se ut i ATLAS
Eirik Gramstad (UiO) 2
Program 2 PARTIKKELFYSIKK Læren om universets minste byggesteiner 3 Vi skal lære om partikkelfysikk og hvordan vi kan forstå universet basert på helt fundamentale byggesteiner med ny kunnskap om hvordan
LHC girer opp er det noe mørk materie i sikte?
LHC girer opp er det noe mørk materie i sikte? Faglig pedagogisk dag 29. oktober 2015 Oversikt Partikkelfysikkteori Standardmodellen Mørk materie Mørk materie og partikkelfysikk Hvordan se etter mørk materie?
Masterclass i partikkelfysikk
Masterclass i partikkelfysikk Katarina Pajchel på vegne av Maiken Pedersen, Erik Gramstad, Farid Ould-Saada Mars, 18 2011 Innholdsfortegnelse Det I: Masterklass konseptet Det II: Teori Introduksjons til
VELKOMMEN TIL INTERNATIONAL MASTERCLASSES 2017 FYSISK INSTITUTT, UNIVERSITETET I OSLO
VELKOMMEN TIL INTERNATIONAL MASTERCLASSES 2017 FYSISK INSTITUTT, UNIVERSITETET I OSLO SOSIALE MEDIA facebook/fysikk fysikkunioslo @fysikkunioslo Fysikk_UniOslo INTRODUKSJON TIL PARTIKKELFYSIKK INTERNATIONAL
Hva har LHC lært oss om partikkelfysikk så langt?
Hva har LHC lært oss om partikkelfysikk så langt? Etterutdanningskurs for lærere 4. november 2011 Oversikt Partikkelfysikkteori - Standardmodellen Hva er det som ikke beskrives/forklares av Standardmodellen?
Hvordan skal vi finne svar på alle spørsmålene?
Hvordan skal vi finne svar på alle spørsmålene? Vi trenger et instrument til å: studere de minste bestanddelene i naturen (partiklene) gjenskape forholdene rett etter at universet ble skapt lære om det
CERN og The Large Hadron Collider. Tidsmaskinen
CERN og The Large Hadron Collider Tidsmaskinen Hva er CERN Cern ligger på grensen mellom Sveits og Frankrike CERN er verdens største forskningssenter Både i antall folk og i størrelse 8000 forskere, 55
Hvordan skal vi finne svar på alle spørsmålene?
Hvordan skal vi finne svar på alle spørsmålene? Vi trenger et instrument til å: studere de minste bestanddelene i naturen (partiklene) gjenskape forholdene rett etter at universet ble skapt lære om det
LHC sesong 2 er i gang. Hva er det neste store for CERN?
LHC sesong 2 er i gang. Hva er det neste store for CERN? Etterutdanningskurs 20. november 2015 Fysisk institutt Post Doc i partikkelfysikk Hvordan er naturen skrudd sammen? 18 elementærpartikler elementære;
Higgspartikkelen. Bjørn H. Samset, UiO [email protected]
Higgspartikkelen 1 Higgspartikkelen (Hva er den?) 2 Mythbusting! 3 Higgspartikkelen Fysikkens fortapte sønn 4 Dette blir et foredrag om partikler i mange former og farger Hva er Higgspartikkelen? Hvorfor
Eksperimentell partikkelfysikk. Kontakt :
Eksperimentell partikkelfysikk Kontakt : [email protected] [email protected] Eksperimentell partikkelfysikk Hva er verden laget av, og hva holder den sammen? Studier av naturens minste byggesteiner
MELLOM MIKRO - OG MAKROKOSMOS KAN BIG BANG HISTORIEN ETTERPRØVES?
MELLOM MIKRO - OG MAKROKOSMOS KAN BIG BANG HISTORIEN ETTERPRØVES? VAKUUM QED- VAKUUM QCD- VAKUUM Thomas Aquinas (1260 AD): Creatio ex nihilo NIELS HENRIK ABEL (1802-1829) VAKUUM: INGENTING? GAMLE GREKERE:
ATLAS Detector Monitoring with Jets
ATLAS Detector Monitoring with Jets Presentasjon av resultater oppnådd gjennom arbeid med mastergradsoppgave i eksperimentell partikkelfysikk av Kent Olav Skjei Målsetning Studere ATLAS med hjelp av hendelser
Midtsemesterprøve i FY3403 PARTIKKELFYSIKK Onsdag 22. oktober :15 16:00
NTNU Side 1 av 6 Institutt for fysikk Midtsemesterprøve i FY3403 PARTIKKELFYSIKK Onsdag 22. oktober 2008 14:15 16:00 Tillatte hjelpemidler: Vanlig kalkulator Husk å skrive studentnummeret ditt på hvert
Higgspartikkelen er funnet, hva blir det neste store for CERN?
Higgspartikkelen er funnet, hva blir det neste store for CERN? Skolepresentasjon 5 mars 2014 Fysisk institutt Ph.D i partikkelfysikk Hvordan er naturen skrudd sammen? 18 elementærpartikler elementære;
AST1010 En kosmisk reise. Forelesning 5: Fysikken i astrofysikk, del 2
AST1010 En kosmisk reise Forelesning 5: Fysikken i astrofysikk, del 2 Innhold Synkrotronstråling Bohrs atommodell og Kirchhoffs lover Optikk: Refleksjon, brytning og diffraksjon Relativitetsteori, spesiell
Egil Lillestøll, Lillestøl,, CERN & Univ. i Bergen,
I partikkelfysikken (CERN) studeres materiens minste byggestener og alle kreftene som virker mellom dem. I astrofysikken studeres universets sammensetting (stjerner og galakser) og utviklingen fra Big
URSTOFF VAKUUM KVARK-GLUON PLASMA
URSTOFF VAKUUM KVARK-GLUON PLASMA KAN BIG BANG HISTORIEN ETTERPRØVES? VAKUUM QED-VAKUUM QCD-VAKUUM Thomas Aquinas (1260 AD): Creatio ex nihilo NIELS HENRIK ABEL (1802-1829) VAKUUM: INGENTING? GAMLE GREKERE:
Institutt for fysikk Fakultet for fysikk, informatikk og matematikk. Løsningsforslag til eksamen i FY3403 PARTIKKELFYSIKK Torsdag 31.
NTNU Side av 7 Institutt for fysikk Fakultet for fysikk, informatikk og matematikk Dette løsningsforslaget er på 7 sider. Løsningsforslag til eksamen i FY3403 PARTIKKELFYSIKK Torsdag 3. mai 007 Oppgave.
Siste resultater fra ATLAS Higgs søk
Siste resultater fra ATLAS Higgs søk Figure 1 Kandidat til Higgs-boson henfall til fire elektroner observert av ATLAS i 2012 4. juli 2012, gav ATLAS eksperimentet en forhåndsvisning av oppdaterte resultater
Senter for Nukleærmedisin/PET Haukeland Universitetssykehus
proton Senter for Nukleærmedisin/PET Haukeland Universitetssykehus nøytron Anriket oksygen (O-18) i vann Fysiker Odd Harald Odland (Dr. Scient. kjernefysikk, UiB, 2000) Radioaktivt fluor PET/CT scanner
Moderne partikkelfysikk
Moderne partikkelfysikk Bjarne Stugu February 20, 2017 1 Introduksjon Partikkelfysikk kan defineres som studiet av naturens minste byggestener, de uten kjent indre struktur, og kreftene mellom dem. I løpet
AST1010 En kosmisk reise
AST1010 En kosmisk reise Forelesning 5: Dopplereffekten Relativitetsteori Partikkelfysikk Energisprang, bølgelengder og spektrallinjer i hydrogen Viktig detalj: Kortere bølgelengde betyr høyere energi
VAKUUM: INGENTING? GAMLE GREKERE: INTET finnes ikke fordi verden må forklares. INTET kan ikke forklares. Heller er det slik at verden er full av noe.
URVAKUUM OG SKAPELSEN KAN BIG BANG HISTORIEN PRØVES EKSPERIMENTELT? VAKUUM: INGENTING? GAMLE GREKERE: INTET finnes ikke fordi verden må forklares. INTET kan ikke forklares. Heller er det slik at verden
Elementærpartikler. Are Raklev 12. mai Sammendrag Dette er et sammendrag av forelesningene om elementærpartikler.
Elementærpartikler Are Raklev. mai Sammendrag Dette er et sammendrag av forelesningene om elementærpartikler. Partikkelzoo Hva mener vi egentlig med en elementærpartikkel? En fundamental og udelelig partikkel,
AST1010 En kosmisk reise. Forelesning 5: Fysikken i astrofysikk, del 2
AST1010 En kosmisk reise Forelesning 5: Fysikken i astrofysikk, del 2 De viktigste punktene i dag: Sorte legemer og sort stråling. Emisjons- og absorpsjonslinjer. Kirchhoffs lover. Synkrotronstråling Bohrs
Department of Physics and Technology. ATLAS + Higgs. Norwegian Teacher Programme Steffen Mæland. uib.no
U N I V E R S I T Y O F B E R G E N Department of Physics and Technology ATLAS + Higgs Norwegian Teacher Programme 2017 Steffen Mæland uib.no Large Hadron Collider 2 Large Hadron Collider https://natronics.github.io/science-hack-day-2014/lhc-map/
European Organization for Nuclear Research. , "CERN for Videregående"
European Organization for Nuclear Research, "CERN for Videregående" Fysikken Akseleratoren Detektorene Presentasjon av Erik Adli og Steinar Stapnes 2009 05 Novembre 2003 1 CERN-området Lake Geneva LHC
LHC - FYSIKK. 10/22/2010 F. Ould-Saada: LHC - Fysikk 1
LHC - FYSIKK 10/22/2010 F. Ould-Saada: LHC - Fysikk 1 Hvor Hva Hordan Hvorfor Hva mer? En ny energiskala: Terra elektron Volt (TeV) 1 TeV = 1000 GeV ~ massen til 1000 protoner 10/22/2010 F. Ould-Saada:
Theory Norwegian (Norway)
Q3-1 Large Hadron Collider (10 poeng) Vær vennlig å lese de generelle instruksjonene i den separate konvolutten før du begynner på denne oppgaven. I denne oppgaven blir fysikken ved partikkelakseleratoren
Normal text - click to edit
Utfordringer for partikkelfysikken Hva består den mørke materien av? Hva er mørk energi? Kan kreftene i naturen beskrives under samme lest? Er Higgs-mekanismen forklaringen på hvordan partiklene får masse?
Superstrenger. Teorigruppa, Fysisk institutt
Superstrenger Håkon Enger 14. november 2005 1 Superstrenger Håkon Enger Teorigruppa, Fysisk institutt Innhold Hva er strengteori? Problemer med moderne fysikk Historisk oversikt Mer om strenger Supersymmetri
AST1010 En kosmisk reise
AST1010 En kosmisk reise Forelesning 5: Fysikken i astrofysikk, del 2 Innhold Synkrotronstråling Bohrs atommodell og Kirchhoffs lover OpJkk: Refleksjon, brytning og diffraksjon RelaJvitetsteori, spesiell
Eksamen i FY3403/TFY4290 PARTIKKELFYSIKK Mandag 12. desember :00 13:00
NTNU Side 1 av 6 Institutt for fysikk Faglig kontakt under eksamen: Professor Kåre Olaussen Telefon: 9 36 5 eller 45 43 71 70 Eksamen i FY3403/TFY490 PARTIKKELFYSIKK Mandag 1. desember 005 09:00 13:00
AST1010 En kosmisk reise Forelesning 13: Sola
AST1010 En kosmisk reise Forelesning 13: Sola I dag Hva består Sola av? Hvor får den energien fra? Hvordan er Sola bygd opp? + solflekker, utbrudd, solvind og andre rariteter 1 Hva består Sola av? Hydrogen
Kapittel 21 Kjernekjemi
Kapittel 21 Kjernekjemi 1. Radioaktivitet 2. Ulike typer radioaktivitet (i) alfa, α (ii) beta, β (iii) gamma, γ (iv) positron (v) elektron innfangning (vi) avgivelse av nøytron 3. Radioaktiv spaltingsserie
Enkel introduksjon til kvantemekanikken
Kapittel Enkel introduksjon til kvantemekanikken. Kort oppsummering. Elektromagnetiske bølger med bølgelengde og frekvens f opptrer også som partikler eller fotoner med energi E = hf, der h er Plancks
5:2 Tre strålingstyper
168 5 Radioaktivitet 5:2 Tre strålingstyper alfa, beta, gamma AKTIVITET Rekkevidden til strålingen Undersøk rekkevidden til gammastråling i luft. Bruk en geigerteller og framstill aktiviteten som funksjon
UT I VERDENSROMMET! Normal text - click to edit. Mørk materie Universets ekspansjon Mørk energi
UT I VERDENSROMMET! Mørk materie Universets ekspansjon Mørk energi Universe 1907 Equivalence Principle Acceleration (inertial mass) is indistinguishable from gravitation (gravitational mass) Einsteins
AST1010 En kosmisk reise. Forelesning 5: Dopplereffekten Relativitetsteori Partikkelfysikk
AST1010 En kosmisk reise Forelesning 5: Dopplereffekten Relativitetsteori Partikkelfysikk Institutt for teoretisk astrofysikk Nær Solliplass Blindern Harestua Opprettet i 1934 av professor Svein Rosseland
Hvordan ser kjernen ut?
Hvordan ser kjernen ut? Størrelsen på et nukleon: ca. 1.6 fm Størrelsen på kjernen: r r o A 1/3 1 fm (femtometer, fermi) = 10-15 m Bindingsenergi Bindingsenergi pr. nukleon som funksjon av massetallet.
Normal text - click to edit Partikkelfysikk og kosmologi
Partikkelfysikk og kosmologi Bjarne Stugu Institutt for fysikk og teknologi Universitetet i Bergen Disposisjon 1) Hva vi vet i partikkelfysikk (historisk oversikt). 2) LargeHadronCollider sin rolle 3)
ERGO Fysikk. 3FY. AA (Reform 94) - 8. Relativitetsteori - 8.4 Tid - Fagstoff. Innholdsfortegnelse
ERGO Fysikk. 3FY. AA (Reform 94) - 8. Relativitetsteori - 8.4 Tid - Fagstoff Innholdsfortegnelse Tvillingparadokset-8.4 2 Simulering Relativitetsteori 3 Veiledning til simulering Relativitetsteori 4 Oppgavetekst
Teoretisk kjemi. Trygve Helgaker. Centre for Theoretical and Computational Chemistry. Kjemisk institutt, Universitetet i Oslo. Onsdag 13.
1 Teoretisk kjemi Trygve Helgaker Centre for Theoretical and Computational Chemistry Kjemisk institutt, Universitetet i Oslo Onsdag 13. august 2008 2 Kjemi er komplisert! Kjemi er utrolig variert og utrolig
Atomets oppbygging og periodesystemet
Atomets oppbygging og periodesystemet Solvay-kongressen, 1927 Atomets oppbygging Elektroner: 1897. Partikler som kretser rundt kjernen. Ladning -1. Mindre masse (1836 ganger) enn protoner og nøytroner.
Hvor kommer magnetarstråling fra?
Hvor kommer magnetarstråling fra? Fig 1 En nøytronstjerne Jeg kom over en interessant artikkel i januar 2008 nummeret av det norske bladet Astronomi (1) om magnetarstråling. Magnetarer er roterende nøytronstjerner
Vitenskap åpner grenser
Vitenskap åpner grenser av per aahlin og marit dahl Aktiviteten ved forskningssenteret CERN er interessant for flere enn de fysikerne og ingeniørene som arbeider der. Virksomheten dreier seg om å finne
Moderne partikkelfysikk. Normal text - click to edit
Moderne partikkelfysikk Studier av materiens minste byggestener og av kreftene mellom dem Eksperimentelt, ved å se på kollisjoner mellom partikler. Teoretisk, ved å utvikle modeller og regne ut hva som
5:2 Tre strålingstyper
58 5 Radioaktivitet 5:2 Tre strålingstyper alfa, beta, gamma AKTIVITET Rekkevidden til strålingen Undersøk rekkevidden til gammastråling i luft. Bruk en geigerteller og framstill aktiviteten som funksjon
AST1010 En kosmisk reise
AST1010 En kosmisk reise Forelesning 5: Dopplereffekten Rela?vitetsteori Par?kkelfysikk Energisprang, bølgelengder og spektrallinjer i hydrogen Vik?g detalj: Kortere bølgelengde betyr høyere energi Spektralserier
Kreftenes opprinnelse i rommet (Naturkreftenes prinsipp) Frode Bukten
Kreftenes opprinnelse i rommet (Naturkreftenes prinsipp) Frode Bukten Dette er en tese som handler om egenskaper ved rommet og hvilken betydning disse har for at naturkreftene er slik vi kjenner dem. Et
Atomfysikk og kausallov
Werner Heisenberg: (1901-1976) Atomfysikk og kausallov Foredrag i Sveits 12. 2. 1952 Gjennomgang av originalartikkel oktober 2008 for ExPhil ved UiO Arnt Inge Vistnes http://folk.uio.no/arntvi/ Bakgrunn:
Atomfysikk og kausallov
Werner Heisenberg: (1901-1976) Atomfysikk og kausallov Foredrag i Sveits 12. 2. 1952 Gjennomgang av originalartikkel for ExPhil ved UiO Arnt Inge Vistnes http://folk.uio.no/arntvi/ Bakgrunn: Heisenberg
PET. Medisinsk verktøy med radioaktivitet som grunnlag. Detektorer. Positron. g-kvant 511 kev. Radioaktiv tracer Detektorer
PET Medisinsk verktøy med radioaktivitet som grunnlag Detektorer g-kvant 511 kev g-kvant 511 kev Positron Radioaktiv tracer Detektorer Illustrasjon hentet fra Internett 1 PET det nye innen medisinsk diagnostikk
Atomfysikk og kausallov
Werner Heisenberg: (1901-1976) Atomfysikk og kausallov Foredrag i Sveits 12. 2. 1952 Gjennomgang av originalartikkel oktober 2007 for ExPhil ved UiO Arnt Inge Vistnes http://folk.uio.no/arntvi/ Bakgrunn:
Atommodeller i et historisk perspektiv
Demokrit -470 til -360 Dalton 1776-1844 Rutherford 1871-1937 Bohr 1885-1962 Schrödinger 1887-1961 Atommodeller i et historisk perspektiv Bjørn Pedersen Kjemisk institutt, UiO 31 mai 2007 1 Eleven skal
Normal text - click to edit Partikkelfysikk og kosmologi
Partikkelfysikk og kosmologi Bjarne Stugu Institutt for fysikk og teknologi Universitetet i Bergen Disposisjon 1) Hva vi vet i partikkelfysikk (historisk oversikt). 2) Link til astrofysikk/kosmologi i
Fra Fysikkens Verden. Nr. 3 2012. 74. årgang. Innhold. Utgiver: Norsk Fysisk Selskap. Redaktører: Øyvind Grøn Marit Sandstad
Fra Fysikkens Verden De største objektene i Kuiperbeltet i relasjon til jorda (Se artikkel om kavliprisen i astrofysikk) Nr. 3 2012 74. årgang Utgiver: Norsk Fysisk Selskap Redaktører: Øyvind Grøn Marit
AST1010 En kosmisk reise. Forelesning 4: Fysikken i astrofysikk, del 1
AST1010 En kosmisk reise Forelesning 4: Fysikken i astrofysikk, del 1 Innhold Mekanikk Termodynamikk Elektrisitet og magnetisme Elektromagnetiske bølger Mekanikk Newtons bevegelseslover Et legeme som ikke
Lys. Bølger. Partiklar Atom
Lys Bølger Partiklar Atom Atom «Atomhistoria» Gamle grekarar og indarar, ca 500 f. Kr. Materien har ei minste eining; den er bygd opp av små bitar som ikkje kan delast vidare 1800-talet: Dalton, Brown,
AST1010 En kosmisk reise. Forelesning 13: Sola
AST1010 En kosmisk reise Forelesning 13: Sola I dag Hva består Sola av? Hvor får den energien fra? Hvordan er Sola bygd opp? + solflekker, utbrudd, solvind og andre rariteter Hva består Sola av? Hydrogen
MNF, UiO 24 mars Trygve Helgaker Kjemisk institutt, Universitetet i Oslo
MNF, UiO 24 mars 2014 Trygve Helgaker Kjemisk institutt, Universitetet i Oslo Kjemi: et mangepar.kkelproblem Molekyler er enkle: ladete partikler i bevegelse styrt av kvantemekanikkens lover HΨ=EΨ men
AST1010 En kosmisk reise. Forelesning 19: Kosmologi, del I
AST1010 En kosmisk reise Forelesning 19: Kosmologi, del I Astronomiske avstander Hvordan vet vi at nærmeste stjerne er 4 lysår unna? Parallakse (kun nære stjerner) Hvordan vet vi at galaksen vår er 100
EksameniASTlolo 13 mai2
EksameniASTlolo 13 mai2 tl Ptoleneisk system Sentrum i defentene til Merkur og Venus ligger alltid på linje med jorder og Cmiddelbsolen En kunstig forklaring e OM Kopernikansk system Merkur jordens Venus
UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet Deleksamen i: KJM1060 Struktur og spektroskopi Eksamensdag: 14 oktober 2004 Tid for eksamen: kl. 15:00 17:00 Oppgavesettet er på 2sider.
FY2045/TFY4250 Kvantemekanikk I, øving 5 1 LØSNING ØVING 5. Kvantekraft. L x. L 2 x. = A sin n xπx. sin n yπy. 2 y + 2.
FY045/TFY450 Kvantemekanikk I, øving 5 1 øsning oppgave 5 1 a Med finner vi energien til egenfunksjonen ØSNING ØVING 5 Kvantekraft nπx sin = n xπ x x x ψ nx,n y,n z = A sin n xπx x sin nπx x, sin n yπy
FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014
FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 Oppgave 1 (4 poeng) Forklar hvorfor Charles Blondin tok med seg en lang og fleksibel stang når han balanserte på stram line over Niagara fossen i 1859. Han
AST1010 En kosmisk reise. Forelesning 19: Kosmologi
AST1010 En kosmisk reise Forelesning 19: Kosmologi Hubble og Big Bang Bondi, Gold, Hoyle og Steady State Gamow, Alpher, Herman og bakgrunnsstrålingen Oppdagelsen av bakgrunnsstrålingen Universets historie
Spesiell relativitetsteori
Spesiell relativitetsteori 23.05.2016 FYS-MEK 1110 23.05.2016 1 man tir uke 21 uke 22 uke 23 23 30 6 forelesning: spes. relativitet gruppe 5: gravitasjon+likevekt Ingen datalab forelesning: repetisjon
J. H. D. Jensen og H. Øverås Die Polarisation eines Müonenstrahles beim Pionenzerfall im Fluge DKNVS Forhandlinger
Det Kongelige Norske Videnskabers Selskabs Skrifter (Kgl. Norske Vidensk. Selsk. Skr. 2011 (4), 173-181) J. H. D. Jensen og H. Øverås Die Polarisation eines Müonenstrahles beim Pionenzerfall im Fluge DKNVS
Melkeveien sett fra jorda
AST1010 En kosmisk reise Forelesning 18: Melkeveien Melkeveien sett fra jorda (sydlige halvkule) Herschels kart over Melkeveien Merk at for Herschel er vi i sentrum. Dette fant Herschel ved å plotte stjerners
GÅTE TEKNISK UKEBLAD FINNER IKKE SVAR PÅ UNIVERSETS. Utviklet slangerobot etter brann. Stor test: Batteridriller. Årets nye teknologistudier
TEKNISK UKEBLAD 0217 FOR DEG SOM SKAPER FREMTIDEN 164. ÅRGANG 21. FEB 2017 PROFILEN Utviklet slangerobot etter brann SIDE 70 FORBUKER Stor test: Batteridriller SIDE 60 UTDANNING Årets nye teknologistudier
Trygve Helgaker. 31 januar 2018
Trygve Helgaker Senter for grunnforskning Det Norske Videnskaps-Akademi Hylleraas Centre for Quantum Molecular Sciences Kjemisk institutt, Universitetet i Oslo 31 januar 2018 Kjemi Kjemi er læren om stoffer
Spesiell relativitetsteori
Spesiell relativitetsteori 8.05.05 FYS-MEK 0 8.05.05 Einsteins postulatene. Fysikkens lover er de samme i alle inertialsystemer.. Lyshastigheten er den samme i alle inertialsystemer, og er uavhengig av
Naturfag 2 Fysikk og teknologi, 4NA220R510 2R 5-10
Individuell skriftlig eksamen i Naturfag 2 Fysikk og teknologi, 4NA220R510 2R 5-10 ORDINÆR EKSAMEN 13.12.2010. Sensur faller innen 06.01.2011. BOKMÅL Resultatet blir tilgjengelig på studentweb første virkedag
REPORT SERIES. TJjnTVERSITY OF OSLO DEPARTMENT OF PHYSICS. Tau-nøytrinoet. Lars Bugge og Farid Ould-Saada
TJjnTVERSITY OF OSLO DEPARTMENT OF PHYSICS Tau-nøytrinoet Lars Bugge og Farid Ould-Saada Fysisk institutt, Universitetet i Oslo, P.O. Box 1048 Blindern N-0316 Oslo, Norge UIO/PH YS/2001-04 ISSN-0332-5571
Kapittel 7 Atomstruktur og periodisitet Repetisjon 1 ( )
Kapittel 7 Atomstruktur og periodisitet Repetisjon 1 (04.11.01) 1. Generell bølgeteori - Bølgenatur (i) Bølgelengde korteste avstand mellom to topper, λ (ii) Frekvens antall bølger pr tidsenhet, ν (iii)
AST1010 En kosmisk reise. Astronomiske avstander https://www.youtube.com/watch? v=vsl-jncjak0. Forelesning 20: Kosmologi, del I
AST1010 En kosmisk reise Forelesning 20: Kosmologi, del I Astronomiske avstander Hvordan vet vi at nærmeste stjerne er 4 lysår unna? Parallakse (kun nære stjerner) Hvordan vet vi at galaksen vår er 100
Løsningsforslag til eksamen i FY8306 KVANTEFELTTEORI Fredag 9. juni 2006
NTNU Side av 3 Institutt for fysikk Fakultet for fysikk, informatikk og matematikk Løsningsforslag til eksamen i FY836 KVANTEFELTTEORI Fredag 9. juni 6 Dette løsningsforslaget er på 3 sider, pluss et vedlegg
Ioniserende stråling. 10. November 2006
Ioniserende stråling 10. November 2006 Tema: Hva mener vi med ioniserende stråling? Hvordan produseres den? Hvordan kan ioniserende stråling stoppes? Virkning av ioniserende stråling på levende vesener
Løsningsforslag til ukeoppgave 16
Oppgaver FYS00 Vår 08 Løsningsforslag til ukeoppgave 6 Oppgave 9.0 a) Nukleon: Fellesnavnet for kjernepartiklene protoner (p) og nøytroner (n). b) Nukleontall: Tallet på nukleoner i en kjerne (p + n) c)
Klikk på sidetallet for å komme til det enkelte lysark. De svarte sidetallene viser hvor illustrasjonen står i læreboka.
3FY lysark meny Klikk på sidetallet for å komme til det enkelte lysark. De svarte sidetallene viser hvor illustrasjonen står i læreboka. 1 Fire ideer som forandret verden Et geosentrisk verdensbilde, side
Atomegenskaper. MENA 1001; Materialer, energi og nanoteknologi - Kap. 4. Universet. Elektroner. Periodesystemet Atomenes egenskaper
MENA 1001; Materialer, energi og nanoteknologi - Kap. 4 Atomegenskaper Universet Nukleosyntese Elektroner Orbitaler Kvantetall Truls Norby Kjemisk institutt/ Senter for Materialvitenskap og nanoteknologi
Løsningsforslag til eksamen i FYS1000, 14/8 2015
Løsningsforslag til eksamen i FYS000, 4/8 205 Oppgave a) For den første: t = 4 km 0 km/t For den andre: t 2 = = 0.4 t. 2 km 5 km/t + 2 km 5 km/t Den første kommer fortest fram. = 0.53 t. b) Dette er en
AST1010 En kosmisk reise Forelesning 12: Sola
AST1010 En kosmisk reise Forelesning 12: Sola I dag Hva består Sola av? Hvor får den energien fra? Hvordan er Sola bygd opp? + solflekker, utbrudd, solvind og andre rariteter Hva består Sola av? Hydrogen
KJM Molekylmodellering. Introduksjon. Molekylmodellering. Molekylmodellering
KJM3600 - Vebjørn Bakken Kjemisk institutt, UiO Introduksjon KJM3600 - p.1/29 Introduksjon p.2/29 Flere navn på moderne teoretisk kjemi: Theoretical chemistry (teoretisk kjemi) Quantum chemistry (kvantekjemi)
AST1010 En kosmisk reise. De viktigste punktene i dag: Elektromagnetisk bølge 1/23/2017. Forelesning 4: Elektromagnetisk stråling
AST1010 En kosmisk reise Forelesning 4: Elektromagnetisk stråling De viktigste punktene i dag: Sorte legemer og sort stråling. Emisjons- og absorpsjonslinjer. Kirchhoffs lover. Synkrotronstråling Bohrs
Lys. Bølger. Partiklar Atom
Lys Bølger Partiklar Atom Lys «Lyshistoria» Lys er små partiklar! Christiaan Huygens (1629-1695) Lys er bølger Isaac Newton (1642-1726) «Lyshistoria» Thomas Young (1773-1829) «Lyshistoria» James Clerk
