ECON2200 Matematikk 1/Mikroøkonomi 1 Diderik Lund, 2. mars 2010

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "ECON2200 Matematikk 1/Mikroøkonomi 1 Diderik Lund, 2. mars 2010"

Transkript

1 Etterspørsel etter arbeidskraft på kort sikt Slutten av avsn. 2.3 i ØABL: Maks dekningsbidrag med n som valgvariabel (tidl.: med x) Siden x = F (n) er enentydig: Nøyaktig samme problem max n [pf (n) wn] har f.o.b. pf (n ) w = 0 for optimal n A.o.b. F (n) < 0; forutsetter nå at denne er oppfylt Løsningen er interessant bare hvis dekningsbidrag > 0 Dvs. F (n) n > w p, gjennomsnittsproduktivitet > reallønn A.o.b. medfører F (n) er strengt avtakende Antar den også er kontinuerlig, da har F () en invers, e() ) (w F (n) = w p n = e p e() (fra f.o.b.) kalles faktoretterspørselsfunksjonen Når vi også tar høyde for betingelsen om positivt dekn.bidrag: Faktoretterspørselen er n E = { 0 når F (n) ( ) n e ellers w p < w p Faktoretterspørselsfunksjonen har w p som argument; økonomisk Faktorinnsatsfunksjonen G(x) har produsert mengde som argument; en rent teknisk sammenheng 1

2 Effekter på x og n av endret p eller w Ser på effekter under forutsetning av max dekningsbidrag Bedriften valgte n (og x) for å oppnå dette før endringen Bedriften vil normalt endre n (og x) for å oppnå max etterpå I avsn. 2.4 i ØABL: Forutsetter dekningsbidrag > 0 Sammenlikner to tilpasninger der f.o.b. er oppfylt i begge Kan dermed finne effekten av endret p eller w ved derivasjon Effekt på x av endret p Skriver tilbudsfunksjonen som x T = s(p; w) F.o.b. kan skrives som c x(s(p; w); w) = p Deriverer på begge sider mhp. p: c xx(x T ; w) s p = 1 s p = 1 c xx A.o.b. krevde c xx > 0; derfor blir også s p > 0 Grafisk: Beveger oss langs stigende grensekostnadskurve Jo brattere (dvs. jo større c xx), jo mindre effekt på x Ekstremt tilfelle: c xx, x blir upåvirket av p 2

3 Effekt på x av endret w F.o.b. c x(s(p; w); w) = p Deriverer på begge sider mhp. w: c xx(x T ; w) s w + c xw(x T ; w) = 0 s w = c xw Igjen er c xx > 0 Vet også at c xw d dw [wg (x)] G (x) > 0 Ser derfor at s w < 0 Grafisk: Grensekostnadskurven skifter oppover hvis w øker Igjen: Brattere grensekostnadskurve betyr mindre effekt på x Dessuten: Høy c xw betyr større vertikalt skift Dette medfører større effekt på x (i absoluttverdi) c xx 3

4 Effekt på n av endret p eller w Ser fortsatt på tilpasninger der f.o.b. er oppfylt Faktoretterspørselsfunksjonen er n E = e( w p ) Ikke funksjon av w og p hver for seg, men w p Tilstrekkelig å analysere effekten av endret w p Proporsjonal endring fra w 0 p 0 til aw 0 ap 0 har ingen effekt F.o.b. F (n E ) = w p Derivasjon mhp. w p gir F (n E ) dne ( ) = 1 dne ( ) = d d A.o.b. krever at F < 0; derfor er dne d( w p ) < 0 w p w p 1 F (n E ) Økt lønn medfører redusert etterspørsel etter arbeidskraft Økt produktpris medfører økt etterspørsel Enkleste forklaring: Følger endringene i tilbudet x T I absoluttverdi er effekten svakere hvis F er stor Ser at dette stemmer med f.o.b.; for en gitt endring w p : Stor F betyr at en liten n medfører stor endring i F 4

5 Faste kostnader, drift, stans, nedleggelse I forelesningen 8. februar: Faste kostnader B Driftsuavhengige, dvs. påløper uansett om det er drift Drift eller ikke er valg mellom D B og B Beslutning om drift avhenger av D > 0, uansett hva B er I ØABL avsn. 2.4 skilles mellom B A er anleggsbetinget, driftsuavhengig fast kostnad B D er driftsavhengig fast kostnad B U er ugjenkallelig fast kostnad, sunk cost er skrapverdi av anlegg A er avviklingskostnad Vurderer flere hypotetiske situasjoner: Drift versus midlertidig driftstans, D B A B D B U > B A B U? Midlertidig driftstans versus nedleggelse, B A B U > A B U? B U spiller ingen rolle for beslutningene, påløper uansett Viktig poeng: Alle kostnader gjelder for nærmeste periode Kostnader for bygninger og maskiner med lengre levetid: Sammenlikn salg nå med nåverdi av salg om en periode Sistnevnte avhenger av prisutvikling, slitasje, rente 5

6 Produksjon med flere variable faktorer Kapittel 3 i ØABL, lang sikt Av pedagogiske grunner: To variable faktorer, ikke flere For det meste: Kaller disse n, k, ikke lenger konstant k Viktigste nye tema: Substitusjon mellom n og k Samme produktmengde kan produseres med forskjellige (n, k)? Aktuelt for noen prosesser, noen anlegg; ikke alle Lang sikt: Typen kapital, ikke bare verdien, varierer Eksempler på substitusjon: Biler, hus, snørydding,... Hvordan vil bedriftseiere velge for maksimalt overskudd? Produktfunksjon med variable n, k Argumentverdien er et punkt i (n, k)-planet Grafen til x = f(n, k) er en flate i (n, k, x)-rommet Kan illustreres tredimensjonalt, men vanskelig å tegne Enklere, to-dimensjonale illustrasjoner: Nivåkurver i (n, k)-planet; kalles isokvanter Grafer der en faktor holdes konstant, f.eks. f(n, k) 6

7 Substitusjon, egenskaper ved isokvanter x 0 = f(n, k) gir en isokvant for produktmengden x 0 x 0 er en fast størrelse, n og k kan variere Forteller hvilke kombinasjoner (n, k) som gir x 0 To ekstremtilfeller: Bare en kombinasjon er mulig F.eks. en arbeider per maskin, bare en type maskiner Rettvinklet isokvant Grenseproduktivitet er null for en faktor nesten overalt f k = 0 langs vertikal del, f n = 0 langs horisontal Bare summen n + k har betydning (evt. n + ak, a > 0) Vanskelig å gi eksempler med arbeidskraft og kapital Eksempel kan være to typer energi til et varmeanlegg x = f(n, k) F (n + ak) er en funksjon i en variabel Rettlinjet isokvant k = 1 a (F 1 (x 0 ) n) Mellomtilfeller: Substitusjon ikke perfekt overalt 7

8 Hovedtilfellet: Substitusjon, konvekse isokvanter Vil anta f er to ganger kontinuerlig deriverbar Vil anta f er voksende i hver faktor, og f(0, 0) = 0 Trenger begreper for helning og krumning av isokvanter k = k(n; x 0 ) definerer isokvanten som en funksjon av n Er interessert i første- og andrederivert av denne Vil finne disse basert på deriverte av f-funksjonen Tar utgangspunkt i x 0 = f(n, k(n; x 0 )); ser først på helningen Hvor stor k må erstatte en n = 1 for å opprettholde x 0? Deriverer begge sider mhp. n, med x 0 konstant 0 = f n + f dk k dn dk dn = f n f k < 0 siden vi antar begge grenseproduktiviteter positive k(n; x 0 ) er altså en avtakende funksjon av n Unntaket, rettvinklede isokvanter: Enten f n Absoluttverdien av helningen kalles den marginale tekniske substitusjonsbrøk, MTSB dk(n; x 0 ) f dn = n f k eller f k er null 8

9 Krumningen av isokvanten Hvordan endrer MTSB seg når vi beveger oss langs isokvanten? Ønsker uttrykk for den andrederiverte av k(n; x 0 ) Skriver f n, f k for førsteordens partielt deriverte Skriver f nn, f nk, f kk for andreordens Vet at f nk = f kn (Youngs setning, Sydsæter avsn. 11.6) Bruker kjerneregel og regel for derivert av brøk: ( ) d fn (n, k(n; x 0 )) = f ( ) ( ) dk k fnn + f nk dn dk fn fnk + f kk dn dn f k (n, k(n; x 0 )) (f k ) 2 Setter inn dk dn = f n fk, multipliserer teller og nevner med f k, og finner at isokvanten er konveks hvis og bare hvis Ikke lett å tolke hvert ledd f nn (f k ) 2 2f n f k f nk + f kk (f n ) 2 < 0 Kontroll: Hvordan ser dette ut i tilfellet x = F (n + ak)? Bruk f n = F, f k = af, f nn = F, f nk = af, f kk = a 2 F Finner at uttrykket ovenfor blir null, alså konstant MTSB 9

10 Teknisk komplementære faktorer; teknisk alternative f nn og f kk kalles direkte produktakselerasjoner f nk kalles kryssakselerasjonen Hva skjer med grenseproduktiviteten av n når k endres? Hold n konstant; loddrett bevegelse i (n, k)-planet Hva skjer med grenseproduktiviteten av k når n endres? Hold k konstant; vannrett bevegelse i (n, k)-planet Svaret avhenger av f nk, som er lik f kn Altså samme svar på begge spørsmålene iflg. Youngs setning Produktiviteten av ekstra arbeidstime når k liten, k stor? Kanskje rimelig å tro den er størst når k er stor; f nk > 0 I så fall kalles n og k teknisk komplementære I motsatt fall, når f nk < 0, kalles de teknisk alternative 10

11 Skalaegenskaper ved produktfunksjonen Har så langt sett på bevegelser langs en isokvant bevegelser parallelt med aksene Skalaegenskaper dreier seg om bevegelser utover i diagrammet Hva skjer når n og k vokser langs stråle fra origo Holder altså forholdet n/k konstant Definer funksjonen γ(t; n 0, k 0 ) f(tn 0, tk 0 ) Studer hva som skjer når t endres, γ (t) Med referanse til (n 0, k 0 ): Se på γ (1) Målestokk for γ ikke veldefinert, se på elastisitet Finner den deriverte først: γ (t) = f(tn 0, tk 0 ) (tn 0 ) γ (1) = f(n 0, k 0 ) (n 0 ) n 0 + f(tn 0, tk 0 ) k 0 (tk 0 ) n 0 + f(n 0, k 0 ) k 0 (k 0 ) Definer skalaelastisiteten, ε(n 0, k 0 ) El t γ(t) t=1 Fra definisjonen av elastisitet, med t = 1 ε(n 0, k 0 ) = γ (1) γ(1) = f n(n 0, k 0 ) n 0 x 0 + f k(n 0, k 0 ) k 0 x 0 ε n (n 0, k 0 )+ε k (n 0, k 0 ), summen av faktorenes grenseelastisiteter 11

12 Skalaegenskaper, forts. Begrepet skalautbytte defineres ut fra ε(n, k) Hvis ε(n, k) > 1 for alle (n, k): Tiltakende skalautbytte Hvis ε(n, k) = 1 for alle (n, k): Konstant skalautbytte Hvis ε(n, k) < 1 for alle (n, k): Avtakende skalautbytte Men fullt mulig at ε(n, k) er < 1 for noen (n, k), > 1 for andre Kan også definere lokalt tiltakende, konstant og avtakende skalautbytte i et bestemt punkt (n 0, k 0 ), ut fra ε(n 0, k 0 ) > 1,... Kan også definere tiltakende, konstant og avtakende utbytte mhp. en faktor, f.eks. arbeidskraft, basert på ε n (n, k) > 1,... Siden ε(n, k) = ε n (n, k) + ε k (n, k), har vi: Tiltakende utbytte mhp. begge faktorer medfører tiltakende skalautbytte Avtakende skalautbytte medfører avtakende utbytte mhp. begge faktorer 12

13 Homogene funksjoner En funksjon er homogen av grad m hvis f(tn, tk) t m f(n, k) Ikke en lokal egenskap; må gjelde for alle (n, k) En spesiell gruppe av (produkt)funksjoner, slett ikke alle Konstant skalautbytte er det samme som homogen av grad 1 Homogen av grad større enn 1 tiltakende skalautbytte Homogen av grad mindre enn 1 avtakende skalautbytte Egenskaper ved homogene funksjoner Deriverer likningen ovenfor mhp. t f(tn, tk) n (tn) f(tn, tk) + k (tk) Ved å sette t = 1 finner vi Eulers setning f(n, k) n (n) f(n, k) + k (k) Deriverer i stedet mhp. n (og k tilsv.) f(tn, tk) (tn) (tn) n = mt m 1 f(n, k) = mf(n, k) = tm f(n, k) (n) grenseproduktivitetene er homogene av grad m 1 f(tn, tk) (tn) = t m 1 f(n, k) (n) 13

ECON2200 Matematikk 1/Mikroøkonomi 1 Diderik Lund, 15. mars 2010

ECON2200 Matematikk 1/Mikroøkonomi 1 Diderik Lund, 15. mars 2010 Til alle studenter i ECON2200 våren 2010 Evaluering Instituttet vil gjerne at dere svarer på noen få spørsmål om undervisningen nå, omtrent midt i semesteret. Dermed er det mulig å rette på eventuelle

Detaljer

Kostnadsminimering; to variable innsatsfaktorer

Kostnadsminimering; to variable innsatsfaktorer Kostnadsminimering; to variable innsatsfaktorer Avsnitt 3.2 i ØABL drøfter kostnadsminimering Som om produktmengden var en gitt størrelse Avsnitt 3.3 3.8: Velger produktmengde for maks overskudd Men uansett

Detaljer

201303 ECON2200 Obligatorisk Oppgave

201303 ECON2200 Obligatorisk Oppgave 201303 ECON2200 Obligatorisk Oppgave Oppgave 1 Vi deriverer i denne oppgaven de gitte funksjonene med hensyn på alle argumenter. a) b) c),, der d) deriveres med hensyn på både og. Vi kan benytte dee generelle

Detaljer

Vårt utgangspunkt er de to betingelsene for et profittmaksimum: der vi har

Vårt utgangspunkt er de to betingelsene for et profittmaksimum: der vi har Jon Vislie ECON vår 7: Produsenttilpasning II Oppfølging fra notatet Produsenttilpasning I : En liten oppklaring i forbindelse med diskusjonen om virkningen på tilbudt kvantum av en prisendring (symboler

Detaljer

Faktor. Eksamen høst 2004 SØK 1002 Besvarelse nr 1: Innføring i mikro. -en eksamensavis utgitt av Pareto

Faktor. Eksamen høst 2004 SØK 1002 Besvarelse nr 1: Innføring i mikro. -en eksamensavis utgitt av Pareto Faktor -en eksamensavis utgitt av Pareto Eksamen høst 004 SØK 00 Besvarelse nr : Innføring i mikro OBS!! Dette er en eksamensbevarelse, og ikke en fasit. Besvarelsene er uten endringer det studentene har

Detaljer

Løsningsforslag F-oppgaver i boka Kapittel 2

Løsningsforslag F-oppgaver i boka Kapittel 2 Løsningsforslag F-oppgaver i boka Kapittel OPPGAVE. Produsenten maksimerer overskuddet ved å velge det kvantum som gir likhet mellom markedsprisen og grensekostnaden. Begrunnelsen er slik: (i) Hvis prisen

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Øvelsesoppgave i: ECON2200 Matematikk 1/Mikro 1 Dato for utlevering: 27.3.2017 Dato for innlevering: 7.4.2017 innen kl. 15.00 Innleveringssted: Fronter Øvrig informasjon:

Detaljer

Obligatorisk øvelsesoppgave - Løsning

Obligatorisk øvelsesoppgave - Løsning Obligatorisk øvelsesoppgave - Løsning Vår 2017 Oppgave 1 a) f (x) = 6x 5 b) Bruk at (ln x) x = e ln(ln x)x = e x ln ln x slik at: g(x) = 4x 2 e x x ln ln x + e ( g (x) = 8xe x + 4x 2 e x + e x ln ln x

Detaljer

Solow-modellen - et tilleggsnotat i ECON2915

Solow-modellen - et tilleggsnotat i ECON2915 Solow-modellen - et tilleggsnotat i Herman ruse 27. september 2013 Innhold 1 Solow-modellen en innføring 2 1.1 Forklaring av likningene............................ 2 1.2 Å sette modellen på intensivform.......................

Detaljer

Løsningsforslag til eksamen i ECON 2200 vår løsningen på problemet må oppfylle:

Løsningsforslag til eksamen i ECON 2200 vår løsningen på problemet må oppfylle: Oppgave 3 Løsningsforslag til eksamen i ECON vår 5 = + +, og i) Lagrangefunksjonen er L(, y, λ) y A λ[ p y m] løsningen på problemet må oppfylle: L y = λ = λ = = λ = p + y = m L A p Bruker vi at Lagrangemultiplikatoren

Detaljer

Kapittel 8. Inntekter og kostnader. Løsninger

Kapittel 8. Inntekter og kostnader. Løsninger Kapittel 8 Inntekter og kostnader Løsninger Oppgave 8.1 (a) Endring i bedriftens inntekt ved en liten (marginal) endring i produsert og solgt mengde. En marginal endring følger av at begrepet defineres

Detaljer

ECON2200: Oppgaver til plenumsregninger

ECON2200: Oppgaver til plenumsregninger University of Oslo / Department of Economics / Nils Framstad, denne versjonen: π-dagen ECON2200: Oppgaver til plenumsregninger 1. plenumsregning 1. feb.: derivasjon. Oppgave 1.1 der A er en konstant. Funksjonen

Detaljer

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015 Ekstranotat, februar 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser, brøk og potenser... Funksjoner...4 Tilvekstform (differensialregning)...5 Nyttige tilnærminger...8

Detaljer

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2 Prøve i FO929A - Matematikk Dato: 1. juni 2012 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 2 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

c) En bedrift ønsker å produsere en gitt mengde av en vare, og finner de minimerte

c) En bedrift ønsker å produsere en gitt mengde av en vare, og finner de minimerte Oppgave 1 (10 poeng) Finn den første- og annenderiverte til følgende funksjoner. Er funksjonen strengt konkav eller konveks i hele sitt definisjonsområde? Hvis ikke, bestem for hvilke verdier av x den

Detaljer

ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 6

ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 6 ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 6 Diderik Lund Økonomisk institutt Universitetet i Oslo 30. september 2011 Vil først gå gjennom de fire siste sidene fra forelesning

Detaljer

Løsningsforslag til eksamen ECON3610/4610: Samfunnsøkonomisk lønnsomhet og økonomisk politikk, høst 2008

Løsningsforslag til eksamen ECON3610/4610: Samfunnsøkonomisk lønnsomhet og økonomisk politikk, høst 2008 Løsningsforslag til eksamen ECON3610/4610: Samfunnsøkonomisk lønnsomhet og økonomisk politikk, høst 2008 Start med å lese gjennom hele oppgaven. Sørg for å sette av nok tid til å svare på de spørsmålene

Detaljer

MA0003-8. forelesning

MA0003-8. forelesning Implisitt derivasjon og 31. august 2009 Outline Implisitt derivasjon 1 Implisitt derivasjon 2 Outline Implisitt derivasjon 1 Implisitt derivasjon 2 Outline Implisitt derivasjon 1 Implisitt derivasjon 2

Detaljer

Løsningsforslag til oppgaver - kapittel 3

Løsningsforslag til oppgaver - kapittel 3 Løsningsforslag til oppgaver - kapittel 3 3.1 En gruppering av kostnadene etter art gjør det lettere for ledelsen å komme på sporet av kostnader som er årsak til utviklingen. Resultatrapporten for de tre

Detaljer

(1) Naturlig monopol (S & W kapittel 12 i både 3. og 4. utgave) (2) Prisdiskriminering (S & W kapittel 12 i både 3. og 4. utgave)

(1) Naturlig monopol (S & W kapittel 12 i både 3. og 4. utgave) (2) Prisdiskriminering (S & W kapittel 12 i både 3. og 4. utgave) Økonomisk Institutt, oktober 2006 Robert G. Hansen, rom 1207 Oppsummering av forelesningen 27.10 Hovedtemaer: (1) Naturlig monopol (S & W kapittel 12 i både 3. og 4. utgave) (2) Prisdiskriminering (S &

Detaljer

Mikroøkonomi - Superkurs

Mikroøkonomi - Superkurs Mikroøkonomi - Superkurs Oppgave dokument Antall emne: 7 Emner Antall oppgaver: 104 Oppgaver Antall sider: 27 Sider Kursholder: Studiekvartalets kursholder til andre brukere uten samtykke fra Studiekvartalet.

Detaljer

Oppsummering matematikkdel

Oppsummering matematikkdel Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke Økonomisk Institutt May 5, 2014 KAB (Økonomisk Institutt) Oppsummering May 5, 2014 1 / 25 Innledning Rekker bare å nevne noen hovedpunkter Alt er

Detaljer

Forelesning 10 Kapittel 3.2, Bævre og Vislie (2007): Næringsstruktur, internasjonal handel og vekst

Forelesning 10 Kapittel 3.2, Bævre og Vislie (2007): Næringsstruktur, internasjonal handel og vekst Forelesning 0 Kapittel 3., Bævre og Vislie (007): Næringsstruktur, internasjonal handel og vekst Faktorprisutjevningsteoremet Forutsetninger: Liten åpen økonomi Priser på ferdigvarer gitt på verdensmarkedet,

Detaljer

Econ 2200 H04 Litt om anvendelser av matematikk i samfunnsøkonomi.

Econ 2200 H04 Litt om anvendelser av matematikk i samfunnsøkonomi. Vidar Christiansen Econ 00 H04 Litt om anvendelser av matematikk i samfunnsøkonomi. Et viktig formål med kurset er at matematikk skal kunne anvendes i økonomi, og at de matematiske anvendelser skal kunne

Detaljer

Seminaruke 4, løsningsforslag.

Seminaruke 4, løsningsforslag. Seminaruke 4, løsningsforslag. Jon Vislie Nina Skrove Falch a) Gjennomsnittsproduktiviteten er produsert mengde per arbeidstime; Grenseproduktiviteten er n = An n = An dn = An = n Dermed har vi at om er

Detaljer

Forelesning # 6 i ECON 1310:

Forelesning # 6 i ECON 1310: Forelesning # 6 i ECON 1310: Arbeidsmarkedet og konjunkturer Anders Grøn Kjelsrud 23.9.2013 Pensum Forelesningsnotat (Holden) # 8 Kapittel 8 ( The labour market ) og kapittel 10 ( The Phillips curve, the

Detaljer

Fasit - Oppgaveseminar 1

Fasit - Oppgaveseminar 1 Fasit - Oppgaveseminar Oppgave Betrakt konsumfunksjonen = z + (Y-T) - 2 r 0 < 0 Her er Y bruttonasjonalproduktet, privat konsum, T nettoskattebeløpet (dvs skatter og avgifter fra private til det

Detaljer

Mikroøkonomi - Intensivkurs

Mikroøkonomi - Intensivkurs Mikroøkonomi - Intensivkurs Oppgave dokument Antall emne: 7 Emner Antall oppgaver: 52 Oppgaver Antall sider: 15 Sider Kursholder: Studiekvartalets kursholder til andre brukere uten samtykke fra Studiekvartalet.

Detaljer

Fasit og løsningsforslag til Julekalenderen for mellomtrinnet

Fasit og løsningsforslag til Julekalenderen for mellomtrinnet Fasit og løsningsforslag til Julekalenderen for mellomtrinnet 01.12: Svaret er 11 For å få 11 på to terninger kreves en 5er og en 6er. Siden 6 ikke finnes på terningen kan vi altså ikke få 11. 02.12: Dagens

Detaljer

. 2+cos(x) 0 og alle biter som inngår i uttrykket er kontinuerlige. Da blir g kontinuerlig i hele planet.

. 2+cos(x) 0 og alle biter som inngår i uttrykket er kontinuerlige. Da blir g kontinuerlig i hele planet. MA 1410: Analyse Uke 47, 001 http://home.hia.no/ aasvaldl/ma1410 H01 Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave 11.1: 7. f(x, y) = 1 16 x y. a) Definisjonsområde D: f

Detaljer

ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 5

ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 5 ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 5 Diderik Lund Økonomisk institutt Universitetet i Oslo 23. september 2011 Vil først se nærmere på de siste sidene fra forelesning

Detaljer

PRODUKSJON OG KOSTNADER

PRODUKSJON OG KOSTNADER ECON 0 Forbruker, bedrift og marked Forelesningsnotater 04.09.07 Nils-Henrik von der Fehr PRODUKSJON OG KOSTNADER Innledning Hensikten med denne delen er å diskutere hvilke forhold som bestemmer kostnadene

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Øvelsesoppgave i: ECON00 Dato for utlevering: 1.03.01 Dato for innlevering: 9.03.01 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Innleveringssted: Ved SV-infosenter mellom kl. 1.00-14.00 Øvrig informasjon:

Detaljer

Fasit, Implisitt derivasjon.

Fasit, Implisitt derivasjon. Ukeoppgaver, uke 8, i Matematikk, Implisitt derivasjon. 5 Fasit, Implisitt derivasjon. Oppgave Vi kaller den deriverte av y for y, og dette blir første ledd. Andre ledd må deriveres med kjerneregelen,

Detaljer

Eksamen ECON mai 2010, Økonomisk institutt, Universitetet i Oslo Sensorveilednig, inkludert fordeling av prosentandeler på delspørsmål.

Eksamen ECON mai 2010, Økonomisk institutt, Universitetet i Oslo Sensorveilednig, inkludert fordeling av prosentandeler på delspørsmål. Eksamen ECON00 1. mai 010, Økonomisk institutt, Universitetet i Oslo Sensorveilednig, inkludert fordeling av prosentandeler på delspørsmål. Vi gir poeng for hvert svar. Maksimalt poengtall på hver oppgave

Detaljer

Oppsummering matematikkdel

Oppsummering matematikkdel Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke Økonomisk Institutt May 9, 2011 KAB (Økonomisk Institutt) Oppsummering May 9, 2011 1 / 25 Innledning Rekker bare å nevne noen hovedpunkter Alt er

Detaljer

Veiledning til enkelte oppgaver i ECON2200 Matematikk 1/Mikroøkonomi 1, Våren 2012

Veiledning til enkelte oppgaver i ECON2200 Matematikk 1/Mikroøkonomi 1, Våren 2012 niversitetet i Oslo Jon Vislie Veiledning til enkelte oppgaver i ECON00 Matematikk /Mikroøkonomi, Våren 0 Oppgave. Produksjons og markedsteori (Se også oppgave 5 i kap. 5 og oppgave 9 i kap. 3 i Strøm

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON2200 Matematikk 1/Mikro 1 (MM1) Eksamensdag: 19.05.2017 Sensur kunngjøres: 09.06.2017 Tid for eksamen: kl. 09:00 15:00 Oppgavesettet er på 6 sider

Detaljer

Produsentene. Innledning. Vi skal se på en svært enkel modell av en bedrift:

Produsentene. Innledning. Vi skal se på en svært enkel modell av en bedrift: Produsentene Innledning Vi skal se på en svært enkel modell av en bedrift: 1. Formål: Størst mulig overskudd («Max profitt»). Eierne har full kontroll 3. Produserer bare èn vare (tjeneste) 4. Kort sikt:

Detaljer

Derivér følgende funksjoner med hensyn på alle argumenter:

Derivér følgende funksjoner med hensyn på alle argumenter: Obligatorisk innleveringsogave ECON våren LØSNINGSFORSLAG med vekter for delsørsmålene Ogave (vekt %) Derivér følgende funksjoner med hensyn å alle argumenter: % (a) f( x) 7x x x Her finner vi f '( x)

Detaljer

S1 Eksamen våren 2009 Løsning

S1 Eksamen våren 2009 Løsning S1 Eksamen, våren 009 Løsning S1 Eksamen våren 009 Løsning Del 1 Oppgave 1 a) Skriv så enkelt som mulig 1) x 1 x 1 x 1 x 1 1 x 1 x 1 x x 1 x 1 x 1 1 x 1 x 1 ) a b 3 a b 3 a 4a b 1 3 4a b 3 b 1 b) Løs likningene

Detaljer

Markedet. Tone Ognedal. 18.august 2014

Markedet. Tone Ognedal. 18.august 2014 Markedet Tone Ognedal 18.august 2014 1 / 17 Markedet Ulike markeder Markedet for tomater Aksjemarkedet Markedet for live bandmusikk Boligmarkedet Arbeidsmarkedet Skal se nærmere på et par spesielle markeder

Detaljer

Hva er samfunnsøkonomisk effektivitet?

Hva er samfunnsøkonomisk effektivitet? ECON3610 Forelesning 6 Generelle effektivitetskriterier Velferdsteoriens to hovedteoremer Hva er samfunnsøkonomisk effektivitet? En samfunnsøkonomisk effektiv allokering (S&V s. 90): en allokering som

Detaljer

Tyngdekraft og luftmotstand

Tyngdekraft og luftmotstand Tyngdekraft og luftmotstand Dette undervisningsopplegget synliggjør bruken av regning som grunnleggende ferdighet i naturfag. Her blir regning brukt for å studere masse, tyngdekraft og luftmotstand. Opplegget

Detaljer

INEC1800 ØKONOMI, FINANS OG REGNSKAP EINAR BELSOM

INEC1800 ØKONOMI, FINANS OG REGNSKAP EINAR BELSOM INEC1800 ØONOMI, FINANS OG REGNSAP EINAR BESOM HØST 2017 FOREESNINGSNOTAT 5 Produksjonsteknologi og kostnader* Dette notatet tar sikte på å gi innsikt om hva som ligger bak kostnadsbegrepet i mikroøkonomi

Detaljer

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2 Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2 1 Bestem den naturlige denisjonsmengden til følgende funksjoner.

Detaljer

Talsnes ONE - 995850168 Enhver form for mangfoldiggjørelse av hele eller deler av innholdet av dette materiale er i henhold til norsk lov om

Talsnes ONE - 995850168 Enhver form for mangfoldiggjørelse av hele eller deler av innholdet av dette materiale er i henhold til norsk lov om 1 Eksponentielt vekst: En størrelse vokser eller avtar med en fast prosent per tidsenhet. Eulers tall e: En matematisk konstant, e=2,7 1828.. ln a gir det tallet du må opphøye Eulers tall e i for å få

Detaljer

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at Ekstranotat, 7 august 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser og brøker... Funksjoner...3 Tilvekstform (differensialregning)...4 Telleregelen...7 70-regelen...8

Detaljer

Løsningsforslag til eksamen i MAT111 Vår 2013

Løsningsforslag til eksamen i MAT111 Vår 2013 BOKMÅL MAT - Vår Løsningsforslag til eksamen i MAT Vår Oppgave Finn polarrepresentasjonen til i. i Skriv på formen x + iy. i Løsning Finner først modulus og argument til i: i = ( ) + ( ) = 4 = arg( ( )

Detaljer

ECON1210 Forbruker, bedrift og marked Forelesning 4 (Hvis vi ikke rekker alt dette 12. sept., vil noe bli forskjøvet til 19. sept.

ECON1210 Forbruker, bedrift og marked Forelesning 4 (Hvis vi ikke rekker alt dette 12. sept., vil noe bli forskjøvet til 19. sept. ECON1210 Forbruker, bedrift og marked Forelesning 4 (Hvis vi ikke rekker alt dette 12. sept., vil noe bli forskjøvet til 19. sept.) Diderik Lund Økonomisk institutt Universitetet i Oslo 12. september 2011

Detaljer

Notater fra forelesningene er lagt ut separat. Produsenten

Notater fra forelesningene er lagt ut separat. Produsenten OBS: Dette notatet er ikke helt ferdig, men tenkte det var best at dere fikk noe ganske raskt, så da kommer den endelige versjonen heller litt senere. Uansett er stoffet godt dekket i læreboka Notater

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON00 Matematikk /Mikro (MM) Eksamensdag: 0.06.05 Sensur kunngjøres: 0.07.05 Tid for eksamen: kl. 09:00 5:00 Oppgavesettet er på 4 sider Tillatte

Detaljer

Veiledning oppgave 2 kap. 2 (seminaruke 36)

Veiledning oppgave 2 kap. 2 (seminaruke 36) Jon Vislie; august 009 Veiledning oppgave kap. (seminaruke 36) ECON 360/460 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Betrakt en liten åpen økonomi med to produksjonssektorer som produserer hver

Detaljer

Mikroøkonomi - Intensivkurs

Mikroøkonomi - Intensivkurs Mikroøkonomi - Intensivkurs Fasit dokument Antall emne: 7 Emner Antall oppgaver: 52 Oppgaver Antall sider: 29 Sider Kursholder: Studiekvartalets kursholder til andre brukere uten samtykke fra Studiekvartalet.

Detaljer

NÆRINGSSTRUKTUR I EN LITEN, ÅPEN ØKONOMI

NÆRINGSSTRUKTUR I EN LITEN, ÅPEN ØKONOMI NÆRINGSSTRUKTUR I EN LITEN, ÅPEN ØKONOMI Prisene på verdensmarkedet gitt Faktorbeholdningene i økonomien gitt Fire ligninger som bestemmer fire endogene variable: w = w(p, p 2 ) q = q(p, p 2 ) Y = Y (p,

Detaljer

ECON1210 Forbruker, bedrift og marked Forelesning 3

ECON1210 Forbruker, bedrift og marked Forelesning 3 ECON1210 Forbruker, bedrift og marked Forelesning 3 Diderik Lund Økonomisk institutt Universitetet i Oslo 5. september 2011 Diderik Lund, Økonomisk inst., UiO () ECON1210 Forelesning 3 5. september 2011

Detaljer

MAT jan jan jan MAT Våren 2010

MAT jan jan jan MAT Våren 2010 MAT 1012 Våren 2010 Mandag 18. januar 2010 Forelesning I denne første forelesningen skal vi friske opp litt rundt funksjoner i en variabel, se på hvordan de vokser/avtar, studere kritiske punkter og beskrive

Detaljer

ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 3

ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 3 ECON360 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 3 Diderik Lund Økonomisk institutt Universitetet i Oslo 9. september 20 Diderik Lund, Økonomisk inst., UiO () ECON360 Forelesning

Detaljer

Produksjon og tilbud. 2. forelesning ECON 1310 Del 1 (del 2 om Etterspørsel, investering og konsum) 28. januar 2015

Produksjon og tilbud. 2. forelesning ECON 1310 Del 1 (del 2 om Etterspørsel, investering og konsum) 28. januar 2015 Produksjon og tilbud 2. forelesning ECON 1310 Del 1 (del 2 om Etterspørsel, investering og konsum) 28. januar 2015 1 Produksjon & tilbud; Etterspørsel, investering & konsum Se på de sentrale beslutningene

Detaljer

Veiledning oppgave 3 kap. 2 i Strøm & Vislie (2007) ECON 3610/4610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk

Veiledning oppgave 3 kap. 2 i Strøm & Vislie (2007) ECON 3610/4610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk 1 Jon Vislie; august 27 Veiledning oppgave 3 kap. 2 i Strøm & Vislie (27) ECON 361/461 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Vi betrakter en lukket økonomi der vi ser utelukkende på bruk av

Detaljer

Løsningsforslag til underveisvurdering i MAT111 vår 2005

Løsningsforslag til underveisvurdering i MAT111 vår 2005 Løsningsforslag til underveisvurdering i MAT111 vår 5 Beregn grenseverdien Oppgave 1 (x 1) ln x x x + 1 Svar: Merk at nevneren er lik (x 1), så vi kan forkorte (x 1) oppe og nede og får (x 1) ln x ln x

Detaljer

Produsentens tilpasning II og produsentens tilbud

Produsentens tilpasning II og produsentens tilbud Kapittel 10 Produsentens tilpasning II og produsentens tilbud Løsninger Oppgave 10.1 (a) X = F (L, K). (b) Dette er en type utledningsoppgave, som innebærer at du skal presentere en modell. I denne oppgaven

Detaljer

Vi bruker alternativkostnad (opportunity cost), som ikke alltid er det samme som regnskapsmessige kostnader:

Vi bruker alternativkostnad (opportunity cost), som ikke alltid er det samme som regnskapsmessige kostnader: Produsentene K&W: kap.9+11+1 Innledning Vi skal se på en svært enkel modell av en bedrift: 1. Formål: Størst mulig overskudd («Max profitt»). Eierne har full kontroll 3. Produserer bare èn vare (tjeneste)

Detaljer

Høst Foreleser Finn R Førsund. Oppsummering ECON 2915

Høst Foreleser Finn R Førsund. Oppsummering ECON 2915 Oppsummering ECON 2915, Høst 2012 Foreleser Finn R Førsund Oppsummering ECON 2915 1 Solow modellen konstant befolkning Modellen Produktfunksjon, positive men avtakende Y F( K,L) grenseproduktiviteter,

Detaljer

Oppsummering matematikkdel

Oppsummering matematikkdel Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke Økonomisk Institutt May 6, 2010 KAB (Økonomisk Institutt) Oppsummering May 6, 2010 1 / 23 Innledning Rekker bare å nevne noen hovedpunkter Alt er

Detaljer

En oversikt over økonomiske temaer i Econ2200 vår 2009.

En oversikt over økonomiske temaer i Econ2200 vår 2009. En oversikt over økonomiske temaer i Econ2200 vår 2009. Konsumentteori Består av tre deler: i) Grunnmodell: kjøp av to goder i en periode, ii) valg av forbruk og sparing i to perioder, iii) valg av fritid

Detaljer

Mer om likninger og ulikheter

Mer om likninger og ulikheter Mer om likninger og ulikheter Studentene skal kunne utføre polynomdivisjon anvende nullpunktsetningen og polynomdivisjon til faktorisering av polynomer benytte polynomdivisjon til å løse likninger av høyere

Detaljer

Enkel matematikk for økonomer. Del 1 nødvendig bakgrunn. Parenteser og brøker

Enkel matematikk for økonomer. Del 1 nødvendig bakgrunn. Parenteser og brøker Vedlegg Enkel matematikk for økonomer I dette vedlegget går vi gjennom noen grunnleggende regneregler som brukes i boka. Del går gjennom de helt nødvendige matematikk-kunnskapene. Dette må du jobbe med

Detaljer

Oppsummering matematikkdel

Oppsummering matematikkdel Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke Økonomisk Institutt May 8, 2009 KAB (Økonomisk Institutt) Oppsummering May 8, 2009 1 / 22 Innledning Rekker bare å nevne noen hovedpunkter Alt er

Detaljer

Løsningsforslag seminar 1

Løsningsforslag seminar 1 Løsningsforslag seminar Econ 360/460, Høst 06 Oppgave a) dx = a dn dx = dn N = N Tolkning: Økning i produksjonen (av henholdsvis vare og ) når mengden arbeidskraft som benyttes i produksjonen økes med

Detaljer

Nåverdi og pengenes tidsverdi

Nåverdi og pengenes tidsverdi Nåverdi og pengenes tidsverdi Arne Rogde Gramstad Universitetet i Oslo 9. september 2014 Versjon 1.0 Ta kontakt hvis du finner uklarheter eller feil: a.r.gramstad@econ.uio.no 1 Innledning Anta at du har

Detaljer

Oppsummering matematikkdel ECON 2200

Oppsummering matematikkdel ECON 2200 Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke 7. mai 2008 1 Innledning En rask oppsummering av hele kurset vil ikke kunne dekke alt vi har gjennomgått. Men alt er pensum, selv om det ikke blir

Detaljer

MAT feb feb feb MAT Våren 2010

MAT feb feb feb MAT Våren 2010 MAT 1012 Våren 2010 Forelesning Vi er ferdig med en-variabel-teorien, og vi kan begynne å jobbe med funksjoner i flere variable. Det første vi skal gjøre er å gå gjennom de vanlige analysene vi gjør for

Detaljer

Fasit til utvalgte oppgaver MAT1100, uka 29/11-3/12

Fasit til utvalgte oppgaver MAT1100, uka 29/11-3/12 Fasit til utvalgte oppgaver MAT1100, uka 9/11-3/1 Øyvind Ryan (oyvindry@ifiuiono December, 010 Oppgave 15 Oppgave 155 a 4A 3B 4 1 3 1 3 1 4 1 8 4 1 4 3 3 1 3 0 9 6 + 6 3 9 0 5 18 14 1 3 4 4 9 1 6 8 + 6

Detaljer

Under noen av oppgavene har jeg lagt inn et hint til hvordan dere kan går frem for å løse dem! Send meg en mail om dere finner noen feil!

Under noen av oppgavene har jeg lagt inn et hint til hvordan dere kan går frem for å løse dem! Send meg en mail om dere finner noen feil! Under noen av oppgavene har jeg lagt inn et hint til hvordan dere kan går frem for å løse dem! Send meg en mail om dere finner noen feil! 1. Husk at vi kan definere BNP på 3 ulike måter: Inntektsmetoden:

Detaljer

Faktor. Eksamen høst 2005 SØK 1001- Innføring i matematikk for økonomer Besvarelse nr 1: -en eksamensavis utgitt av Pareto

Faktor. Eksamen høst 2005 SØK 1001- Innføring i matematikk for økonomer Besvarelse nr 1: -en eksamensavis utgitt av Pareto Faktor -en eksamensavis utgitt av Pareto Eksamen høst 005 SØK 00- Innføring i matematikk for økonomer Besvarelse nr : OBS!! Dette er en eksamensbevarelse, og ikke en fasit. Besvarelsene er uten endringer

Detaljer

Terminprøve Sigma 1T Våren 2008 m a t e m a t i k k

Terminprøve Sigma 1T Våren 2008 m a t e m a t i k k Terminprøve Sigma 1T Våren 2008 Prøvetid 5 klokketimer for Del 1 og Del 2 til sammen. Vi anbefaler at du ikke bruker mer enn to klokketimer på Del 1. Du må levere inn Del 1 før du tar fram hjelpemidler.

Detaljer

Uendelige rekker. Konvergens og konvergenskriterier

Uendelige rekker. Konvergens og konvergenskriterier Uendelige rekker. Konvergens og konvergenskriterier : Et absolutt nødvendig, men ikke tilstrekkelig vilkår for konvergens er at: lim 0 Konvergens vha. delsummer :,.,,,. I motsatt fall divergerer rekka.

Detaljer

Mikroøkonomi - Superkurs

Mikroøkonomi - Superkurs Mikroøkonomi - Superkurs Teori - kompendium Antall emner: 7 Emner Antall sider: 22 Sider Kursholder: Studiekvartalets kursholder til andre brukere uten samtykke fra Studiekvartalet. Innholdsfortegnelse:

Detaljer

Eksamensoppgaven -i mikro grunnfag Grunnfag mikro høst 2000, karakter 2,2

Eksamensoppgaven -i mikro grunnfag Grunnfag mikro høst 2000, karakter 2,2 Eksamensoppgaven -i mikro grunnfag Grunnfag mikro høst 2000, karakter 2,2 Gjengitt av Marius Holm Rennesund mariushr@student.sv.uio.no Oppgave 1 En bedrift produserer en vare ved hjelp av en innsatsfaktor.

Detaljer

Har eierne kontroll? I bedrifter med mange, små eiere får ledelsen ofte stor kontroll. Disse kan ha andre formål de ønsker å fremme.

Har eierne kontroll? I bedrifter med mange, små eiere får ledelsen ofte stor kontroll. Disse kan ha andre formål de ønsker å fremme. Produsentene 1. Innledning Vi skal se på en svært enkel modell av en bedrift: 1. Formål: Størst mulig overskudd («Max profitt»). Eierne har full kontroll 3. Produserer bare èn vare (tjeneste) 4. Kort sikt:

Detaljer

EKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I - LØSNING Mandag 15. desember 2014 Tid: 09:00 14:00

EKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I - LØSNING Mandag 15. desember 2014 Tid: 09:00 14:00 Universitetet i Bergen Det matematisk naturvitenskapelige fakultet Matematisk institutt Side 1 av 11 BOKMÅL EKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I - LØSNING Mandag. desember 214 Tid: 9: 14:

Detaljer

Funksjoner med og uten hjelpemidler

Funksjoner med og uten hjelpemidler Funksjoner med og uten hjelpemidler Plan for dagen Del 1: 09:00-11:45 Lunsj: 11:45-12:15 Del 2: 12:15-14:30 Eksamensinformasjon: 14:30-15:00 Plan for tiden før lunsj Økt 1: 09:00-09:45 Økt 2: 10:00-10:45

Detaljer

Løsningsforslag AA6524/AA6526 Matematikk 3MX Elever/Privatister 6. desember 2006. eksamensoppgaver.org

Løsningsforslag AA6524/AA6526 Matematikk 3MX Elever/Privatister 6. desember 2006. eksamensoppgaver.org Løsningsforslag AA654/AA656 Matematikk 3MX Elever/Privatister 6. desember 6 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det

Detaljer

Fysikkolympiaden 1. runde 26. oktober 6. november 2015

Fysikkolympiaden 1. runde 26. oktober 6. november 2015 Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Universitetet i Oslo Fysikkolympiaden. runde 6. oktober 6. november 05 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner

Detaljer

Sigbjørn Hals. Nedenfor har vi tegnet noen grafer til likningen y = C, der C varierer fra -2 til 3, med en økning på 1.

Sigbjørn Hals. Nedenfor har vi tegnet noen grafer til likningen y = C, der C varierer fra -2 til 3, med en økning på 1. Retningsdiagrammer og integralkurver Eksempel 1 Den enkleste av alle differensiallikninger er nok y' = 0. Denne har løsningen y = C fordi den deriverte av en konstant er 0. Løsningen vil altså bli flere

Detaljer

Konsumentteori. Grensenytte er økningen i nytte ved å konsumere én enhet til av et gode.

Konsumentteori. Grensenytte er økningen i nytte ved å konsumere én enhet til av et gode. Konsumentteori Nyttefunksjonen U(x 1, x 2 ) forteller oss hvordan vår nytte avhenger av konsumet av x 1 og x 2. En indifferenskurve viser godekombinasjonene som gir konsumenten samme nytte. Grensenytte

Detaljer

Løsningsforslag til underveiseksamen i MAT 1100

Løsningsforslag til underveiseksamen i MAT 1100 Løsningsforslag til underveiseksamen i MAT 00 Dato: Tirsdag /0, 00 Tid: Kl. 9.00-.00 Vedlegg: Formelsamling Tillatte hjelpemidler: Ingen Oppgavesettet er på sider Eksamen består av 0 spørsmål. De 0 første

Detaljer

Mikroøkonomi - Intensivkurs

Mikroøkonomi - Intensivkurs Mikroøkonomi - Intensivkurs Formelark Antall emner: 7 Emner Antall sider: 1 Sider Kursholder: Studiekvartalets kursholder Copyright 016 - Kjøp og bruk av materialet fra Studiekvartalet.no omfatter en personlig

Detaljer

MAT1030 Forelesning 30

MAT1030 Forelesning 30 MAT1030 Forelesning 30 Kompleksitetsteori Roger Antonsen - 19. mai 2009 (Sist oppdatert: 2009-05-19 15:04) Forelesning 30: Kompleksitetsteori Oppsummering I dag er siste forelesning med nytt stoff! I morgen

Detaljer

Tallet 0,04 kaller vi prosentfaktoren til 4 %. Prosentfaktoren til 7 % er 0,07, og prosentfaktoren til 12,5 % er 0,125.

Tallet 0,04 kaller vi prosentfaktoren til 4 %. Prosentfaktoren til 7 % er 0,07, og prosentfaktoren til 12,5 % er 0,125. Prosentregning Når vi skal regne ut 4 % av 10 000 kr, kan vi regne slik: 10 000 kr 4 = 400 kr 100 Men det er det samme som å regne slik: 10 000 kr 0,04 = 400 kr Tallet 0,04 kaller vi prosentfaktoren til

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag 7 desember EKSAMEN Løsningsorslag Emnekode: ITD5 Dato: 6 desember Hjelpemidler: Emne: Matematikk ørste deleksamen Eksamenstid: 9 Faglærer: To A-ark med valgritt innhold på begge sider Formelhete Kalkulator

Detaljer

ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk. Om kurset

ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk. Om kurset ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Karine Nb Nyborg Om kurset Pensum: Strøm og Vislie (2007): Effektivitet, fordeling og økonomisk politikk (hele boka) Samfunnsøkonomisk effektivitet

Detaljer

Forslag til obligatoriske oppgaver i ECON 2200 våren For å lette lesingen er den opprinnelige oppgave teksten satt i kursiv.

Forslag til obligatoriske oppgaver i ECON 2200 våren For å lette lesingen er den opprinnelige oppgave teksten satt i kursiv. Eric Nævdal og Jon Vislie; 2. aril 27 Forslag til obligatoriske ogaver i ECON 22 våren 27. For å lette lesingen er den orinnelige ogave teksten satt i kursiv. Ogave. 3 2 a) Hvis f( K) = ( K + ), finn f

Detaljer

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode

Detaljer

Krasjkurs MAT101 og MAT111

Krasjkurs MAT101 og MAT111 Krasjkurs MAT101 og MAT111 Forord Disse notatene ble skrevet under et åtte timer (to firetimers forelesninger) i løpet av 10. og 11. desember 2012. Det er mulig at noen av utregningene ikke stemmer, enten

Detaljer

Næringsstruktur 1. Innledning. Økonomiske sektorer og næringsstruktur. 2 x 2-modelering. ECON2915 Høsten 2008

Næringsstruktur 1. Innledning. Økonomiske sektorer og næringsstruktur. 2 x 2-modelering. ECON2915 Høsten 2008 Spørsmål Økonomiske sektorer og næringsstruktur. 2 x 2-modelering. Økonomisk institutt, Universitetet i Oslo ECON295 Høsten 2008 Innledning Spørsmål 4 forelesninger om næringsstruktur: 4. okt: Økonomiske

Detaljer

MAT 100a - LAB 3. Vi skal først illustrerere hvordan Newtons metode kan brukes til å approksimere n-te roten av et positivt tall.

MAT 100a - LAB 3. Vi skal først illustrerere hvordan Newtons metode kan brukes til å approksimere n-te roten av et positivt tall. MAT 100a - LAB 3 I denne øvelsen skal vi bruke Maple til å illustrere noen anvendelser av derivasjon, først og fremst Newtons metode til å løse likninger og lokalisering av min. og max. punkter. Vi skal

Detaljer

Opsjoner. R. Øystein Strøm. 14. april 2004

Opsjoner. R. Øystein Strøm. 14. april 2004 Opsjoner R. Øystein Strøm 14. april 2004 Slide 1 1. Innledning 2. Definisjoner 3. Salgs-kjøps-pariteten 4. En en-periodisk binomisk opsjonsformel 5. De generelle modellene 1 Innledning Opsjoner er å finne

Detaljer

Oversikt. Trond Kristoffersen. Totalkapitalrentabilitet. Totalkapitalrentabilitet. Finansregnskap. Regnskapsanalyse (del 3) Beregning av nøkkeltall:

Oversikt. Trond Kristoffersen. Totalkapitalrentabilitet. Totalkapitalrentabilitet. Finansregnskap. Regnskapsanalyse (del 3) Beregning av nøkkeltall: Oversikt Trond Kristoffersen Finansregnskap Regnskapsanalyse (del 3) Utvidet analyse av lønnsomhet Generelt Likviditet Bedriftens betalingssituasjon Finansiering Anskaffelse og anvendelse av kapital Soliditet

Detaljer