Kap 28: Magnetiske kilder
|
|
- Tomas Børresen
- 8 år siden
- Visninger:
Transkript
1 Kap Magnetisme Magnetostatikk (ingen tidsvaiasjon): Kap 7. Magnetiske kefte Kap 8: Magnetiske kilde Elektodynamikk: Kap 9-31: Tidsvaiasjon: Induksjon mm. Kap 8: Magnetiske kilde Elektostatikk: Ladning q påvikes av kaft qe Definisjon E-felt E-feltet skapes fa ladninge (Coulombs lov) (Coulombs lov) Magnetostatikk: Ladning q i bevegelse påvikes av kaft qv x B Definisjon B-felt (Loentzkafta) B-feltet skapes fa ladninge i bevegelse (Biot-Savats lov) Hjelpelove: Elektostatikk: Gauss lov Magnetostatikk: Ampees lov Magnetiske mateiale Feomagnetisk mateiale. Magnetiseing. M-vekto og H-vekto. Elmag og elativitetsteoi i Notat 3 Einsteins utledning av spesiell elativitetsteoi va devet av dette poblemet i elektomagnetismen: Elektiske og magnetiske kefte e to side av samme sak, avhengig av efeansesystemet det hele obsevees i Bevegelse av ladninge gi magnetfelt B m qv i bevegelse: B = 4 p (8.) m qv = 3 4 p m Ids (Biot-Savats lov) db = 4 p m Ids = (8.6) 3 4 p Enkeltladning Støm i lede: : Vitenskapelig abeid: Hans Chistian Østed, Andé Ampee, Jean-Baptist Biot, Felix Savat, Michael Faaday, Joseph Heny Enhetsvekto Enhetsvekto 1
2 Kap Bevegelse av ladninge gi magnetfelt B m qv B = 4 p m I ds db Enkeltladning: (8.) = 4 p Stømelement: (8.6) Eks. 1 (Y&F Kap. 8.3): B-felt på midtnomal til ett lede Foelesning: y z x ρ m Støm i lede: I ds db = (8.7) 4 (Biot-Savats lov) p ò ledning Biot-Savat: db m 4 Ids = p Y&F Figue 8.5 Rottmann integaltabell (s. 137) Rett lede lengde a: m a 1 B= I j 4p a + (8.8) Y&F Figue 8.5 Næme ett lede (a >>ρ): B m I = p (8.9) X = z + ρ, dvs: x = z a = 1 b = c = ρ Y&F Fig. 8.6
3 Kap Felt undt uendelig lang, ett lede: m I m -7 B =, = 1 Tm/A p p Eksemple: 1) Unde én kaftledning: I = 1 ka, ρ = 1 m ) Næ f. eks. håføne: I = 3 A, ρ = 5 cm => B = μt => B = 1 μt Jodmagnetismen: B =,5 G = 5 μt (statisk felt) Gjelde vekselfelt 5 Hz: Gensevedien e μt fo befolkningen Ved nybygg elle nye anlegg hvo åsgjennomsnittet oveskide,4 μt, skal tiltak vudees. 1) og ) gjelde fo enkeltledee: Fo to ledee med motsatt støm elle tefase bli B-feltet betydelig lavee. Fa: Magnetfelt fa to paallelle ledee (Ex. 8.4 i Y&F) Utafo koaksialkabel e B-feltet null! Ytteisolasjon Yttelede Svakee B enn enkeltlede Stekee B enn enkeltlede d Inneisolasjon Innelede Me seinee, bl.a. oppgave i egneøving. Fo >> d: B-felt avta med 1/, dvs. betydelig askee enn fo enkeltlede. (Fig 8.7) Y&F Fig
4 Kap B-felt undt uendelig lang, ett lede: Retning: asimutalt (φ-etning) = avstand fa ledeen Sammenlikn med: E-felt undt uendelig lang, ladd ett lede: Retning: adielt (-etning) = avstand fa ledeen 1 B = m p 1 1 E = pe I l Linjeladn. λ Elektostatikk: 1 q E = (Coulombs lov) 4 pe Magnetostatikk: Enkeltladning: m qv B = (8.) 4 p Støm i lede: I ds B = db m = (8.7) (Biot-Savat) ò 4 p ò Eks. 1: Rett lede 8.4 Definisjon 1 ampee Eks. : Sikulæ sløyfe Ampees lov Kap 8: Magnetiske kilde ledn. ledn : Vitenskapelig abeid: Hans Chistian Østed, Andé Ampee, Jean-Baptist Biot, Felix Savat, Michael Faaday, Joseph Heny 8.4 Kaft mellom to paallelle ledee F = I 1 I μ /(π) Figue 8.9 Definisjon 1 A: 1-7 N/m = 1 A 1 A μ /(π 1 m).. e i paksis definisjon av μ : μ = π 1-7 N/A = 4π 1-7 Tm/A Definisjon av 1 ampee (gunnenhet i SI-systemet) En ampee e den konstante elektiske stømmen som fambinge en gjensidig lineæ kaft på 1-7 newton pe mete lede nå stømmen gå gjennom hve av to ettlinjete, paallelle, uendelige lange ledee med sikulæt og neglisjebat lite tvesnitt, og ledene e anbakt i én metes innbydes avstand i tomt om. ampee e en av sju SI-gunnenhete: mete kilogam sekund ampee kelvin mol candela - lengde - masse - tid - stømstyke - tempeatu - stoffmengde - lysstyke Alle ande enhete e avledet fa disse, fo eksempel N = kg m s - V = J/C = kg m s -3 A -1 (se fomelaket) 4
5 Kap Øving 9, flevalg: Øving 9, oppgave 3 Young & Feedman, kap..: Elek. fluks = fluks til D-feltet Φ = D A i L i Aksel. ½ m i v i = q i V (1) buke: Elek. fluks = fluks til E-feltet F c = F B () Φ E = E A a) Likn. (1) fo potonet b) Likn () fo potonet c) Søk ette massefoholdet m 1 /m p med likn (1) og () fo masse 1 og fo potonet. Tilsvaende fo m /m p (Fig 8.1) Eks. : Feltet på aksen i en sikulæ stømsløyfe: (kap 8.5) Langs aksen gå feltet paallelt med aksen (Fig 8.15) Eks. : Feltet på aksen i en sikulæ stømsløyfe Langt unna x >> a: mia Bx ( ) = i (8.15) 3/ ( x + a ) sløyfas dipolmoment μ = Iπa m Ia m m Bx ( ) = = x p x i 3 3 μ a (Fig 8.14) mi Bmax = B( x= ) = a mia Bx ( ) = i (8.15) 3/ ( x + a ) Analogi: Langt unna elektisk dipol: 1 Ex ( ) = pe p 3 x p (Fig 8.15) x 5
6 Kap Tondheim 51,5 μt B-felt i nt Fa: en.wikipedia.og/wiki/eath%7s_magnetic_field Plasseing magnetisk pol Tondheim 1,8 østlig misvisning Tondheim φ=75o φ Fa: en.wikipedia.og/wiki/eath%7s_magnetic_field Resultat i Eks. 1: Retning: asimutalt (φ-etning) B-felt næme ett lede (elle uendelig lang lede): B= m I p j (8.9) Y&F Fig. 8.6 j Fa: en.wikipedia.og/wiki/eath%7s_magnetic_field 6
7 Kap Ampees lov B ds = μ I ove lukka kuve, de I e totalstøm innenfo kuva Eks. 4: Solenoide (mange sikulæe stømsløyfe) (Fig 8.17) Gjelde alle integasjonsvege, (Fig 8.) men e nyttig kun i (sylinde)symmetiske konfiguasjone. F. eks. undt lede: B = μ I/π Eks: N=4 l=,1m I=5,A => B = 5 mt Støe støm gi oppvaming. (beegnes Reell B(x) i Øv.11 opg. 5) Tilnæmet B(x) Se bot fa andeffekte: Inni: B = μ I N/l Utafo: B= E i paallellplatekondensato B i solenoide E= utafo a l B= utafo d E Idealiset B OK nå d << A OK nå a << l B inni og utafo en sylindelede med analog til unifom støm I B e asimutal E inni og utafo en sylinde med unifom ladning λ E e adiell (Ex. 8.9) E ( Ex. 3.1) Reelt E = λ/(πε ) /R E = λ/(πε ) 1/ (Fig 8.) (Fig..1a) 7
8 Kap Feltet i tooid solenoide: (Ex. 8.1) Ampees lov B ds = μ I (Amp) ove lukka kuve, de I e totalstøm innenfo kuva cul B = μ J (Amp-diff) (Fig 8.5) Path 1: I incl = => B = Path : I incl = NI => B μ NI/π Path 3: I incl = NI + N(-I) = => B = cul -- kan i vannstøm demonstees med et (infinitesimalt) skovlhjul: Eks. 5: Feltet inni og utafo en ledning Ampee: cul B = μ J Γ Inni: μ J = cul B Utafo: μ J = = cul B (Fig 8.) (Fig 8.19) 8
9 Kap Cul inni ledeen: Katesiske kood (Eks. foige time): B( xyz,, ) = [ y, - x,] = yi -xj Sylindekood: B (, j, z) =-j J = cul B=- k Dvs. homogen stømtetthet, som inni ledeen. OBS: Konstante utelatt, feil enhete fo B og J. i j k æ - ( x) yö cul B = = i+ j+ - k =-k x y z ç è x y ø y -x cul B x B y yte B = Atomæe magnetiske moment μ (= dm i ) i yte magnetisk felt B yte B M Paamagnetiske og feomagnetiske: Innetting av magn.moment μ Te type magnetisk mateiale: B = μ μ H Type Effekt B-felt Åsak: Yte H.. indusee magn.mom. μ med μ (-H) Diamagnetisk Paamagnetisk Feomagnetisk B-felt B-felt innette pemanente μ med μ H innette pemanente μ med μ H Mange μ avhengig H og tid (hysteese) 9
10 Kap Feomagnetiske mateiale Feomagnetic Diamagnetic Paamagnetic M M Yte H = : Magn.moment μ samodnet innenfo domene (~1 μm) H Middels H-felt: Domene med magn.moment μ i samme etning som H vokse i støelse H Steke H-felt: Magnetisk moment innen domene otee til H => Metning Fig: en.wikipedia.og/wiki/magnetic_domain Ulike gade av hysteese i feomagnetisk mateiale Hva vi ha læt: Magnetisk feltstyke: H = B/μ (i tomom) H H H Magnetiseing, definisjon: M = μ / volum Magnetiseing, ekspeimentelt: M = χ m H Totalt B-felt i magnetisk mateiale: B = μ H + μ M = μ H + μ χ m H = μ μ H, elativ pemeabilitet: μ = χ m +1 B M Hadt jen: pemanentmagnete av/på-magnete (eks. haddisk) Bløtt jen: tanfomatoe Y&F Figue 8.9 Ampees lov på ny, enkel fom: B ds = μ I => H ds = I cul B = μ J => cul H = J 1
11 Kap Eks. 6B. Halvfylt solenoide.... μ B = B 1 μ 1 B = μ H B 1 = μ 1 H.... B 1 = μ 1 H Kontinuitetskav ove genseflate (skille i μ ): 1) B kontinuelig ) H diskontinuelig (fakto μ ) 3) H kontinuelig 4) B diskontinuelig (fakto μ ) H = ni B = μ H Eks. 7 Luftgap i magnet Magnetgap til buk fo å skive på haddisk, video og lignende Lite gap: B luft B jen Stot gap: B luft minde B-feltlinje følge jenet 11
12 Kap Kap. 8: Oppsummeing: Kilde til magnetisk felt Bevegelse av ladninge e kilde fo magnetfelt B Enkeltladning i bevegelse: m qv B = 4 p m Ids Støm i lede: db = (Biot-Savats lov) 4 p Magnetfelt B kan finnes ved integasjon ove lede fa Biot-Savats lov -- elle ved buk av: Ampees lov: B ds = μ I H ds = I de I e støm innenfo den lukkede integasjonsvegen. Diffeensialfom: cul B = μ J cul H = J Viktige anvendelse: Rett lede, solenoide, m.m. Kap. 8: Oppsummeing: Magnetiske mateiale Mateiale kan magnetisees: M = χ m H Diamagnetiske: χ m liten, negativ Paamagnetiske: χ m liten, positiv Feomagnetiske: χ m sto positiv Stømme skape magnetisk feltstyke H og flukstetthet: B = μ H + μ M = μ H + μ χ m H = μ μ H.. altså avhengig av elativ pemeabilitet μ og demed av mateialet. I alle tidligee fomle kan vi estatte μ med μ = μ μ Kontinuitetskav ove genseflate (skille i μ ): [Me i Notat 6] B kontinuelig B diskontinuelig H diskontinuelig H kontinuelig Maxwells likninge i Notat 4 Integalfom Diffeensialfom Gauss lov D Gauss lov B Ampees lov Faadays lov 1
Kap 28: Magnetiske kilder. Kap 28: Magnetiske kilder. Kap 28. Rottmann integraltabell (s. 137) μ r. μ r. μ r. μ r
Kap 8 Kap 8: Magnetiske kilde Elektostatikk: Ladning q påvikes av kaft qe Definisjon E-felt E-feltet skapes fa ladninge (Coulombs lov) (Coulombs lov) Magnetostatikk: Ladning q i bevegelse påvikes av kaft
DetaljerKap 28: Magnetiske kilder
: Magnetiske kilde Elektostatikk: Ladning q påvikes av kaft qe Definisjon E-felt E-feltet skapes fa ladninge (Coulombs lov) (Coulombs lov) Magnetostatikk: Ladning q i bevegelse påvikes av kaft qv x B Definisjon
DetaljerKap 28: Magnetiske kilder
: Magnetiske kilde Elektostatikk: Ladning q påvikes av kaft qe Definisjon E-felt E-feltet skapes fa ladninge (Coulombs lov) (Coulombs lov) Magnetostatikk: Ladning q i bevegelse påvikes av kaft qv x B Definisjon
DetaljerKap 28: Magnetiske kilder. Kap 28: Magnetiske kilder. Magnetisme
Kap 8 9.3.15 Magnetisme Magnetostatikk (ingen tidsvaiasjon): Kap 7. Magnetiske kefte Kap 8: Magnetiske kilde Elektodynamikk: Kap 9-31: Tidsvaiasjon: Induksjon mm. Kap 8: Magnetiske kilde Elektostatikk:
Detaljerò ledning Kap 28: Magnetiske kilder Elmag og relativitetsteori i Notat 3 m r m r m r m r Kap 28 m r Bevegelse av ladninger gir magnetfelt B (28.
Kap 8 Kap 8: Magnetiske kilde Elektostatikk: Ladning q påvikes av kaft qe Definisjon E-felt E-feltet skapes fa ladninge (Coulombs lov) (Coulombs lov) Magnetostatikk: Ladning q i bevegelse påvikes av kaft
DetaljerMagnetostatikk Elektrodynamikk:
Magnetisme Magnetostatikk (ingen tidsvariasjon): Kap 27. Magnetiske krefter Kap 28: Magnetiske kilder Elektrodynamikk: Kap 29-32: Tidsvariasjon: Induksjon mm. Kap 28: Magnetiske kilder Elektrostatikk:
DetaljerMagnetostatikk Elektrodynamikk:
Magnetisme Magnetostatikk (ingen tidsvariasjon): Kap 27. Magnetiske krefter Kap 28: Magnetiske kilder Elektrodynamikk: Kap 29-32: Tidsvariasjon: Induksjon mm. Kap 28: Magnetiske kilder Elektrostatikk:
DetaljerSammendrag, uke 14 (5. og 6. april)
Institutt fo fysikk, NTNU TFY4155/FY1003: Elektisitet og magnetisme Vå 2005 Sammendag, uke 14 (5. og 6. apil) Magnetisk vekselvikning [FGT 28, 29; YF 27, 28; TM 26, 27; AF 22, 24B; H 23; DJG 5] Magnetisme
DetaljerKap. 22. Gauss lov. Gauss lov skjematisk. Eks.1: Homogent ladd kule =Y&F Ex = LHL Vi skal se på: Fluksen til elektrisk felt E Gauss lov
Kap.. Gauss lov Vi skal se på: Fluksen til elektisk felt E Gauss lov Integalfom og diffeensialfom Elektisk ledee. Efelt fa Coulombs lov: q E = k E = k å n q n n n dq E= k ò tot. ladn. Punktladn Flee punktladn.
DetaljerMagnetisk hysterese. 1. Beregn magnetfeltet fra en strømførende spole med kjent vindingstall.
FY33 Elektisitet og magnetisme II Institutt fo fysikk, TU FY33 Elektisitet og magnetisme II, høst 7 Laboatoieøvelse Magnetisk hysteese Hensikt Hensikten med oppgave å gjøe seg kjent med opphavet til magnetiske
DetaljerMandag E = V. y ŷ + V ẑ (kartesiske koordinater) r sin θ φ ˆφ (kulekoordinater)
Institutt fo fysikk, NTNU TFY4155/FY13: Elektisitet og magnetisme Vå 26, uke 6 Mandag 6.2.6 Beegning av E fa V [FGT 24.4; YF 23.5; TM 23.3; F 21.1; LHL 19.9; DJG 2.3.1, 1.2.2] Gadientopeatoen : V = V V
DetaljerLaboratorieøvelse i MNFFY1303-Elektromagnetisme Institutt for Fysikk, NTNU MAGNETISK HYSTERESE
Laboatoieøvelse i MNFFY33-Elektomagnetisme Institutt fo Fysikk, NTNU Hensikten med oppgave å gjøe seg kjent med opphavet til magnetiske felte og målinge av slike. Det innebæe måling av magnetfelt fa enkle
DetaljerLøsningsforslag til ukeoppgave 11
Oppgave FYS1001 Vå 2018 1 Løsningsfoslag til ukeoppgave 11 Oppgave 23.04 B F m qv = F m 2eV = 6, 3 10 3 T Kaft, magnetfelt og fat stå vinkelett på hveande. Se læebok s. 690. Oppgave 23.09 a) F = qvb =
DetaljerKONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Noges teknisk natuvitenskapelige univesitet Institutt fo elektonikk og telekommunikasjon ide 1 av 8 Bokmål/Nynosk Faglig/fagleg kontakt unde eksamen: Jon Olav Gepstad 41044764) Hjelpemidle: C - pesifisete
DetaljerMidtsemesterprøve onsdag 7. mars 2007 kl
Institutt fo fysikk, NTNU FY1003 lektisitet og magnetisme I TFY4155 lektomagnetisme Vå 2007 Midtsemestepøve onsdag 7. mas 2007 kl 1300 1500. Svatabellen stå på side 11. Sett tydelige kyss. Husk å skive
DetaljerEksamen TFY 4240: Elektromagnetisk teori
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt unde eksamen: Ola Hundei, tlf. 93411 (mobil: 95143671) Eksamen TFY 4240: Elektomagnetisk teoi 8 desembe 2007 kl. 09.00-13.00
DetaljerKap. 27 Kjapp historie. Kap. 27 Magnetisk felt og magnetiske krefter. Kap. 27 Magnetisme. Kraft på ledningsbit. Kap 27
Kap. 27 Magnetisk felt og magnetiske krefter Kortfatta målsetning: Forstå at magnetiske monopoler ikke fins, kun dipoler. (mens elektriske monopoler fins, dvs. +q, -q) Lære at permanente magneter og elektromagneter
DetaljerLøsningsforslag for eksamen i FY101 Elektromagnetisme torsdag 12. desember 2002
Løsningsfoslag fo eksamen i FY Elektomagnetisme tosdag. desembe Ved sensueing vil alle delspøsmål i utgangspunktet bli gitt samme vekt (uavhengig av oppgavenumme), men vi fobeholde oss etten til justeinge.
Detaljerb) C Det elektriske feltet går radielt ut fra en positivt ladd partikkel.
Løsningsfoslag Fysikk 2 Høst 203 Løsningsfoslag Fysikk 2 Høst 203 Opp Sva Foklaing gave a) B Fomelen fo bevegelsesmengde p = mv gi enheten kg m. s Dette kan igjen skives som: kg m = kg m s s2 s = Ns b)
DetaljerLøsningsforslag Fysikk 2 Høst 2014
Løsningsfoslag Fysikk Høst 014 Løsningsfoslag Fysikk Høst 014 Opp Sva Foklaing gave a) D Det elektiske feltet gå adielt ut fa en positivt ladet patikkel. Til høye fo elektonet lage elektonet en feltstyke
DetaljerKONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Noges teknisk natuitenskapelige uniesitet Institutt fo elektoniske systeme ide 1 a 7 Faglæe: Johannes kaa KONTINUAJONEKAMEN I EMNE TFE 4120 ELEKTROMAGNETIME August 2017 Alle anlige deloppgae telle 4 poeng.
DetaljerNORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 8 Faglig kontakt unde eksamen: Navn: jøn Toge Stokke Tl: 93434 EKSAMEN I FAG SIF45 FYSIKK Mandag 7. desembe 1998 Tid: kl.
DetaljerKap. 27 Kjapp historie. Kap. 27 Magnetisk felt og magnetiske krefter. Kap. 27 Magnetisme. Kraft på ledningsbit. Kap 27
Kap. 27 Magnetisk felt og magnetiske krefter Kortfatta målsetning: Forstå at magnetiske monopoler ikke fins, kun dipoler. (mens elektriske monopoler fins, dvs. +q, -q) Lære at permanente magneter og elektromagneter
DetaljerFagoversyn: TFY4155/FY1003 Elektrisitet og magnetisme. kap21 18.01.2016. mg mg. Elektrostatikk, inkl. elektrisk strøm Magnetostatikk Elektrodynamikk
kap1 18.01.016 TFY4155/FY1003 lektisitet og magnetisme Fagovesyn: lektostatikk, inkl. elektisk støm Magnetostatikk lektodynamikk l.mag. e gunnlag fo: Ketselemente (motstand, kondensato, spole, diode, tansisto)
DetaljerA. positiv x-retning B. negativ z-retning C. positiv y-retning D. negativ y-retning E. krafta er null
Flervalgsoppgaver En lang, rett ledning langs x-aksen fører en strøm i positiv x-retning. En positiv punktladning beveger seg langs z-aksen i positiv z- 1. retning (opp av papirplanet). Den magnetiske
DetaljerØving 8. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt.
Institutt fo fysikk, NTNU TFY455/FY003: lektisitet og magnetisme Vå 2008 Øving 8 Veiledning: 04.03 i R2 25-400, 05.03 i R2 25-400 Innleveingsfist: Fedag 7. mas kl. 200 (Svatabell på siste side.) Opplysninge:
DetaljerKap. 27 Magnetisk felt og magnetiske krefter. Magnetiske monopoler fins ikke: Kortfatta målsetning:
Kap. 27 Magnetisk felt og magnetiske krefter Magnetiske monopoler fins ikke: Kortfatta målsetning: Lære at permanente magneter og elektromagneter har samme årsak: -- ladninger i bevegelse / strømsløyfer
DetaljerMidtsemesterprøve fredag 10. mars kl
Institutt fo fysikk, NTNU FY1003 lektisitet og magnetisme I TFY4155 lektomagnetisme Vå 006 Midtsemestepøve fedag 10. mas kl 0830 1130. Svatabellen stå på et eget ak. Sett tydelige kyss. Husk å skive på
DetaljerTre klasser kollisjoner (eksempel: kast mot vegg)
kap8 2.09.204 Kap. 8 Bevegelsesmengde. Kollisjone. assesente. Vi skal se på: ewtons 2. lov på ny: Definisjon bevegelsesmengde Kaftstøt, impuls. Impulsloven Kollisjone: Elastisk, uelastisk, fullstendig
DetaljerEKSAMEN FAG TFY4160 BØLGEFYSIKK OG FAG FY1002/MNFFY101 GENERELL FYSIKK II Lørdag 6. desember 2003 kl Bokmål
ide av 0 NORGE TEKNIK- NATURVITENKAPELIGE UNIVERITET INTITUTT FOR FYIKK Faglig kontakt unde eksamen: Føsteamanuensis Knut Ane tand Telefon: 73 59 34 6 EKAMEN FAG TFY460 ØLGEFYIKK OG FAG FY00/MNFFY0 GENERELL
DetaljerFagoversyn: TFY4155/FY1003 Elektrisitet og magnetisme. mg mg. kap Elektrostatikk, inkl. elektrisk strøm Magnetostatikk Elektrodynamikk
kap 3.0.05 TFY455/FY003 lektisitet og magnetisme Fagovesyn: lektostatikk, inkl. elektisk støm Magnetostatikk lektodynamikk l.mag. e gunnlag fo: Ketselemente (motstand, kondensato, spole, diode, tansisto)
DetaljerFagoversyn: TFY4155/FY1003 Elektrisitet og magnetisme. mg mg. kap Elektrostatikk, inkl. elektrisk strøm Magnetostatikk Elektrodynamikk
kap1 14.01.014 TFY4155/FY1003 lektisitet og magnetisme Fagovesyn: lektostatikk, inkl. elektisk støm Magnetostatikk lektodynamikk l.mag. e gunnlag fo: Ketselemente (motstand, kondensato, spole, diode, tansisto)
DetaljerKapittel 2: Krumlinjet bevegelse
Kapittel : Kumlinjet bevegelse Vannett kast v = v v = gt x 0 1 x = vt 0 y= gt y Skått kast v = v v = v gt x 0x y 0y 1 x = v0 t y = v x 0 t gt y Sving uten dosseing U+ G = ma N = G v R = m R = μn = μmg
DetaljerKap. 27 Magnetisk felt og magnetiske krefter. Magnetiske monopoler fins ikke: Kap. 27 Kjapp historie. Kap. 27 Magnetisme. Kap 27
Kap. 27 Magnetisk felt og magnetiske krefter Magnetiske monopoler fins ikke: Kortfatta målsetning: Lære at permanente magneter og elektromagneter har samme årsak: -- ladninger i bevegelse / strømsløyfer
DetaljerKONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Noges teknisk natuitenskapelige uniesitet Institutt fo elektonikk og telekommunikasjon ide 1 a 7 Faglæe: Johannes kaa KONTINUAJONEKAMEN I EMNE TFE 4120 ELEKTROMAGNETIME Tosdag 15. august 2013 Oppgae 1
DetaljerEKSAMEN I EMNE SIF4005 FYSIKK For kjemi og materialteknologi Onsdag 11. desember 2002 kl
Sie 1av 6 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt une eksamen: Institutt fo fysikk, Realfagbygget Pofesso Cathaina Davies Tel: 73593688 Bokmål EKSAMEN I EMNE
DetaljerNORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKALSK ELEKTRONIKK
Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKALSK ELEKTRONIKK Faglig/fagleg kontakt unde eksamen: Navn: Helge E. Engan Tlf.: 944 EKSAMEN I EMNE SIE415 BØLGEFORPLANTNING
DetaljerKap. 23 Elektrisk potensial
Kp. 3 Elektisk potensil Skl definee p gunnlg v elektisk felt E: Elektisk potensiell enegi, U Elektisk potensil, V (Ketsteknikk: El. potensilfoskjell spenning) Aeid keves fo føe smmen ldninge Pføt eid gi
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Eksamen i: MEK3220/MEK4220 Kontinuumsmekanikk Eksamensdag: Onsdag 2. desembe 2015. Tid fo eksamen: 09.00 13.00. Oppgavesettet e på 7 side.
DetaljerKap. 27 Magnetisk felt og magnetiske krefter. Magnetiske monopoler fins ikke: Kap. 27 Kjapp historie. Kap. 27 Magnetisme. Kortfatta målsetning:
Kap. 27 Magnetisk felt og magnetiske krefter Magnetiske monopoler fins ikke: Kortfatta målsetning: Lære at permanente magneter og elektromagneter har samme årsak: -- ladninger i bevegelse / strømsløyfer
DetaljerKONTINUASJONSEKSAMEN I FAG SIF4028 FYSIKK MED ELEKTROMAGNETISME Mandag 7. august 2000 Tid:
Sie 1 av 9 NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt une eksamen: Navn: Ragnval Mathiesen Tlf. 93584 KONTINUASJONSEKSAMEN I FAG SIF48 FYSIKK MED ELEKTROMAGNETISME
DetaljerPensum. Fagoversyn: kap21.ppt<file> -TFY4155 Elektromagnetisme -FY1003 Elektrisitet og magnetisme
kap1.ppt -TFY4155 Elektomagnetisme -FY1003 Elektisitet og magnetisme Fagovesyn: Elektostatikk, inkl. elektisk støm Magnetostatikk Elektodynamikk El.mag. e gunnlag fo: Ketselemente (motstand, kond.,
DetaljerNewtons lover i én dimensjon
Newtons love i én dimensjon 4.01.013 kaft akseleasjon hastighet posisjon YS-MEK 1110 4.01.013 1 Hva e kaft? Vi ha en intuitivt idé om hva kaft e. Vi kan kvantifisee en kaft med elongasjon av en fjæ. Hva
DetaljerKap. 27 Magnetisk felt og magnetiske krefter. Magnetiske monopoler fins ikke: Kap. 27 Kjapp historie. Kap. 27 Magnetisme. Kortfatta målsetning:
Kap. 27 Magnetisk felt og magnetiske krefter Magnetiske monopoler fins ikke: Kortfatta målsetning: Lære at permanente magneter og elektromagneter har samme årsak: -- ladninger i bevegelse / strømsløyfer
Detaljera) C Det elektriske feltet går radielt ut fra en positivt ladet partikkel og radielt innover mot en negativt ladd partikkel.
Løsningsfoslag Fysikk 2 Vå 2015 Løsningsfoslag Fysikk 2 Vå 2015 Oppgav e Sva Foklaing a) C Det elektiske feltet gå adielt ut fa en positivt ladet patikkel og adielt innove mot en negativt ladd patikkel.
DetaljerLøsningsforslag Fysikk 2 Vår 2013 Oppgav e
Løsningsfoslag Fysikk 2 Vå 203 Løsningsfoslag Fysikk 2 Vå 203 Oppgav e Sva Foklaing a) B Feltet E gå adielt ut fa en positivt ladning. Siden ladning og 2 e like stoe, og ligge like langt unna P vil E væe
DetaljerLøsningsforslag Fysikk 2 V2016
Løsningsfoslag Fysikk V016 Oppgave Sva Foklaing a) B Faadays induksjonslov: ε = Φ, so gi at Φ = ε t t Det bety at Φ åles i V s b) D L in = 0,99 10 = 9,9 L aks = 1,04 10 = 10,4 L snitt = (L in + L aks )
DetaljerOnsdag og fredag
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2009, uke 13 Onsdag 25.03.09 og fredag 27.03.09 Amperes lov [FGT 30.1, 30.3; YF 28.6, 28.7; AF 26.2; H 23.6; G 5.3] B dl = µ 0
DetaljerPensum. Fagoversyn: TFY4155/FY1003 Elektrisitet og magnetisme. kap21.ppt<file> Elektrostatikk, inkl. elektrisk strøm Magnetostatikk Elektrodynamikk
kap1.ppt TFY4155/FY1003 Elektisitet og magnetisme Fagovesyn: Elektostatikk, inkl. elektisk støm Magnetostatikk Elektodynamikk El.mag. e gunnlag fo: Ketselemente (motstand, kondensato, spole, diode,
DetaljerPensum. Fagoversyn: TFY4155/FY1003 Elektrisitet og magnetisme. kap21.ppt<file> Elektrostatikk, inkl. elektrisk strøm Magnetostatikk Elektrodynamikk
kap1.ppt TFY4155/FY1003 Elektisitet og magnetisme Fagovesyn: Elektostatikk, inkl. elektisk støm Magnetostatikk Elektodynamikk El.mag. e gunnlag fo: Ketselemente (motstand, kond., spole, diode, tansisto)
DetaljerTre klasser kollisjoner (eksempel: kast mot vegg)
Kap. 8 Bevegelsesmengde. Kollsjone. assesente. V skal se på: ewtons. lov på ny: Defnsjon bevegelsesmengde Kollsjone: Kaftstøt, mpuls. Impulsloven Elastsk, uelastsk, fullstendg uelastsk assesente (tyngdepunkt)
DetaljerKONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME
DetaljerKap. 23 Elektrisk potensial
Kp. 23 Elektisk potensil Skl definee på gunnlg v elektisk felt E: Elektisk potensiell enegi, U Elektisk potensil, V (Ketsteknikk: El. potensilfoskjell = spenning) Potensilgdient og elektisk felt. Ekvipotensilflte
DetaljerNewtons lover i én dimensjon (2)
Newtons love i én dimensjon () 9.1.13 husk: data lab fedag 1-16 FYS-MEK 111 9.1.13 1 Identifikasjon av keftene: 1. Del poblemet inn i system og omgivelse.. Tegn figu av objektet og alt som beøe det. 3.
DetaljerLøsningsforslag eksamen 2. august 2003 SIF 4005 Fysikk for kjemi og materialteknologi
Løsningsfslag eksamen. august SF 5 Fysikk f kjemi g mateialteknlgi Oppgave lektstatikk a) Sylineens ttale laning pe lengeenhet finnes ve å integee laningsfelingen ( ) ve aealelementet A= e sylineens aius
DetaljerKap. 27 Magnetisk felt og magnetiske krefter. Magnetiske monopoler fins ikke: Kap. 27 Kjapp historie. Kap. 27 Magnetisme. Kortfatta målsetning:
Kap. 27 Magnetisk felt og magnetiske krefter Magnetiske monopoler fins ikke: Kortfatta målsetning: Lære at permanente magneter og elektromagneter har samme årsak: -- ladninger i bevegelse / strømsløyfer
DetaljerMagnetisme. Magnetostatikk (ingen tidsvariasjon): Kap 27. Magnetiske krefter Kap 28: Magnetiske kilder
Magnetisme Magnetostatikk (ingen tidsvariasjon): Kap 27. Magnetiske krefter Kap 28: Magnetiske kilder B/ t = 0 Elektrodynamikk (tidsvariasjon): Kap 29: Elektromagnetisk induksjon Kap 30: Induktans Kap
DetaljerNewtons lover i to og tre dimensjoner
Newtons love i to og te dimensjone 7..13 innleveing: buk iktige boks! FYS-MEK 111 7..13 1 Skått kast kontaktkaft: luftmotstand langtekkende kaft: gavitasjon initialbetingelse: () v() v v cos( α ) iˆ +
DetaljerKap Rotasjon av stive legemer
Kap. 9+10 otasjon av stive legeme Vi skal se på: Vinkelhastighet, vinkelakseleasjon (ep) Sentipetalakseleasjon, baneakseleasjon (ep) otasjonsenegi E k Teghetsmoment I Kaftmoment τ ulling Spinn (deieimpuls):
DetaljerFYSIKK-OLYMPIADEN Andre runde: 4/2 2010
Nosk Fysikklæefoening Nosk Fysisk Selskaps fagguppe fo undevisning FYSIKK-OLYMPIADEN 009 010 Ande unde: / 010 Skiv øvest: Navn, fødselsdato, e-postadesse og skolens navn Vaighet:3 klokketime Hjelpemidle:abell
DetaljerKap. 27 Magnetisk felt og magnetiske krefter
Kap. 27 Magnetisk felt og magnetiske krefter Kortfatta målsetning: Lære at permanente magneter og elektromagneter har samme årsak: -- ladninger i bevegelse / strømsløyfer Bli kjent med formelapparatet
DetaljerKONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Fredag 11. august 2006 kl
NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 KONTNUASJONSEKSAMEN TFY4155 ELEKTOMAGNETSME Fredag 11.
DetaljerLøsningsforslag TEP 4110 FLUIDMEKANIKK 18.desember ρ = = = m / s m / s 0.1
Løsningsfoslag TEP 40 FLUIDMEKNIKK 8.desembe 007 Oppgave a) Foskjellen i vekt e oppdiftskaften på kula nå den e neddykket i olje (oppdiften i luft neglisjees). Oppdift =ρ Volum g olje π =ρvann SGolje d
Detaljerb) 3 MATEMATISKE METODER I 1 ( ) ( ) ( ) ( ) ( ) ( ) Repetisjonsoppgaver Bruk av regneregler: 1 Regn ut: e) 0 x ) 4 3 d) 4 x f) 5y
MATEMATISKE METODER I Buk av egneegle: Regn ut: a ( ( b 7 c ( 7 y 8 d 8 e f 5y y Regn ut og tekk sammen: a 5a b a b a + b b y + y + + y c t t + 6 ( 6t t + 8 d s+ s + s ( s + s Multiplise ut og odne a (
DetaljerKap. 24 Kapasitans og dielektrika. Van de Graaf generator. Kap 24. Van de Graaf-generator i Gamle fysikk, 1952
Kap. 4 Kapasitans og dielektrika Grunnleggende forståelse for HVA en kondensator er, HVORFOR den virker som den gjør, hvilke BEGRENSINGER den har og hvorfor et DIELEKTRIKUM er påkrevd i en kondensator.
DetaljerKuleflate rundt ladning q. Elektrisk fluks gjennom et lite areal da defineres ved. da som gjelder uansett fasong på den lukkede flaten A.
Oppsummeing Eektisitet og magnetisme Side 1 av 6 ouombs ov q 1 q q 1 q ----------------, > gi fastøtning (adninge med ikt fotegn), < gi titekning 4πε ˆ hvo ε 8.85 1-1 /Nm e dieektisitetskonstanten i vakuum
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 10. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt.
TFY0 Fysikk. Institutt fo fysikk, NTNU. Høsten 06. Øving 0. Opplysninge: esom ikke nnet e oppgitt, nts det t systemet e i elektosttisk likevekt. esom ikke nnet e oppgitt, e potensil undefostått elektosttisk
DetaljerFysikk 2 Eksamen høsten Løsningsforslag
Fysikk - Løsningsfoslag Oppgae a) B Beegelsesmengde e gitt som p m og enheten bli defo kgm/s. Samtidig et i at N = kgm/s. Da kan i skie b) C kgm/s kgm/s s N s Vi gi patiklene numme fa til 3, se figuen.
DetaljerOppgave 1 Svar KORT på disse oppgavene:
Løsningsfoslag til Eksamen i FYS000. juni 0 Oppgae Sa KORT på disse oppgaene: a) En kontinuelig stålingskilde il gi et Planckspektum. Desom den kontinuelige stålingskilden passee gjennom en gass, il stålingen
DetaljerMagnetisme. Magnetostatikk (ingen tidsvariasjon): Kap 27. Magnetiske krefter Kap 28: Magnetiske kilder
Magnetisme Magnetostatikk (ingen tidsvariasjon): Kap 27. Magnetiske krefter Kap 28: Magnetiske kilder Elektrodynamikk (tidsvariasjon): Kap 29: Elektromagnetisk induksjon Kap 30: Induktans Kap 31: Vekselstrømskretser
DetaljerBetinget bevegelse
Betinget bevegelse 1.0.013 innleveing på fonte FYS-MEK 1110 1.0.013 1 Innleveinge aksenavn! enhete! kommente esultatene utegninge: skitt fo skitt, ikke bae esultatet vi tenge å fostå hva du ha gjot sett
DetaljerKap. 22. Gauss lov. Vi skal se på: Fluksen til elektrisk felt E Gauss lov. Elektrisk ledere. Integralform og differensialform
Kap. 22. Gauss lov Vi skal se på: Fluksen til elektrisk felt E Gauss lov Integralform og differensialform Elektrisk ledere. E-felt fra Coulombs lov: E k q r 2 r E k n q r n 2 0n r 0n dq E k r 2 r tot.
DetaljerEKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME
DetaljerLøsningsforslag Fysikk 2 Høst 2015
Løsningsfoslag Fysikk Høst 015 Oppgave Sva Foklaing a) A Vi pøve oss fa ed noen kjente fole: ε vbl B ε Φ vl t vl Nå vi nå egne ed enhete på denne foelen få vi Wb B s s Wb Magnetfeltet kan altså åles i
DetaljerKap. 13. Gravitasjon. Kap. 13. Gravitasjonen. Gravitasjon/solsystemet. Litt historie: Kap 13grav
Kap. 13. Gavitasjon Keples love fo planetbane Newtons gavitasjonslov Gavitasjonens potensielle enegi. Unnslippshastighet Kap. 13. Gavitasjonen Natuens fie fundamentale kefte (fa kap 4): Gavitasjonskaft
DetaljerGauss lov. Kap. 22. Gauss lov. Gauss lov skjematisk. Vi skal se på: Fluksen til elektrisk felt E Gauss lov Integralform og differensialform
Kap. 5..6 Kap.. Gauss lov Vi skal se på: Fluksen til elektrisk felt E Gauss lov Integralform og differensialform Elektrisk ledere. Efelt fra Coulombs lov: q E k r r E k n q r n n r n dq E k r r tot. ladn.
DetaljerEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Noges teknisk ntuitenskpelige uniesitet Institutt fo elektonikk og telekommuniksjon ide 1 8 Fglæe: Johnnes k EKAMEN I EMNE TFE 4120 ELEKTROMAGNETIME Lødg 25. mi 2013 Oppge 1 En koksilkbel bestå en innelede
DetaljerFysikk-OL Norsk finale 2005
Univesitetet i Oslo Nosk Fysikklæefoening Fysikk-OL Nosk finale 005 3. uttakingsunde Tid: Fedag 5. apil kl 09.00.00 Hjelpemidle: Tabell/fomelsamling, gafisk lommeegne Oppgavesettet bestå av 7 oppgave på
DetaljerEKSAMEN TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003
DetaljerKonstanter og formelsamling for kurset finner du bakerst Merk: Figurene til oppgavene er ofte på en annen side enn selve oppgaven
UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Avsluttende eksamen i AST2000, 17. desembe 2018, 09.00 13.00 Oppgavesettet inkludet fomelsamling e på 8 side Tillatte hjelpemidle: 1) Angel/Øgim
Detaljer1 Virtuelt arbeid for stive legemer
1 Vituelt abeid fo stive legeme Innhold: Abeidsbegepet i mekanikk Pinsippet om vituelt abeid fo stive legeme Litteatu: Igens, Statikk, kap. 10.1 10.2 Hibbele, Statics, kap. 11.1 11.3 Bell, Konstuksjonsmekanikk
DetaljerFaradays lov: Flere muligheter for induksjon: Magnetisme. Kap29
Magnetisme Magnetostatikk (ingen tidsvariasjon): Kap 27. Magnetiske krefter Kap 28: Magnetiske kilder B/ t = 0 Hvilke er rett, a,b,c eller d? Elektrodynamikk: Kap 29: Elektromagnetisk induksjon Kap 30:
DetaljerLøsningsforslag Fysikk 2 Vår 2014
Løsninsfosla Fysikk Vå 014 Løsninsfosla Fysikk Vå 014 Opp Sva Foklain ave a) B Det elektiske feltet å adielt ut fa en positivt ladet patikkel. Fo å få et elektisk felt som på fiuen må demed X væe positivt
DetaljerEKSAMEN FY1003 ELEKTRISITET OG MAGNETISME Mandag 4. desember 2006 kl
NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTSTET OG MAGNETSME Mandag 4. desember
DetaljerFagoversyn: TFY4155/FY1003 Elektrisitet og magnetisme. mg mg. kap21. Elektrostatikk, inkl. elektrisk strøm Magnetostatikk Elektrodynamikk
kap1 TFY4155/FY1003 Elektisitet og magnetisme Fagovesyn: Elektostatikk, inkl. elektisk støm Magnetostatikk Elektodynamikk El.mag. e gunnlag fo: Ketselemente (motstand, kondensato, spole, diode, tansisto)
DetaljerFysikkolympiaden 1. runde 25. oktober 5. november 2004
Nosk Fysikklæefoening Nosk Fysisk Selskaps fagguppe fo undevisning Fysikkolympiaden 1. unde 5. oktobe 5. novembe 004 Hjelpemidle: abell og fomelsamlinge i fysikk og matematikk Lommeegne id: 100 minutte
DetaljerOppgave 8.12 Gitt en potensialhvirvel med styrke K i origo. Bestem sirkulasjonen ' langs kurven C. Sirkulasjonen er definert som: ' /
Løsning øving 3 Oppgve 8. Gitt en potensilhvivel med styke i oigo. Bestem sikulsjonen ' lngs kuven C. C y (I oppgven stå det t vi skl gå med klokk, men he h vi gått mot klokk i oveensstemmelse med definisjonen
DetaljerKap Rotasjon av stive legemer
Kap. 9+10 Rotasjon a stie legeme Vi skal se på: Vinkelhastighet, inkelakseleasjon (ep) Sentipetalakseleasjon, baneakseleasjon (ep) Rotasjonsenegi E k Teghetsmoment I Kaftmoment τ Rulling Spinn (deieimpuls):
DetaljerKap. 8 Bevegelsesmengde. Flerpartikkelsystem. Kap. 8 Bevegelsesmengde. Flerpartikkelsystem. Sentralt elastisk støt. Generell løsning: kap8.
Kap. 8 evegelsesmengde. Flepatkkelsystem. V skal se på: ewtons 2. lov på ny. Defnsjon evegelsesmengde. Kaftstøt, mpuls. Impulsloven. Flepatkkelsysteme: Kollsjone: Elastsk, uelastsk, fullstendg uelastsk
Detaljerρ = = = m / s m / s Ok! 0.1
Løsningsfoslag TEP 00 FLUIDMEKNIKK.juni 007 Oppgave a) Foskjellen i vekt e oppdiftskaften på kula nå den e neddykket i olje (oppdiften i luft neglisjees). Oppdift =ρ Volum g olje π =ρvann SGolje d g 6
DetaljerKap Rotasjon av stive legemer
Kap. 9+10 Rotasjon a stie legeme Vi skal se på: Vinkelhastighet, inkelakseleasjon (ask ekap) Sentipetalakseleasjon, baneakseleasjon (ask ekap) Rotasjonsenegi E k Teghetsmoment I Rulling Kaftmoment τ Spinn
DetaljerFaradays lov: Flere muligheter for induksjon: Magnetisme. Kap29 17.03.2015
Magnetisme Magnetostatikk (ingen tidsvariasjon): Kap 27. Magnetiske krefter Kap 28: Magnetiske kilder B/ t = 0 Hvilke er rett, a,b,c eller d? Elektrodynamikk: Kap 29: Elektromagnetisk induksjon Kap 30:
DetaljerFaradays lov: Flere muligheter for induksjon: Magnetisme. Kap29
Magnetisme Magnetostatikk (ingen tidsvariasjon): Kap 27. Magnetiske krefter Kap 28: Magnetiske kilder B/ t = 0 Hvilke er rett, a,b,c eller d? Elektrodynamikk: Kap 29: Elektromagnetisk induksjon Kap 30:
Detaljer( 6z + 3z 2 ) dz = = 4. (xi + zj) 3 i + 2 ) 3 x x 4 9 y. 3 (6 2y) (6 2y)2 4 y(6 2y)
TMA415 Matematikk 2 Vå 215 Noges teknisk natuvitenskapelige univesitet Institutt fo matematiske fag Løsningsfoslag Øving 11 Alle oppgavenumme efeee til 8. utgave av Adams & Essex Calculus: A Complete Couse.
DetaljerEKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTISITET OG MAGNETISME I TFY4155
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. ving 10.
TFY0 Fysikk. Institutt fo fysikk, NTNU. ving 0. Opplysninge: esom ikke nnet e oppgitt, nts det t systemet e i elektosttisk likevekt. esom ikke nnet e oppgitt, e potensil"undefosttt elektosttisk potensil",
DetaljerEKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 17. desember 2007 kl K. Rottmann: Matematisk formelsamling (eller tilsvarende).
NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTSTET OG MAGNETSME Mandag 17. desember
DetaljerForelesning 9/ ved Karsten Trulsen
Foelesning 9/2 218 ved Kasten Tulsen Husk fa sist våe to spøsmål om kuveintegale: Desom vi skal beegne et kuveintegal som state i et punkt og ende opp i et annet punkt 1, så kan det væe mange veie fo å
DetaljerFaradays lov: Flere muligheter for induksjon: Magnetisme. E = - dφ B /dt, der Φ B = B da. Kap29
Magnetisme Magnetostatikk (ingen tidsvariasjon): Kap 27. Magnetiske krefter Kap 28: Magnetiske kilder B/ t = 0 Hvilke er rett, a,b,c eller d? Elektrodynamikk: Kap 29: Elektromagnetisk induksjon Kap 30:
DetaljerMidtsemesterprøve onsdag 7. mars 2007 kl Versjon A
Institutt fo fysikk, NTNU FY1003 lektisitet og mgnetisme I TFY4155 lektomgnetisme Vå 2007 Midtsemestepøve onsdg 7. ms 2007 kl 1300 1500. Løsningsfoslg. Vesjon 1) Hvilken påstnd om elektisk potensil e feil?
Detaljer