Hva er god matematikkundervising?

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Hva er god matematikkundervising?"

Transkript

1 Hva er god matematikkundervising? Innhold Hva er det som gjør at elever som mestrer godt i matematikk på barnetrinnet får problemer med faget på ungdomstrinnet? Hva kan vi gjøre for å hindre at elever mister motivasjonen for matematikk? Mona Røsseland Resultat i matematikk på kunnskapsnivåer, 8.trinn Jeg gidder ikke bry meg mer! Hvilke faktorer mener elevene har ført til negativ utvikling i matematikk fra barnetrinnet til ungdomstrinnet? Presentasjon av funn fra Masterstudie. Mona Røsseland Forskningsspørsmål Forskningsopplegg og metoder Åtte fokuselever Hvordan oppfatter elevene sin identitet som matematikkelev? Hvordan oppfatter elevene læringssituasjonene? - (Undervisningen, lærere, de andre elevene) Hvordan oppfatter elevene det matematisk fagstoffet? Intervju med enkeltelever; høre deres forklaringer på hvorfor de mener de har fått problemer med matematikken. Intervju og samtale med flere av fokuselevene samtidig. Deltakende observasjon av undervisning; hvordan fungerer mine fokuselever i undervisningssituasjon, hvordan lærer gjennomfører undervisning og hvordan lærer forholder seg til elevene jeg har i fokus. Resultater fra Nasjonale prøver 8.trinn, standpunktkarakterer hele ungd.trinnet igjennom, eksamenskarakter, resultat NP i 10.trinn (identisk prøve som de hadde på 8.trinn) 6 1

2 Komponenter som virker på læring Wenger 1998 Erfaringen med å delta i praksisfellesskapet. Praksis er uttrykk for felles historiske og sosiale ressurser Mine funn: Faktorer som påvirker elevenes læring Læreren Undervisningen Fellesskapet Elevens identitet Handler om vår evne -individuelt og kollektivt til å oppleve våre liv og verden som meningsfull. Handler om hvordan fellesskapet og læring forandrer hvem vi er. 7 Særegenhet med matematikkfaget Elevenes identitet som matematikkelev Identitet Identitet handler om hvordan læring forandrer hvem vi er og danner personlige historier om å bli noen i vårt sosiale nettverk. Elevene har gitt opp. De tror at de ikke kan, og at ikke er noe poeng i å forsøke. De ser ikke at de i fremtiden har behov for å kunne matematikk. Wenger, 1998 Komponenter som virker på læring Wenger 1998 Erfaringen med å delta i praksisfellesskapet De sosiale normene Faktorer ved fellesskapet styrer hva lærer og Identitetsroller Faktorer ved -forventninger - forpliktelser - usagte normer og regler Handler om sosial tilpasning som er med å definere hvordan den enkeltes bidrag blir verdsatt, og hvilken del av vår kompetanse i fellesskapet blir det satt pris på. Det sier noe om det sosiale spillet som foregår i klassen som påvirker enkeltelever prestasjoner i matematikk. elevene kan tillate seg å gjøre. de sosiale normene Overganger - Kritisk fase 11 2

3 Faktorer ved fellesskapet Komponenter som virker på læring Wenger 1998 Vi lærer av Mangel på hverandre. samarbeid Når jeg ikke forstår, spør jeg en av de andre elevene Det er mye hyggeligere å jobbe sammen Praksis er uttrykk for felles historiske og sosiale ressurser, rammer og perspektiv som kan støtte gjensidig engasjement når vi handler. Selve arbeidet elevene og lærer gjennomfører, hvilke redskaper som benyttes, hvordan redskapene brukes og hvordan gruppa forhandler om mening. Lærer mest når lærer gir oss oppgaver som vi skal samarbeide om. På barneskolen diskuterer vi mer i klassen Faktorer ved undervisningen Mangel på deltakelse og involvering Mangel på fokus på forståelse Mangel på variasjon og tilpassing Komponenter som virker på læring 14 Faktorer ved lærer Mangel på forventninger og oppfølging Mangel på engasjement Faktorer ved det matematiske fagstoffet Wenger 1998 Mening handler om vår evne individuelt og kollektivt til å oppleve våre liv og verden som meningsfull. Medlemmene i klassen diskuterer seg fram/forhandler seg fram til hvordan sentrale begreper, informasjon etc kan forstås. Virkelighetsfjernt og fragmentert For mye som skal læres på for lite tilgjengelig tid Graden av abstraksjon algebra den store bøygen 17 3

4 Oppsummering Hva kan vi gjøre? Når elevene opplever matematikk som kjedelig, meningsløst og virkelighetsfjernt, vil det påvirke deres identitet som matematikklærende. Identiteten de utvikler vil igjen påvirker deres faglige engasjement, motivasjon og læringsutbytte. Elever som sjelden får oppleve mestring og som i tillegg tror at de ikke genetisk er anlagte for å klare matematikk, vil til slutt gi opp og slutte å bry seg. Matematikk er et fag som krever mye av elevene: De skal forstå, resonnere, se sammenhenger og ikke minst automatisere ferdigheter. For å bli god i faget må elevene være motiverte til å gjøre en innsats, og det kan vi gjøre noe med!!! Lærerne er nøkkelen til suksess! Gjett tre kort Hva kjennetegner dyktige lærere? Holder faglig fokus: Læring viktigere enn aktivitet Underviser for begrepsforståelse Ser og utnytter sammenhenger Legger opp til konstruktive diskusjoner Utfordrer og stiller faglige krav til alle elever Utvikler positive holdninger Kjærnslie m. fl. (2007) PISA-undersøkelsen Askew m. fl. (1997), Effective Teachers of Numeracy Clark m fl. (2002), Early Numeracy Research Project, Final Report 21 Hvordan vite hvilken kunnskap elevene har? Prosedyrekunnskap kan en kartlegge ved å gi elevene ordinære regneoppgaver. Begrepsmessig kunnskap kartlegges best gjennom oppgaver som stiller krav til problemløsning, dvs. oppgaver der elevene ikke umiddelbart kan støtte seg på kjente prosedyrer i oppgaveløsningen. Richard Skemp 4

5 Sant - usant a) Her er det åtte påstander. Hvilke av dem er sanne og hvilke er usanne for tallet 5,39? Hvordan bygge dype strukturer? Matematisk samtale - forbindelsen mellom tanker og uttalte ord er mye sterkere enn mellom tanker og skrevne ord eller symboler. Referenter til symbolene - ulike konkreter og representasjoner og knytte dette til symbolene. Vær bevisst på rekkefølgen - en presenterer nye matematiske ideer og begreper. Viktig stikkord her vil være tilpasset undervisning. a) Gå sammen i grupper på 2-4. Sammenlign valgene dere har gjort i a). Finn begrunnelser for hvert av valgene. Muntlige ferdigheter - LK06 Hvem av elevene har rett? å skape meining gjennom å lytte, tale og samtale om matematikk og ved hjelp av matematikk. å kunne gjere seg opp ei meining, stille spørsmål, og argumentere ved hjelp av både eit uformelt språk og presis fagterminologi. Hvem har det beste forslaget? Argumenter hvorfor du mener det. å vere med i samtalar, kommunisere idear og drøfte matematiske problem, løysinger og strategiar med andre. Volleyball, ikke bordtennis Å utvikle mening med symbolene Ved å lage referenter til symbolene kan en skape et bånd mellom symbolene og den begrepsmessig kunnskap. Dersom symbolene kan knyttes til konkreter, visuelle bilder eller representasjon fra det virkelige liv, vil det være med å lage referenter. Det er disse forestillingene, konkret baserte ideer, som lager referenter til symbolene. På denne måten vil det formelle matematikkspråket gi mening. Forskning viser da også at systematisk bruk av visuelle fremstillinger og konkreter kan føre til signifikant økning i matematikkprestasjoner (IES 2009: ) (Bruner, Hiebert & Lefevre, Skemp) 5

6 Jerome Bruner (IES 2009: ceguides/rti_math_pg_ pdf ) (Bruner, Hiebert & Lefevre, Skemp) Det enaktive nivået er preget av handling og barns direkte kontakt med materialer. På det ikoniske nivået, er det billedlige modeller av objekter og på det symbolske nivået, er det symboler som råder, både i skriftlig og verbal form (Bruner 1972). Bruner hevder at elevene ville lære matematikk bedre hvis de først møtte begreper og prosedyrer ved aktivt å modellere dem med konkreter. Bruner understreker at barn må være aktive i sin egen læringsprosess med å bygge mentale strukturer, og han mener at lærerne må legge til rette for dette gjennom å variere undervisningen med ulike innfallsvinkler. Å veksle mellom uttrykksformer Abstrakt Fra konkret til abstrakt I en klasse er det 28 elever. Forholdet mellom antall jenter og gutter er 4 : 3. Hvor mange jenter er det i klassen? 7+3= Abstrakt modell Konkret modell Konkret Tegning, bilde Stiliserte bilder Symboler Konkret Referenter gir differensiering Jenter Gutter Totalt Hva betyr: Eksempel: Multiplikasjon med desimaler Hvordan regne ut: 3 1,8 = Lag en regnefortelling med målingsdivisjon og en med delingsdivisjon 35 6

7 Lønnsutbetaling Maja, Viktor, Erlend, Alice og Noah arbeider på gården til besteforeldrene. Maja tjener 7 kr mer enn Alice. Alice tjener dobbelt så mye som Viktor. Erlend tjener 7 kr færre enn Viktor, men Erlend tjener tre ganger så mye som Noah. Noah tjener minst. En uke tjente han bare 4 kr. Hvor mye tjente hver av de andre den uka? En uke tjente Viktor 280 kr, hva tjente de andre? En måned tjente Alice 800 kr, hva tjente de andre? En måned arbeider barna på gården til naboen. De tjente 4602 til sammen. Hva tjente hver av de? Hvordan gjøre lønnsutbetalingen lettere? Noah tjener minst. Erlend tjener 7 kr færre enn Viktor, men han tjener tre ganger så mye som Noah. Alice tjener dobbelt så mye som Viktor. Maja tjener 7 kr mer enn Alice. Reflekter over struktur på timen Hvilke forkunnskaper har elevene som vil være sentrale for å nå dagens kompetansemål? Hva er det viktigste elevene skal lære i denne timen? Henger de ulike aktivitetene og oppgavene sammen og sikter de mot samme mål? Er det avsatt nok tid slik at elevene har fått utviklet en viss forståelse for det som er det matematiske målet denne timen? Gjør progresjonen i timen det lettere for elevene å bygge dypere forståelse? 42 7

8 Hva ligger i tilpasset opplæring? Kan skille mellom en smal og en vid forståelse av begrepet tilpasset opplæring: Den smale tilnærmingen er relatert til enkeltelever og vil innebære en individualisert undervisning for å gi eleven en god opplæring. Den vide tilnærmingen innebærer en mer overordnet strategi hvor hensikten er at alle elever skal få en så god opplæring som mulig. En vektlegger da fellesskapet og har fokus på læringsmiljøets betydning for elevens læringsutbytte. 43 Bachmann og Haug (2006) Tilpasning gjennom ulike presentasjonsformer Tilpasning gjennom ulike oppgaver, men samme kompetansemål 3 ulike tilnærminger til tilpasset opplæring Tredeling: 1. Tilpasning gjennom ulike presentasjonsformer 2. Tilpasning gjennom tall 3. Tilpasning gjennom ulike oppgaver, men mot samme kompetansemål, både forenkling og utviding. Tilpasning gjennom ulike presentasjonsformer Tilpasning gjennom ulike oppgaver, men samme kompetansemål Joakim er ute og fisker. Første fisken han får veier 2,45 kg. Andre fisken veier 3,18 kg. Den tredje fisken veier 0,79 kg mindre enn den andre fisken. Hvor mye veier de tre fiskene til sammen? Tiril er også ute og fisker. Første fisken hun får, veier 1,7 kg. Den andre fisken er tre ganger så tung. Den tredje fisken er like tung som den andre minus vekten av den første. Hvor mye veier de tre fiskene til sammen? 8

9 Spill: Mellom barken og veden 3-4 spillere Hver spiller skriver et tall mellom 0 og 1 på en lapp. Deretter legger alle spillerne lappene ned på bordet og de legges i stigende rekkefølge. Etter tur skal hver spiller kaste en terning to ganger og sette resultatet sammen til et desimaltall. For eksempel vil resultatet 2 og 6 enten gi tallet 0,26 eller 0,62. Terningtallet sorteres i forhold til tallene på de tre lappene. Den eller de lappene som ligger inntil binderstallet får ett poeng. Hvis binderstallet er likt tallet på en lapp, får spilleren med den lappen 3 poeng. Når alle tre spillerne har snurret bindersen er denne runden over, og spillerne starter på nytt med å tenke på et tall mellom 0 og 1. Eksempel Spiller A tenker på tallet 0,32, spiller B på 0,86 og spiller C på 0,65. De skriver det på hver sin lapp og legger lappene i stigende rekkefølge: Spiller A kaster en terning og får 5 og deretter 1. Han lager tallet 0,51. Det er mellom 0,32 og 0,65, så spiller A og spiller C får 1 poeng hver. Spiller B får 8 og 9. Han lager tallet 0,98. Det ligger mellom 0,86 og 1, så nå er det kun spiller B som får 1 poeng. Vinner er den som først får 5 poeng. 9

Hva er god matematikkundervising?

Hva er god matematikkundervising? Innhold Hva er god matematikkundervising? 8:3 1:: Hva er det som gjør at elever som mestrer godt i matematikk på barnetrinnet får problemer med faget på ungdomstrinnet? 1:15-11:35 Hvordan skape forståelse

Detaljer

Mona Røsseland Richard Skemp

Mona Røsseland  Richard Skemp Hva er god matematikk- undervisning? Hvordan kan vi sørge for at elevene utvikler en helhetlig kompetanse i matematikk, der elevenes evne til å tenke får større fokus enn elevenes evne til å memorere?

Detaljer

Hvordan hindre at vi «mister» elever i matematikk?

Hvordan hindre at vi «mister» elever i matematikk? 17.03.2017 Hvordan hindre at vi «mister» elever i matematikk? Forskningsopplegg og metoder Åtte fokuselever Intervju med enkeltelever Observasjon av undervisning Mona Røsseland Doktorgradsstipendiat, Uni

Detaljer

Hva er god matematikkundervisning? Mona Røsseland www.fiboline.no Tilleggskomponenter: Nye digitale kartleggingsprøver: Halvårsprøve og årsprøve Grublishefte 1-4 og 5-7 Oppdragsboka Nettsted: www.gyldendal.no/multi

Detaljer

Løft matematikkundervisningen. med Multi 1.-4.trinn 24.11.2010. Oversikt. Dette er Multi! Kjernekomponenter. Grunntanken bak Multi

Løft matematikkundervisningen. med Multi 1.-4.trinn 24.11.2010. Oversikt. Dette er Multi! Kjernekomponenter. Grunntanken bak Multi Løft matematikkundervisningen med Multi 1.-4.trinn Oversikt Grunntanken bak Multi Hva er nytt i revisjonen? Vurdering i Multi Mona Røsseland Dette er Multi! Kjernekomponenter Grunntanken bak Multi Elevbok,

Detaljer

Hvilke faktorer påvirker elevers læring?

Hvilke faktorer påvirker elevers læring? Hvilke faktorer påvirker elevers læring? Mona Røsseland Doktorstipendiat Universitetet i Agder Internasjonale sammenligninger TIMSS: Trends in Mathematics and Science Study - (hvert fjerde år med elever

Detaljer

"Hva er god. matematikkundervisning. Mål at alle matematikklærerne skal: Resultat i matematikk på kunnskapsnivåer, 8.trinn

Hva er god. matematikkundervisning. Mål at alle matematikklærerne skal: Resultat i matematikk på kunnskapsnivåer, 8.trinn "Hva er god matematikkundervisning? Mål at alle matematikklærerne skal: en felles forståelse for hva god matematikkundervisning er. Mona Røsseland Matematikksenteret (for tiden i studiepermisjon) Lærebokforfatter,

Detaljer

"Hva er god matematikkundervisning?

Hva er god matematikkundervisning? "Hva er god matematikkundervisning? Mona Røsseland Matematikksenteret (for tiden i studiepermisjon) Lærebokforfatter, MULTI Innhold Hvordan skal vi få elevene våre til å bli varm i hodet i matematikken?

Detaljer

Hvordan lykkes med tilpasset undervisning?

Hvordan lykkes med tilpasset undervisning? Hvordan lykkes med tilpasset undervisning? Mona Røsseland Doktorgradsstipendiat Universitetet i Agder www.fiboline.no Oversikt 10-11.30: Makronivå: Hva er god matematikkundervisning og hvordan legger det

Detaljer

Hva er god matematikkundervisning?

Hva er god matematikkundervisning? Hva er god matematikkundervisning? Mona Røsseland www.fiboline.no Innhold Hvordan kan vi sørge for at elevene utvikler en helhetlig kompetanse i matematikk, der elevenes evne til å tenkefår større fokus

Detaljer

Felles klasseundervisning og tilpasset opplæring kan det forenes?

Felles klasseundervisning og tilpasset opplæring kan det forenes? Felles klasseundervisning og tilpasset opplæring kan det forenes? 5.-7.trinn Innhold Hvordan skal vi klare å få alle elevene til å oppleve mestring og samtidig bli utfordret nok og få mulighet til å strekke

Detaljer

Felles klasseundervisning og tilpasset opplæring kan det forenes?

Felles klasseundervisning og tilpasset opplæring kan det forenes? Felles klasseundervisning og tilpasset opplæring kan det forenes? 1.-4.trinn Innhold Hvordan skal vi klare å få alle elevene til å oppleve mestring og samtidig bli utfordret nok og få mulighet til å strekke

Detaljer

"Hva er god matematikkundervisning?

Hva er god matematikkundervisning? "Hva er god matematikkundervisning? Mona Røsseland Matematikksenteret (for tiden i studiepermisjon) Lærebokforfatter, MULTI 14-Sep-10 Innhold Hvordan skal vi få elevene våre til å bli varm i hodet i matematikken?

Detaljer

Løft matematikkundervisningen. med Multi 01.05.2010. Gruppere ulike mengder. Telling. Lineær modell

Løft matematikkundervisningen. med Multi 01.05.2010. Gruppere ulike mengder. Telling. Lineær modell Løft matematikkundervisningen med Multi 1. 1.trinnsboka har vært for lite utfordrende for mange elever. Revidert Multi 1 består nå av to grunnbøker Elevene får med dette bedre tid til å utvikle grunnleggende

Detaljer

23.10.2011. Mona Røsseland www.fiboline.no www.gyldendal.no/multi

23.10.2011. Mona Røsseland www.fiboline.no www.gyldendal.no/multi Dersom elevene skal utvikle en bred matematisk kompetanse, må de gjennom undervisningen få muligheter til å å oppdage, resonnere og kommunisere matematikk gjennom ulike typer oppgaver, aktiviteter og diskusjoner.

Detaljer

KONGSVINGER 08.11.13 NY GIV - REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF

KONGSVINGER 08.11.13 NY GIV - REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF KONGSVINGER 08.11.13 NY GIV - REGNING Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF Mattelæreren God regning For å legge til rette for elevenes utvikling i regning som grunnleggende

Detaljer

Regning i alle fag. Hva er å kunne regne? Prinsipper for god regneopplæring. 1.Sett klare mål, og form undervisningen deretter

Regning i alle fag. Hva er å kunne regne? Prinsipper for god regneopplæring. 1.Sett klare mål, og form undervisningen deretter Regning i alle fag Hva er å kunne regne? Å kunne regne er å bruke matematikk på en rekke livsområder. Å kunne regne innebærer å resonnere og bruke matematiske begreper, fremgangsmåter, fakta og verktøy

Detaljer

Begynneropplæringen i matematikk. 1.-3.trinn 07.03.2012. Dagsoversikt. Tallfølelse

Begynneropplæringen i matematikk. 1.-3.trinn 07.03.2012. Dagsoversikt. Tallfølelse 07.03.2012 Begynneropplæringen i matematikk 1.-3.trinn Tillegskomponenter: Kartleggingsprøver: Halvårsprøve og årsprøve Grublishefte 1-4 og 5-7 Nettsted: www.gyldendal.no/multi Elevoppgaver Lærersider

Detaljer

Bruk av nettressurser i utvikling av matematikkundervisning. Seminar Realfagskommuner Pulje 1, 26. september 2016

Bruk av nettressurser i utvikling av matematikkundervisning. Seminar Realfagskommuner Pulje 1, 26. september 2016 Bruk av nettressurser i utvikling av matematikkundervisning Seminar Realfagskommuner Pulje 1, 26. september 2016 Hva er matematikk? Måter å se matematikk på: Regler resonnering Redskap eget fag Huske kreativitet

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk Mona Røsseland Matematikksenteret, NTNU Leder i Lamis Lærebokforfatter, MULTI Inspirasjon og motivasjon for matematikk God matematikkundervisning... hva er det? for hvem? 15-Oct-06 15-Oct-06 Matte er bare

Detaljer

11.09.2013. Kursdag på NN skole om matematikkundervisning. Hva har læringseffekt? Hva har læringseffekt? Multiaden 2013. Lærerens inngripen

11.09.2013. Kursdag på NN skole om matematikkundervisning. Hva har læringseffekt? Hva har læringseffekt? Multiaden 2013. Lærerens inngripen God matematikkundervisning. Punktum. Multiaden 2013 Kursdag på NN skole om matematikkundervisning Hva bør dagen handle om? Ranger disse ønskene. Formativ vurdering Individorientert undervisning Nivådifferensiering

Detaljer

www.fiboline.no 18.02.2012 Gjett tre kort Mastermind www.fiboline.no Resultat i matematikk på kunnskapsnivåer, 8.trinn Utstyr En kortstokk

www.fiboline.no 18.02.2012 Gjett tre kort Mastermind www.fiboline.no Resultat i matematikk på kunnskapsnivåer, 8.trinn Utstyr En kortstokk Foreldrene betyr all verden! Mona Røsseland Lærebokforfatter, MULTI www.fiboline.no Utstyr En kortstokk Gjett tre kort Regler Et spill for 2 3 spillere eller for en stor gruppe En person trekker tre kort

Detaljer

"Matte er kjedelig, fordi det er så lett"

Matte er kjedelig, fordi det er så lett "Matte er kjedelig, fordi det er så lett" Mona Røsseland Matematikksenteret (for tiden i studiepermisjon) Lærebokforfatter, MULTI Innhold Hvordan gi utfordringer til alle elevene? Tilpasset undervisning

Detaljer

Nye læreplaner, nye utfordringer i matematikk!

Nye læreplaner, nye utfordringer i matematikk! Oversikt Nye læreplaner, nye utfordringer i matematikk! Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Ny læreplan, nye utfordringer for undervisningen

Detaljer

Hva kjennetegner god matematikkundervisning? Sammen om oppdraget! Gardermoen Airport hotel, 15. november 2017 Astrid Bondø, NSMO

Hva kjennetegner god matematikkundervisning? Sammen om oppdraget! Gardermoen Airport hotel, 15. november 2017 Astrid Bondø, NSMO Hva kjennetegner god matematikkundervisning? Sammen om oppdraget! Gardermoen Airport hotel, 15. november 2017 Astrid Bondø, NSMO Hvem skal ut? pen pil ku penn Hvem skal ut? Hva kan være felles for denne

Detaljer

Gje meg eit tresifra. Hvordan skal jeg regne, lærer? 1. Arbeide både praktisk og teoretisk. Retningslinjer for undervisningen

Gje meg eit tresifra. Hvordan skal jeg regne, lærer? 1. Arbeide både praktisk og teoretisk. Retningslinjer for undervisningen Hvordan skal jeg regne, lærer? Fokus på tall og utvikling av god tall forståelse Mona Røsseland Nasjonalt senter for matematikk i opplæringen Gje meg eit tresifra tal 17-Apr-06 17-Apr-06 2 Intensjoner

Detaljer

Forfatterne bak Multi!

Forfatterne bak Multi! Multi i praktisk bruk Forfatterne bak Multi! Tilpasset opplæring Forfatterteam: Bjørnar Alseth Universitetet i Oslo Henrik Kirkegaard, Flisnes skole, Ålesund Mona Røsseland, Matematikksenteret Gunnar Nordberg,

Detaljer

Velkommen til presentasjon av Multi!

Velkommen til presentasjon av Multi! Velkommen til presentasjon av Multi! Bjørnar Alseth Høgskolen i Oslo Henrik Kirkegaard, Flisnes skole, Ålesund Mona Røsseland, Matematikksenteret Gunnar Nordberg, Høgskolen i Oslo Dagsoversikt Ny læreplan,

Detaljer

REGNEPLAN FOR LANDÅS SKOLE

REGNEPLAN FOR LANDÅS SKOLE 1 REGNEPLAN FOR LANDÅS SKOLE På Landås skole har alle lærere, i alle fag, på alle trinn ansvar for elevenes regneutvikling. Å kunne regne er å bruke matematikk på en rekke livsområder. Å kunne regne innebærer

Detaljer

Forfatterne bak Multi:

Forfatterne bak Multi: Multi i praksis Tilpasset opplæring Program for dagen 12.00 13.30: Tankene bak Multi Varierte uttrykksformer gir differensiering og god læring 13.30 14.10: Mat 14.10 15.00: Varierte uttrykksformer gir

Detaljer

18.03.2012. Gjett tre kort. Mastermind. www.fiboline.no. Resultat i matematikk på kunnskapsnivåer, 8.trinn. Utstyr En kortstokk

18.03.2012. Gjett tre kort. Mastermind. www.fiboline.no. Resultat i matematikk på kunnskapsnivåer, 8.trinn. Utstyr En kortstokk Foreldrene betyr all verden! Mona Røsseland Lærebokforfatter, MULTI www.fiboline.no Utstyr En kortstokk Gjett tre kort Regler Et spill for 2 3 spillere eller for en stor gruppe En person trekker tre kort

Detaljer

Regning som grunnleggende ferdighet Ny GIV! Akershus Praktiske eksempler

Regning som grunnleggende ferdighet Ny GIV! Akershus Praktiske eksempler Regning som grunnleggende ferdighet Ny GIV! Akershus Praktiske eksempler Sandvika 12.september 2011 Tone Elisabeth Bakken tone.bakken@ohg.vgs.no Hovedpunkter: Praktisk regning dag 1 Læringsmiljø Elevers

Detaljer

Innhold: Satsingsområdene: Regning, lesing, skriving og klasseledelse. Grunnleggende ferdigheter i LK06 og læreplanforståelse

Innhold: Satsingsområdene: Regning, lesing, skriving og klasseledelse. Grunnleggende ferdigheter i LK06 og læreplanforståelse Innhold: Satsingsområdene: Regning, lesing, skriving og klasseledelse Grunnleggende ferdigheter i LK06 og læreplanforståelse Vurdering for læring som gjennomgående tema Pedagogiske nettressurser Åpne dører

Detaljer

Motivasjon og mestring i matematikk

Motivasjon og mestring i matematikk Motivasjon og mestring i matematikk Mona Røsseland Multiforfatter, Dr.grad stipendiat Uni i Agder 2 Den fundamentale hensikten med skole og undervisning er å sikre at alle elever har et læringsutbytte

Detaljer

MATEMATISK KOMPETANSE PRINSIPPER FOR EFFEKTIV UNDERVISNING

MATEMATISK KOMPETANSE PRINSIPPER FOR EFFEKTIV UNDERVISNING MATEMATISK KOMPETANSE PRINSIPPER FOR EFFEKTIV UNDERVISNING Svein H. Torkildsen Ny GIV 2012-13 Dette har vi fokus på God regning effektiv undervisning 10. trinn underyterne Elevers tenking Grunnleggende

Detaljer

Læringsledelse sett gjennom elevenes øyne:

Læringsledelse sett gjennom elevenes øyne: Læringsledelse sett gjennom elevenes øyne: Hvordan utfordrer dette organisering for læring, ledelse for læring, og byggesteinene i et godt læringsmiljø? Hvilke kunnskaper, ferdigheter og holdninger blir

Detaljer

HALVÅRSPLAN I MATEMATIKK FOR 6. TRINN HØSTEN 2016

HALVÅRSPLAN I MATEMATIKK FOR 6. TRINN HØSTEN 2016 HALVÅRSPLAN I MATEMATIKK FOR 6. TRINN HØSTEN 2016 Grunnleggjande ferdigheiter Grunnleggjande ferdigheiter er integrerte i kompetansemåla, der dei medverkar til utvikling av og er ein del av fagkompetansen.

Detaljer

Reviderte læreplaner konsekvenser for undervisningen?

Reviderte læreplaner konsekvenser for undervisningen? Reviderte læreplaner konsekvenser for undervisningen? Multiaden 2013 Innhold Kompetanse i matematikk Den reviderte læreplanen Hva skal elevene lære? Grunnleggende ferdigheter i matematikk Konsekvenser

Detaljer

Forskningsdesign og metode. Jeg gidder ikke mer! Teorigrunnlag; Komponenter som virker på læring. Identitet

Forskningsdesign og metode. Jeg gidder ikke mer! Teorigrunnlag; Komponenter som virker på læring. Identitet Jeg gidder ikke mer! Hvad er det, der gør, at elever, der både er glade for og gode til matematik i de yngste klasser, får problemer med faget i de ældste klasser? Mona Røsseland Doktorgradsstipendiat

Detaljer

Læreplanverket for Kunnskapsløftet

Læreplanverket for Kunnskapsløftet Læreplanverket for Kunnskapsløftet Prinsipper for opplæringen Prinsipper for opplæringen sammenfatter og utdyper bestemmelser i opplæringsloven, forskrift til loven, herunder læreplanverket for opplæringen,

Detaljer

Den gode matematikkundervisning

Den gode matematikkundervisning Den gode matematikkundervisning Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? - hva er det? Mona Røsseland Nasjonalt senter for matematikk i opplæringen Leder i LAMIS Lærebokforfatter;

Detaljer

God matematikkundervisning... - Kva er det? Hva er matematisk kompetanse? Oversikt

God matematikkundervisning... - Kva er det? Hva er matematisk kompetanse? Oversikt God matematikkundervisning... - Kva er det? Mona Røsseland Matematikksenteret, NTNU Leder i Lamis Lærebokforfatter, MULTI 12-Apr-07 Oversikt Noen tanker om hva som kan være kjennetegn på god matematikkundervisning..

Detaljer

Påstander i Ståstedsanalysen bokmålsversjon

Påstander i Ståstedsanalysen bokmålsversjon Sist oppdatert: juni 2013 Påstander i Ståstedsanalysen bokmålsversjon Kompetanse og motivasjon 1. Arbeid med å konkretisere nasjonale læreplaner er en kontinuerlig prosess ved skolen 2. Lærerne forklarer

Detaljer

Kommunikasjon og muntlig aktivitet

Kommunikasjon og muntlig aktivitet Kommunikasjon og muntlig aktivitet 1. 4. trinn Ann-Christin Arnås ann-christin.arnas@gyldendal.no Kunnskapsløftet: Det er en del av den matematiske kompetansen å kunne kommunisere i og med matematikk.

Detaljer

"Matte er kjedelig, fordi det er så lett"

Matte er kjedelig, fordi det er så lett "Matte er kjedelig, fordi det er så lett" Mona Røsseland Matematikksenteret Lærebokforfatter, MULTI 31-Mar-09 Innhold Hvordan gi utfordringer til alle elevene? Tilpasset undervisning er en utfordring,

Detaljer

Hva er god matematikk -opplæring?

Hva er god matematikk -opplæring? Hva er god matematikk -opplæring? Oversikt Hva er situasjonen i Norge når det gjelder matematikkkompetanse? Er det nødvendig å gjøre ting på andre måter enn vi har gjort før? Hva gjør land som lykkes med

Detaljer

Foreldrene betyr all verden

Foreldrene betyr all verden Foreldrene betyr all verden Gjett tre kort Mona Røsseland Nasjonalt senter for Matematikk i opplæringen, NTNU (i studiepermisjon) Lærebokforfatter; MULTI 15-Sep-09 15-Sep-09 2 Mastermind Hva påvirker elevenes

Detaljer

Matematisk førstehjelp

Matematisk førstehjelp Matematisk førstehjelp Brøk prosent desimaltall Brynhild Farbrot Foosnæs Matematisk kompetanse Kunnskapsløftet Kompetansemål Ferdigheter Forståelse Anvendelse Kunnskapsløftet Kompetansemål Ferdigheter:

Detaljer

Sammen leker vi matematikk

Sammen leker vi matematikk Sammen leker vi matematikk Bergen, 10.11.17 Kontakt oss gjerne på: Anne.Nakken@matematikksenteret.no Camilla.Justnes@matematikksenteret.no Helhet Barndommen har egenverdi, og barnehagen skal ha en helhetlig

Detaljer

VELKOMMEN TIL FØRLANSERING. Bjørnar Alseth Ingvill Merethe Stedøy-Johansen Janneke Tangen Grete Normann Tofteberg

VELKOMMEN TIL FØRLANSERING. Bjørnar Alseth Ingvill Merethe Stedøy-Johansen Janneke Tangen Grete Normann Tofteberg VELKOMMEN TIL FØRLANSERING Bjørnar Alseth Ingvill Merethe Stedøy-Johansen Janneke Tangen Grete Normann Tofteberg Innledning hvem og hvorfor Arbeidsmåter og aktiviteter Pause Arbeidsmåter og aktiviteter

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk Inspirasjon og motivasjon for matematikk Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? Bjørnar Alseth Høgskolen i Oslo Styremedlem i Lamis Lærebokforfatter; MULTI Mona Røsseland

Detaljer

Hvordan endre matematikkkompetansen. til elevene? Mona Røsseland Matematikksenteret, NTNU (for tiden i studiepermisjon) Lærebokforfatter, MULTI

Hvordan endre matematikkkompetansen. til elevene? Mona Røsseland Matematikksenteret, NTNU (for tiden i studiepermisjon) Lærebokforfatter, MULTI Hvordan endre matematikkkompetansen til elevene? Mona Røsseland Matematikksenteret, NTNU (for tiden i studiepermisjon) Lærebokforfatter, MULTI 16-Feb-10 Oversikt Hva er situasjonen i Norge når det gjelder

Detaljer

Vetenskapliga teorier och beprövad erfarenhet

Vetenskapliga teorier och beprövad erfarenhet Vetenskapliga teorier och beprövad erfarenhet Pixel er forskningsbasert på flere nivåer. En omfattende beskrivelse av vårt syn på matematikk, læring og undervisning finnes i boken "Tal och Tanke" skrevet

Detaljer

Hvordan skal jeg regne, lærer?

Hvordan skal jeg regne, lærer? Hvordan skal jeg regne, lærer? Fokus på tall og utvikling av god tall forståelse Mona Røsseland Nasjonalt senter for matematikk i opplæringen Oversikt kursinnhold 1.gang: Generell innføring i den nye læreplanen

Detaljer

Mona Røsseland Lærebokforfatter, MULTI

Mona Røsseland Lærebokforfatter, MULTI Foreldrene betyr all verden! Mona Røsseland Lærebokforfatter, MULTI Hvilken rolle har foreldrene? Hjemmet er like viktig som undervisningen for at en elev skal få bra resultater. Ikke tenk at skolen er

Detaljer

04.01.2015. Dagsoversikt. Matematikkundervisningen har forandret seg. Hvordan bidra til at dine elever får større ferdigheter i matematikk?

04.01.2015. Dagsoversikt. Matematikkundervisningen har forandret seg. Hvordan bidra til at dine elever får større ferdigheter i matematikk? Hvordan bidra til at dine elever får større ferdigheter i matematikk? Haugalandsløftet 26. januar 2015 Tine Foss Pedersen 4-Jan-15 Dagsoversikt Læring basert på forståelse Ulike måter å regne på basert

Detaljer

09.02.2013. Gjett tre kort. Mastermind. www.fiboline.no. Resultat i matematikk på kunnskapsnivåer, 8.trinn. Mona Røsseland Lærebokforfatter, MULTI

09.02.2013. Gjett tre kort. Mastermind. www.fiboline.no. Resultat i matematikk på kunnskapsnivåer, 8.trinn. Mona Røsseland Lærebokforfatter, MULTI Foreldrene betyr all verden! Mona Røsseland Lærebokforfatter, MULTI www.fiboline.no Utstyr En kortstokk Gjett tre kort Regler Et spill for 2 3 spillere eller for en stor gruppe En person trekker tre kort

Detaljer

Språk og kommunikasjon i matematikk-klasserommet

Språk og kommunikasjon i matematikk-klasserommet Språk og kommunikasjon i matematikk-klasserommet Geir Botten og Hermund Torkildsen Høgskolen i Sør-Trøndelag Avdeling for lærer- og tolkeutdanning 1 Læring av geometriske begreper gjennom aktiv kommunikasjon

Detaljer

8 årstrinn, Høst Tina Dufke & Arne Christian Ringbsu

8 årstrinn, Høst Tina Dufke & Arne Christian Ringbsu 35-38 TALLÆRE OG GRUNNLEGGENDE REGNING Periode 8 årstrinn, Høst 2016. Tina Dufke & Arne Christian Ringbsu Hovedemne Mål Innhold Læringsressurser Vurdering Titallssystemet med heltall og desimaltall Regning

Detaljer

24.11.2010. Hvorfor får elevene problemer med tekstoppgaver? Hva kan vi gjøre for at elevene skal mestre tekstoppgaver bedre?

24.11.2010. Hvorfor får elevene problemer med tekstoppgaver? Hva kan vi gjøre for at elevene skal mestre tekstoppgaver bedre? Hvorfor får elevene problemer med tekstoppgaver? Hva kan vi gjøre for at elevene skal mestre tekstoppgaver bedre? Mona Røsseland Matematikksenteret (for tiden i studiepermisjon) Lærebokforfatter, MULTI

Detaljer

PEDAGOGDAGENE 2014 DANS I MØTE MED BARN. Kunsthøgskolen i Oslo: Heidi Marian Haraldsen Veslemøy Ellefsen

PEDAGOGDAGENE 2014 DANS I MØTE MED BARN. Kunsthøgskolen i Oslo: Heidi Marian Haraldsen Veslemøy Ellefsen PEDAGOGDAGENE 2014 DANS I MØTE MED BARN Kunsthøgskolen i Oslo: Heidi Marian Haraldsen Veslemøy Ellefsen Dans i møte med barn - Hva tar dansen med seg inn i møtet med barnet? Barn i møte med dans - Hva

Detaljer

Gjett tre kort. Symboler. Gode regningsstrategier i addisjon og subtraksjon 08.09.2014. Matematikkundervisningens to dimensjoner

Gjett tre kort. Symboler. Gode regningsstrategier i addisjon og subtraksjon 08.09.2014. Matematikkundervisningens to dimensjoner Gode regningsstrategier i addisjon og subtraksjon Ann-Christin Arnås ann-christin.arnas@gyldendal.no Gjett tre kort Utstyr En kortstokk Regler Et spill for 2 3 spillere eller for en stor gruppe En person

Detaljer

L06. Den gode matematikkundervisning. - hva er det? Hvordan bli en motiverende lærer? Intensjonene med den nye læreplanen

L06. Den gode matematikkundervisning. - hva er det? Hvordan bli en motiverende lærer? Intensjonene med den nye læreplanen Den gode matematikkundervisning Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? - hva er det? Mona Røsseland Nasjonalt senter for matematikk i opplæringen 1-May-06 1-May-06

Detaljer

1. studieår vår mellomtrinn

1. studieår vår mellomtrinn Vurderingstrappa De fem områdene og utviklingen av dem 11.02.09 I denne skjematiske framstillingen er det satt opp en progresjon i forhold til hva man kan forvente av studentene i de ulike praksisperiodene.

Detaljer

Men hvorfor trenger vi et didaktisk verktøy og hvorfor skulle vi endre eller lage oppgaver?

Men hvorfor trenger vi et didaktisk verktøy og hvorfor skulle vi endre eller lage oppgaver? DiVeLOpp - DEL 1 Didaktisk Verktøy for å Lage Oppgaver Vi vil snakke om kunnskaper og læringsaktiviteter i fire ganger. Vi begynner med å identifisere kunnskaper. Deretter ser vi på læringsaktiviteter.

Detaljer

Klasseledelse. Professor Thomas Nordahl, Hamar 22.04.08

Klasseledelse. Professor Thomas Nordahl, Hamar 22.04.08 Klasseledelse Professor Thomas Nordahl, Hamar 22.04.08 Forståelse av klasse- og gruppeledelse Klasse- og gruppeledelse er lærerens evne til å skape et positivt klima, etablere arbeidsro og motivere til

Detaljer

Undersøkende matematikk i barnehage og skole. Barnehagekonferanser Bodø og Oslo, november 2016

Undersøkende matematikk i barnehage og skole. Barnehagekonferanser Bodø og Oslo, november 2016 Undersøkende matematikk i barnehage og skole Barnehagekonferanser Bodø og Oslo, november 2016 Camilla.justnes@matematikksenteret.no Undersøkende matematikk hva er det? Ett av flere kjennetegn på god læring

Detaljer

Påstander i Ståstedsanalysen (bokmål)

Påstander i Ståstedsanalysen (bokmål) Påstander i Ståstedsanalysen (bokmål) Hovedtema: Kompetanse og motivasjon 1. Arbeid med å konkretisere nasjonale læreplaner er en kontinuerlig prosess ved skolen 2. Lærerne forklarer elevene hva som skal

Detaljer

Ny Giv. Grunnleggende regneferdighet. Brynhild Farbrot Foosnæs

Ny Giv. Grunnleggende regneferdighet. Brynhild Farbrot Foosnæs Ny Giv Grunnleggende regneferdighet Brynhild Farbrot Foosnæs Læring innebærer endring Hva har du endret siden sist? Læring innebærer at du blir utfordret og at du tør å ta utfordringen. Hvilke utfordringer

Detaljer

MUNTLIG EKSAMEN - OG LITT OM VEIEN DIT

MUNTLIG EKSAMEN - OG LITT OM VEIEN DIT MUNTLIG EKSAMEN - OG LITT OM VEIEN DIT 1 DEL 1 MUNTLIG EKSAMEN Hva er en god muntlig eksamen for elevene? Hvordan kan vi legge til rette for å en slik eksamenssituasjon? Hvordan finner vi frem til gode

Detaljer

Presentasjon av Multi

Presentasjon av Multi Presentasjon av Multi Mellomtrinnet Eksempler på Multi i praktisk bruk Faglig fokus og tydelige læringsmål Nettstedet Tilpasset opplæring Ulike oppgavetyper og aktivitetsformer Faglig fokus og tydelige

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk Inspirasjon og motivasjon for matematikk Mona Røsseland Nasjonalt senter for matematikk i Opplæringen 13-Oct-06 Kursinnhald Hva er matematisk kompetanse? Hvordan styrke den hos elevene på en slik måte

Detaljer

Hva påvirker ungdomsskoleelevers læring?

Hva påvirker ungdomsskoleelevers læring? Mona Røsseland Hva påvirker ungdomsskoleelevers læring? Det er for tiden mye fokus på matematikk på ungdomstrinnet og hva som kan gjøres for at flere elever skal få oppleve mestring og oppnå tilstrekkelig

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk oversikt Inspirasjon og motivasjon for matematikk Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Ny læreplan, nye utfordringer for undervisningen i matematikk

Detaljer

Forfatterne bak Multi: Multi i praksis. 5.-7.trinn. En bred matematisk kompetanse. Oppbyggingen av Multi. Grunntanken bak Multi

Forfatterne bak Multi: Multi i praksis. 5.-7.trinn. En bred matematisk kompetanse. Oppbyggingen av Multi. Grunntanken bak Multi Forfatterne bak Multi: Multi i praksis 5.-7.trinn Bjørnar Alseth Universitetet i Oslo Henrik Kirkegaard, Flisnes skole, Ålesund Mona Røsseland, Matematikksenteret Gunnar Nordberg, Høgskolen i Oslo Grunntanken

Detaljer

1. Arbeid med å konkretisere nasjonale læreplaner er en kontinuerlig prosess ved skolen

1. Arbeid med å konkretisere nasjonale læreplaner er en kontinuerlig prosess ved skolen Påstander i ståstedsanalysen for skoler (bokmål) Tema og påstander i fase 2 i ståstedsanalysen. ARTIKKEL SIST ENDRET: 08.03.2016 Hovedtema: Kompetanse og motivasjon 1. Arbeid med å konkretisere nasjonale

Detaljer

Refleksjoner lagt frem drøftet i ledelsen og lærerne på 10.trinn Vil bli presentert i kollegiet og i FAU og DS

Refleksjoner lagt frem drøftet i ledelsen og lærerne på 10.trinn Vil bli presentert i kollegiet og i FAU og DS TASTARUSTÅ SKOLE 200514 Elevundersøkelsen på 10.trinn Refleksjoner lagt frem drøftet i ledelsen og lærerne på 10.trinn Vil bli presentert i kollegiet og i FAU og DS Rektor har hatt møte med representanter

Detaljer

2. studieår høst ungdomstrinn. 1. studieår vår mellomtrinn

2. studieår høst ungdomstrinn. 1. studieår vår mellomtrinn Vurderingstrappa De fem områdene i praksis og utviklingen av dem. I denne skjematiske framstillingen er det satt opp en progresjon i forhold til hva man kan forvente av studentene i de ulike praksisperiodene.

Detaljer

Gjett tre kort. Foreldrene betyr all verden! Grunntanken bak Multi. Mastermind. Faglig fokus og tydelige læringsmål. En bred matematisk kompetanse

Gjett tre kort. Foreldrene betyr all verden! Grunntanken bak Multi. Mastermind. Faglig fokus og tydelige læringsmål. En bred matematisk kompetanse Foreldrene betyr all verden! Gjett tre kort Mona Røsseland Lærebokforfatter, MULTI Matematikksenteret, NTNU 10-Oct-10 2 Mastermind Grunntanken bak Multi Faglig fokus og tydelige læringsmål Elevene skal

Detaljer

Utviklingsplan for Ener ungdomsskole

Utviklingsplan for Ener ungdomsskole Utviklingsplan for Ener ungdomsskole 2017-2018 Eners visjon: Et godt sted å være et godt sted å lære- for alle Skolens satsingsområder: Kultur for læring i en digital skolehverdag Sosial kompetanse og

Detaljer

Paradokser i tilpasset opplæring. Thomas Nordahl 26.10.09

Paradokser i tilpasset opplæring. Thomas Nordahl 26.10.09 Paradokser i tilpasset opplæring Thomas Nordahl 26.10.09 FoU-prosjektet - tilpasset opplæring og pedagogisk praksis Hensikten har vært å utvikle ny forskningsbasert kunnskap om forholdet mellom den pedagogiske

Detaljer

Bjørnar Alseth. Hvorfor vurdere Hvordan vurdere. Multi Smart Vurdering. Lærere overøses av forventninger, tips, krav

Bjørnar Alseth. Hvorfor vurdere Hvordan vurdere. Multi Smart Vurdering. Lærere overøses av forventninger, tips, krav Hvorfor vurdere Hvordan vurdere Styrker og svakheter ved ulike vurderingsformer Multi Smart Vurdering Bjørnar Alseth Lærere overøses av forventninger, tips, krav Opplæringsloven 3-13 Halvårsvurdering i

Detaljer

Regelhefte for: getsmart Begreper

Regelhefte for: getsmart Begreper Regelhefte for: getsmart Begreper Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Sjekk hjemmesiden for flere powerpoint-presentasjoner. Det vil

Detaljer

Utdrag fra Beate Børresen og Bo Malmhester: Filosofere i barnehagen, manus mars 2008.

Utdrag fra Beate Børresen og Bo Malmhester: Filosofere i barnehagen, manus mars 2008. Utdrag fra Beate Børresen og Bo Malmhester: Filosofere i barnehagen, manus mars 2008. Hvorfor skal barn filosofere? Filosofiske samtaler er måte å lære på som tar utgangspunkt i barnets egne tanker, erfaring

Detaljer

Livslang læring og sosial kompetanse i Bodøskolene

Livslang læring og sosial kompetanse i Bodøskolene Livslang læring og sosial kompetanse i Bodøskolene Grunnleggende ferdigheter Med denne folderen ønsker vi å: Synliggjøre både hva og hvordan Bodøskolen arbeider for at elevene skal utvikle kompetanse som

Detaljer

Studentevaluering av undervisning. En håndbok for lærere og studenter ved Norges musikkhøgskole

Studentevaluering av undervisning. En håndbok for lærere og studenter ved Norges musikkhøgskole Studentevaluering av undervisning En håndbok for lærere og studenter ved Norges musikkhøgskole 1 Studentevaluering av undervisning Hva menes med studentevaluering av undervisning? Ofte forbindes begrepet

Detaljer

Ønsker å få til: -Elevmedvirkning for å lykkes med egenvurdering differensiering, mestring og progresjon -Utvikle vurdering for læring

Ønsker å få til: -Elevmedvirkning for å lykkes med egenvurdering differensiering, mestring og progresjon -Utvikle vurdering for læring Overordnet plan for fagene. Fag: Matematikk Trinn: 8. trinn Skole: Lindesnes ungdomsskole År: 2015/2016 Lærestoff: Nye Mega 8 a og 8b Vurdering. Prinsipper i vurdering. 1. Elevene forstår hva de skal lære

Detaljer

Matematisk samtale Multiaden 2015. Tine Foss Pedersen

Matematisk samtale Multiaden 2015. Tine Foss Pedersen Matematisk samtale Multiaden 2015 Tine Foss Pedersen Matematisk samtale - muntlige ferdigheter Vi bør vektlegge bruk av ulike uttrykksmåter, strategier og løsningsmetoder. Det skaper grunnlag for diskusjon:

Detaljer

Regn i hodet: 46 + 28. Å uttrykke tall. Ulike uttrykksmåter. Det vesentlige er utvikling. Hvordan jobbe med dette? Hvordan jobbe med dette? 10.09.

Regn i hodet: 46 + 28. Å uttrykke tall. Ulike uttrykksmåter. Det vesentlige er utvikling. Hvordan jobbe med dette? Hvordan jobbe med dette? 10.09. Hva er Hvorfor Singaporematematikk er folk interesserte i Singapore-matematikk Fordi elevene i Singapore stadig får best resultat på En samling undervisningsstrategier vanlig i Singapore internasjonale

Detaljer

Læringsdagene i Alta Grunnleggende regneferdighet matematisk kompetanse. Tone Skori 3. oktober 2013. Ditt navn og årstall

Læringsdagene i Alta Grunnleggende regneferdighet matematisk kompetanse. Tone Skori 3. oktober 2013. Ditt navn og årstall Læringsdagene i Alta Grunnleggende regneferdighet matematisk kompetanse Tone Skori 3. oktober 2013 Ditt navn og årstall Agenda for dagen Læringspartner Grunnleggende ferdigheter i matematikk matematisk

Detaljer

Meningsfylt matematikk

Meningsfylt matematikk Meningsfylt matematikk - også for elever som strever med faget Geir Botten Høgskolen i Sør-Trøndelag, Trondheim København 28.04.15 Eksempler på motiverende opplegg i matematikk Hva koster ei ukes ferie

Detaljer

Kommunikasjon og muntlig aktivitet

Kommunikasjon og muntlig aktivitet Kommunikasjon og muntlig aktivitet 5. 7. trinn Ann-Christin Arnås ann-christin.arnas@gyldendal.no Kunnskapsløftet: Det er en del av den matematiske kompetansen å kunne kommunisere i og med matematikk.

Detaljer

Foreldrene betyr all verden! Brynhild Farbrot

Foreldrene betyr all verden! Brynhild Farbrot Foreldrene betyr all verden! Brynhild Farbrot Foosnæs brynhild.foosnas@ude.oslo.kommune.no @BrynhildFF Plan for kvelden Hva kan dere foreldre bidra med? Matematikkfaget i skolen i dag Spill og aktiviteter

Detaljer

GODE ALGORITMER. Mekanisk regneferdighet. Forskningens konklusjon. Hva kreves i læreplanen? Var alt bedre før? 17.09.2012

GODE ALGORITMER. Mekanisk regneferdighet. Forskningens konklusjon. Hva kreves i læreplanen? Var alt bedre før? 17.09.2012 Mekanisk regneferdighet GODE ALGORITMER IKKE SØRGELIG SUBTRAKSJON OG DYSTER DIVISJON Bjørnar Alseth Multi i Vest 2012 Forskningens konklusjon Hva kreves i læreplanen? Forskerne er enige om 1. Vi må ikke

Detaljer

Kjennetegn på god læringsledelse i lierskolen. - et verktøy for refleksjon og utvikling

Kjennetegn på god læringsledelse i lierskolen. - et verktøy for refleksjon og utvikling Kjennetegn på god læringsledelse i lierskolen - et verktøy for refleksjon og utvikling INNLEDNING Dette heftet inneholder kjennetegn ved god læringsledelse. Det tar utgangspunkt i Utdanningsdirektoratets

Detaljer

MAM Mestre Ambisiøs Matematikkundervisning. Realfagskonferansen Trondheim,

MAM Mestre Ambisiøs Matematikkundervisning. Realfagskonferansen Trondheim, MAM Mestre Ambisiøs Matematikkundervisning Realfagskonferansen Trondheim, 03.05.16 Mestre Ambisiøs Matematikkundervisning matematikksenteret.no Utvikle en modell med tilhørende ressurser for skolebasert

Detaljer

FORMÅLET MED OPPLÆRINGEN

FORMÅLET MED OPPLÆRINGEN Klasseledelse FORMÅLET MED OPPLÆRINGEN Opplæringa skal, i samarbeid og forståing med heimen, opne dører mot verda og framtida. Elevane skal utvikle kunnskap, dugleik og holdningar for å kunne meistre liva

Detaljer

Midtun skoles. Plan for helhetlig vurdering

Midtun skoles. Plan for helhetlig vurdering Midtun skoles Plan for helhetlig vurdering Oppdatert 2010 Vurdering Rett til vurdering Elevene i offentlig grunnskole har rett til vurdering etter reglene i kapittel 3 i forskriftene til opplæringsloven.

Detaljer

Prinsipper for god undervisning. Anne-Gunn Svorkmo Svein Torkildsen Astrid Bondø

Prinsipper for god undervisning. Anne-Gunn Svorkmo Svein Torkildsen Astrid Bondø Prinsipper for god undervisning Anne-Gunn Svorkmo Svein Torkildsen Astrid Bondø Lærere kan ikke gjøre hva de vil Vi er forpliktet på en læreplan som blant annet sier Opplæringa vekslar mellom utforskande,

Detaljer

Skolens oppgave er å støtte hver elev slik at den enkelte opplever livet som trygt og meningsfylt

Skolens oppgave er å støtte hver elev slik at den enkelte opplever livet som trygt og meningsfylt Vedlegg 1 Elevsynet i høringsutkastet Eksempler hentet fra kap 1 Gjennom opplæringen skal elevene tilegne seg verdier som gir retning for deres livsutfoldelse, og de skal forberedes til å bli kloke og

Detaljer