DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK
|
|
- Harald Isaksen
- 9 år siden
- Visninger:
Transkript
1 DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK For elever fra trinn Del C: Notatark til kartleggingsleder Elev: Født: Skole: Klassetrinn: Kartleggingsleder: Andre til stede: Sted og dato for kartlegging:
2 Oppgave 1. Grunnleggende forståelse av antall og størrelse IKKE ELEVARK TIL OPPGAVE 1a -1e a. Grunnleggende kvantitetsbegreper Ti blyanter fordeles på tre, Eleven (E), Kartleggingsleder (KL) og tenkt kamerat (K). Kartlegging av: Mange, alle, noen, ingen, flere, flest, færre, færrest og like mange. Eleven får fordele10 blyanter til tre personer, med noen til hver. Hvem har flest ( mest ) blyanter? Hvem har færrest ( minst )? Har noen like mange? La det bli like mange til deg og meg! Kan det bli like mange på flere måter? E får 5, K får 3 og KL får 2 blyanter: Noen flere enn meg? Noen flere enn K? Noen flere enn deg? b. Parkopling KL deler ut ett og ett drops i to hauger, til det er like mange i hver haug. I den ene haugen legges dropsene samlet, i den andre mer spredt. Kan du si meg, uten å telle, hvilken haug har flest drops, tror du, eller har de kanskje like mange? c. Antallskonservasjon. Bruk de samme dropsene, men legg dem nå på to parallelle rekker med like lang avstand, like mange i hver rekke. Flytt så på dropsene i den ene rekka slik at rekka strekkes ut. Vær veldig tydelig på at ingen drops fjernes eller legges til. Kan du si meg, uten å telle, hvilken haug har flest drops, tror du, eller har de kanskje like mange? d. Halvparten av et antall i en mengde. Hvis du får halvparten av disse dropsene, hvor mange får du da? Kan du vise meg det? 2
3 e. Det dobbelte av et antall i en mengde. Her er tre drops til meg. Hvis du skal få dobbelt så mange som meg, hvor mange skal du ha da? Kan du vise meg det? DEL UT ELEVARK TIL OPPGAVE 1f, 1h og 1 i Ikke eget elevark til oppgave 1g. Ved behov kan eleven da kladde på arket foran, altså for 1f. f. Halvparten og det dobbelte av en helhet Tegn opp et eple. Vis hvordan du kan dele det så vi to får like stor deler hver. Hva kaller vi en slik del? Hvis du spiser et halvt eple og jeg spiser dobbelt så mye, hvor mye spiser jeg da? g. Halvparten og det dobbelte av en helhet: flere gangers halvering. Tenk deg at du har et eple, og du deler det i to deler som er like store. Så kan du dele hver av bitene i to, og til slutt dele hver av disse bitene i to igjen. Hvor mange eplebiter får du da? (Eleven kan tegne opp hvis behov!) h. Halvparten av en lengde Tegn først en rett, rød strek, omtrent så lang (vis med fingrene ca. fem cm!). Og deretter: Tegn en grønn strek ved siden av som er halvparten så lang som den røde. i. Det dobbelte av en lengde Oppgaven er en fortsettelse av oppgave 1h, der eleven allerede har tegnet en rød og en grønn strek. Tegn en blå strek som er dobbelt så lang som den første (den røde). 3
4 Oppgave 2. Rekkefølge, plassering og grunnleggende ordinasjonsbegreper IKKE ELEVARK TIL OPPGAVE 2a -2b a. Ordinasjon. Plassering i en rekke. Bruk sju biler med ulike farger. To biler: Plasser den røde bilen foran den hvite. Kan du sette den grønne bak den rosa? Hvilken av de to ser du til høyre nå? Hvis eleven korrekt finner at for eksempel den rosa bilen er til høyre for den grønne: Hva kan vi da si om den grønne? Tilsvarende kan en spørre angående foran/ bak. Tre biler: Sett den svarte bilen bak den blå. Plasser så den hvite mellom den svarte og blå. Hvilken bil er til venstre for den hvite? Hva kan vi nå si om den svarte? Fire biler: Plasser både den svarte og den røde bilen mellom den grønne og den blå. Kan du gjøre det på flere måter? Fem biler: Finn fram alle bilene unntatt den svarte og hvite. Plasser dem etter hverandre slik at den grønne står i midten! Forklar hvorfor den er i midten! Hvilke to biler står den grønne mellom? Hvilken er mellom (beskriv nr 1 og 3)? Hvilken er mellom (beskriv nr 2 og 4)? Seks biler: Kan du la den svarte være i midten? Forklar! Sju biler: Kan du la den hvite være i midten? Forklar! 4
5 b. Ordinasjon av flyttbare objekter etter størrelse Her er fem blyanter. De er ikke like lange. Legg dem ved siden av hverandre med den lengste først, så den nest lengste og så videre til den korteste. DEL UT ELEVARK TIL OPPGAVE 2c -2j c. Finne den midterste for ikkebevegelige objekter. Nå skal du tegne fem streker ved siden av hverandre. Den streken som er i midten skal være kortere enn de andre. d. Relativ plassering av to objekter. Tegn en sirkel under en trekant! e. Ordinasjon av tall Hvilket tall kommer etter fjorten? Kan du skrive det tallet? f. Ordinasjon av tall Hvilket tall kommer før tjuesju? Kan du skrive det tallet? Oppgave 2 fortsetter! 5
6 g. Ordinasjon av tall Skriv inn de tallene som mangler: Hvis det går lett: Kan du telle baklengs fra 30 til 1? Oppgave 2. h j, tallmønster h. Her er noen tall i en bestemt rekkefølge. Skiv de neste to tallene: Forklar hvorfor det blir slik! i. Her er noen tall i en bestemt rekkefølge. Skiv de neste to tallene: Forklar hvorfor det blir slik! j. Her er noen tall i en bestemt rekkefølge. Skiv de neste to tallene: Forklar hvorfor det blir slik! 6
7 Oppgave 3. Tallstørrelser fra dagliglivet IKKE ELEVARK TIL OPPGAVE 3a -3c a. Lengden (høyden) av en person KL kan reise seg opp først. Hvor lang/ høy tror du jeg er? b. Lengden av et A-4-ark Pek og vis langsiden av arket. Hvor langt tror du dette arket er? (Lengden er 29,7 cm) c. Elevens fødselsdag Hvor mange år er du? Vet du fødselsdatoen din? Eller: Når har du gebursdag? Hvor mange dager det er i uka? Hvor mange måneder det er i et år? Vet du hvor mange dager det er i et år? DEL UT ELEVARK TIL OPPGAVE 3d -3g d. Lengden av en avbildet bil Her ser du bilde av en bil. Hvor lang tror du en slik bil er i virkeligheten? (Bilen er 4,45 meter lang) e. Analog klokke Hvor mye er denne klokka? Kan du forklare hvorfor det blir slik? f. Analog klokke Tegn inn visere slik at klokka viser halv fem! (Evt. Eleven får velge et annet klokkeslett) 7
8 g. Digital klokke Kan du skrive inn tall slik at klokka viser kvart over åtte? (Evt. Åtte, halv åtte hvis vanskelig) Oppgave 4. Romoppfatning og former DEL UT ELEVARK TIL OPPGAVE 4a - 4c a. I figuren her ser du tre figurer, en sirkel, en trekant og et rektangel. Figurene er klippet ut og plassert bak hverandre. Hvilken av figurene er plassert i midten (altså mellom de to andre), og hvilken er plassert bakerst. Kan du forklare hvorfor det er slik? På oppgave b kan det bli behov for støtte med de utklipte figurene! b. Tegn de tre figurene, rektangelet, trekanten og sirkelen, slik at de er plassert bak hverandre, men slik at rekkefølgen blir motsatt av i forrige oppgave. Du kan godt se på den forrige tegningen hvis du vil! (Evt. Kan eleven forklare først rekkefølgen med ord?) 8
9 c. Plangeometriske former. Trekant, firkant og sirkel Hva slags former er dette? Skriv en T på de formene som er trekanter, en F på de som er firkanter og en S på de som er sirkler. Kartleggingsleders notater (Bruk også figuren til venstre!): Oppgave 5. Areal og lengde DEL UT ELEVARK TIL OPPGAVE 5a og 5c, eventuelt til 5b. a. Hvor stort er arealet/ flateinnholdet til figuren som er tegnet inn? KL kan også utdype: Hvor mange ruter er arealet på? 9
10 b. Kan du tegne en figur med areal lik fire ruter? Kan du lage to annerledes figurer til som også har areal lik fire? Prøv å tegne en figur som har areal på sju og en halv rute? Hvis dette er vanskelig, kan KL begynne med å la eleven tegne et areal som er en halv rutestort? Kan du lage en halv rute på flere ulike måter? c. Hvor langt er linjestykket under? KL kan også utdype: Hvor mange cm langt er det? Hvor lang er streken? Forklar hvordan du finner svaret! 10
11 Oppgave 6. Plassverdisystemet DEL UT ELEVARK TIL OPPGAVE 6a c. FOR 6d DELES BARE UT VED BEHOV.. a. Nullens rolle som plassholder Kan du skrive tallet tre hundre og åtte? Hva betyr nullen her? Åttetallet og tretallet? b. Tierovergang Hvilket tall er to mer enn 29? Kan du skrive det også? c. De ulike plassenes verdier Et tall består av tre tiere, seks enere og sju hundrere. Hvilket tall blir det? Kan du skrive opp det tallet? d. Kjenne igjen strukturen Her er en hoderegningsoppgave, kan du si hva dette blir: Og her er flere (en om gangen):
12 Oppgave 7. Matematisk modellering DEL UT ELEVARK TIL OPPGAVE 7a 7g a. Karen hadde først 4 kroner. Hun fant 3 kroner under sofaen. Hvor mange kroner hadde hun i alt da? b. Adrian mista 3 kroner. Han hadde først hatt 8 kroner. Hvor mange kroner har han nå? c. Hege hadde først 7 kroner. Så ga hun noen kroner til Tone. Nå har Hege 3 kroner. Hvor mange kroner ga hun til Tone? d. Martin hadde til å begynne med noen kroner. Så ga han 6 kroner til Håvar. Nå har Martin 9 kroner. Hvor mange kroner hadde Martin til å begynne med? e. Lise har 5 kroner og Johanne har 9. Hvor mange flere kroner har Johanne? f. Rakel og Ida har 12 kroner til sammen. Rakel har 5 kroner. Hvor mange kroner har da Ida? g. Kamilla har 10 kroner. Hun har 4 kroner mer enn Maria har. Hvor mange kroner har Maria? 12
13 Oppgave 8. Strategier ved hoderegning. Addisjon og subtraksjon. IKKE ELEVARK TIL OPPGAVE 8 (Bare hvis eleven står helt fast og vil prøve å kladde) a. Er det noen tall du synes er lette å regne med? Er det noen som ikke er så lette? Kan du si noen regnestykker som du får til? Du kan begynne med noen stykker der du legger sammen tall. Kan du ta noen stykker der du trekker fra også? b. Lag noen regnestykker der svaret blir 7! Kan du lage mange forskjellige? Går det an med mer enn to tall? c = d = e. 8 1 = Fortsetter 13
14 f. 8 7 = g = h = i = j. 7 2 = k = 14
15 Oppgave 9. Strategier ved hoderegning. Multiplikasjon. IKKE ELEVARK TIL OPPGAVE 9 (Bare hvis eleven står helt fast og vil prøve å kladde) a. Kan du gangetabellen? Er det noen tall der du synes er lette å regne med? Er det noen som ikke er så lette? Kan du vise meg hvordan du gjør? Kan du si noen gangestykker som du får til? Klarer du noen delestykker også? Hvis eleven lykkes bra, kan KL også spørre: Kan du ta noen delestykker også? b. Kan du lage noen gangestykker der svaret blir tolv? Du kan gjerne prøve med å gange sammen flere tall også! Fortsetter 15
16 Oppgave 9. fortsatt c. 2 3 = d. 5 7 = e. 8 6 = f. 7 4 = g. 7 5 = h. 9 3 = 16
DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK
DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK For elever fra 1. 5. trinn Del D: Dynamisk kartlegging, elevark Mange av oppgavene er muntlige eller praktiske og har derfor ikke oppgaveark til eleven. Til noen
DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK
Oppgaveveiledning Oppgave 1 Grunnleggende forståelse av antall og størrelse, Notatark til kartleggingsleder og Elevark DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK For elever fra 1. 5. trinn Utarbeidet av Svein
DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK
DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK For elever fra 1. 5. trinn Utarbeidet av Svein Aastrup Møller - Trøndelag kompetansesenter INNHOLDSFORTEGNELSE Kartleggingas hoveddeler 1 Del A: Generell veiledning
DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK
Oppgaveveiledning Oppgave 11 Hoderegningsstrategier. Multiplikasjon og divisjon. Notatark til kartleggingsleder og Elevark DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK For elever fra 5. 10. trinn og elever
MATEMATIKK. September
MATEMATIKK Periode Hovedområde Kompetansemål Innhold / metode August Tall og algebra Sette sammen og dele opp tiergrupper Gjenkjenne, samtale om og videreføre September strukturer i enkle tallmønstre Bruke
KARTLEGGING AV MATEMATIKKFERDIGHETER
KARTLEGGING AV MATEMATIKKFERDIGHETER Denne kartleggingen skal kun brukes på elever dere vurderer å henvise til PPT pga vansker i matematikk. Resultatet drøftes i førhenvisningssamtalen som grunnlag for
FRI KOPIERING "MATTE-PRØVA" Kartlegging av kunnskap og innsikt i matematikk. Oppgaver til bruk ved direkte observasjon
FRI KOPIERING "MATTE-PRØVA" Kartlegging av kunnskap og innsikt i matematikk Oppgaver til bruk ved direkte observasjon Elev: Prøvd dato: Reidunn Ødegaard & Ragnhild Skaar. - 4. rev.utg., Gjøvik, Øverby
DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK
Oppgaveveiledning Oppgave 10 Hoderegningsstrategier. Addisjon og subtraksjon. Notatark til kartleggingsleder og Elevark DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK For elever fra 5. 10. trinn og elever i videregående
Læringstrapp tall og plassverdisystemet
Læringstrapp tall og plassverdisystemet 4. Bruke enkle brøker som 1/2, 1 /4, 1 /3, 1 /6, 1 /8, 1 /10 og enkle desimaltall som 0,5, 0,25, 0,75, og 0,1 i praktiske sammenhenger. Gjenkjenne partall, oddetall,
-utvikle og bruke ulike regnemetoder for addisjon og. subtraksjon av flersifrede tall både i hodet og på papiret.
Årsplan for 3.trinn matematikk 2016-2017 U 35 Telle og regne Tallene 0-100 36 Telle og regne med tallene 0-100 Stille opp addisjonsstykker uten/med veksling Grunntall 3A kap. 1 Grunntall 3A kap. 1 OMPTANSMÅL
Lag et bilde av geometriske figurer, du også!
Lag et bilde av geometriske figurer, du også! 6 Geometri 1 MÅL I dette kapitlet skal du lære om firkanter trekanter sammensatte figurer sirkler KOPIERINGSORIGINALER 6.1 Tangram 6.4 Felles problemløsing
ADDISJON FRA A TIL Å
ADDISJON FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til addisjon 2 2 Grunnleggende om addisjon 3 3 Ulike tenkemåter 4 4 Hjelpemidler i addisjoner 9 4.1 Bruk av tegninger
KOMPETANSEMÅL ETTER 2. TRINNET Tall:
KOMPETANSEMÅL ETTER 2. TRINNET Tall: 1. Telle til 100, dele opp og byggemengder oppt il 10, sette sammen og dele opp tiergrupper. 2. Bruke tallinjen til beregninger og å angi tallstørrelser. 3. Gjøre overslag
SCREENINGTEST TIL BEGYNNERTRINNET (1.-2. KLASSE)
Elev: Klasse: dato: Materiell: Papir og blyant. Røde, gule og blå centikuber (minst ti av hver). Målebånd. Analogt og digitalt ur. Firesidet pyramide med bunnen utformet av Polydron brikker. Elevens følelser
Årsplan matematikk 3. trinn 2015/2016
Årsplan matematikk 3. trinn 2015/2016 Katrine Hansen Tidspunkt (uke ) Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: 34-35 kap 1 samle, sortere, notere og illustrere data på
Hva vil det si å kunne matematikk? Hva er tallforståelse? Gjett tre kort. Arbeide både praktisk og teoretisk. Det viktigste for læring
Hva vil det si å kunne matematikk? Gjett tre kort Hva er tallforståelse? Mona Røsseland Nasjonalt senter for Matematikk i opplæringen Lærebokforfatter; MULTI 9-Sep-08 9-Sep-08 2 Arbeide både praktisk og
Posisjonsystemet FRA A TIL Å
Posisjonsystemet FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til posisjonsystemet P - 2 2 Grunnleggende om posisjonsystemet P - 2 3 Titallsystemet P - 3 4 Posisjonsystemet
Unneberg skole ÅRSPLAN I MATEMATIKK. 3. trinn Rød skrift marker det som er fra utviklende matte.
Unneberg skole ÅRSPLAN I MATEMATIKK. trinn 2016-2017 Rød skrift marker det som er fra utviklende matte. KOMPETANSEMÅL FRA LÆREPLANEN Eleven skal kunne LOKALE KJENNETEGN FOR MÅLOPPNÅELSE Eleven skal kunne
DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK
DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK For elever fra 4. 10. trinn og elever i videregående skole Utarbeidet av Svein Aastrup Trøndelag kompetansesenter INNHOLDSFORTEGNELSE DYNAMISK KARTLEGGINGSPRØVE
Storsteinnes skole Mulighetenes skole med trygghet, ansvar og respekt former vi framtida.
Balsfjord kommune for framtida Storsteinnes skole Mulighetenes skole med trygghet, ansvar og respekt former vi framtida. Skoleåret: 2017/2018 Faglærer: Charlotte Nyheim Lambela ÅRSPLAN I MATEMATIKK Emne/
Bli ekspert på 2-gangen
Bli ekspert på 2-gangen Gangetabellen blir lett hvis du trener, og her er et treningsprogram som gjør deg superflink i 2- gangen! Gjør du øvelse etter øvelse, trenger du snart ikke tenke når du skal gange
Gange. Hverdagsmatte Del 1 side 34
Hverdagsmatte Del 1 side 34 Gange Når vi ganger to tall med hverandre, bruker vi gange mellom tallene. Gange skriver vi. Det er også vanlig å bruke x. Miriam er i butikken. Hun kjøper 3 is. En is koster
Familiematematikk MATTEPAKKE. 1. Trinn. May Renate Settemsdal og Ingvill Merete Stedøy
Familiematematikk MATTEPAKKE 1. Trinn May Renate Settemsdal og Ingvill Merete Stedøy Aktiviteter Hvor mange? Sorter og tell alle tingene som er i kofferten. Hva er det flest av? Hva er det færrest av?
Oppgaver i matematikk, 9-åringer
Oppgaver i matematikk, 9-åringer Her er gjengitt de frigitte oppgavene fra TIMSS 95. Oppgavene fra TIMSS 2003 ventes frigitt i løpet av sommeren 2004 og vil bli lagt ut kort tid etter dette. Oppgavene
MOSBY OPPVEKSTSENTER ÅRSPLAN I MATEMATIKK - 2.TRINN 2015-16 Uke Emne Kompetansemål Læringsmål Arbeidsmetode Læremidler Evaluering/
Årsplan i matematikk for 2 tr. 15-16 Læreverk: Multi 2A, 2B og oppgavebok. MOSBY OPPVEKSTSENTER ÅRSPLAN I MATEMATIKK - 2.TRINN 15-16 34 35 36 37 38 39 Tallene 0- med tallene opp til -Bruke tallinja til
DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK
Oppgaveveiledning Oppgave 9 Tolking av tekstoppgaver matematisk modellering, Notatark til kartleggingsleder og Elevark DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK For elever fra 5. 10. trinn og elever i videregående
Kyrkjekrinsen skole Årsplan for perioden: 2012-2013
Kyrkjekrinsen skole Årsplan for perioden: 2012-2013 Fag: Matematikk År: 2012-2013 Trinn og gruppe: 3ab Lærer: Therese Hermansen og Monica Strand Brunvoll Uke Årshjul Hovedtema Kompetansemål Delmål Arbeidsmetode
Halvårsplan/årsplan i Matematikk for 2. trinn 2015/2016 Tema Læringsmål Grunnleggende ferdigheter
Uke/ perio de Kompetansemål KL- 06 33-39 TALL bygge mengder opp til 10, tiergrupper. Bruke tallinjen til beregning og til å vise tallstørelser. Halvårsplan/årsplan i Matematikk for 2. trinn 2015/2016 Tema
Inneholder ett oppslag fra hvert hefte:
Sett inn støtet er en serie hefter som gir systematisk opplæring og trening i utvalgte tema innenfor matematikk. Heftene har enkle instruksjoner og god progresjon i vanskelighetsgrad. Oppgavene er laget
Årsplan for 2. trinn Fag: Matematikk Skoleåret: 2018/2019
Årsplan for 2. trinn Fag: Matematikk Skoleåret: 2018/2019 Periode Uke 34-37 Høstuke uke 36 Uke 38-40 Høstferie 04.-05.10 Kompetansemål Eleven skal kunne tier grupper opp til 100 og dele tosifra tall i
ÅRSPLAN I MATEMATIKK: SKOLEÅRET 2016/2017
ÅRSPLAN I MATEMATIKK: SKOLEÅRET 2016/2017 Faglærer: Dorthea Ledang Fagbøker/lærestoff: Radius 3a grunnbok og Radius 3b grunnbok. Mnd August Læreplanmål (kunnskapsløftet) Delmål Tema/emne Kunne dele hele
Er hvitveisen speilsymmetrisk?
Er hvitveisen speilsymmetrisk? 11 Geometri 2 MÅL I dette kapitlet skal du lære om flytting av figurer ved speiling, parallellforskyving og dreining speilingssymmetri KOPIERINGSORIGINALER 11.1 Speiling
Areal av polygoner med GeoGebra
1. Vi starter med å lage forskjellige rektangler og kvadrater med følgende arealer: 1 rute, 2 ruter, 3 ruter, 4 ruter, 5 ruter, 6 ruter, 7 ruter, 8 ruter, 9 ruter og 10 ruter 2. Tegn så mange ulike figurer
Kompetansemål etter 2. trinn
Kompetansemål etter 2. trinn Tall: 1. telle til 100, dele opp og bygge mengder opp til 10, sette sammen og dele opp tiergrupper 2. bruke tallinjen til beregninger og å angi tallstørrelser 3. gjøre overslag
Matematikk i 1. klasse
Matematikk i 1. klasse Bergen kommune 3. og 4. juni 2009 Anne Kari SælensmindeS 08.06.2009 1 tall siffer mengder antall doble sirkler ruter kanter posisjoner tiere mønster 08.06.2009 2 Mål l for denne
ÅRSPLAN I MATTE 2. TRINN BREIVIKBOTN SKOLE 2011-2012
ÅRSPLAN I MATTE 2. TRINN BREIVIKBOTN SKOLE 2011-2012 Lærer: Knut Brattfjord Læreverk: Grunntall 2 a og b, av Bakke og Bakke, Elektronisk Undervisningsforlag AS Målene er fra Lærerplanverket for kunnskapsløftet
Læreverk: Multi grunnbok 3A og 3B, Oppgavebok, Multi kopiperm, Multi 1-4 grublishefte og Multi sine nettsider.
ÅRSPLAN I MATEMATIKK FOR 3. TRINN 2014/2015 Utarbeidet av: Elly Østensen Rørvik Læreverk: Multi grunnbok 3A og 3B, Oppgavebok, Multi kopiperm, Multi 1-4 grublishefte og Multi sine nettsider. UKE TEMA KOMPETANSEMÅL
Sensurveiledning Matematikk 1, 5-10, emne 1 Høsten 2013
Sensurveiledning Matematikk 1, 5-10, emne 1 Høsten 2013 Oppgave 1 a) =2 = 5 2 =5 2 = = 25 4 = 25 8 Full uttelling gis for arealet uttrykt over. Avrundinger gis noe uttelling. b) DC blir 5 cm og bruk av
LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016
LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016 TID EMNE DELMÅL LÆRINGSKJENNETEGN/ VURDERINGSKRITERIER Høy Middels Lav måloppnåelse måloppnåelse måloppnåelse KJØP OG SALG Lære om : - Sedler og mynters
ÅRSPLAN I MATEMATIKK 3. KLASSE 2015/2016. Endringer kan forekomme
ÅRSPLAN I MATEMATIKK 3. KLASSE 2015/2016 Endringer kan forekomme Uke Kompetansemål Innhold Arbeidsmåter Vurdering 34 35 Statistikk: Elevene skal kunne samle, sortere, notere og illustrere data på formålstjenlige
LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2018
LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2018 TID EMNE DELMÅL LÆRINGSKJENNETEGN/ VURDERINGSKRITERIER Høy Middels Lav måloppnåelse måloppnåelse måloppnåelse J A N U A R KJØP OG SALG Læringsstrategier:
Lærerveiledning. Oppgave 1. Hva er arealet av det grå området i figuren? Tips til veiledning:
Oppgave 1 Hva er arealet av det grå området i figuren? A 3 B 5 C 6 D 9 E 1 Hva slags geometriske figurer er det grå området er sammensatt av? Finn grå områder som er like store. Tenke dere de mørke bitene
Kva er klokka? Kva er klokka? Kva er klokka?
er to er eitt er tolv er fem er fire er tre er åtte er sju er seks er elleve er ti er ni halv to halv eitt halv tolv halv fem halv fire halv tre halv åtte halv sju halv seks halv elleve halv ti halv ni
Matematikk 1. 4. årstrinn Smøla kommune
Lokal læreplan i Matematikk 1. 4. årstrinn Smøla kommune Grunnskolen 1 INNHOLDSFORTEGNELSE Hovedområder.. side 3 Gjennomføring.. side 10 Målark. side 11 Digitale ressurser.. side 19 2 HOVEDOMRÅDER Matematikkplanen
LOKAL LÆREPLAN Matte Trinn 5
LOKAL LÆREPLAN Matte Trinn 5 Gol kommune side 1 Kjennetegn på måloppnåelse Læringsmål Mestringsnivå 1 Mestringsnivå 2 Mestringsnivå 3 Eleven skal kunne: Eleven skal kunne: Eleven skal kunne: Eleven skal
INNHOLD. Emne 4 Matematikken rundt oss... 120. Emne 3 Brøk, prosent og promille... 6. Faktasider...101 Repetisjonsoppgaver...106 Avtaltoppgaver...
Black plate (4,) INNHOLD Emne Brøk, prosent og promille... 6 Brøk... 8 Navn på brøker... 8 Likeverdige brøker... Utvide og forkorte brøker... 4 Addisjon og subtraksjon av brøker med like nevnere... 8 Å
Årsplan Matematikk 3.trinn
Årsplan Matematikk 3.trinn 2016-2017 Uke Tema: Kunnskapsløftet sier: Kompetansemål: Læringsmål: Innhold i timene: 34 35 Kap. 1 Data og statistikk Samle og sortere objekter i passende kategorier. Illustrere
Periodeplan OPPVEKST MOTTAKSSKOLEN. Kristiansand
OPPVEKST MOTTAKSSKOLEN Kristiansand 12.09.16 Periodeplan Periode: vår 2017 Fag og uketimer: matematikk, 4 timer pr uke Gruppe: C Læremidler: Hovedlæreverk Multi, 2a 2b, evt 3a 3 b. (Alseth, Arnås, Kirkegaard,
Uke Emne Kompetansemål Læremål Grunnleggende ferdigheter Metoder Vurdering 34-37
Fag: Matematikk Klassetrinn: 1.klasse Skoleåret: 2016/2017 Lærer: Liv Hemnes Mørch Uke Emne Kompetansemål Læremål Grunnleggende ferdigheter Metoder Vurdering 34-37 Kapittel 1 Tallene fra 0-5 til 100 og
Spill om kort 1) Førstemann som har samlet inn et avtalt antall kort (f.eks 10 stk) uansett tema og vanskegrad, har vunnet.
Spillevarianter Basis spillevarianter er presentert i elevboka, Tema B tall side 54. Her finner du også spillebrettet. I elevboka er spillet knyttet til desimaltall, men ved bruk av spillekortene kan man
Tall og algebra - begrep, forutsetninger og aktiviteter
Tall og algebra - begrep, forutsetninger og aktiviteter Astrid Bondø NSMO 17-Sep-08 Hvordan gjøre oppgavene rikere? Oppgave A Regn ut svaret: a. 985 67 b. 897 65 c. 875 96 d. 586 97 addisjon subtraksjon
Fagplan Matte, 3. trinn, 2010/2011
Fagplan Matte, 3. trinn, 2010/2011 Måned Kompetansemål K06 Læringsmål / Delmål Kjennetegn på måloppnåelse / kriterier August 34-35 Mål for opplæringen er at eleven skal kunne: samle, sortere, notere og
Lokal læreplan matematikk 2.trinn
Lokal læreplan matematikk 2.trinn Lærebok: Multi Antall uker 3 Tallene 0-20 Multi kap.1 Telje til 100, dele opp og byggje mengder opp til 10, setje saman og dele tiargrupper opp til 100, og dele tosifra
- lese og skrive tallene til 100 000 - plassverdisystemet: verdien til et siffer er. Materiell: Abakus avhengig av hvor i tallet det står
Hovedområde: Tall. Kompetansemål etter 4. trinn MÅL: beskrive plassverdisystemet for dei heile tala, bruke positive og negative heile tal, enkle brøkar og desimaltal i praktiske samanhengar, og uttrykkje
ÅRSPLAN Laudal skole
ÅRSPLAN 2018-2019 Laudal skole Fag: Matematikk Klasse: 2 Lærer: Mona Fjeldsgård Kompetansemål etter 2. årstrinn: Tal telje til 100, dele opp og byggje mengder opp til 10, setje saman og dele opp tiargrupper
plassere negative hele tall på tallinje
Kompetansemål etter 7. trinn Tall og algebra: 1. beskrive plassverdisystemet for desimaltall, regne med positive og negative hele tall, desimaltall, brøker og prosent, og plassere dem på tallinje 2. finne
Plassere positive og negative tall på tallinjen KOPIERINGSORIGINAL 2.1. Navn: KAPITTEL 2 Tall og tallforståelse. Oppgave 4a. Oppgave 4b.
KOPIERINGSORIGINAL 2.1 KAPITTEL 2 Tall og tallforståelse Plassere positive og negative tall på tallinjen Navn: Oppgave 4a 0 1 Oppgave 4b 40 0 40 Oppgave 4c 20 0 20 Oppgave 5a 6 3 0 1 4 Oppgave 5b 2 1 0
Lokal læreplan Sokndal skole. Fag: Matematikk Trinn: 5.trinn Lærebok: Grunntall 5A og 5B
Lokal læreplan Sokndal skole Fag: Matematikk Trinn: 5.trinn Lærebok: Grunntall 5A og 5B Uke Tema Komp.mål (direkte fra læreplanen) Læringsmål Uke 34 42? Uke 42-46 Repetisj on tidligere tema. Forbere dende
Uke Tema Læremidler Kompetansemål Vurdering Ansvarlig
Halvårsplan for: 2. trinn vår -17 Fag: Matematikk Uke Tema Læremidler Kompetansemål Vurdering Ansvarlig 3-4 Kap.8 Symmerti kunne kjenne igjen todimensjonale symmetriske figurer kunne peke ut symmetrilinjer
Hefte med problemløsningsoppgaver. Ukas nøtt 2009/2010
Hefte med problemløsningsoppgaver Ukas nøtt 2009/2010 1 Tallev Omtveit Nordre Modum ungdomsskole 1 Bilde: http://images2.fanpop.com/images/photos/2900000/illusions-puzzles-and-brain-teasers-2936387-305-
Årsplan Matematikk 3.trinn Uke: Tema: Kunnskapsløftet sier:
Årsplan Matematikk 3.trinn 2018-2019 Uke: Tema: Kunnskapsløftet sier: Kompetansemål: Læringsmål: Innhold i timene: 33 35 Kap. 1 Data og statistikk samle, sortere, notere og illustrere data på hensiktsmessige
Telle i kor steg på 120 frå 120
Telle i kor steg på 120 frå 120 Erfaringer fra utprøving Erfaringene som er beskrevet i det følgende er gjort med lærere og elever som gjennomfører denne typen aktivitet for første gang. Det var fire erfarne
Kengurukonkurransen 2019
2019 «Et sprang inn i matematikken» Cadet (9. 10. trinn) Løsninger og registreringsskjema Dette heftet inneholder: Fasit og korte løsningsforslag Registreringsskjema Fasit med korte kommentarer Mange matematiske
Lokal læreplan matematikk 3. trinn
Lokal læreplan matematikk 3. trinn Lærebok: Multi 3 Antall uker Tema: (Statistikk) 2 Data og statistikk Multi grunnbok 3a s.2-15. Oppgavebok s. 2-7. Nettoppgave 2, nivå 1 og 3. Bruke legoklosser, knapper,
Oppgaver til julekalenderen 2005 for mellomtrinnet; 5. - 7.trinn
Oppgaver til julekalenderen 2005 for mellomtrinnet; 5. - 7.trinn Løsningsord for kalenderen er RAKETTBASE PRESIS KLOKKA TO A B C D E F G H I J K L M N O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 P Q R S T U
Fagplan, 4. trinn, Matematikk
Fagplan, 4. trinn, Matematikk Måned Kompetansemål - K06 Læringsmål / delmål Kjennetegn på måloppnåelse / kriterier Mål for opplæringen er at eleven skal kunne: August UKE 33, 34 OG 35. September UKE 36-39
OVERFLATE FRA A TIL Å
OVERFLATE FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til overflate... 2 2 Grunnleggende om overflate.. 2 3 Overflate til:.. 3 3 3a Kube. 3 3b Rett Prisme... 5 3c
LGU51005 A, Matematikk
Skriftlig eksamen i LGU51005 A, Matematikk 1 5-10 15 studiepoeng ORDINÆR EKSAMEN 10. desember 2013. BOKMÅL Sensur faller innen torsdag 9. januar 2014. Resultatet blir tilgjengelig på studentweb første
Årsplan i matematikk for 2. trinn
Årsplan i matematikk for 2. trinn Uke Tema Kompetansemål Læringsmål Aktivitet, metoder og læringsressurser Hele Jeg kan bruke tallinja til å vise året: ulike tallstørrelser. Tallinje Dager, måneder, år,
ESERO AKTIVITET UNIVERSETS HISTORIE. Lærerveiledning og elevaktivitet. Klassetrinn 7-8
ESERO AKTIVITET Klassetrinn 7-8 Lærerveiledning og elevaktivitet Oversikt Tid Læremål Nødvendige materialer 60 min Å: lære at universet er veldig kaldt oppdage at Jorden ble dannet relativt nylig lære
Matematisk julekalender for trinn, 2017
Matematisk julekalender for 1. 4. trinn, 2017 Om kalenderen Årets julekalender for 1.-4. trinn består av enten de første 9 eller alle 15 oppgavene som kan løses uavhengig av hverandre. Alle oppgavene er
Årsplan matematikk 4. klasse, Læreverk: Multi 4a og 4b Lærer: Irene Jørgensen Skaret
Årsplan matematikk 4. klasse, 2016-2017 Læreverk: Multi 4a og 4b Lærer: Irene Jørgensen Skaret Uke Kompetansemål (K06) Tema Arbeidsmåter Vurdering 34-35 Lese av, plassere og beskrive posisjoner i rutenett,
Førskolebarnets matematikk-kunnskaper
Førskolebarnets matematikk-kunnskaper Vad kan förskolebarn om tal? Hur löser de problem? Lärarstuderande Grethe Midtgård, Bergen, berättar om Marit, 6 år och hennes sätt att hantera situationer med matematik.
Desimaltall FRA A TIL Å
Desimaltall FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side Innledning til desimaltall D - 2 2 Grunnleggende om desimaltall D - 2 2. Tideler, hundredeler og tusendeler D - 6 3 Å regne
NASJONALE PRØVER. Matematikk 10. trinn delprøve 2. Skolenr. Elevnr. Oppgaver som kan løses ved hjelp av lommeregner. Tid: 90 minutter.
Bokmål Skolenr. Elevnr. NASJONALE PRØVER Matematikk 10. trinn delprøve 2 Tid: 90 minutter 15. april 2004 Gutt Jente Oppgaver som kan løses ved hjelp av lommeregner. Tillatte hjelpemidler: lommeregner,
Brøker med samme verdi
Kapittel 7 Brøk Mål for det du skal lære: regne om mellom blandet tall og uekte brøk forkorte og utvide brøker, finne fellesnevner regne om mellom brøk og desimaltall ordne brøker etter størrelse og plassere
Kortryllekunst og matematikk.
Kortryllekunst og matematikk. Innlevert av 7. trinn, Ulsmåg skole ved Ulsmåg skole (Bergen, Hordaland) Årets nysgjerrigper 201 Kjære leser Nå skal du få lese en rapport om et korttriks og mattematikk.
Nasjonale prøver. Matematikk 10. trinn Oppgave 2
Nasjonale prøver 2005 Matematikk 10. trinn Oppgave 2 Skolenr.... Elevnr.... Gutt Omslag_skriv_mate_10.indd 1 Jente Bokmål 15. mars 2005 03-02-05 12:54:02 Alt du gjør, skal skrives i dette heftet. Når
ÅRSPLAN I MATEMATIKK 2. KLASSE BREIVIKBOTN SKOLE 2013-2014
ÅRSPLAN I MATEMATIKK 2. KLASSE BREIVIKBOTN SKOLE 2013-2014 Lærer: Turid Nilsen Matematikkverket består av: - Ressursperm - Grunntall 2a + 2b - CD-rom Forfattere: Bjørn Bakke og Inger Nygjelten Bakke Grunnleggende
Uke Tema Kompetansemål Læringsmål Aktiviteter, metoder og læringsressurser Hele. fire regneartene.
Årsplan matematikk 3. trinn Uke Tema Kompetansemål Læringsmål Aktiviteter, metoder og læringsressurser Hele Jeg vet hva symbolet er for de året fire regneartene. Utvikle og bruke varierte metodar for multiplikasjon
Algebra for alle. Gunnar Nordberg
Algebra for alle Gunnar Nordberg 1 Om dette verkstedet Fra konkreter til tall Fra tall til variabler(bokstaver) Kan algebraen bli meningsfull Å undervise i algebraisk forståelse Ideer til gode oppgaver
Årsplan i matematikk 3.trinn
Årsplan i matematikk 3.trinn 2018 2019 Lærere: Maria Flesjå Sivertsen og Lena Gauksås Læreverk: Multi (Gyldendal) Nettressurser: http://podium.gyldendal.no/mno1-4/3a http://podium.gyldendal.no/mno1-4/3b
Tall og enheter. Mål. for opplæringen er at eleven skal kunne
8 1 Tall og enheter Mål for opplæringen er at eleven skal kunne anslå svar, regne med og uten tekniske hjelpemidler i praktiske oppgaver og vurdere rimeligheten av resultatene 1.1 Regnerekkefølge På ungdomsskolen
Kapittel i lærebok Aktiviteter Vurdering
Årsplan for 3.trinn Fag: Matematikk Skoleåret: 2017/2018 Uke Uke 33-35 Uke 36-39 Kompetansemål (LK06) Statistikk : Samle, sortere, notere og illustrere data på formålstenlege måtar med teljestrekar, tabeller
Skredder og skjerf - transkripsjonen av samtalen
Skredder og skjerf - transkripsjonen av samtalen Aktiviteten er blitt gjennomført samme dag i to ulike elevgrupper (klasser) på 6. trinn og i filmen får vi innblikk i arbeidet fra begge. Utsagn 1-34 er
Årsplan matematikk 3. trinn
Årsplan matematikk 3. trinn Uke Tema Kompetansemål Læringsmål Aktiviteter, metoder og læringsressurser Hele Jeg vet hva symbolet er for de året fire regneartene. Utvikle og bruke varierte metodar for multiplikasjon
ÅRSPLAN I MATEMATIKK FOR SINSEN SKOLE
ÅRSPLAN I MATEMATIKK FOR SINSEN SKOLE 1.trinn Læreverk: b Nettressurser: Radius http://radius1-4.cappelendamm.no/ Multi http://web2.gyldendal.no/multi/ Dreambox Learning http://www.dreambox.com/teachertools
Eksempelsider for kartleggingsprøver i regning på 1. trinn
Eksempelsider for kartleggingsprøver i regning på 1. trinn Her finner du tre oppgavesider med instrukser som har samme format som oppgavesidene i kartleggingsprøven. Ved å gjøre disse sidene i klasserommet
Misoppfatninger knyttet til brøk
Misoppfatninger knyttet til brøk 17.04.18 Olav Dalsegg Tokle, Astrid Bondø og Roberth Åsenhus MATEMATIKKSENTERET, NTNU Innholdsfortegnelse INNLEDNING... 3 NEVNER REPRESENTERER ANTALL DELER - UAVHENGIG
Årsplan: Uke Tema
Årsplan: Uke 33 34 35 36 37 38 39 epetisjon av pluss og minus Ulike terningsspill Yatzy Konkretisere med klosser og brikker Kap 1 Data og statistikk Undersøkelse Statistikk: Samle, sortere, notere og illustrere
Misoppfatninger knyttet til tall
Misoppfatninger knyttet til tall 17.04.18 Olav Dalsegg Tokle, Astrid Bondø og Roberth Åsenhus MATEMATIKKSENTERET, NTNU Innholdsfortegnelse INNLEDNING... 3 NULL SOM PLASSHOLDER... 4 OPPGAVER... 5 ANALYSE...
ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2012-2013
ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2012-2013 Lærer: Knut Brattfjord og Hege Skogly Læreverk: Grunntall 5 a og b, 6 a og b og 7 a og b av Bakke og Bakke, Elektronisk Undervisningsforlag AS Målene
Kyrkjekrinsen skole Årsplan for perioden:
Kyrkjekrinsen skole Årsplan for perioden: 2012-2013 Fag: Matematikk År: 2012-2013 Trinn og gruppe: 2ab Lærer: Kristin Svartveit og Lena Rygg Uke Årshjul Hovedtema Kompetansemål Delmål Arbeidsmetode Vurderingsmåter
Tallregning Vi på vindusrekka
Tallregning Vi på vindusrekka Addisjon... 2 Addisjon: Oppstilling... 3 Addisjon med minnetall... 4 Addisjon med desimaltall... 5 Subtraksjon... 6 Subtraksjon uten låning... 7 Subtraksjon med låning...
Eksamensoppgave i LVUT8091 Matematikk 1 (1-7) emne 1 KFK
Fakultet for lærer- og tolkeutdanning Eksamensoppgave i LVUT8091 Matematikk 1 (1-7) emne 1 KFK Faglig kontakt under eksamen: Siri-Malén Høynes Tlf.: 73412621 Eksamensdato: 30. november 2016 2. desember
Samle, sortere, notere og illustrere enkle data ved tellestreker og søylediagram og samtale om prosessen og
Årsplan for 1. trinn Fag: Matematikk Skoleåret: 2017/2018 Aktiviteter Aktiviteter som blir brukt i matematikk i skoleåret 2017/2018 høst vil være: - Muntlig telling - Opptelling med tellestreker - Kategorisere
Multi 4A s.1-17 Oppgavebok s. 2-6
ÅRSPLAN I MATEMATIKK FOR 4. TRINN 2014/2015 Utarbeidet av: Hilde Marie Bergfjord Læreverk: Multi 4 UK TEMA KOMPETANSEMÅL LÆRINGSMÅL INNHOLD METODE VURDERING E 34 Repetisjon 35 36 Koordinatsystemet Multi
Mona Røsseland Lærebokforfatter, MULTI
Foreldrene betyr all verden! Mona Røsseland Lærebokforfatter, MULTI Hvilken rolle har foreldrene? Hjemmet er like viktig som undervisningen for at en elev skal få bra resultater. Ikke tenk at skolen er
DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK
DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK Oppgaveveiledning Oppgave 9 Tolking av tekstoppgaver matematisk modellering For elever fra 5. 10. trinn og elever i videregående skole Utarbeidet av Svein Aastrup
Addisjon og subtraksjon i fire kategorier
Mona Røsseland Nasjonalt senter for matematikk i Opplæringen 7-Feb-07 Addisjon og subtraksjon i fire kategorier Problemstillinger som inkluderer addisjon og subtraksjon kan ha svært varierende strukturer.