Lab 1 i INF3410. Prelab: Gruppe 5

Størrelse: px
Begynne med side:

Download "Lab 1 i INF3410. Prelab: Gruppe 5"

Transkript

1 Lab 1 i INF3410 Prelab: a) EKV modellen ble modellert i Matlab, der EKV.m er brukes til å lage en funksjon av drainsource strømmen. Reverse bias strøm trekkes i fra forward bias strøm, noe som danner grunnlaget for å modellere drain-source strømmen. EKV.m blir brukt som referanse til de andre oppgavene i denne rapporten. EKV.m function Ids = EKV(Is, Vto, n, Vt, Vg) If = [0:0.1:5]; Ir = [0:0.1:5]; Vs = 0; Vd = 5; If_tmp = (Vg-Vto-n*Vs)./(2*n*Vt); If = Is*log(1+exp(If_tmp)).^2; Ir_tmp = (Vg-Vto-n*Vd)./(2*n*Vt); Ir = Is*log(1+exp(Ir_tmp)).^2; Ids = If-Ir; Til oppgave a) ble følgende Matlab kode brukt: Lab_1_oppg_1.m Vt = 26e-3; Is = 100e-9; n = 1.3; Vto = 0.7; Vg = [0:0.01:5]; Ids = EKV(Is, Vto, n, Vt, Vg); Vi valgte å bruke noen standard parametere for en nmos transistor. Vdd er satt til 5V, Vs=0V og Vgs varierer fra 0 til 5V. Grafene kan sees på neste side og ser fornuftige ut med denne EKV modellen. - 1 av 17 -

2 I lineær skala får vi en drain-source strøm etter terskelspenning (0,7V), litt under 1*10^-6A. Denne stiger eksponensielt med gate-source spenningen. Den logaritmiske grafen går lineært fram til terskel spenningen går over til kvadratisk og ender opp i eksponensielt mot en fast strøm verdi. - 2 av 17 -

3 b) Vi simulerte en transistor med 10µm bredde og 1µm lengde. Simuleringen ble innført i MATLAB sammen med EKV modellen. Deretter ble EKV modellen justert til å ligne den simuleringen fra CADENCE. Ut i fra grafen fra Cadence simulering kunne vi se at Vt0 var omtrent 0,5V. n=1,5 ble brukt for god inversjon. Prøvde å få grafen til å ligne Cadence simuleringen, der Cox og Is fikk henholdsverdier på 3,7E-3 F/(m^2) og 2500e-9A. Lab_1_oppg_2.m Vg = [0:0.01:5]; Vt = 26e-3; Vto = 0.5; W=10e-6; L=1e-6; u=0.05; n = 1.3; Cox=3.7e-3; B = u*cox*(w/l); Is = 2*B*Vt^2; Ids = EKV(Is, Vto, n, Vt, Vg); Ids_sim = load('lab_1_oppg_2_ids_2.txt'); plot(vg, Ids, Vg, Ids_sim(:,2)) semilogy(vg, Ids,Vg, Ids_sim(:, 2)). - 3 av 17 -

4 EKV modellen er veldig glatt og fin, men EKV modellen modellerer også sterk inversjon. I svak inversjon i logaritmisk graf så ser vi at den modellerte EKV modellen er veldig fin i forhold til CADENCE. Forskjellen mellom simulering og modellering er ikke stor, men den er tydelig i svak inversjon. Cadence vil simulere en mer realistisk økning av Ids i sterk inversjon, mens EKV modellen vil være nøyaktig i svak inversjon. - 4 av 17 -

5 c) Vi koblet opp en 50kΩ motstand og tørrkjørte programmet med spenningskilde for å sjekke at det ble korrekt. Lab_1_oppg_3.m: %HP3631 = GPIB_InstrInit('HP3631', 5) %K6512=GPIB_InstrInit('K6512',8) K6512_SetMode('A',K6512); HP3631_Operate(HP3631); Vin =[0:0.01:1] Ir = [0:0.01:1] HP3631_SetVolt(1, 0, HP3631); for i=1:length(vin), HP3631_SetVolt(1, Vin(i), HP3631); pause(0.25) Ir(i) = K6512_ReadQuick(K6512); end plot(vin, Ir) HP3631_Disable(HP3631); Strøm spenning forholdet er lineært, som forventet. Vi har bevist at scriptet vårt fungerer bra og kan brukes til MOS transistor oppgave. - 5 av 17 -

6 MOS Transistor Transfer Characteristics: d) Vi brukte scriptet i fra c) oppgaven og tørrkjørte dette i forveien. Vi valgte å sette drain source spenningen på tre forskjellige nivåer: 2V, 5V og 9V. Vdd var satt til 15V. Figurene viser at forskjellene på disse Vds spenningene var svært små. Fra figuren ser vi at det ikke er store forskjeller mellom spenningsverdiene. 9V er tydelig størst, mens de to andre er veldig nærme hverandre - 6 av 17 -

7 I figuren nedenfor ser vi nmos karakteristikken for logaritmisk skala. Det er ikke store forskjellen mellom spenningene, men det er tydelig hva som er svak og sterk inversjon. Inversjonsområdene har blitt tegnet inn etter en definisjon: Svak inversjon er ca 100mV under terskelspenning og sterk inversjon er ca 100mV over terskelspenning. e) Drain-source karakteristikken for krets oppsett for pmos ser slik ut: - 7 av 17 -

8 f) Kretsoppsettet for f) er forklart i e) oppgaven. Ellers brukes samme kode for å kjøre voltmeteret fra Matlab kommando. Legg merke til Vsd ved 2V. Den er nå under terskelspenning og transistoren fungerte ikke ved den spenningen. Det er pga av transistoren aldri ble slått helt på, fordi source-drain spenningen ikke var høyere enn terskelspenningen. Terskelspenning er ca 3,7V Vsg. g) Sammenligner vi nmos og pmos ser vi at de er omvendt i karakteristikk. pmos er på ved 0V spenning i Vgs, mens nmos er samtidig av ved 0V Vgs. For å sammenligne terskelspenning har vi at nmos har ca 1,45V terskelspenning (Vgs), mens pmos har ca 3,7V terskelspenning (Vsg). Forskjellen i transistorene kan spores tilbake ved at de har forskjellig doping, og dermed en forskjellig mobilitet i kanalen mellom source og drain. µn= 0,05m^2/Vs og µp=0,0175m^2/vs. Hvis vi ser på småsignal modell i aktivt område har vi følgende: - 8 av 17 -

9 Den effektive spenningen er den reelle spenningen man får når man går over terskelspenning. For at transistor skal være på, må denne være større enn null. Har brukt en småsignal modell fra aktivt område og bevist at effektiv spenning for n og p transistor avhenger kun av dopingen på transistorene så lenge bredde og lengde på de er like. - 9 av 17 -

10 Matching to simulated behavior h) Ved å justere EKV modellen kom vi veldig nær målte verdier av nmos transistoren i MC14007 transistor pakken. Vi har bredde på 10µ, lengde 1µ, og Cox på 1.9e-3 F/m^2. Slope faktor n ble satt til 0,9. Figurene viser hvor nærme vi kom: Lab_1_oppg_h2.m: Vt = 26e-3; n = 0.9; Vto = 1.5; Vg = [0:0.05:5]; W = 10e-6; L= 1e-6; u = 0.05; Cox = 1.9e-3; B = u*cox*(w/l); Is = 2*B*Vt^2; Ids = EKV(Is, Vto, n, Vt, Vg); load('maaling_nmos.mat'); plot(vg, Ids, Vg, Id) semilogy(vg, Ids, Vg, Id) Ylim([10^-14 10^-2]) g) - 10 av 17 -

11 i) Formelen e = 100*(Id-Ids)/Ids ble brukt for å regne ut relativ feil. Ids er EKV modelleringen, mens Id er målingene. Ut av formelen ble målingene sammenlignet med EKV modellen. Lab_1_oppg_i.m: Vt = 26e-3; n = 0.9; Vto = 1.5; Vg = [0:0.05:5]; W = 100e-6; L= 10e-6; u = 0.05; Cox = 1.9e-3; B = u*cox*(w/l); Is = 2*B*Vt^2; - 11 av 17 -

12 Ut i fra grafen kan vi se at det er mange Vgs spenninger der måling og modell er relativt like. Ved 1.2 til 1.45V Vgs har vi opphav til en stor feil fordi målingene av transistoren i dette området er vanskelig (vi har nano og mikro ampere målinger), og derfor er det vanskelig å få nøyaktige målinger, sammenlignet med en perfekt modell i svak inversjon. I moderat inversjon er målingsresultatene litt lavere enn EKV modell, mens i sterk inversjon er de veldig like hverandre. Opphav til feilkilder er: 1. Datablad oppgir ikke prosessparametere, har derfor gjettet på passende verdier. 2. Strømmåling er vanskelig i området under mikroampere. Lab_1_oppg_i.m: Vt = 26e-3; n = 0.9; Vto = 1.5; Vg = [0:0.05:5]; W = 100e-6; L= 10e-6; u = 0.05; Cox = 1.9e-3; B = u*cox*(w/l); Is = 2*B*Vt^2; Ids = EKV(Is, Vto, n, Vt, Vg); load('maaling_nmos.mat'); %fordi noen målinger ga negativ strøm må målte verdier settes lik modellens. for i=1:101, if Id(i) < 0 Id(i) = Ids(i); end end %Det er en feil i første måling, så denne må også settes lik modellens. Id(1) = Ids(1); e = 100*(Id-Ids)./Ids; plot(vgs, e) j) I denne oppgaven brukte vi Cadence og justerte parameterene til bredde og lengde for å passe de målte resultatene. Da fikk vi en figur som så slik ut; - 12 av 17 -

13 Feilen blir relativt stor i forhold til hverandre, men den blir bedre når vi øker Vgs spenningen. Dette skyldes at terskelspenning til Cadence simuleringen er mye større enn den målte terskelspenningen. I denne sammenheng ble det da vanskelig å kunne justere relativ feil til å kunne komme nær i verdier. Cadence simulering med matlab: Lab_1_oppg_j.m: load('maaling_nmos.mat'); Ids = load('simulering_nmos.txt'); Id_malt = Id; Id_simulert = Ids(:, 2)'; Vgs = Ids(:, 1)'; plot(vgs, Id_simulert, Vgs, Id_malt); e = abs((id_malt./id_simulert)-1)*100; plot(e) - 13 av 17 -

14 k) I denne oppgaven skulle vi bruke transistoren som strømkilde ved å bruke en source spenning samt et potmeter mellom gate og source. Potmeteret kunne vi justere til å være mellom 3 og 4V, noe som gav en gate-source spenning som vi selv kunne velge. Source spenningen ble brukt til å variere strøm fra transistoren. Source spenningen ble sveipet fra 0 til 3.5V for 3.5V Vgs, og 0 til 4V for 4V Vgs. Samtidig ble Vds satt til 5V. Resultatet av de målte strømverdiene ble det tatt roten av for å kunne finne specific current. Lab_1_oppg_k.m: %HP3631 = GPIB_InstrInit('HP3631', 5) %K6512=GPIB_InstrInit('K6512',8) K6512_SetMode('A',K6512); HP3631_Operate(HP3631); Vs =[0:0.05:4]; % antall steps = 101. Id_malt = [0:0.05:4]; % Setter fast spenning til 5V på kanal 1. HP3631_SetVolt(1, 5, HP3631); HP3631_SetVolt(2, 0, HP3631); for i=1:length(vs), HP3631_SetVolt(2, Vs(i), HP3631); pause(0.25) Id_malt(i) = sqrt(k6512_readquick(k6512)); end plot(vs, Id_malt) semilogy(vs, Id_malt) save('malt_k2_nmos.mat'); HP3631_Disable(HP3631); Deretter ble de målte verdiene brukt til å finne stigningstallet til roten av strømmen som funksjon av source spenning. Dette er det samme som å finne gradienten og bruke formelen (y1-y2)/(x1-x2). For å få mest linearitet ble et stort sprang i source spenning brukt. Nedenfor vises koden som ble brukt for å regne ut stigningstall ved 3.5V Vgs, og 4.0V Vgs. Lab_1_oppg_k2.m: VT = 26e-3 DId_1 = (Id_malt(31)-Id_malt(1))/(Vs(31)-Vs(1)) Is_1 = DId_1^2*4*VT^2 DId_2 = (Id_malt(41)-Id_malt(2))/(Vs(41)-Vs(2)) Is_2 = DId_2^2*4*VT^2-14 av 17 -

15 Ved bruk av formler regnet vi ut at Is var 1.84µA ved 3.5V Vgs og 1.79µA ved 4.0 V Vgs av 17 -

16 l) I denne oppgaven skal vi bruke en zero biased treshold voltage extractor krets. Potmeteret ble brukt til å justere strømmen til å være lik halve specific current. Vi velger å bruke Is=1.815µA for å ta snittet mellom de to målingene fra k) oppgaven. Is/2 er da 0.91µA. Vi koblet opp med følgende krets: Lab_1_oppg_l.m: K6512_SetMode('V',K6512); HP3631_Operate(HP3631); Vg = [0:0.05:3]; % antall steps = 101. Vp = [0:0.05:3]; % Setter fast spenning til 5V på kanal 1. HP3631_SetVolt(1, 5, HP3631); HP3631_SetVolt(2, 0, HP3631); for i=1:length(vg), HP3631_SetVolt(2, Vg(i), HP3631); pause(0.25) Vp(i) = K6512_ReadQuick(K6512); end plot(vg, Vp) save('malt_l1_nmos.mat'); HP3631_Disable(HP3631); - 16 av 17 -

17 Ut i fra bildet kan vi se at zero biased terskel spenning er ca 1,85V. Y-aksen viser source-bulk spenning. Når source-bulk spenning ikke lenger er null, så får vi en body effekt i transistoren som prøver å opprettholde denne endringen. Derfor kan vi finne ut hvordan Vt0 er ut i fra denne grafen. Grunnen til en ulineær overgang mellom 1,5V til ca 2,2V er fordi transistoren i den ideelle strømkilden ikke er ideell. Ved veldig lav spenning så vil ikke transistoren trekke strøm slik den skal fordi det er vanskelig for transistoren å være ideelt nærme null ohm. Derfor vil vi få ulinæer sammenheng fordi transistoren ikke kan fungere som en ideell motstand ved såpass lav motstand av 17 -

Løsningsforslag Obligatorisk oppgave 1 IN241 VLSI-konstruksjon

Løsningsforslag Obligatorisk oppgave 1 IN241 VLSI-konstruksjon Løsningsforslag Obligatorisk oppgave 1 IN241 VLSI-konstruksjon Øyvind Hagen Institutt for informatikk Universitetet i Oslo 23. oktober 2001 1 Innhold 1 Prelab 4 1.1 Implementasjon av Vittoz modellen.................

Detaljer

Obligatorisk oppgave 2 i INF4400 for Jan Erik Ramstad

Obligatorisk oppgave 2 i INF4400 for Jan Erik Ramstad Obligatorisk oppgave i INF44 for Jan Erik Ramstad Jan Erik Ramstad Institutt for Informatikk Universitetet i Oslo janera@fys.uio.no 5. februar 6.5 DC karakteristikk for en inverter.5 Vut (V).5 4 Bakgrunn

Detaljer

IN 241 VLSI-konstruksjon Løsningsforslag til ukeoppgaver uke 36

IN 241 VLSI-konstruksjon Løsningsforslag til ukeoppgaver uke 36 IN 41 VLI-konstruksjon Løsningsforslag til ukeoppgaver uke 36 1) Beregn forsterknings faktoren ß for en nmofet fabrikkert i en prosess med: µ = 600cm/V s (Elektronmobilitet for n-dopet materiale) ε = 5

Detaljer

Oppgave 1 INF3400. Løsning: 1a Gitt funksjonen Y = (A (B + C) (D + E + F)). Tegn et transistorskjema (skjematikk) i komplementær CMOS for funksjonen.

Oppgave 1 INF3400. Løsning: 1a Gitt funksjonen Y = (A (B + C) (D + E + F)). Tegn et transistorskjema (skjematikk) i komplementær CMOS for funksjonen. Eksamen Vår 2006 INF400 INF400 Eksamen vår 2006 0.06. /9 Oppgave a Gitt funksjonen Y (A (B + C) (D + E + F)). Tegn et transistorskjema (skjematikk) i komplementær CMOS for funksjonen. INF400 Eksamen vår

Detaljer

INF 5460 Elektrisk støy beregning og mottiltak

INF 5460 Elektrisk støy beregning og mottiltak INF 5460 Elektrisk støy beregning og mottiltak Obligatorisk oppgave nummer 3. Frist for levering: 30 April (kl 23:59). Vurderingsform: Godkjent/Ikke godkjent. Oppgavene leveres på individuell basis. Oppgavene

Detaljer

Forelesning nr.10 INF 1411 Elektroniske systemer. Felteffekt-transistorer

Forelesning nr.10 INF 1411 Elektroniske systemer. Felteffekt-transistorer Forelesning nr.10 INF 1411 Elektroniske systemer Felteffekt-transistorer Dagens temaer Bipolare transistorer som brytere Felteffekttransistorer (FET) FET-baserte forsterkere Dagens temaer er hentet fra

Detaljer

CMOS inverter DC karakteristikker og hvordan transistorstørrelser

CMOS inverter DC karakteristikker og hvordan transistorstørrelser Del : Utvidet transistormodell og DC karakteristikk for inverter og pass transistor YNGVR BERG I. Innhold CMOS inverter DC karakteristikker og hvordan transistorstørrelser påvirker karakteristikken. Definisjon

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Eksamensdato: 14.12.2010 Varighet/eksamenstid: Emnekode: 4 timer EDT210T-A Emnenavn: Elektronikk 1 Klasse(r): 2EL Studiepoeng: 7,5 Faglærer(e):

Detaljer

GJ ennomgang av CMOS prosess, tverrsnitt av nmos- og

GJ ennomgang av CMOS prosess, tverrsnitt av nmos- og Del : Enkel elektrisk transistor modell og introduksjon til CMOS rosess YNGVAR BERG I. Innhold GJ ennomgang av CMOS rosess, tverrsnitt av nmos og MOS transistor og tverrsnitt av CMOS inverter. Enkel forklaring

Detaljer

Forelesning 8. CMOS teknologi

Forelesning 8. CMOS teknologi Forelesning 8 CMOS teknologi Hovedpunkter MOS transistoren Komplementær MOS (CMOS) CMOS eksempler - Inverter - NAND / NOR - Fulladder Designeksempler (Cadence) 2 Halvledere (semiconductors) 3 I vanlig

Detaljer

IN 241 VLSI-konstruksjon Løsningsforslag til ukeoppgaver 25/ uke 39

IN 241 VLSI-konstruksjon Løsningsforslag til ukeoppgaver 25/ uke 39 IN 4 VLSI-konstruksjon Løsningsforslag til ukeoppgaver 5/9-00 uke 39 ) Skisser en standard CMOS inverter. Anta ßnßp. Tegn opp noen drain-source karakteristikker for begge transistorene. Bytt ut Vds og

Detaljer

Del 3: Utvidet transistormodell og DC karakteristikk for inverter og pass transistor

Del 3: Utvidet transistormodell og DC karakteristikk for inverter og pass transistor Del : Utvidet transistormodell og DC karakteristikk for inverter og pass transistor YNGVR BERG I. Innhold Vi ser på CMOS inverter DC karakteristikker og hvordan transistorstørrelser påvirker karakteristikken.

Detaljer

LAB 7: Operasjonsforsterkere

LAB 7: Operasjonsforsterkere LAB 7: Operasjonsforsterkere I denne oppgaven er målet at dere skal bli kjent med praktisk bruk av operasjonsforsterkere. Dette gjøres gjennom oppgaver knyttet til operasjonsforsterkeren LM358. Dere skal

Detaljer

Del 3: Utvidet transistormodell og DC karakteristikk for inverter og pass transistor VDD. Vinn. Vut

Del 3: Utvidet transistormodell og DC karakteristikk for inverter og pass transistor VDD. Vinn. Vut Del : Utvidet transistormodell og DC karakteristikk for inverter og pass transistor YNGVR BERG I. Innhold CM OS inverter DC karakteristikker og hvordan transistorstørrelser påvirker karakteristiken. Definsisjon

Detaljer

GJ ennomgang av CMOS prosess, tverrsnitt av nmos- og

GJ ennomgang av CMOS prosess, tverrsnitt av nmos- og Del : Enkel elektrisk transistor modell og introduksjon til CMOS rosess YNGVAR BERG I. Innhold GJ ennomgang av CMOS rosess, tverrsnitt av nmos og MOS transistor og tverrsnitt av CMOS inverter. Enkel forklaring

Detaljer

Del 3: Utvidet transistormodell og DC karakteristikk for inverter og pass transistor VDD. Vinn. Vut. I. Innhold

Del 3: Utvidet transistormodell og DC karakteristikk for inverter og pass transistor VDD. Vinn. Vut. I. Innhold Del : Utvidet transistormodell og DC karakteristikk for inverter og pass transistor YNGVR BERG I. Innhold CMOS INVERTER DC karakteristikker og hvordan transistorstørrelser påvirker karakteristikken. Definisjon

Detaljer

Obligatorisk oppgave 4 i INF4400 for Jan Erik Ramstad

Obligatorisk oppgave 4 i INF4400 for Jan Erik Ramstad Obligatoris oppgave i INF for Jan Eri Ramstad Jan Eri Ramstad Institutt for Informati Universitetet i Oslo janera@fys.uio.no. Mars6 6. april Bagrunn Worst case transient simulering NAND port Oppgave I

Detaljer

PENSUM INF spring 2013

PENSUM INF spring 2013 PENSUM INF3400 - spring 2013 Contents 1 Kjede med porter 2 1.1 Logisk effort for portene....................................... 2 1.2 Kritisk signalvei........................................... 2 1.3

Detaljer

Universitetet i Oslo FYS Labøvelse 1. Skrevet av: Sindre Rannem Bilden Kristian Haug

Universitetet i Oslo FYS Labøvelse 1. Skrevet av: Sindre Rannem Bilden Kristian Haug Universitetet i Oslo FYS20 Labøvelse Skrevet av: Sindre Rannem Bilden Kristian Haug 7. november 204 PRELAB-Oppg. Setter inn i U = U 0 e t/τ og får PRELAB-Oppg. 2 C = µf U = 2 U 0 t = 20s τ = RC 2 U 0 =

Detaljer

Forelesning nr.10 INF 1411 Elektroniske systemer

Forelesning nr.10 INF 1411 Elektroniske systemer Forelesning nr.10 INF 1411 Elektroniske systemer Felteffekt-transistorer 1 Dagens temaer Bipolare transistorer som brytere Felteffekttransistorer (FET) FET-baserte forsterkere Feedback-oscillatorer Dagens

Detaljer

«OPERASJONSFORSTERKERE»

«OPERASJONSFORSTERKERE» Kurs: FYS 1210 Gruppe: Gruppe-dag: Oppgave: LABORATORIEØVELSE NR 7 Revidert utgave, desember 2014 (T. Lindem, K.Ø. Spildrejorde, M. Elvegård) Omhandler: «OPERASJONSFORSTERKERE» FORSTERKER MED TILBAKEKOBLING

Detaljer

INF3400 Del 1 Teori og oppgaver Grunnleggende Digital CMOS

INF3400 Del 1 Teori og oppgaver Grunnleggende Digital CMOS INF34 Del Teori og oppgaver Grunnleggende Digial CMOS INF34 Grunnleggende digial CMOS Transisor som bryer CMOS sår for Complemenary Meal On Semiconducor. I CMOS eknologi er de o komplemenære ransisorer,

Detaljer

GJ ennomgang av CMOS prosess, tversnitt av nmos- og

GJ ennomgang av CMOS prosess, tversnitt av nmos- og Del : Enkel elektrisk transistor modell og introduksjon til CMOS rosess YNGVAR BERG I. Innhold GJ ennomgang av CMOS rosess, tversnitt av nmos og MOS og tverrsnitt av CMOS inverter. Enkel forklaring å begreer

Detaljer

LABORATORIERAPPORT. Halvlederdioden AC-beregninger. Christian Egebakken

LABORATORIERAPPORT. Halvlederdioden AC-beregninger. Christian Egebakken LABORATORIERAPPORT Halvlederdioden AC-beregninger AV Christian Egebakken Sammendrag I dette prosjektet har vi forklart den grunnleggende teorien bak dioden. Vi har undersøkt noen av bruksområdene til vanlige

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVRSITTT I OSLO et matematisk-naturvitenskapelige fakultet ksamen i: IN3400 igital mikroelektronikk ksamensdag: 1. juni 013 Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg: Ingen Tillatte

Detaljer

Løsningsforslag DEL1 og 2 INF3400/4400

Løsningsforslag DEL1 og 2 INF3400/4400 Løsningsforslag L og 2 INF3400/4400 NGVR RG. Oppgave.3 I. Oppgaver Tegn en MOS 4-inngangs NOR port på transistor nivå.. Løsningsforslag 0 0 0 0 0 0 0 Fig. 2. NOR port med fire innganger. Fig.. To-inngangs

Detaljer

Løsningsforslag DEL1 og 2 INF3400/4400

Løsningsforslag DEL1 og 2 INF3400/4400 Løsningsforslag L1 og 2 INF3400/4400 NGVR RG I. Oppgaver. Oppgave 1.3 Tegn en MOS 4-inngangs NOR port på transistor nivå..1 Løsningsforslag 0 0 1 0 1 0 11 0 1 0 0 Fig. 2. NOR port med fire innganger. Fig.

Detaljer

Fys2210 Halvlederkomponenter. Kapittel 6 Felteffekt transistorer

Fys2210 Halvlederkomponenter. Kapittel 6 Felteffekt transistorer Fys2210 Halvlederkomponenter Kapittel 6 Felteffekt transistorer MOSFET I en n-kanals MOSFET (enhancement-type) lager man en n-type kanal mellom Source og Drain ved å lage et inversjonslag i et p-type substrat

Detaljer

Elektrolaboratoriet RAPPORT. Oppgave nr. 1. Spenningsdeling og strømdeling. Skrevet av xxxxxxxx. Klasse: 09HBINEA. Faglærer: Tor Arne Folkestad

Elektrolaboratoriet RAPPORT. Oppgave nr. 1. Spenningsdeling og strømdeling. Skrevet av xxxxxxxx. Klasse: 09HBINEA. Faglærer: Tor Arne Folkestad Elektrolaboratoriet RAPPORT Oppgave nr. 1 Spenningsdeling og strømdeling Skrevet av xxxxxxxx Klasse: 09HBINEA Faglærer: Tor Arne Folkestad Oppgaven utført, dato: 5.10.2010 Rapporten innlevert, dato: 01.11.2010

Detaljer

«OPERASJONSFORSTERKERE»

«OPERASJONSFORSTERKERE» Kurs: FYS 1210 Gruppe: Gruppe-dag: Oppgave: LABORATORIEØVELSE NR 7 Revidert utgave 18. mars 2013 (Lindem) Omhandler: «OPERASJONSFORSTERKERE» FORSTERKER MED TILBAKEKOBLING AVVIKSPENNING OG HVILESTRØM STRØM-TIL-SPENNING

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Eksamensdato: 0.1.009 Varighet/eksamenstid: Emnekode: 5 timer EDT10T Emnenavn: Elektronikk 1 Klasse(r): EL Studiepoeng: 7,5 Faglærer(e): ngrid

Detaljer

Figur 1: Pulsbredderegulator [1].

Figur 1: Pulsbredderegulator [1]. Pulsbredderegulator Design og utforming av en pulsbredderegulator Forfatter: Fredrik Ellertsen Versjon: 2 Dato: 24.03.2015 Kontrollert av: Dato: Innhold 1. Innledning 1 2. Mulig løsning 2 3. Realisering

Detaljer

INF1411 Oblig nr. 4 Vår 2011

INF1411 Oblig nr. 4 Vår 2011 INF1411 Oblig nr. 4 Vår 2011 Informasjon og orientering Alle obligatoriske oppgaver ved IFI skal følge instituttets reglement for slike oppgaver. Det forutsettes at du gjør deg kjent med innholdet i reglementet

Detaljer

Forelesning nr.2 INF 1411 Elektroniske systemer. Effekt, serielle kretser og Kirchhoffs spenningslov

Forelesning nr.2 INF 1411 Elektroniske systemer. Effekt, serielle kretser og Kirchhoffs spenningslov Forelesning nr.2 INF 1411 Elektroniske systemer Effekt, serielle kretser og Kirchhoffs spenningslov Dagens temaer Sammenheng mellom strøm, spenning, energi og effekt Strøm og resistans i serielle kretser

Detaljer

Lab 4. Dioder og diode kretser

Lab 4. Dioder og diode kretser Lab 4. Dioder og diode kretser I denne labben skal vi bli mer kjent med hvordan dioder fungerer og måle på karekteristikken til diodene. Grunnalagent for denne laben finner du i kapittel 17 og 18 i Paynter

Detaljer

LF - anbefalte oppgaver fra kapittel 2

LF - anbefalte oppgaver fra kapittel 2 1 LF - anbefalte oppgaver fra kapittel 2 N2.1 Denne oppkoblingen er lovlig: Alle spenningkildene kan få en strøm på 5 A fra strømkilden. Spenningsfallet over strømkilden er også lovlig. Ved å summere alle

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: Løsningsforslag Digital mikroelektronikk Ingen Alle trykte

Detaljer

INF1411 Oblig nr. 1 - Veiledning

INF1411 Oblig nr. 1 - Veiledning INF1411 Oblig nr. 1 - Veiledning Regler for elektronikklabene For at arbeidet på laben skal være effektivt og sikkert er det viktig med gode rutiner: Mat og drikke er forbudt på alle labene. Generelt må

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF3400 Digital mikroelektronikk Eksamensdag: 10. juni 2011 Tid for eksamen: 9.00 13.00 Oppgavesettet er på 5 sider. Vedlegg:

Detaljer

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Onsdag 15. august Tid. Kl LØSNINGSFORSLAG

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Onsdag 15. august Tid. Kl LØSNINGSFORSLAG Side av 8 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 2 23 / 92 87 72 Bjørn B. Larsen 73 59 44 93 Kontinuasjonseksamen

Detaljer

INF1411 Obligatorisk oppgave nr. 3

INF1411 Obligatorisk oppgave nr. 3 INF1411 Obligatorisk oppgave nr. 3 Fyll inn navn på alle som leverer sammen, 2 per gruppe (1 eller 3 i unntakstilfeller): 1 2 3 Informasjon og orientering I denne oppgaven skal du lære litt om operasjonsforsterkere

Detaljer

VEILEDNING TIL LABORATORIEØVELSE NR 2

VEILEDNING TIL LABORATORIEØVELSE NR 2 VEILEDNING TIL LABORATORIEØVELSE NR 2 «TRANSISTORER» FY-IN 204 Revidert utgave 2000-03-01 Veiledning FY-IN 204 : Oppgave 2 1 2. Transistoren Litteratur: Millman, Kap. 3 og Kap. 10 Oppgave: A. TRANSISTORKARAKTERISTIKKER:

Detaljer

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Onsdag 15. august Tid. Kl LØSNINGSFORSLAG

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Onsdag 15. august Tid. Kl LØSNINGSFORSLAG Side av 8 NORGES TEKNISKNATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 2 23 / 92 87 72 Bjørn B. Larsen 73 59 44 93 Kontinuasjonseksamen

Detaljer

Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser

Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser Forelesning nr.6 INF 1411 Elektroniske systemer Anvendelser av RC-krester Spoler og RL-kretser Dagens temaer Mer om ac-signaler og sinussignaler Filtre Bruk av RC-kretser Induktorer (spoler) Sinusrespons

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Eksamensdato: 11.12.2012 Varighet/eksamenstid: Emnekode: Emnenavn: Klasse(r): 4 timer EDT210T-A Grunnleggende elektronikk 2EL Studiepoeng: 7,5

Detaljer

Tips og triks til INF3400

Tips og triks til INF3400 Tips og triks til INF3400 Joakim S. Hovlandsvåg 11. desember 2008 1 Opp- og nedtrekk - kap1 Ved inverterte formlar gjeld følgande: i nedtrekk blir ei seriekobling, opptrekk får parallellkobling

Detaljer

Forelesning nr.2 INF 1411 Elektroniske systemer. Effekt, serielle kretser og Kirchhoffs spenningslov

Forelesning nr.2 INF 1411 Elektroniske systemer. Effekt, serielle kretser og Kirchhoffs spenningslov Forelesning nr.2 INF 1411 Elektroniske systemer Effekt, serielle kretser og Kirchhoffs spenningslov Dagens temaer Sammenheng mellom strøm, spenning, energi og effekt Strøm og resistans i serielle kretser

Detaljer

Lab 2 Praktiske målinger med oscilloskop og signalgenerator

Lab 2 Praktiske målinger med oscilloskop og signalgenerator Universitetet i Oslo FYS1210 Elektronikk med prosjektoppgave Lab 2 Praktiske målinger med oscilloskop og signalgenerator 17. februar 2016 Labdag: Tirsdag Labgruppe: 3 Oppgave 1: Knekkfrekvens Et enkelt

Detaljer

Oppgave 3 -Motstand, kondensator og spole

Oppgave 3 -Motstand, kondensator og spole Oppgave 3 -Motstand, kondensator og spole Ole Håvik Bjørkedal, Åge Johansen olehb@stud.ntnu.no, agej@stud.ntnu.no 18. november 2012 Sammendrag Rapporten omhandler hvordan grunnleggende kretselementer opptrer

Detaljer

Fys2210 Halvlederkomponenter. Kapittel 6 Felteffekt transistorer

Fys2210 Halvlederkomponenter. Kapittel 6 Felteffekt transistorer Fys2210 Halvlederkomponenter Kapittel 6 Felteffekt transistorer 1 Eksamensdatoer: 11. OG 12. DESEMBER Repetisjon Felteffekttransistoren 3 forskjellige typer: - Junction FET - MESFET - MOSFET JFET MESFET

Detaljer

TRANSISTORER. Navn: Navn: Kurs: FY-IN204 Elektronikk med prosjektoppgaver - 4 vekttall. Oppgave: LABORATORIEØVELSE NR 2.

TRANSISTORER. Navn:   Navn:   Kurs: FY-IN204 Elektronikk med prosjektoppgaver - 4 vekttall. Oppgave: LABORATORIEØVELSE NR 2. Kurs: FY-IN204 Elektronikk med prosjektoppgaver - 4 vekttall Gruppe: Gruppe-dag: Oppgave: LABORATORIEØVELSE NR 2 Omhandler: TRANSISTORER Revidert utgave 23.02.2001 Utført dato: Utført av: Navn: email:

Detaljer

INF3400/4400 Digital Mikroelektronikk Løsningsforslag DEL 13 og 14

INF3400/4400 Digital Mikroelektronikk Løsningsforslag DEL 13 og 14 INF3400/4400 Digital Mikroelektronikk Løsningsforslag DEL 13 og 14 YNGVA BEG A. Forsinkelse i interkonnekt Gitt en 3mm lang og 0.4µm bred leder i metall 2 i en 180nm prosess med egenmotstand 0.04Ω/ og

Detaljer

INF3400/4400 Digital Mikroelektronikk Løsningsforslag DEL 8 Våren 2006 YNGVAR BERG

INF3400/4400 Digital Mikroelektronikk Løsningsforslag DEL 8 Våren 2006 YNGVAR BERG INF/ Digital Mikroelektronikk Løsningsforslag DEL 8 Våren 6 NGV EG I. DEL 8 Del 8: Effektforbruk og statisk MOS II. Gjennomføring Teori, eksempler og oppgaver knyttet til DEL 8 (og DEL blir gjennomgått

Detaljer

INF3400 Digital Mikroelektronikk Løsningsforslag DEL 8

INF3400 Digital Mikroelektronikk Løsningsforslag DEL 8 INF Digital Mikroelektronikk Løsningsforslag DEL 8 NGV EG I. DEL 8 Del 8: Effektforbruk og statisk MOS II. Oppgaver. Oppgave. Finn strømlekkasje i svak inversjon i en inverter ved romtemperatur når inngangen

Detaljer

Fys2210 Halvlederkomponenter. Forelesning 6 Kapittel 5 - Overganger

Fys2210 Halvlederkomponenter. Forelesning 6 Kapittel 5 - Overganger Fys2210 Halvlederkomponenter Forelesning 6 Kapittel 5 - Overganger Repetisjon: Vp E Cp E Fp E Vp Particle flow Equilibrium (V = 0) Current Forward bias (V = V f ) E E E Vn (V 0 -V f ) V 0 W = qv 0 (1)

Detaljer

Fys2210 Halvlederkomponenter. Forelesning 5 Kapittel 5 - Overganger

Fys2210 Halvlederkomponenter. Forelesning 5 Kapittel 5 - Overganger Fys2210 Halvlederkomponenter Forelesning 5 Kapittel 5 - Overganger 1 Lab-tider Forslag til lab-tider vil bli lagt ut Ideelt sett 4 per gruppe Skriv dere på et tidspunkt som passer Øvingstime neste torsdag

Detaljer

Lab 3: AC og filtere - Del 1

Lab 3: AC og filtere - Del 1 Lab 3: AC og filtere - Del 1 Lab 3 er på mange måter en fortsettelse av Lab 2 hvor det skal simuleres og måles på en krets bestående av motstander og kondensatorer. Vi skal se på hvordan en kondensator

Detaljer

Formelsamling INF3400 Våren 2014 Del 1 til 8 YNGVAR BERG

Formelsamling INF3400 Våren 2014 Del 1 til 8 YNGVAR BERG 1 Formelsamling INF3400 Våren 014 Del 1 til 8 YNGVAR BERG I. MOS TRANSISTORER, TABELLENE I - X Formelsamlingen inneholder de mest aktuelle konstanter Tabell II, prosessparametre Tabell III og elektriske

Detaljer

Forelesning nr.1 INF 1410

Forelesning nr.1 INF 1410 1 Forelesning nr.1 INF 1410 Kursoversikt Kretsanalyse, basiskomponenter og strøm- og spenningslover Dagens temaer Organisering av kurset INF 1410 Bakgrunn 2 og motivasjon Læringsmål for kurset og oversikt

Detaljer

INF3400 Uke Wire Engineering 4.7 Design Margins. INF3400 Uke 14 Øivind Næss

INF3400 Uke Wire Engineering 4.7 Design Margins. INF3400 Uke 14 Øivind Næss INF3400 Uke 14 13.05. 4.6 Wire Engineering 4.7 Design Margins INF3400 Uke 14 Øivind Næss INF3400 Uke 14 13.05. Konstruksjon av gode ledninger Ønsker å oppnå lav forsinkelse, lite areal og lavt effektforbruk

Detaljer

TRANSISTORER. Navn: Navn: Kurs: FY-IN204 Elektronikk med prosjektoppgaver - 4 vekttall. Oppgave: LABORATORIEØVELSE NR 2.

TRANSISTORER. Navn:   Navn:   Kurs: FY-IN204 Elektronikk med prosjektoppgaver - 4 vekttall. Oppgave: LABORATORIEØVELSE NR 2. Kurs: FY-IN204 Elektronikk med prosjektoppgaver - 4 vekttall Gruppe: Gruppe-dag: Oppgave: LABORATORIEØVELSE NR 2 Omhandler: TRANSISTORER Revidert utgave 23.02.2001, 20.02.2003 av HBalk Utført dato: Utført

Detaljer

Oppgave 1 (30%) a) De to nettverkene gitt nedenfor skal forenkles. Betrakt hvert av nettverkene inn på klemmene:

Oppgave 1 (30%) a) De to nettverkene gitt nedenfor skal forenkles. Betrakt hvert av nettverkene inn på klemmene: 3. juni 2010 Side 2 av 16 Oppgave 1 (30%) a) De to nettverkene gitt nedenfor skal forenkles. Betrakt hvert av nettverkene inn på klemmene: Reduser motstandsnettverket til én enkelt resistans og angi størrelsen

Detaljer

FYS1210. Repetisjon 2 11/05/2015. Bipolar Junction Transistor (BJT)

FYS1210. Repetisjon 2 11/05/2015. Bipolar Junction Transistor (BJT) FYS1210 Repetisjon 2 11/05/2015 Bipolar Junction Transistor (BJT) Sentralt: Forsterkning Forsterkning er et forhold mellom inngang og utgang. 1. Spenningsforsterkning: 2. Strømforsterkning: 3. Effektforsterkning

Detaljer

Théveninmotstanden finnes ved å måle kortslutningsstrømmen (se figuren under).

Théveninmotstanden finnes ved å måle kortslutningsstrømmen (se figuren under). Oppgave 1 (10 %) a) Kirchoffs spenningslov i node 1 gir følgende ligning 72 12 24 30 hvor to av strømmene er definert ut av noden, mens strømmen fra strømkilden går inn i noden. 2 72 720 Løser med hensyn

Detaljer

Universitetet i Oslo FYS Labøvelse 3. Skrevet av: Sindre Rannem Bilden Kristian Haug

Universitetet i Oslo FYS Labøvelse 3. Skrevet av: Sindre Rannem Bilden Kristian Haug Universitetet i Oslo FYS1110 Labøvelse 3 Skrevet av: Sindre Rannem Bilden Kristian Haug 1. november 014 PRELAB-Oppgave 1 1 x0 = [ 0 1 3 4 ] ; y = [ 5 7 4 3 ] ; 3 n = ; 4 x = l i n s p a c e ( min ( x0

Detaljer

TFE4100 Kretsteknikk Kompendium. Eirik Refsdal <eirikref@pvv.ntnu.no>

TFE4100 Kretsteknikk Kompendium. Eirik Refsdal <eirikref@pvv.ntnu.no> TFE4100 Kretsteknikk Kompendium Eirik Refsdal 16. august 2005 2 INNHOLD Innhold 1 Introduksjon til elektriske kretser 4 1.1 Strøm................................ 4 1.2 Spenning..............................

Detaljer

INF3400 Forel. # Avansert CMOS. INF3400 Forelesning #15 Øivind Næss

INF3400 Forel. # Avansert CMOS. INF3400 Forelesning #15 Øivind Næss INF3400 Forel. #15 20.05. Avansert CMOS INF3400 Forelesning #15 Øivind Næss INF3400 Forel. #15 20.05. Oversikt 4.9 Skalering 4.9.1 Transistorskalering 4.9.2 Interconnect Interconnect -skalering 4.9.3 Teknologi

Detaljer

Obligatorisk oppgave nr 3 FYS Lars Kristian Henriksen UiO

Obligatorisk oppgave nr 3 FYS Lars Kristian Henriksen UiO Obligatorisk oppgave nr 3 FYS-13 Lars Kristian Henriksen UiO 11. februar 15 Diskusjonsoppgaver 1 Fjerde ordens Runge-Kutta fungerer ofte bedre enn Euler fordi den tar for seg flere punkter og stigningstall

Detaljer

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Øving 2; løysing Oppgave 1 Oppgaver fra læreboka: a) Kapittel 5 Oppg. 3 (fargekoder for motstander finner du på side 78), oppg. 12 og *41 (mye feil i fasit

Detaljer

ELEKTRONIKK 2 DAK-ØVING 6 Endre i transistormodell, DCsvip, AC-svip, impedans 2004

ELEKTRONIKK 2 DAK-ØVING 6 Endre i transistormodell, DCsvip, AC-svip, impedans 2004 ELEKTRONIKK 2 DAK-ØVING 6 Endre i transistormodell, DCsvip, AC-svip, impedans 2004 Vi skal i denne oppgaven forsøke å simulere et enkelt forsterkertrinn med bipolar transistor. Vi har imidlertid ikke modell

Detaljer

Elektrolaboratoriet. Spenningsdeling og strømdeling

Elektrolaboratoriet. Spenningsdeling og strømdeling Elektrolaboratoriet RAPPORT Oppgave nr.: 1 Tittel: Skrevet av: Klasse: Spenningsdeling og strømdeling Ola Morstad 10HBINEB Øvrige deltakere: NN og MM Faglærer: Høgskolelektor Laila Sveen Kristoffersen

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Eksamensdato: 13.12.2011 Varighet/eksamenstid: Emnekode: Emnenavn: Klasse(r): 4 timer EDT210T-A Grunnleggende elektronikk 2EL Studiepoeng: 7,5

Detaljer

Lab 1 Innføring i simuleringsprogrammet PSpice

Lab 1 Innføring i simuleringsprogrammet PSpice Universitetet i Oslo FYS1210 Elektronikk med prosjektoppgave Lab 1 Innføring i simuleringsprogrammet PSpice Sindre Rannem Bilden 10. februar 2016 Labdag: Tirsdag Labgruppe: 3 Sindre Rannem Bilden 1 Oppgave

Detaljer

Rapport TFE4100. Lab 5 Likeretter. Eirik Strand Herman Sundklak. Gruppe 107

Rapport TFE4100. Lab 5 Likeretter. Eirik Strand Herman Sundklak. Gruppe 107 Rapport TFE4100 Lab 5 Likeretter Eirik Strand Herman Sundklak Gruppe 107 Lab utført: 08.november 2012 Rapport generert: 30. november 2012 Likeretter Sammendrag Denne rapporten er et sammendrag av laboratorieøvingen

Detaljer

Forelesning nr.6 INF Operasjonsforsterker Fysiske karakteristikker og praktiske anvendelser

Forelesning nr.6 INF Operasjonsforsterker Fysiske karakteristikker og praktiske anvendelser Forelesning nr.6 INF 1410 Operasjonsforsterker Fysiske karakteristikker og praktiske anendelser Oersikt dagens temaer Kretsekialent for opamp Fysiske begrensinger Common-mode rejection Komparatorer Metning

Detaljer

HALVLEDER-DIODER Karakteristikker Målinger og simuleringer

HALVLEDER-DIODER Karakteristikker Målinger og simuleringer Kurs: FYS1210 Elektronikk med prosjektoppgaver Gruppe: Gruppe-dag: Oppgave: LABORATORIEØVELSE NR 3 Omhandler: HALVLEDER-DIODER Karakteristikker Målinger og simuleringer Revidert utgave, desember 2014 (T.

Detaljer

Konstruksjon av gode ledninger

Konstruksjon av gode ledninger 4.6 Wire Engineering 4.7 Design Margins INF3400 Del 14 Øivind NæssN INF3400/4400 våren Design av ledere og design marginer 1/25 Konstruksjon av gode ledninger Ønsker å oppnå lav forsinkelse, lite areal

Detaljer

Ikke lineære likninger

Ikke lineære likninger Ikke lineære likninger Opp til nå har vi studert lineære likninger og lineære likningsystemer. 1/19 Ax = b Ax b = 0. I en dimensjon, lineære likninger kan alltid løses ved hjelp av formler: ax + b = 0

Detaljer

Fys2210 Halvlederkomponenter. Kapittel 6 Felteffekt transistorer

Fys2210 Halvlederkomponenter. Kapittel 6 Felteffekt transistorer Fys2210 Halvlederkomponenter Kapittel 6 Felteffekt transistorer 1 Repetisjon Kap. 5 Kontaktpotensial V 0 = kt q ln Deplesjonssone W = Diodeligningen N an d n i 2 2ε(V 0 V) N a + N d q N a N d I = I o e

Detaljer

UKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s og kap. 16, s.

UKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s og kap. 16, s. UKE 5 Kondensatorer, kap. 12, s. 364-382 R kretser, kap. 13, s. 389-413 Frekvensfilter, kap. 15, s. 462-500 og kap. 16, s. 510-528 1 Kondensator Lindem 22. jan. 2012 Kondensator (apacitor) er en komponent

Detaljer

TRANSISTORER Transistor forsterker

TRANSISTORER Transistor forsterker Kurs: FYS1210 Elektronikk med prosjektoppgaver Gruppe: Gruppe-dag: Oppgave: LABORAORIEØVELSE NR 4 Omhandler: RANSISORER ransistor forsterker Revidert utgave, desember 2014 (. Lindem, M.Elvegård, K.Ø. Spildrejorde)

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Onsdag 3. juni 2009 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Onsdag 3. juni 2009 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY003 ELEKTRISITET

Detaljer

Forelesning nr.4 INF 1410

Forelesning nr.4 INF 1410 Forelesning nr.4 INF 1410 Flere teknikker for kretsanalyse og -transformasjon 1 Oversikt dagens temaer inearitet Praktiske Ekvivalente Nortons Thévenins Norton- og superposisjonsprinsippet (virkelige)

Detaljer

Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser

Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser Forelesning nr.6 INF 1411 Elektroniske systemer Anvendelser av RC-krester Spoler og RL-kretser Dagens temaer Regneeksempel på RC-krets Bruk av RC-kretser Sinusrespons til RL-kretser Impedans og fasevinkel

Detaljer

Lab 7 Operasjonsforsterkere

Lab 7 Operasjonsforsterkere Universitetet i Oslo FYS1210 Elektronikk med prosjektoppgave Lab 7 Operasjonsforsterkere Sindre Rannem Bilden 13. april 2016 Labdag: Tirsdag Labgruppe: 3 Oppgave 1: Forsterker med tilbakekobling I en operasjonsforsterker

Detaljer

WORKSHOP BRUK AV SENSORTEKNOLOGI

WORKSHOP BRUK AV SENSORTEKNOLOGI WORKSHOP BRUK AV SENSORTEKNOLOGI SENSOROPPSETT 2. Mikrokontroller leser spenning i krets. 1. Sensor forandrer strøm/spenning I krets 3. Spenningsverdi oversettes til tallverdi 4. Forming av tallverdi for

Detaljer

Oversikt. Avansert CMOS. INF3400 Del Skalering Transistorskalering Interconnect -skalering Teknologi roadmap

Oversikt. Avansert CMOS. INF3400 Del Skalering Transistorskalering Interconnect -skalering Teknologi roadmap Avansert CMOS INF3400 Del 15 Øivind NæssN INF3400 Del 15 18.05. 1/30 Oversikt 4.9 Skalering 4.9.1 Transistorskalering 4.9.2 Interconnect -skalering 4.9.3 Teknologi roadmap 4.9.4 Design-påvirkninger 5.4.1

Detaljer

Løsningsforslag for obligatorisk øving 1

Løsningsforslag for obligatorisk øving 1 TFY4185 Måleteknikk Institutt for fysikk Løsningsforslag for obligatorisk øving 1 Oppgave 1 a Vi starter med å angi strømmen i alle grener For Wheatstone-brua trenger vi 6 ukjente strømmer I 1 I 6, som

Detaljer

Lab 6 Klokkegenerator, tellerkretser og digital-analog omformer

Lab 6 Klokkegenerator, tellerkretser og digital-analog omformer Universitetet i Oslo FYS1210 Elektronikk med prosjektoppgave Lab 6 Klokkegenerator, tellerkretser og digital-analog omformer 4. april 2016 Labdag: Tirsdag Labgruppe: 3 Oppgave 1: Klokkegenerator En klokkegenerator

Detaljer

Fasit og sensorveiledning eksamen INF1411 våren Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) A) B) Figur 1

Fasit og sensorveiledning eksamen INF1411 våren Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) A) B) Figur 1 Fasit og sensorveiledning eksamen INF1411 våren 2012 Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) Oppgave 1a) (vekt 5 %) Hva er strømmen i og spenningen V out i krets A) i Figur 1? Svar

Detaljer

Angivelse av usikkerhet i måleinstrumenter og beregning av total usikkerhet ved målinger.

Angivelse av usikkerhet i måleinstrumenter og beregning av total usikkerhet ved målinger. Vedlegg A Usikkerhet ved målinger. Stikkord: Målefeil, absolutt usikkerhet, relativ usikkerhet, følsomhet og total usikkerhet. Angivelse av usikkerhet i måleinstrumenter og beregning av total usikkerhet

Detaljer

Laboratorieøving 1 i TFE Kapasitans

Laboratorieøving 1 i TFE Kapasitans Laboratorieøving i TFE420 - Kapasitans 20. februar 207 Sammendrag Vi skal benytte en parallelplatekondensator med justerbart gap til å studere kapasitans. Oppgavene i forarbeidet beskrevet nedenfor må

Detaljer

Fys2210 Halvlederkomponenter. Forelesning 6 Kapittel 5 - Overganger

Fys2210 Halvlederkomponenter. Forelesning 6 Kapittel 5 - Overganger Fys2210 Halvlederkomponenter Forelesning 6 Kapittel 5 - Overganger Repetisjon: Vp E Cp E Fp E Vp Particle flow Equilibrium (V = 0) Current Forward bias (V = V f ) E E E Vn (V 0 -V f ) V 0 W = qv 0 (1)

Detaljer

Fys2210 Halvlederkomponenter. Forelesning 9 Kapittel 6 - Felteffekttransistoren

Fys2210 Halvlederkomponenter. Forelesning 9 Kapittel 6 - Felteffekttransistoren Fys2210 Halvlederkomponenter Forelesning 9 Kapittel 6 - Felteffekttransistoren Repetisjon Unipolar Kapittel 6 Felt-effekt transistorer JFET Partikkelfluks S D (alltid) V G styrer ledningskanalen mellom

Detaljer

Forelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer

Forelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer Forelesning nr.4 INF 1411 Elektroniske systemer Vekselstrøm Kondensatorer Dagens temaer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser Kondensator Presentasjon

Detaljer

Forelesning nr.14 INF 1410

Forelesning nr.14 INF 1410 Forelesning nr.14 INF 1410 Frekvensrespons 1 Oversikt dagens temaer Generell frekvensrespons Resonans Kvalitetsfaktor Dempning Frekvensrespons Oppførselen For I Like til elektriske kretser i frekvensdomenet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVRSITTT I OSLO et matematisk-naturvitenskapelige fakultet ksamen i: INF400 igital mikroelektronikk ksamensdag: 11. juni 2008 Tid for eksamen: Oppgavesettet er på 5 sider. Vedlegg: Ingen Tillatte hjelpemidler:

Detaljer

Modul nr Elektrisitet med digitale hjelpemidler - vgs

Modul nr Elektrisitet med digitale hjelpemidler - vgs Modul nr. 1219 Elektrisitet med digitale hjelpemidler - vgs Tilknyttet rom: Ikke tilknyttet til et rom 1219 Newton håndbok - Elektrisitet med digitale hjelpemidler - vgs Side 2 Kort om denne modulen Denne

Detaljer

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Lørdag 5. juni Tid. Kl LØSNINGSFORSLAG

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Lørdag 5. juni Tid. Kl LØSNINGSFORSLAG Side 1 av 15 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Bjørn B. Larsen 73 59 44 93 / 902 08 317 (Digitaldel) Ingulf Helland

Detaljer

Forslag til løsning på eksamen FYS1210 våren 2010

Forslag til løsning på eksamen FYS1210 våren 2010 Forslag til løsning på eksamen FYS1210 våren 2010 Oppgave 1 n seriekopling av solceller forsyner ubest med elektrisk energi. Ubelastet måler vi en spenning på 5 volt over solcellene (Vi måler mellom og

Detaljer